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“How to evaluate scientific research?” is a controversial topic. The easiest way to 
evaluate productivity and impact is to count the number of published papers and the 
number of citations. Clearly, this is very naïve because it is possible to publish many 
papers that are incremental or of low quality. Counting the total number of citations 
has the problem that one may be a co-author of a single high-cited paper. This does 
not say much about the contribution of the author, and citations tend to follow a 
power-law distribution (i.e., just a few papers attract most of the citations). To address 
the limitations of simply counting papers and citations, the scientific community has 
created journal and conference rankings, and metrics like the Hirsch index (first 
proposed by Jorge Hirsh in 2005, and adapted in many different ways). 

Of course, all of these measures should be taken with a grain of salt. In the Netherlands, 
the “Recognition and Rewards” (“Erkennen en Waarderen”) program [6] was initiated 
to improve the evaluation of academics and to give credits to people working in teams 
or focusing on teaching. Similar initiatives can be seen in other countries and at the 
European level [7]. Although the goals of such programs are reasonable and it is 
impossible to disagree with statements such as “quality is more important than 
quantity” and “one should recognize and value team performance and 
interdisciplinary research”, suitable measures are lacking. Such programs are often 
used to abandon any measure to quantify and evaluate productivity and impact. In 
some universities, it has even become “politically incorrect” to talk about published 
papers and the number of citations. Yet, when evaluating and selecting academics, 
committee members still secretly look at the data provided by Google Scholar, 
Scopus, and Web of Science. This is because it is difficult to evaluate and compare 
academic performance in an objective and qualitative way. This creates the risk that 
evaluations and selections become highly subjective, e.g., based on taste, personal 
preferences, and criteria not known to the individuals evaluated. Moreover, in such 
processes, quantitative data are still used, but in an implicit and inconsistent manner. 



Given the above, my personal opinion is that we cannot avoid using objective data-
driven approaches to evaluate productivity and impact. Of course, quantitative 
measures should only support expert assessment and are not a substitute for 
informed judgment. When using citation scores, one should definitely consider the 
“Leiden Manifesto for research metrics” [1], which provides ten principles to guide 
research evaluations.  

Some of the practical challenges that I see in research evaluations are the following: 

• Subjectivity. Rankings of journals and conferences tend to be problematic. 
Journal lists are highly subjective. For example, in the field of Information 
Systems, the “College of Senior Scholars” selected a “basket” of journals as the 
top journals in their field. However, the definition of Information Systems is 
considered in a very particular manner, mostly driven by non-technical US-
based academics publishing in these journals and serving on the editorial 
boards of the journals they select. The CORE ranking of conferences is much 
broader, but has similar problems (e.g., the ranking was established by a few 

computer departments in Australia and New Zealand and is now used all over 
the globe to decide on research funding and travel budgets). The intentions 
behind these lists are good. However, it is unavoidable that there are topical 
biases and scoping issues. Moreover, such rankings are like a self-fulfilling 
prophecy. This leads to a variant of the Matthew effect (“the rich get richer”), 
i.e., the higher the ranking of a conference or journal, the more people want to 
submit to it, automatically leading to a higher status. This combined with a 
narrow focus, leads to a degenerate view of research quality and discourages 
innovations in new directions. Although research is changing rapidly, these 
journal lists tend to be relatively stable. Moreover, highly-ranked journals and 
conferences have many papers that are rarely cited. Hence, just looking at the 
publication venue says little about the quality, novelty, and impact of the work.  

• Biased data sources and data quality problems. There are multiple databases 
that can be used to evaluate productivity and impact, e.g., Elsevier’s Scopus 
and Google Scholar (both released in 2004) and Web of Science (online since 
2002). Also, dedicated tools running on top of these platforms, such as InCites 
(using the Web of Science) and SciVal (using Scopus), have been developed. 
Web of Science has a strong focus on journals published in the US and favors 
traditional disciplines such as Physics. Conferences are only partially covered. 
For a researcher in Computer Science, the number of citations in Google 



Scholar may be 2-3 times higher than the number of citations in Scopus, and 
over 10 times the number of citations in Web of Science! For a researcher in 
Physics, the differences between Google Scholar, Scopus, and Web of Science 
may be much smaller. This means that Web of Science is simply irrelevant for 
many disciplines. Google Scholar has the most extensive coverage, but also 
data quality problems. Google Scholar simply crawls academic-related 
websites and also counts non-peer-reviewed documents. One may also find 
stray citations where minor variations in referencing lead to duplicate records 
for the same paper [8]. Also, Scopus and Web of Science have such problems, 
but to a lesser degree. In Microsoft Academic Graph, my output and citations 
were split over eight different user profiles due to my last name (“W. van der 
Aalst”, “Van der Aalst”, etc.). Although Microsoft Academic Graph was 
discontinued, these flawed data are still used in all kinds of rankings (e.g. 
Research.com). These examples illustrate that the impact of data quality 
problems and limited coverage are not equally distributed. Considering data 
quality and coverage, Scopus can be seen as the “middle road”. 

• Different publication practices. Finally, there are different publication 
traditions that significantly impact the most common measures used today. In 
many disciplines, the average number of authors is around two. However, in 
areas like physics, the average is above ten authors, and there are papers with 
hundreds or even thousands of authors. An article on measuring the Higgs 
Boson Mass published in Physical Review Letters has 5,154 authors (cf. 
https://link.aps.org/doi/10.1103/PhysRevLett.114.191803). This 33-page article has 
24 pages to list the authors, and only 9 pages are devoted to the actual paper. 
When counting H-indices in the standard way, this paper will increase the H-
index by one for more than 5000 authors. Also, the order in which authors are 
listed varies from discipline to discipline. In mathematics, it is common to list 
authors alphabetically. In other disciplines, the order is based on contribution. 
Also, the “last author” position may have a specific meaning (e.g., the project 
leader or most senior researcher). Also, in Computer Science, conference 
publications are regarded as important and comparable to journal 
publications. In other areas, conference publications “do not count”, and all 
work is published in journals. The above shows that counting just journal papers 
while ignoring the number of authors may have hugely diverging 
consequences for different disciplines.   

https://link.aps.org/doi/10.1103/PhysRevLett.114.191803


These challenges are hard to address. However, as stated before, I do not think it is 
wise to resort to subjective evaluations of research productivity and impact while 
ignoring the data that are there. Therefore, I liked the approach and work presented 
by John Ioannidis and his colleagues [2,3,4,5]. Ioannidis et al. propose to use a 
composite indicator (called C-score) which is the sum of the standardized six log-
transformed citation indicators (NC, H, Hm, NS, NSF, NSFL): 

• total number of citations received (NC),  
• Hirsch index for the citations received (H),  
• Schreiber co-authorship adjusted Hm index for the citations received (Hm). 
• total number of citations received to papers for which the scientist is single 

author (NCS),  
• total number of citations received to papers for which the scientist is single or 

first author (NCSF), and 
• total number of citations received to papers for which the scientist is single, 

first, or last author (NCSFL). 

The resulting C-score focuses on impact (citations) rather than productivity (number 
of publications) and incorporates information on co-authorship and author positions 
(single, first, last author). Each NC, H, Hm, NS, NSF, NSFL score is normalized to a value 
between 0 and 1, and these are summed up. Hence, the C-score has a range between 
0 and 6.  

In the dataset [2], data for 194,983 scientists are reported. The selection is based on 
the top 100.000 scientists by C-score (with and without self-citations) or a percentile 
rank of 2% or above in the subfield. The researchers are classified into 22 scientific 
fields and 174 sub-fields. The dataset is based on all Scopus author profiles as of 
September 1, 2022. Scopus can be seen as the middle ground between Google Scholar 
and Web of Science. As mentioned, Google Scholar has much better coverage, but 
also more data quality problems. Web of Science is unusable for many disciplines due 
to its bias towards specific types of journals. Note that Ioannidis et al. tried to avoid the 
problems mentioned before, i.e., they aimed to avoid subjectivity and biased data, 
addressed data quality problems, and compensated for different publication 
practices (e.g., the number of authors). 

  



The data set [2] looks as follows (after hiding some of the columns and showing the 
first 40 rows): 

 

The first three columns show the author, institution, and country. The orange columns 
show the NC, H, Hm, NS, NSF, NSFL, and C values for each author ignoring self-citations. 
The first orange column shows the overall rank based on the C-score, and the last 
orange column shows the C-score itself (with a value between 0 and 6). The yellow 
columns show the NC, H, Hm, NS, NSF, NSFL, and C values for each author, including 
self-citations. The final columns aim to show the positioning of the author’s work in the 
respective subfields. The top-ranked Science-Metrix category and second-ranked 
Science-Metrix category are listed per author, including the fraction of papers in these 
fields, the C-score-based ranking in the top-ranked field, and the total number of 
authors within the subfield. 

To illustrate the data [2], I take myself as an example: 

• Author name: van der Aalst, Wil M.P. 
• Institution: Rheinisch-Westfälische Technische Hochschule Aachen 
• Country: deu (Germany) 
• Without self-citations: 

o total number of citations received (NC): 42,854 
o Hirsch index for the citations received (H): 99 
o Schreiber co-authorship adjusted Hm index for the citations received 

(Hm): 64 



o total number of citations received to papers for which the scientist is 
single author (NCS): 6,678 

o total number of citations received to papers for which the scientist is 
single or first author (NCSF): 21,516 

o total number of citations received to papers for which the scientist is 
single, first, or last author (NCSFL): 35,435 

o C-score: 4.8916 
o Global rank across all fields based on C-score: 275 

• Including self-citations: 
o total number of citations received (NC): 50,145 
o Hirsch index for the citations received (H): 107 
o Schreiber co-authorship adjusted Hm index for the citations received 

(Hm): 68 
o total number of citations received to papers for which the scientist is 

single author (NCS): 7,365 
o total number of citations received to papers for which the scientist is 

single or first author (NCSF): 24,116 
o total number of citations received to papers for which the scientist is 

single, first, or last author (NCSFL): 41,397 
o C-score: 4.9370 
o Global rank across all fields based on C-score: 243 

• First subfield: Artificial Intelligence & Image Processing 
• Fraction of papers in the first subfield: 0.4585 
• Second subfield: Information & Communication Technologies 
• Fraction of papers in the second subfield: 0.1444 
• Global ranking within the first subfield based on C-score: 7 
• Number of researchers in the first subfield: 321,592 

Hence, my global ranking based on the C-score not considering self-citations is 275, 
my global ranking based on the C-score also considering self-citations is 243, and I’m 
ranked 7th among the 321,592 in Artificial Intelligence & Image Processing. 

  



The above describes one row in the table shown before. To further improve readability, 
I removed the columns related to the second subfield and only considered the 
citations, excluding self-citations. The top 25 authors based on C-score are then 
readable, and the top view is as follows: 

 



For researchers from RWTH Aachen University, the table looks as follows: 

 

  



For researchers working in Germany, the table looks as follows: 

 

  



For researchers working in The Netherlands, the table looks as follows: 

 

  



The people having Artificial Intelligence & Image Processing as the first subfield, the 
table looks as follows: 

 



Readers interested in creating their own analyses can download the dataset created 
by John Ioannidis and his colleagues [2] and read the supporting articles [3,4,5]. In my 
view, this is a great initiative to address the apparent problems related to naively 
counting papers and citations. As usual, the impact of scientific work can only be 
measured after some time. Hence, measures such as the C-score should not be used 
to evaluate early career researchers. However, it could help younger researchers to 
set goals. Also, one should never forget the first principle of the Leiden Manifesto for 
research metrics [1]: “Quantitative evaluation should support qualitative, expert 
assessment. Quantitative metrics can challenge bias tendencies in peer review and 
facilitate deliberation. This should strengthen peer review, because making judgments 
about colleagues is difficult without a range of relevant information. However, 
assessors must not be tempted to cede decision-making to the numbers. Indicators 
must not substitute for informed judgment. Everyone retains responsibility for their 
assessments.” However, as also demonstrated in [8], it is very well possible to 
conduct a fair and inclusive cross-disciplinary comparison of research 
performance using Google Scholar or Scopus as a data source and more refined 
measures that correct for the number of authors. 
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