
Incremental Computation of Synthesis Rules for
Free-Choice Petri nets

P.M. Dixit1, H.M.W. Verbeek1, and W.M.P. van der Aalst2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Rheinisch-Westflische Technische Hochschule, (RWTH) Aachen, Germany

{p.m.dixit,h.m.w.verbeek}@tue.nl

wvdaalst@pads.rwth-aachen.de

Abstract. In this paper, we propose a novel approach that calculates
all the possible applications of synthesis rules, for well-formed free-choice
Petri nets [8], in a speedy way to enable an interactive editing system.
The proposed approach uses a so-called incremental synthesis structure,
which can be used to extract all the synthesis rules, corresponding to a
given net. Furthermore, this structure is updated incrementally, i.e. after
usage of a synthesis rule, to obtain the incremental synthesis structure
of the newly synthesized net. We prove that the proposed approach is
correct and complete in order to synthesize any well-formed free-choice
Petri net, starting with an initial well-formed atomic net and the cor-
responding incremental synthesis structure. A variant of the proposed
approach has been implemented that allows interactive modeling (disco-
very) of sound business processes (from event logs). Experimental results
show that the proposed approach is fast, and outperforms the baseline,
and hence is well-suited for enabling interactive synthesis of very large
nets.

Keywords: free-choice Petri nets, interactive system, incremental synt-
hesis rules computation

1 Introduction

Petri nets serve as an effective tool for modeling the control flow of asynchronous
concurrent systems. In order to be useful, in application areas such as business
process management, it is imperative that the Petri nets representing the busi-
ness processes adhere to certain properties, e.g. soundness [1]. In this paper, we
propose an approach that allows interactive editing of free-choice Petri nets from
smaller nets by preserving certain properties (such as well-formedness). We show
that the proposed approach is fast, and thus has negligible waiting times and
thereby well-suited for enabling an interactive editing system. Moreover, using
the guarantees from [8], we show that the approach can be used to synthesize
any well-formed free-choice Petri net. A sub-class of such nets can also be used
to model sound business processes, and is also applicable in the field of process
mining.

Petri net synthesis techniques allow synthesizing bigger Petri nets from smal-
ler Petri nets. In many cases, the synthesized net guarantees certain structural
and behavioral properties, depending on the net it was synthesized from. The

2 Dixit et al.

technique of synthesizing Petri nets from smaller nets is not new, and has been
well-researched for over two decades [2,12,7]. Synthesis rules are basically re-
verse applications of reduction rules, which are well researched in the literature
[5,4,14,13,3] for a variety of different applications [11,16]. The work in [6] pro-
vides a way of interactively synthesizing Petri nets using a knitting technique.
However, the completeness and correctness of these rules is not guaranteed. In
our case, we refer to the synthesis techniques that allow Petri net expansion, one
transition and/or place at a time. We use such rules to enable a user interactive
well-formed free-choice Petri net editing system. Compared to the approaches
from the literature, our main focus is not to suggest new synthesis rules, but
to develop an approach that allows speedy computation of all possible applica-
tions of synthesis rules to enable an interactive system for editing/modeling of
well-formed free-choice Petri nets.

In our approach, we use the synthesis rule kit from [8], which are mainly
derived from [5], that allow synthesis of any well-formed free-choice Petri net,
starting with an initial well-formed atomic net. The synthesis rule kit consists
of three rules which allow (i) addition of a transition, (ii) addition of a place,
or (iii) addition of a transition and a place to a Petri net. Thus these rules
could be used as the building blocks for enabling interactive free-choice Petri
net editing/modeling, which guarantee well-formedness. To enable interactive
modeling, it is ideal to pre-populate all the possible applications of synthesis
rules for any given net. However, computing all the synthesis operations in a
brute-force way for any given net can be computationally expensive and hence
very slow, especially for the first two rules, which require solving a system of
linear equations to check the applicability of the rule. This is clearly not feasible
as the size of the net grows, as the number of applications of synthesis rules
would grow too.

In this paper, we address the issue of computing all the applications of synt-
hesis rules for a given well-formed free choice net in a speedy way to allow
interactive editing. We propose an approach based on an incremental synthesis
structure, that can be used to calculate all the possible applications of synthesis
rules, for a given well-formed net. This meta-structure is updated after applica-
tion of any rule, to contain information to extract all the possible applications
of synthesis rules corresponding to the newly synthesized net. We show that by
starting with a correct and complete incremental synthesis structure for the ini-
tial net, we can calculate the incremental synthesis structure of any synthesized
net, and thereby calculate all the possible applications of synthesis rules in an
incremental way.

The remainder of the paper is structured as follows. We review the preli-
minaries in Section 2. In Section 3 and Section 4 we discuss the approach for
calculating the synthesis rules in an incremental fashion, as well as discuss the
correctness and completeness of the proposed approach. In section 5, we briefly
discuss the implementation and application of the approach to business proces-
ses. We evaluate the proposed approach in Section 6, followed by the conclusions
and future research directions in Section 7.

Incremental Computation of Synthesis Rules 3

2 Preliminaries

This section introduces some basic definitions and background of the concepts
used in this paper.

A bag over some set S is a function from S to the natural numbers that
assigns only a finite number of elements from S a positive value. For a bag B
over set S and s ∈ S, B(s) denotes the number of occurrences of s in B, often
called the cardinality of s in B. Note that a finite set of elements of S is also
a bag over S, namely the function yielding 1 for every element in the set and
0 otherwise. The set of all bags over set S is denoted B(S). We use brackets to
explicitly enumerate a bag and superscripts to denote cardinalities. For example
[a2, b3, c] denotes a bag in which the elements a, b and c are contained 2, 3 and
1 times resp. Bag B is a subbag of bag B′, denoted B ≤ B′, iff, for all s ∈ S,
B(s) ≤ B′(s). The standard operators can be extended to bag, e.g., [a2]+[a2, b3,
c] = [a4, b3, c]. Furthermore, we also allow addition or subtraction of bags with
sets, e.g., [a2, b3, c]− {a} = [a, b3, c].

A relation R ⊆ X × Y is a set of pairs, where π1(R) = {x | (x, y) ∈ R}
denotes the domain of R, π2(R) = {y | (x, y) ∈ R} denotes the range of R, and
ω(R) = π1(R) ∪ π2(R) denotes the elements of R. For example, ω({(a, b), (b,
c)}) = {a, b, c}. f : X 6→ Y denotes a partial function with domain dom(f) ⊆ X
and range rng(f) = {f(x) | x ∈ X} ⊆ Y . f : X → Y denotes a total function,
i.e., dom(f) = X. Given a finite set A = {a1, . . . , ak}, every mapping X from A
to Q, denoted X : A → Q can be represented by the vector (X(a1) . . . X(ak)).
We do not distinguish between the mapping X and the vector (X(a1) . . .X(ak)).
X · Y denotes the scalar product of two vectors. Similarly, if C is a matrix,
then X · C and C · X denote the left and right products of X and C. We
do not use different symbols for row and column vectors. For e.g., if we write
X = (X(a1) . . .X(ak)), it serves as a column vector in C ·X.

Definition 1 (Petri net). A Petri net N is a tuple (P, T, F) such that:

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅, and
– F ⊆ (P × T) ∪ (T × P) is the set of arcs, also called the flow relation.

p1

t1 p2 t2 p3 t3 p4

t4

Fig. 1: An example well-formed free-
choice Petri net (N3).

For a Petri net N = (P, T, F), and a
node n ∈ P ∪ T , the preset of n in N ,

denoted
N• n, is the set of all nodes that

have an arc to n, that is,
N• n = {n′|(n′,

n) ∈ F}. Likewise, the postset of n in N ,

denoted n
N• , is the set of all nodes that have an arc from n, that is, n

N• = {n′|(n,
n′) ∈ F}. In case the net N is clear from the context, we typically omit it from

these notations and use • n instead of
N• n etc. A Petri net N = (P, T, F) is

called a free-choice (or FC) net if for r, u ∈ T , it holds that • r∩ • u = ∅ or
• r = • u. Figure 1 is also a FC net. The nodes of a Petri net can be used to
populate a so-called incidence matrix.

4 Dixit et al.

Definition 2 (Incidence matrix). Let N = (P, T, F) be a Petri net. The
incidence matrix N : (P × T)→ {1, 0,−1} of N is defined by

N(s, r) =

−1, if (s, r) ∈ F and (r, s) 6∈ F ;
1, if (s, r) 6∈ F and (r, s) ∈ F ;
0, otherwise.

Table 1: Incidence ma-
trix N3 of Figure 1.

t1 t2 t3 t4

p1 -1 0 0 1
p2 1 -1 0 0
p3 0 1 -1 0
p4 0 0 1 -1

Table 1 shows the incidence matrix corresponding
to the Petri net from Figure 1. The column vector of N
is associated to a transition t is denoted by t and given
as t : P → {−1, 0, 1}. Similarly, the row vector associ-
ated to a place p is p : T → {−1, 0, 1}. t(s) denotes the
value corresponding to the place s, e.g., t2(p2) = −1.

A marking M of a Petri net N = (P, T, F) is a bag
over the places of N , that is, M ∈ B(P). A marking M
is typically represented as a collection M(s) of tokens
for every place s. Removing a token from s then corresponds to removing one
occurrence of s from M , and adding a token to s corresponds to adding one
occurrence of s to M .

Let N = (P, T, F) be a Petri net, let M be a marking of N , and let r ∈ T
be a transition of N . Transition r is enabled in M , denoted M

r→, if and only
if • r ≤ M . An enabled transition may fire, which leads to a new marking M ′,
where M ′ = M− •r+ r• , that is, in the new marking, a token is first removed
from every place in the preset of r and a token is then added to every place in
the postset of r. This firing is denoted as M

r→M ′.
Let σ = 〈t1, t2..., tn〉 ∈ T ∗ be a sequence of transitions. M

σ→ M ′ denotes
that there is a set of markings M0,M1, ...,Mn such that M0 = M , Mn = M ′,

and Mi
ti+1→ Mi+1 for 0 ≤ i < n. A marking M ′ is reachable from M if there

exists a σ such that M
σ→M ′.

We use R(N,M) to denote the set of markings reachable from marking M

in Petri net N , i.e. R(N,M) = {M ′|M ′ ∈ B(P) ∧M σt→M ′ for some σ ∈ T ∗ }.
A Petri net N = (P, T, F) is called strongly connected if and only if

∀n,n′∈P∪T (n, n′) ∈ F ∗, where F ∗ is the reflexive transitive closure of F . Let N ′ =
(P ′, T ′, F ′) such that P ′ ⊆ P and T ′ ⊆ T and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)).
The net N ′ is called an S-net if and only if for all r ∈ T ′ it holds that

| N ′

• r| = 1 = |r N
′

• |, that is, every transition has a single place in its pre-
set and a single place in its postset. The S-net N ′ is called an S-component of
net N if and only if N ′ is strongly connected and for all s ∈ P ′ it holds that
N• s ∪ s N• ⊆ T ′. The net N is called S-coverable if and only if for every place
s ∈ P there exists an S-component that contains s. Similarly, we can define
T-components.

A transition r belonging to a Petri net N with an initial marking M is called
live, if and only if for every M ′ ∈ R(N,M) there exists an M ′′ ∈ R(N,M ′)
that enables the transition r. The net N is called live in M if and only if all
its transition are live in M . Furthermore, N is deadlock-free in M if and only if
every reachable marking enables at least one transition.

Incremental Computation of Synthesis Rules 5

A place s in a Petri net N with the initial marking M is called k-bounded
(where k is a natural number), if and only if the place s never holds more than
k tokens in any reachable marking, i.e. ∀M ′∈R(N,M) : M ′(s) ≤ k. A place p is
called bounded in M if and only if it is k-bounded in M for some k. The net N
is called bounded in M if and only if all its places are bounded in M , it is called
unbounded in M otherwise. A Petri net net N is called well-formed, if and only
if there exists a marking M , such that N is live and bounded in M [8].

2.1 Synthesis Rules

p1 t1

Fig. 2: Initial ato-
mic net N0.

The starting net used in our approach is a strongly con-
nected atomic net containing one place and one transition,
as shown in Figure 2. The synthesis rules described in [8]
are valid for all well-formed FC nets. We first discuss the
two linearly dependent synthesis rules. A linearly depen-
dent rule allows for an introduction of a new place or a
new transition in a net. We begin by introducing linearly
dependency, which is then used to define the linear dependency rules.

Definition 3 (Linear dependency). Let M be an m× n matrix and let Q be
the set of all rational numbers. An n-dimensional vector A is linearly dependent
on the rows of M iff there exists an m-dimensional vector λ : {1 · · ·m} → Q,
s.t., λ ·M = A. Similarly, an m-dimensional vector B is linearly dependent on
the columns of M iff there exists an n-dimensional vector µ : {1 · · ·n} → Q, s.t.
M · µ = B.

Following the definition of linear dependency, we now discuss the two linearly
dependent rules from [8].

Definition 4 (Linearly Dependent Place Rule ψP (derived from [8])).
Let N = (P, T, F) and N ′ = (P ′, T ′, F ′) be two FC nets. N ′ is synthesized from
N , i.e. (N,N ′) ∈ ψP if and only if:

1. T ′ = T
2. P ′ \ P = {p}
3. F ′ = F ∪ F̃ , where F̃ ⊆ (({p} × T) ∪ (T × {p}))
4. p is linearly dependent on the rows of N

5.
N ′

• p ∪ pN
′

• 6= ∅

Figure 3a shows the application of ψP rule on the net N3 from Figure 1. It
can easily be seen that p5 = (1, 0, 0,−1), where p5(t1) = 1, p5(t2)=0 and so on,
is linearly dependent on the rows of N3 (Table 1), such that p5 = p2 + p3 + p4.
Similarly, we can define the linearly dependent transition rule as follows:

Definition 5 (Linearly Dependent Transition Rule ψT (derived from
[8])). Let N = (P, T, F) and N ′ = (P ′, T ′, F ′) be two FC nets. N ′ is synthesized
from N , i.e. (N,N ′) ∈ ψT if and only if:

6 Dixit et al.

1. P ′ = P
2. T ′ \ T = {t}
3. F ′ = F ∪ F̃ , where F̃ ⊆ ((P × {t}) ∪ ({t} × P))
4. t is linearly dependent on the columns of N

5.
N ′

• t ∪ tN
′

• 6= ∅

Figure 3b shows the application of ψT rule on the net N4 from Figure 3a.
Having defined the linear dependency rules, we now define the final rule, i.e. the
abstraction rule, which allows expansion of a net by adding a new place and a
new transition. The abstraction rule can be formally defined as:

Definition 6 (Abstraction Rule ψA [8]). Let N = (P, T, F) and N ′ = (P ′,
T ′, F ′) be two FC nets. N ′ is synthesized from N , i.e. (N,N ′) ∈ ψA if and only
if there exists a non-empty set of transitions R ⊆ T and a non-empty set of
places S ⊆ P such that:

1. P ′ \ P = {p}
2. T ′ \ T = {t}
3. R× S ⊆ F ∩ (T × P)
4. F ′ = (F \ (R× S)) ∪ ((R× {p}) ∪ ({p} × {t}) ∪ ({t} × S))

We can get to the net N3 from Figure 1, by using three applications of the
ψA rule on the initial net N0 from Figure 2. An important property of these
synthesis rules is that they preserve well-formedness for FC nets [8]. That is, if
(N,N ′) ∈ ψA∪ψT∪ψP , then N ′ is well-formed iff N is well-formed. Furthermore,
it has been shown that these rules are complete to synthesize any well-formed
FC net, starting with the initial atomic net of Figure 2.

3 Synthesis Space

In this section, we use the synthesis rules for FC nets from [8], in order to discuss
the concept of synthesis space. The synthesis space contains all the applications
of ψA, ψP and ψT rules on a well-formed FC net by adding a new transition
and/or a new place. Formally, the synthesis space is defined as:

Definition 7 (Synthesis Space SS). Let N = (P, T, F) be a well-formed FC
net, and let FN be the universe of well-formed FC nets. The synthesis space
SS(N) = SSA(N) ∪ SSP (N) ∪ SST (N), where: SSA(N) = {N ′ = (P ′, T ′,
F ′) ∈ FN | (N,N ′) ∈ ψA ∧ {t} = T ′ \ T ∧ {p} = P ′ \ P}, SST (N) = {N ′ = (P ′,
T ′, F ′) ∈ FN | (N,N ′) ∈ ψT ∧ {t} = T ′ \ T}, and SSP (N) = {N ′ = (P ′, T ′,
F ′) ∈ FN | (N,N ′) ∈ ψP ∧ {p} = P ′ \ P}.

SSA(N), SSP (N) and SST (N) are all disjoint for a well-formed FC net N ,
because ψA results in addition of a new transition t and a new place p, whereas
ψP or ψT results in addition of a new place p or a new transition t resp. In
essence, the newly added place p or transition t can be renamed as any place
s or r resp. Thus, using [8], we argue that the synthesis space contains all the

Incremental Computation of Synthesis Rules 7

p1

t1 p2 t2 p3 t3 p4

t4

p5

(a) Net N4 that results from ψP on net N3,
see Figure 1.

p1

t1 p2 t2 p3 t3 p4

t4

p5t5

(b) Net N5 that results from using ψT on net
N4.

Fig. 3: Applications of linear dependency synthesis rules.

possible applications of synthesis rules, for a given well-formed FC net N . After
N ′ is selected from SS(N), the synthesis space SS(N ′) corresponding to N ′

needs to be recomputed. Calculating the synthesis space would thus require
exploring all the possible ways in which ψA, ψP or ψT can be applied.

The two linearly dependent rules require solving a system of linear equations
in order to check their applicability. Contrary to this, the ψA rule can be checked
locally, i.e. by checking the existence of arcs between pre transitions R and post
places S. Hence, it is trivial to calculate all the possible applications of ψA rule,
however for ψP and ψT rules this is not the case. In order to overcome this,
we introduce an incremental way of calculating the synthesis space for linear
dependency rules, discussed in the following section.

4 Incremental Synthesis Structure

Incremental Synthesis StructureInitialize

Synthesis Space

Select (synthesize) a FC net

Update Incremental
Synthesis Structure

Fig. 4: The incremental synthesis struc-
ture (ISS) corresponding to the initial
net is calculated in a brute force way.
ISS contains all the possible linear de-
pendencies that could be added to a net
resulting in well-formed FC nets, among
others. The linear dependencies that re-
sult in well-formed FC nets are extrac-
ted to populate the synthesis space.
Upon selecting a net from the synthesis
space, the ISS is updated corresponding
to the net selected.

As recomputing the synthesis space
from scratch is computationally ex-
pensive especially while calculating
the linear dependency rules, we intro-
duce an intermediary structure, cal-
led the incremental synthesis struc-
ture (ISS), which is used to extract
the synthesis space for non-local rules.
After choosing any net from the synt-
hesis space, the incremental synthesis
structure is updated to contain infor-
mation required to extract the synt-
hesis space corresponding to the new
net.

Figure 4 provides an overview of
our approach. As we cater only to the
applications of linear dependency ru-
les (ψT or ψP), the incremental synt-
hesis structure contains only column
and row vectors, from which candidates can be derived for linearly dependent
transitions or places. A (non-existing) candidate transition can be identified by

8 Dixit et al.

two sets of (existing) places: the set PI of input places for the candidate tran-
sition and the set PO of output places for the candidate transition. Likewise,
a candidate place can be identified by a set TI of input transitions and a set
TO of output transitions. Using these nodes as input and output, a new place
(transition) can be added to the net. We now define, how we can derive these
sets of input and output nodes from a vector.

Definition 8 (Input/output sets from a vector). Let N = (P, T, F) be a
FC Petri net, and let tt : P → {−1, 0, 1} be a |P |−dimensional vector. Let
P i(tt) = {s ∈ P | tt(s) = i}. Then the set of input/output places for tt, denoted
as N(tt), is defined as follows:
N(tt) = {(PI , PO) | PI = P−1(tt) ∪X ∧ PO = P 1(tt) ∪X ∧X ⊆ P 0(tt)∧PI ∪
PO 6= ∅}.

Similarly, let pp : T → {−1, 0, 1} be a |T |-dimensional vector. Let T i(pp) =
{r ∈ T | pp(r) = i}. Then the sets of input/output transitions for pp, denoted
as N(pp), is defined as follows:
N(pp) = {(TI , TO) | TI = T 1(pp) ∪X ∧ TO = T−1(pp) ∪X ∧X ⊆ T 0(pp) ∧
TI ∪ TO 6= ∅}.

A single vector can result in multiple pairs of input and output nodes.
For example, consider a vector tt1 = (1,−1, 0, 0,−1) corresponding to the
net N4 from Figure 3a, where tt1(p1) = 1, tt1(p2)=−1 and so on. Then
N(tt1) = {({p2, p3, p5}, {p1, p3}), ({p2, p4, p5}, {p1, p4}), ({p2, p3, p4, p5}, {p1, p3,
p4}), ({p2, p5}, {p1})}. Having linked vectors to possible input and output nodes,
we now define a so-called valid ISS vector.

Definition 9 (Valid ISS vector). Let N = (P, T, F) be a well-formed FC net.
A |P |-dimensional vector tt : P → Z is called a valid ISS column vector in N iff

1. tt : P → {−1, 0, 1} and tt is linearly dependent on the columns of N,
2. ∃(PI , PO) ∈ N(tt), such that either

(a) ∃r∈T •r = PI , or
(b) ∃R⊆TR× PI ⊆ F ∧R 6= ∅

Similarly, a |T |-dimensional vector pp : T → Z is called a valid ISS row
vector in N , iff

1. pp : T → {−1, 0, 1} and pp is linearly dependent on the rows of N,
2. ∃(TI , TO) ∈ N(pp), such that either

(a) ∃s∈P s•= TO, or
(b) ∃S⊆PTO × S ⊆ F ∧ S 6= ∅

Again, consider the vector tt1 = (1,−1, 0, 0,−1) corresponding to the net
N5 from Figure 3b, where tt1(p1) = 1, tt1(p2)= −1 and so on. This vector is
linearly dependent on the columns of the incidence matrix N4 (see Table 2),
as tt1 = t2 + t3 + t4. Hence tt1 satisfies condition (1) from Definition 9.

Incremental Computation of Synthesis Rules 9

Table 2: Incidence ma-
trix N4 of Figure 3a.

t1 t2 t3 t4

p1 -1 0 0 1
p2 1 -1 0 0
p3 0 1 -1 0
p4 0 0 1 -1
p5 1 0 0 -1

Furthermore we have N(tt1) = {({p2, p3, p5}, {p1, p3}),
({p2, p4, p5}, {p1, p4}), ({p2, p3, p4, p5}, {p1, p3, p4}),
({p2, p5}, {p1})}. The first three pairs do not satisfy
either of the conditions, i.e. (2)(a) or (2)(b), from De-
finition 9. However, the fourth pair satisfies condition
(2)(b), which states that ∃R∈TR × PI ⊆ F , in this
particular case, R = {t1}, and PI = {p2, p5}. Hence,
as tt1 satisfies condition (1) and (2)(b) of Definition 9,
it is a valid ISS column vector. Having defined valid
ISS vectors, we now define the incremental synthesis structure, as follows.

Definition 10 (Incremental Synthesis Structure (ISS)). Let N = (P,
T, F) be a well-formed FC net. The incremental synthesis structure is a tuple
ISS(N) = (TT,PP), where:

1. TT is a non-empty set of vectors, s.t. tt ∈ TT iff tt is a valid ISS column
vector in N .

2. PP is a non-empty set of vectors, s.t. pp ∈ PP iff pp is a valid ISS row
vector in N .

If a valid ISS vector satisfies conditions (1) and (2)(a) in Definition 9, then
it can be used to apply ψT (or ψP), as shown in Lemma 1.

Lemma 1. Let N = (P, T, F) be a well-formed FC net, let tt be a valid ISS

column vector, let (PI , PO) ∈ N(tt), and let r ∈ T such that
N• r = PI . Then,

we can use ψT to add a new transition t in N to get N ′ = (P ′, T ′, F ′), i.e.

(N,N ′) ∈ ψT , where {t} = T ′ \ T and
N ′

• t = PI ∧ t
N ′

• = PO.

Proof. The fact that ∃r∈T
N• r = PI ensures that the net N remains a FC

net after adding t. The fact that tt is a valid ISS column vector ensures that
PI∪PO 6= ∅, and that t (= tt) is linearly dependent on the columns of N. Hence,
it follows from Definition 5 that a vector following conditions (1) and (2)(a) can
be used to apply ψT . A similar argument can be made for ψP .

Consider a vector tt2 = (−1, 1, 0, 0, 1) corresponding to the net from Fi-
gure 3a, such that tt2(p1) = -1, tt2(p2) = 1, tt2(p3) = 0 and so on. Clearly, tt2
satisfies condition (1) of Definition 9, as tt2 = t1 (see Table 2). We can obtain
a pair ({p1}, {p2, p5}) ∈ N(tt2). This pair is valid according to condition (2)(a)
of Definition 9, as • t1 = {p1}. Hence according to Lemma 1, we can use tt2
to add a new linearly dependent transition with {p1} as the input and {p2, p4}
as the output. Figure 3b is indeed a demonstration of adding this transition.
In contrast, the second condition of valid ISS vector is in place to deduce li-
near dependencies that may come into effect in future, as will become evident
in sections to follow.

Lemma 2. Synthesis space for linear dependency rules can be extracted using
TT and PP.

10 Dixit et al.

Proof. For every tt ∈ TT, we can extract a set of pair of places (PI , PO) ∈ N(tt).
From Lemma 1, we know that if a valid ISS vector is valid according to conditions
(1) and (2)(a), then we can use ψT . If ISS is complete, i.e. contains all the
possible valid ISS vectors, then it is clear that we can extract all the possible
pairs that result in valid constructions of well-formed nets by adding transitions
using Lemma 1. By definition, TT (and PP) is complete and contains all the
valid ISS vectors. It should be noted that the newly added node can be named
as desired. Therefore, using the definition of Definition 5 (and Definition 4) it
can be said that TT (and PP) contains complete information to extract all the
pairs which could be used to apply ψT (and ψP).

The synthesis space for ψP and ψT rules can be extracted using the incre-
mental synthesis structure. It should be noted that a single valid ISS vector
can result in multiple valid candidate nodes in the net, and hence can result in
multiple applications of a rule.

We argue that ISS can be incrementally updated which can then be used to
obtain the synthesis space. The ISS corresponding to the initial atomic net N0

from Figure 2 is: TT0 = {(0)}, and PP0 = {(0)}.
It should be noted that TT0 and PP0 contain symmetrical elements. Since

there is only one place (transition), the mapping between vector and places
(transitions) of TT0 (PP0)is evident. In the following sections we discuss the
changes to ISS after the selection of a net (application of a rule) from the synt-
hesis space. Furthermore, we prove that the changes made are necessary and
sufficient to derive the new ISS corresponding to the new net. We know that
the synthesis of a net leads to addition of a transition and/or place. Since the
incidence matrix is extended after the application of a synthesis rule, we need to
extend the corresponding vectors from the ISS with one dimension correspon-
ding to the newly added node. In order to do so, we first define extending a
vector as follows.

Definition 11 (Vector extension v_e7→k). Let v : A → Q be an n-
dimensional vector, such that e /∈ A ∧ |A| = n. Then v_e 7→k : A ∪ {e} → Q
is an n+ 1-dimensional vector such that:

v_e7→k(a) =

{
v(a), if a ∈ A;

k, otherwise (i.e. a = e)

We now discuss the updates to the ISS, after application of each type of synt-
hesis rule. We argue that starting with ISS(N0), we can incrementally update
the ISS corresponding to any synthesized net. Furthermore, by maintaining the
ISS corresponding to each synthesized net, we can always deduce the synthesis
space using Lemma 2.

4.1 ISS updates after application of ψP and ψT

In this section, we discuss the updates in the incremental synthesis structure
after the usage of linear dependency rules.

Incremental Computation of Synthesis Rules 11

Theorem 1 (Extracting ISS after ψP). Let N = (P, T, F) and N ′ = (P ′,
T ′, F ′) be two well-formed FC nets, where (N,N ′) ∈ ψP and {p} = P ′ \ P .
Let λ be such that λ ·N = p. As (N,N ′) ∈ ψP , such a λ exists. Let ISS(N)
= (TT,PP) be the incremental synthesis structure of N . Then we can extract
PP′ and TT′ :

– PP′ = PP
– TT′ =

⋃
tt∈TT ft(tt) where,

ft(tt) =

{
{tt_p7→λ·tt}, if tt_p7→λ·tt is a valid ISS vector in N ′

∅, otherwise

s.t. ISS(N ′) = (TT′,PP′) is the incremental synthesis structure of N ′.

Proof. We show that Theorem 1 is correct and complete separately for PP′ and
TT′.

PP′ Since p is linearly dependent on the rows of N, the ranks of N and N′

are the same. Since the rank is unchanged, there cannot be any new linear
combinations possible. Since, there are no new transitions added, it can be
trivially verified that all the elements of PP are valid as-is in the new net
N ′, i.e. PP = PP′.

TT′ As p is linearly dependent on the rows of N, the rank is not changed, and
no new linear combinations are possible. However, since there is a newly
added row, all the vectors from TT need to be extended corresponding to
the row of the newly added place p. In Theorem 1, for a vector tt this value
is chosen to be λ · tt. We now show that this is indeed the correct value.
Without loss of generality, lets assume p is the last row of N′:

N′ =

(
N

λ ·N

)
as p = λ ·N (1)

Let tt ∈ TT. We know that tt is linearly dependent on the columns of N,
i.e. for some µ it holds that tt = N ·µ We can obtain a corresponding vector
which is linearly dependent on the columns of N′ as: N′ · µ. If we extend
N′ with such a vector as the last column, then we get

(
N′ N′ · µ

)
. From

Equation 1, we have(
N N · µ

λ ·N λ ·N · µ

)
=

(
N tt

λ ·N λ · tt

)
, as we know that N · µ = tt

Therefore, for tt to be linearly dependent in N′ the value of the row
corresponding to the newly added place should be λ · tt. This is exactly
whats done in Theorem 1. This is irrespective of the λ chosen. Consider
two vectors λ1 and λ2 such that λ1 · N = p = λ2 · N ∧ λ1 6= λ2. Then
λ1 · tt = λ2 · tt : λ1 · tt = λ1 ·N · µ = p · µ = λ2 ·N · µ = λ2 · tt.

Let’s re-visit the running example from Figure 1, and the usage of ψP as
shown in Figure 3a. The incidence matrices of the nets before and after the
usage of ψP are shown in Figure 5, which also contains three valid ISS column
vectors and the changes to those vectors using Theorem 1. It is clear that all
the three derived vectors satisfy condition (1) of Definition 9 in the derived net.

12 Dixit et al.

t1 t2 t3 t4

p1 -1 0 0 1
p2 1 -1 0 0
p3 0 1 -1 0
p4 0 0 1 -1

tt1 tt2 tt3
1 -1 1
-1 1 0
0 0 -1
0 0 0

(a) Incidence matrix N3 and valid ISS column
vectors corresponding to the net N3 from Fi-
gure 1 (tt1 = t2 + t3 + t4, tt2 = t1 and tt3
= t3 + t4).

t1 t2 t3 t4

p1 -1 0 0 1
p2 1 -1 0 0
p3 0 1 -1 0
p4 0 0 1 -1
p5 1 0 0 -1

tt1 tt2 tt3
1 -1 1
-1 1 0
0 0 -1
0 0 0
-1 1 -1

(b) Incidence matrix N4 and the updated vec-
tors corresponding to the net N4 from Figure 3a
(after using ψP).

Fig. 5: Example showing the usage of Theorem 1.

({p2, p5}, {p1}) ∈ N(tt1), and hence ({p2, p5}, {p1}) satisfies condition (2)(b) of
Definition 9 in the derived net. Hence tt1 is a valid ISS column vector in the new
net too. ({p1}, {p2, p5}) ∈ N(tt2), which satisfies condition (2)(a) according to
Definition 9. Hence tt2 is a valid ISS column vector in the new net too. However,
there is no pair in N(tt3) which satisfies either condition (2)(a) or (2)(b) of
Definition 9, hence tt3 is not a valid ISS vector in the new net, and hence its
removed according to Theorem 1.

Similarly, the incremental synthesis structure can be updated after the usage
of ψT , as follows.

Theorem 2 (Extracting ISS after ψT). Let N = (P, T, F) and N ′ = (P ′, T ′,
F ′) be two well-formed FC nets, where (N,N ′) ∈ ψT , where {t} = T ′\T . Let µ be
such that N ·µ = t. As (N,N ′) ∈ ψT , such a µ exists. Let ISS(W) = (TT,PP)
be the incremental synthesis structure corresponding to the net N . Then we can
extract PP′ and TT′:

– TT′ = TT
– PP′ =

⋃
pp∈PP fp(pp) where,

fp(pp) =

{
pp_t7→pp·µ, if pp_t7→pp·µ is a valid ISS vector in N ′

∅, otherwise

s.t. ISS(N ′) = (TT′,PP′) is the incremental synthesis structure of N ′.

The proof of Theorem 2 is symmetrical to the proof of Theorem 1.

4.2 ISS updates for ψA

Following the updates to the incremental synthesis structure after the usage of
ψP and ψT , we now discuss the approach used for extracting the incremental
synthesis structure after the usage of ψA. Before that, we discuss a couple of
lemmata, which are used to support the theorem for extracting incremental
synthesis structure after the usage of ψA.

Lemma 3. Let N = (P, T, F) and N ′ = (P ′, T ′, F ′) be two well-formed FC
nets, such that (N,N ′) ∈ ψA, p = P ′ \ P and t = T ′ \ T . Let a vector tt′ be
linearly dependent on the columns of N′, such that tt′(p) = 0. Consider a vector
tt, such that tt′ = tt_p7→0. Then tt is linearly dependent on the columns of N
iff tt′ is linearly dependent on the columns of N′.

Incremental Computation of Synthesis Rules 13

Proof. Without loss of generality, if we assume that the last row of N′ corre-
sponds to p and the last column of N′ corresponds to t, then from [8] (pg. 139),
N′ can be decomposed such that: N′ = Ñ ·A−1 where

Ñ =

(
N B

0 . . . 0 −1

)
where

(
B
−1

)
is the last column of N′

and A−1 is a T × T matrix, s.t.: A−1[u, v] =

1 if u = v

−1 if u = t ∧ v ∈N
′

• p
0 otherwise

=> If tt′ is linearly dependent, we have tt′ = N′ · µ. Therefore,
tt′ = Ñ · A−1 · µ = Ñ · γ, where γ = A−1 · µ . We can re-write this
as: (

tt′′

0

)
=

(
N B

0 . . . 0 −1

)
·
(

Y
γ(p)

)
where γ =

(
Y
γ(p)

)
∧ tt′ =

(
tt′′

0

)
From above, we have γ(p) = 0. Since γ(p) = 0 and tt′(p) = 0 we have:

tt′′ = N ·Y
Hence, the vector tt′′ = tt is linearly dependent on the columns of N.

<= Similarly, by following the steps above in reverse, we can show that if tt is
linearly dependent on the columns of N, then tt_p7→0 is linearly dependent
on the columns of N′.

Lemma 4. Let N be a well-formed FC net, let tt be a valid ISS vector in N
satisfying condition (1), let (PI , PO) ∈ N(tt), and let R ⊆ T be such that R ×
PI ⊆ F ∧ R 6= ∅. Let (N,N ′) ∈ ψA, s.t. t = T ′ \ T ∧ p = P ′ \ P ∧ t N

′

• = PI .
Then tt_p7→0 + t is a valid ISS vector in N ′, and there exists a pair ({p},
PO) ∈ N(tt_p7→0 + t) that satisfies condition (2)(a) of Definition 9.

Proof. By construction of ψA, we know the values of the column vector corre-

sponding to t in N′ are: t(s) =

−1, if s = p
1, if s ∈ PI
0, otherwise

As tt is linearly dependent on the columns of N, from Lemma 3, we know
that a vector tt_p 7→0 is linearly dependent on the columns of N′, and hence a
vector tt′ = tt_p7→0 + t is linearly dependent on columns of N′ too. The values
of such a vector tt′ are as follows:

tt′(s) =

0, when s ∈ PI \ PO as tt_p7→0(s) = −1 ∧ t(s) = 1
1, when s ∈ PO \ PI as tt_p7→0(s) = 1 ∧ t(s) = 0
1, when s ∈ PI ∩ PO as tt_p7→0(s) = 0 ∧ t(s) = 1
−1, when s = p as tt_p7→0(s) = 0 ∧ t(s) = −1

0, otherwise as tt_p7→0(s) = 0 ∧ t(s) = 0
As tt′ : P ′ → {−1, 0, 1} and tt′ is linearly dependent on the columns of N′, it
satisfies condition (1) from Definition 9. We have a pair (P̃I , P̃O) ∈ N(tt′), such

14 Dixit et al.

that P̃I = {p} ∧ P̃O = PO. Since
N ′

• t = P̃I , tt′ is valid according to condition
(2)(a) of Definition 9 for the pair ({p}, PO).

A similar argument can be made about a row vector which is valid according
to condition (2)(b) of Definition 9.

Lemma 5. Let N = (P, T, F) be a well-formed FC net. Let (N,N ′) ∈ ψA s.t.

{p} = P ′ \ P ∧ {t} = T ′ \ T , and let
N ′

• p = R ∧ t N
′

• = S. Let tt′ be a valid
ISS column vector in the net N ′. Let (PI , PO) ∈ N(tt′) which satisfies either
condition (2)(a) or (2)(b) of Definition 9. Then, p ∈ PI =⇒ S ∩ PI = ∅, and
p ∈ PO =⇒ S ∩ PO = ∅.

Proof. The crux of this proof lies in the fact that well-formedness implies S-
coverability. As a result, all synthesis rules preserve S-coverability. For both
condition (2)(a) and condition (2)(b) (with Lemma 4) it can be shown that any
S-component covering a place s ∈ S also has to cover the place p. Adding a
transition which would have s and p both as inputs (outputs), would necessarily
break all S-components for place s, leaving s uncovered. As a result, if p is an
input (output) of a transition to add, then s can not be an input (output) of
this transition as well (see Figure 6). Using T-coverability, we can prove a similar
theorem on R and t.

Having discussed lemmata and theorem related to the usage of ψA , we now
discuss the theorem for updating the prior elements and creating new elements
in the incremental synthesis structure after the usage of ψA.

Theorem 3 (Extracting ISS after usage of ψA). Let N = (P, T, F) be a
well-formed FC net and let ISS(N) = (TT,PP) be its incremental synthesis
structure. Let N ′ = (P ′, T ′, F ′), such that (N,N ′) ∈ ψA. Note that, {p} =

P ′ \ P ∧ {t} = T ′ \ T . Let
N ′

• p = R ∧ tN
′

• = S. Then we can extract PP′ and
TT′:

– TT′ =
⋃

tt∈TT fa(tt) where,

fa(tt) =
{tt_p 7→0 | tt_p7→0 is a valid ISS vector in N ′ } ∪
{tt_p 7→0 + t | tt_p7→0 + t is a valid ISS vector in N ′ } ∪
{tt_p7→0 − t | tt_p7→0 − t is a valid ISS vector in N ′ }

p1

t1 p6 t6 p2 t2 p3 t3 p4

t4

p5t5

(a) Net N6 obtained from net N5 of Figure 3b after
using ψA rule with R = {t1, t5} ∧ S = {p2}.

t1

t5

p6t6 p2

p5

t7

(b) Fragment of N6 after using ψT rule
to add t7 with some input PI and output
{p2, p6}. No S-component covers p2.

Fig. 6: Example demonstrating Lemma 5.

Incremental Computation of Synthesis Rules 15

Table 3: Values corresponding to an arbitrary place s.

s = p s ∈ P̃I s ∈ P̃O s ∈ S t tt′1 tt′2 tt′3 tt′4

3 7 7 7 -1 0 -1 1 0
7 7 7 3 1 0 0 0 0
7 7 3 7 0 1 1 1 1
7 3 7 7 0 -1 -1 -1 -1
7 7 3 3 0 - 1 - 1
7 3 7 3 0 - - -1 -1
7 3 3 7 0 0 0 0 0
7 3 3 3 0 - - - 0
7 7 7 7 0 0 0 0 0

– PP′ =
⋃

pp∈PP fa(pp) where,

fa(pp) =
{pp_t7→0 | pp_t7→0 is a valid ISS vector in N ′ } ∪
{pp_t7→0 + p | pp_t7→0 + p is a valid ISS vector in N ′ } ∪
{pp_t7→0 − p | pp_t7→0 − p is a valid ISS vector in N ′ }

s.t. ISS(N ′)= (PP′,TT′) is the incremental synthesis structure of N ′.

Proof. We assume that TT and PP are correct and complete, and by induction,
show that TT′ and PP′ are then correct and complete. Theorem 3 is correct by
construction as only the valid ISS vectors are added to TT′ and PP′. Therefore,
we only need to show that Theorem 3 is complete according to Definition 10.

We take an arbitrary valid ISS vector tt′ ∈ TT′, and show that we can
obtain it from some vector tt ∈ TT. Since tt′ is a valid ISS vector in N ′, we
know that there exists a pair (PI , PO) ∈ N(tt′), which satisfies either condition
(2)(a) or condition (2)(b) of Definition 9. We prove the completeness based on
the presence (or absence) of newly added place p in PI and PO. We can have
four cases: (i) p ∈ PI ∧ p ∈ PO, in this case we refer to the vector as tt′1, (ii)
p ∈ PI ∧ p /∈ PO, in this case we refer to the vector as tt′2, (iii) p /∈ PI ∧ p ∈ PO,
in this case refer to the vector as tt′3, and (iv) p /∈ PI ∧ p /∈ PO , in this case
refer to the vector as tt′4.

Let P̃I = PI \{p} and P̃O = PO\{p}. The value corresponding to an arbitrary
place s in the vectors tt′1,tt′2,tt′3,tt′4 and t is shown in Table 3. For example,

t1

t5

p6 t6 p2

p5

t7

×

(a) Fragment of net N6 from Fi-
gure 6a. Transition t7 is extrac-
ted from a pair which satisfies
condition (2)(a) of Definition 9.
If p6 ∈ PI , then PI = {p6}.

(b) Fragment of N6. A pair
(PI , PO) that satisfies condition
(2)(b) or Definition 9, such that
R′ = {t1, t5} ∧ PI = {p5, p6}.

(c) Fragment from Figure 3b,
corresponding to net N5, such
that R = R′ ∧ S = {p2} ∧ P̃I =
{p5}.

Fig. 7: Demonstration of Theorem 3 using well-formed FC Petri net fragments.

16 Dixit et al.

for a place s, such that s 6= p ∧ s ∈ P̃I , S ∧ s /∈ P̃O the value of tt′3(s) is −1,
according to Table 3. The values for some of the elements are left blank. These
are the impossible cases which would otherwise violate Lemma 5. For example,
for tt′2, the value corresponding to s 6= p ∧ s ∈ P̃I , S ∧ s /∈ P̃O is empty. This is
because in the case (ii) corresponding to tt′2, p ∈ PI . Hence S ∩ P̃I = ∅. We now
show the proof of completeness for case (i) above, i.e. when (i) p ∈ PI ∧ p ∈ PO
(tt′1). The proof for completeness of the other cases is similar.

(i) p ∈ PI ∧ p ∈ PO (tt′1) Consider a vector tt, such that tt′1 = tt_p7→0. Using
Lemma 3, we can say that tt satisfies the condition (1) of Definition 9 in N .
For all places except p, tt has the same values as tt′1. Hence from Table 3,
we know that (S∪ P̃I , S∪ P̃O) ∈ N(tt) in N . We show that this pair satisfies
the condition (2)(b) of Definition 9 in N , and thus using tt we can get tt′1.
Since tt′1 is a valid ISS vector, we have two cases:

tt′1 satisfies condition (2)(a) Assume r ∈ T ′ such that
N ′

• r = PI . From

the construction of ψA, we know that
N ′

• t = {p}. As p ∈ PI and the
net is free-choice, we conclude that PI = {p}. Hence, we have P̃I = ∅
(see Figure 7a). Hence the set of input places is only S. However, by
construction of ψA, R × S ⊆ F in N . Hence (S ∪ P̃I , S ∪ P̃O) satisfies
condition (2)(b) of Definition 9 in the net N .

tt′1 satisfies condition (2)(b) Assume R′ ⊆ T ′ such that R′ × PI ⊆ F ′,
i.e. R′×({p}∪ P̃I) ⊆ F ′. As R′×{p} ⊆ F ′, we know that R′ ⊆ R. Hence,
by construction of ψA, we know that in the net N , R′ × (P̃I ∪ S) ⊆ F
(see Figure 7b and Figure 7c). Hence (S ∪ P̃I , S ∪ P̃O) satisfies condition
(2)(b) of Definition 9 in the net N .

The proof of correctness and completeness for PP is symmetrical.

5 Implementation and Application

A variant of the proposed approach has also been implemented in the “Interacti-
veProcessMining” package of the process mining toolkit ProM [15], that serves as
the basis for enabling interactive process discovery/modeling of sound business
processes. The extraction from well-formed free-choice nets to business processes
is outside the scope of this paper, but is straightforward and is well established
in the literature [1]. For example, Figure 8 shows the snapshot of a business
process built using the implementation from ProM. The business process from
Figure 8 is indeed the net from Figure 1 obtained by removing the arc from t4 to
p1 and adding a new place and an arc from t4 to the newly added place. Further,
the transitions t2 and t3 are labeled as workflow activities Patient enters and
Get medicines respectively. Such an editor can be used as a stand-alone busi-
ness process editor or can be combined with the information from the event logs

Fig. 8: Snapshot of the implementation from ProM for modeling/discovering bu-
siness processes using the incremental synthesis structure as the basis.

Incremental Computation of Synthesis Rules 17

recorded in the information systems to enable interactive process discovery. The
editor allows only those edit operations that are allowed by the synthesis rules,
thus guaranteeing the soundness of modeled/discovered process models. [9,10]
show the applications of such an editor to discover process models and repair
event logs, in the context of process mining. Moreover, calculating the synthesis
rules in an incremental way prevents long waiting times, as shown in Section 6.

6 Evaluation

In this section, the time taken to compute the synthesis space by using the
incremental synthesis structure (ISS) approach is compared with the Brute force
(BF) approach, under the same conditions and by using the same solver. In
order to do so, starting with the initial net N0, a random net was synthesized
by using a random synthesis rule. Another random synthesis rule was applied
on the synthesized net, to obtain a new random net. This was repeated until
the application of 250 random synthesis rules. At any point, each of the three
synthesis rules (ψA, ψP , ψT) have equal chance of being chosen. This essentially
relates to choosing a random net from the synthesis space of Subsection 2.1.
Figure 9 shows the experimental set-up. After applying a synthesis rule, the
time taken for computing the synthesis space using the BF approach and the
ISS approach were recorded. In an interactive setting, for e.g. for editing business
process models, the waiting times for user should be as short as possible. Hence
the synthesis space calculation was aborted if the time taken to compute the
synthesis space exceeded 5000 milliseconds. This experiment was repeated 30
times in total. That is, starting with the initial net, random synthesis rules were
applied 250 times, for a total of 30 times.

The average time taken to compute the synthesis space using the BF appro-
ach and the ISS approach at each synthesis iteration is plotted in Figure 10a. It
should be noted that the time scale is logarithmic in nature. In order to compare
the BF approach and the ISS approach effectively, only time averages below 1000
ms are plotted. For the BF approach, the time taken to compute synthesis space
rises quickly and exponentially. Just after 10 synthesis iterations, the average
time taken to compute synthesis space using BF approach is more than 5000

Start N0

Apply ψA or
ψP or ψT
randomly to
current net

Record the
time taken to
compute synt-
hesis space
using ISS and
BF approach

250 nets
synthesi-
zed?

End
no yes

Fig. 9: The experimental setup to test the the performance of Incremental Synt-
hesis Structure (ISS) vs Brute Force (BF) approach (repeated 30 times in total).

18 Dixit et al.

milliseconds. The high computation times for BF approach can be attributed to
the following factors:

1. As the number of nodes grows with each synthesis iteration, the number of
possible permutations grows exponentially. In the BF approach, calculation
of all the possible applications of ψT and ψP rules requires exploration of all
the possible vector permutations, to generate the possible candidates.

2. For each of the generated candidates, it is verified if the net would remain
a free-choice net. That is, it is verified if there exists at least one pair in
Definition 8, using which the net would remain a free-choice net. All the
candidates that violate this condition are removed.

3. For all the remaining candidates, it is verified if it is linearly dependent on
the incidence matrix of the net.

Clearly, as the number of nodes grows, the number of permutations grows
too. Moreover, validating the linear dependence of multiple vectors becomes
inefficient rather quickly. Compared to this, in the ISS approach proposed in
this paper, the growth seems rather gradual. This can be attributed to the
fact that, unlike the BF approach, we do not have to compute all the possible
permutations for any given net. More importantly, the third step of verification
of linear dependence is not required for our approach. This is due to the fact
that, ISS only results in linearly dependent vectors after usage of ψA, ψP and ψT
rules. Therefore, our approach mainly deals only with the non-expensive step 2,
when compared to the BF approach. Extraction of all the valid ψT and ψP rules
from ISS is rather trivial. Practically, for any non-zero ISS column vector in TT
to result in ψT ; it can be quickly verified if the places that have a value of −1
corresponding to them can result in a free-choice node (along with some possible
places which have a value of 0 corresponding to them). A similar argument can
be made for the row vectors from PP.

A lot of variation is observed, in the case of ISS approach, when computing
the synthesis space. This is due to the fact that depending on the type of rule

1 25 50 100 150 200 250

1

10

100

1,000

iteration

lo
ga

ri
th
m
ic

ti
m
e
(i
n
m
s)

BF
ISS

(a) Average time taken for brute force (BF) vs
incremental synthesis structure (ISS) approach
after 250 random synthesis iterations (repeated
30 times). BF computation was stopped after 10
synthesis iterations as it took longer than 5000
ms.

1 50 102

0.1

1

10

100

1,000

iteration

lo
ga
ri
th
m
ic

ti
m
e
(i
n
m
s)

ψA
ψT
ψP

(b) Average computation times for incremental
synthesis structure after usage of ψP , ψT and
ψA rules resp.

Fig. 10

Incremental Computation of Synthesis Rules 19

used, the computation times of ISS vary, as shown in Figure 10b. For e.g., if a
ψA rule is used, then additional candidates are generated, each of which needs to
be validated according to Definition 9. It should be noted that, the linear depen-
dence condition of these candidate vectors is valid by construction. Compared
to ψA, after the usage of ψP and ψT rules, no new candidates are generated.
On the contrary, prior candidates are updated and invalid candidates may be
removed. Hence, the computation of synthesis space after usage of ψP and ψT
rules is much faster compared to the computation of synthesis rules after the
usage of ψA rule. It should be noted that in Figure 10b we plot the averages
corresponding to each type of synthesis rule. Contrary to this, in Figure 10a we
plot the averages across all the rules.

As evident, the time taken for computing the synthesis space grows expo-
nentially with the BF approach. The time taken to compute the synthesis space
using ISS also grows exponentially, however this growth is gradual and accepta-
ble in practical circumstances. For e.g., while synthesizing larger nets, the ISS
approach took, on an average, less than 1 second even after 250 iterations, i.e.
after applying 250 synthesis rules starting with the initial net N0. It is clear that
the proposed approach is much faster and outperforms the BF approach, and
hence is suited for synthesizing very large free-choice Petri nets in an interactive
way (i.e. by having short waiting times).

7 Conclusion and Future Work

In order to enable interactive editing of well-formed free-choice Petri nets, we
presented a robust approach to incrementally calculate all the possible applica-
tions of synthesis rules to deduce well-formed free-choice Petri nets. After fixing
the incremental synthesis structure of the initial atomic net, we have shown that
the incremental synthesis structure can be correctly and completely calculated
after the usage of each synthesis rule. As shown in the evaluation, the propo-
sed approach outperforms the brute force approach in terms of speed, without
losing on accuracy of the results. Moreover, by using the guarantees of [8], we
can conclude that we can use this incremental approach to calculate any well-
formed free-choice Petri net, starting with a well-formed initial atomic net. The
proposed approach also served as the basis of the winning entry for discovering
process models in the process discovery challenge of at the BPM 2017 confe-
rence, which also demonstrates very well the applicability of this approach in
the field of business process mining. In the future, we would like to explore the
possibilities of extending such an incremental synthesis approach in the context
of non-free-choice constructs.

References

1. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects of Computing 23(3), 333–363 (May 2011)

20 Dixit et al.

2. Badouel, E., Bernardinello, L., Darondeau, P.: Process Discovery, pp. 283–300.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

3. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri nets from
scenarios with viptool. In: International Conference on Applications and Theory
of Petri Nets. pp. 388–398. Springer (2008)

4. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) Petri Nets: Central Models and Their Properties. pp.
359–376. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

5. Berthelot, G., Lri-Iie: Checking properties of nets using transformations. In: Rozen-
berg, G. (ed.) Advances in Petri Nets 1985. pp. 19–40. Springer Berlin Heidelberg,
Berlin, Heidelberg (1986)

6. Chao, D.Y., Wang, D.T.: Petri net synthesis and synchronization using knitting
technique. In: Proceedings of IEEE International Conference on Systems, Man and
Cybernetics. vol. 1, pp. 652–657 vol.1 (Oct 1994)

7. Datta, A., Ghosh, S.: Synthesis of a class of deadlock-free Petri nets. Journal of
the ACM (JACM) 31(3), 486–506 (1984)

8. Desel, J., Esparza, J.: Free choice Petri nets, vol. 40. Cambridge university press
(2005)

9. Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Prodigy : Human-in-the-loop
process discovery. In: 2018 12th International Conference on Research Challenges
in Information Science (RCIS). pp. 1–12 (May 2018)

10. Dixit, P.M., Suriadi, S., Andrews, R., Wynn, M.T., ter Hofstede, A.H.M., Buijs,
J.C.A.M., van der Aalst, W.M.P.: Detection and interactive repair of event orde-
ring imperfection in process logs. In: Krogstie, J., Reijers, H.A. (eds.) Advanced
Information Systems Engineering. pp. 274–290. Springer International Publishing,
Cham (2018)

11. van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Verification of epcs:
Using reduction rules and petri nets. In: Pastor, O., Falcão e Cunha, J. (eds.)
Advanced Information Systems Engineering: 17th International Conference, CAiSE
2005, Porto, Portugal, June 13-17, 2005. Proceedings. pp. 372–386. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

12. Esparza, J.: Synthesis rules for Petri nets, and how they lead to new results. In:
International Conference on Concurrency Theory. pp. 182–198. Springer (1990)

13. Esparza, J., Hoffmann, P.: Reduction rules for colored workflow nets. In: Procee-
dings of the 19th International Conference on Fundamental Approaches to Soft-
ware Engineering - Volume 9633. pp. 342–358. Springer-Verlag New York, Inc.,
New York, NY, USA (2016)

14. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (Apr 1989)

15. Van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The prom framework: A new era in process mining tool
support. In: International Conference on Application and Theory of Petri Nets.
vol. 3536, pp. 444–454 (2005)

16. Verbeek, H.M.W., van der Aalst, W.M.P.: Woflan 2.0 a petri-net-based workflow
diagnosis tool. In: Nielsen, M., Simpson, D. (eds.) International Conference on
Applications and Theory of Petri Nets. pp. 475–484. Springer Berlin Heidelberg,
Berlin, Heidelberg (2000)

	Incremental Computation of Synthesis Rules

