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Abstract. Interactive process discovery allows users to specify domain
knowledge while discovering process models with the help of event logs.
Typically the coherence of an event log and a process model is calculated
using conformance analysis. Many state-of-the-art conformance techni-
ques emphasize on the correctness of the results, and hence can be slow,
impractical and undesirable in interactive process discovery setting, es-
pecially when the process models are complex. In this paper, we present a
framework (and its application) to calculate conformance fast enough to
guide the user in interactive process discovery. The proposed framework
exploits the underlying techniques used for interactive process discovery
in order to incrementally update the conformance results. We trade the
accuracy of conformance for performance. However, the user is also pro-
vided with some diagnostic information, which can be useful for decision
making in an interactive process discovery setting. The results show that
our approach can be considerably faster than the traditional approaches
and hence better suited in an interactive setting.

Keywords: incremental conformance, interactive process discovery, domain
knowledge, process mining

1 Introduction

Process mining is a technique that can be used to analyze process-oriented event
data from information systems in order to perform business process intelligence
tasks. Process mining includes two important tasks: process discovery and con-
formance checking. Process discovery techniques aim to discover a process model
from an underlying event log. The primary aim of a process discovery technique
is to come to a visual representation of a process model using the information
from the event log. Even though most of the process discovery techniques are
automated, there is also a possibility to involve human-in-the-loop in order to
interactively construct a process model. Interactive process discovery techniques
combine the traditional worlds of manual process modeling with data support,
thereby allowing a user to add domain knowledge during process discovery.

Conformance checking techniques use a process model and an event log to
calculate how well an event log fits the process model and vice versa. Traditi-
onally, the conformance checking techniques are used to perform post-mortem
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analysis of the execution of a process. That is, once a process model is made
available, conformance checking techniques determine the goodness-of-fit of the
event data and the process model. However, in a user-guided process discovery
setting, there is a need for active feedback regarding the goodness of a process
model after each user interaction (see Figure 1). That is, after the user interacti-
vely changes a process model by taking into account the domain knowledge,
there is a need to quantify how good or bad the change was according to the
event data. This task can indeed be performed by conformance analysis, and
thereby conformance analysis forms a natural fit with user-guided process dis-
covery, and can be used to provide feedback after each step in an interactive
process discovery setting.

Fig. 1: Interactive process disco-
very setting. During discovery,
conformance analysis is required
to be computed fast enough for
an uninterrupted experience for
the user.

In an interactive user-guided discovery set-
ting, it is required to have fast feedback de-
pending on the change made to the pro-
cess model. In order to address this problem,
we present a framework of calculating incre-
mental conformance depending on the change
made in the process model. Unlike other con-
formance analysis techniques, the framework
discussed in this paper exploits the underlying
structure used for interactive process disco-
very in order to perform fast and approximate
conformance analysis. Moreover, we present
an application of the framework that shows
that even though the conformance results are
approximated, they still contain diagnostic in-
formation which could provide useful feedback
for the user for decision making in interactive process discovery.

The rest of the paper is structured as follows. In Section 2 and Section 3, we
discuss the related work from literature and the preliminaries resp. In Section 4
we discuss our approach and in Section 5 we discuss the implementation and
visualization details. In Section 6 we evaluate our approach and in Section 7 we
conclude and provide indicators of future work.

2 Related Work

Conformance techniques relate the behavior of processes in real life as depicted
by event logs, with the expected behavior as depicted by procedural or decla-
rative process models. A large number of conformance analysis techniques have
been introduced within the field of process mining. The authors of [15] were
among the first one’s to devise conformance checking techniques in process mi-
ning using the token based replay in Petri nets. In [7], the authors discuss con-
formance strategies for declarative models. The authors of [3, 4] use alignment
based strategy for performing conformance checking. Some approaches look at
the conformance problem from various other dimensions such as natural lan-
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guage processing, formal methods, real time setting etc. [5, 6, 17]. Most of these
approaches focus on the accuracy of the results, and hence do not emhapsize
on the performance dimension and thereby are not advisable in an interactive
process discovery setting. In [18], the authors discuss strategies for incrementally
repairing a prior alignment based on a change in a process tree for improving
the performance of the ETM algorithm. However, as the authors noted, after a
certain number of repairs, the repaired alignment might be drastically different
from the so-called optimal alignment. Thereby, this could lead to highly inaccu-
rate results. Also, the class of models supported by this approach is limited to
block structured process models (process trees).

In order to improve the performance of conformance analysis, various divide
and conquer techniques were discussed in [1, 13, 16, 19, 20]. Typically, the cen-
tral idea behind these techniques is to decompose a process model into various
sub-models based on a specific decomposition strategy, and then to compute alig-
nments on the smaller model (and a corresponding smaller log) and aggregate
the information across all models. However, in certain scenarios, the decompo-
sed sub-models may still have large state spaces. Therefore, the conformance
calculation time in such scenarios may be similar, or even worse owing to de-
composition and aggregation time, compared to the complete model. In all these
divide-and-conquer techniques, there is more emphasis on the accuracy of the
results. However, in our case, we relax the accuracy of the results to ensure short
response times, similar to the technique discussed in [11]. In both [11] and our
approach, conformance is calculated and aggregated over all combinations of sets
of activities for a given cardinality. The main difference between our approach
and [11] is that we inherently exploit the incremental nature of process modeling
during interactive discovery. That is, in the case of [11], the conformance for all
the combinations of activities after each change in a process model is recalcula-
ted. However, in our technique, we remember the prior conformance results, and
typically recalculate only those conformance results which may have changed
depending on the change in the process model. Hence, the proposed approach is
much faster, robust and provides diagnostic information useful during interactive
process discovery.

3 Preliminaries

In this section, we discuss the relevant preliminaries. Events form the basic
building blocks of an event log. An event represents an occurrence of an activity.
Every event has a timestamp associated with it which indicates the time of
occurrence of that activity [2]. A trace is a sequence of events, and an event log
is a bag (or multiset) of traces.

Having discussed event logs, we now discuss process models. Process models
are graphical constructs used to represent the flow of activities. Typically, a
process model has a fixed start and a fixed end point, and a navigation from
start to end point of a process model results in a trace. Hence a process model
corresponds to a set of traces. Conformance analysis in process mining aims at
finding a fit between the traces from an event log and a process model.
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We now define two concepts of projecting a log and a process model on a set
of activities. An event log can be projected on a set of activities by removing
all the events from the event log which are not a part of the projection set.
Consider an event log L = [〈a, b, c, d, a, e〉10, 〈a, b, c, d〉5, 〈b, d, e〉5]. Then the event
log projected on activities {a, c} is L ↓{a,c}= [〈a, c, a〉10, 〈a, c〉5, 〈〉5].

A process model M can be projected on a set of activities A by making
all the activities from the process model which are not a part of projection
set as invisible (depicting no behavior) activities. These invisible activities can
be further removed (if possible) using language preserving reduction rules. The
reduction removes the unnecessary invisible activities from the net which do not
have any behavioral impact on the net. The projected and reduced model is
denoted by M ↓A. Due to space limitations, we refer the user to [8] and [14] for
more details about these reduction rules.

4 Incremental Conformance Framework

In this paper we introduce a framework for enabling fast conformance analy-
sis. The high level overview of our framework is presented in Figure 2. In order
to enable fast conformance analysis, we split the problem into two parts, (i)
approximating the conformance value by calculating and aggregating the con-
formance of projected sets of activities and, (ii) incrementally calculating the
conformance.

4.1 Projected Conformance

The first part of our approach is similar to the the projected conformance
checking [11] approach. Here we exploit the fact that calculating conformance

Fig. 2: Overview of conformance calculations when model M2 is derived from a
model M1. Projections of models based on activity combinations within a given
cardinality are calculated e.g. P1 and P2. For the activity combinations whose
projected behavior does not change in M2 (compared to M1), e.g. P1 and P2,
the projected conformance need not be recalculated. For all the other activity
subsets, e.g. P3, the projected conformance needs to be recalculated or newly
calculated.
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for a smaller process model having a smaller state space and a smaller event log
is often faster than calculating conformance for a large complex process model.
Let A be all the activities present in a model M and let L be the corresponding
event log. For a user defined cardinality k, using A we calculate the set of all
possible activity combinations C, where ∀c∈C |c| = k. Let M ↓c and L ↓c denote
the process model M and event log L projected with the activities from acti-
vity combination c (c ∈ C). Let Q(M) define some function used to quantify
the quality of the model M w.r.t. the event log. Then the quality of the overall
model Q(M) is the aggregation of the quality values of all the projected models:

Q(M) =
Σc∈CQ(M ↓c)

|C| .

Therefore, instead of calculating the conformance of one (complex) process
model with an event log, conformance of several projected (smaller) process
models with projected event logs are calculated and then aggregated. Here we
exploit the fact that calculating conformance for one large process model is
often time consuming, and thereby distributing the conformance calculation over
several smaller projected process models improves efficiency. Similarly, based on
user’s preference, minimum (maximum) quality value can also be computed of
the overall model, using the minimum (maximum) value of each combination.

4.2 Incremental Conformance

Sub-section 4.1 provides a way to calculate fast approximate conformance ana-
lysis, given a process model and an event log. However, in an interactive process
discovery setting, a process model is expanded incrementally. In the second part
of our framework, we make use of this principle in order to incrementally calcu-
late the conformance using the projected conformance of the prior model. Instead
of recalculating the projected conformance of all the activity combinations, we
calculate the projected conformance of only those activity combinations which
are necessary, and re-use the previously computed projected conformance for all
the other activity combinations. Before introducing incremental conformance,
we introduce the concept of behavioral equivalence in two models. Two models
M1 and M2 are said to be behaviorally equivalent, represented as M1 ≈ M2 iff
all the behavior of M1 is exhibited by M2 and vice versa. Similarly, behavioral
in-equivalence of two models is denoted by M1 6≈M2. Suppose a model Mi+1 is
interactively derived from a model Mi. Let Ci+1 and Ci correspond to all the
activity combinations of Mi+1 and Mi, with a chosen cardinality k. Then, we
can distinguish two cases:

1. Set of same activity combinations CS ⊆ Ci+1 whose projected behavior is
the same in models Mi and Mi+1, that is ∀c∈CS

Mi ↓c≈Mi+1 ↓c.
2. Set of different activity combinations CD ⊆ Ci+1 whose projected behavior

is different in models Mi and Mi+1, that is ∀c∈CD
Mi ↓c 6≈Mi+1 ↓c.

There is no need to calculate the conformance values for those activity com-
binations which exhibit the same projected behavior in Mi and Mi+1 (CS). Ho-
wever, the activity combinations CD whose projected behavior is not the same,
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there is a need to calculate the conformance values. Therefore, in an interactive
setting, we improve the projected conformance calculation times, by calculating
conformance for only the activity combinations from the set CD. It should be
noted that, if a new activity is added to the model interactively, then there will
be new activity combinations possible, which would all be a part of CD. The
amount of time needed for calculation of conformance for activity combinations
CS is saved by using an incremental way of calculating the conformance values.

4.3 Application of the framework

We show the instantiation of the framework using a synthesis rules based in-
teractive process modeling approach. In order to do so, we first introduce free
choice workflow (FC WF) nets which are a well-known class of Petri nets to
represent processes. A workflow (WF) net is a bi partite graph containing places
(circles) and transitions (rectangles), such that a transition can only be con-
nected to a place and vice versa. A WF net is navigated from left-to-right, such
that the first transition is always a ‘dummy’ (silent) transition called >, and the
last transition is always a ‘dummy’ (silent) transition called ⊥. Transitions in a
WF net can be labeled with an activity, or they can be silent, i.e. not represen-
ting any behavior from the event log. Moreover, a WF net is a FC WF net if
for any two places, the set of output transitions of both the places are exactly
the same, or completely disjoint (that is, there is no overlap at all). Figure 3a
shows an example of a FC WF net. The only possible complete trace of this FC
WF net is 〈a, b, c〉. Note that the transitions > and ⊥ are silent, and hence do
not form a part of this trace sequence. A short circuited version of a FC WF net
can be obtained by merging the places i and o, and renaming it as io. It should
be noted that we can easily obtain a FC WF net from a short circuited FC WF
net by splitting the place io into places i and o.

Three rules are used to interact and synthesize a short circuited FC WF net,
such that each rule leads to addition of a new place and/or a new transition in
the model. Using the synthesis rule based interactive modeling approach, at each
iteration we identify the set of combinations of activities (CS) whose projected
behavior does not change. For all the other activity combinations (CD), the
conformance is recalculated. We describe the incremental way of calculating the
change in the models depending on each type of rule. It should be noted that,
with the usage of synthesis rules, a process model can only grow.

4.4 Addition of a new place

Adding a new place to a net allows introduction of concurrency in the net. An
introduction of a place does not result in any new activity in the model, and
hence no new activity combinations are possible. There exists a set of bags of
places Pset in the short circuited FC WF net, which has the same effect as the
newly added place. Loosely speaking, this means that every bag of places from
Pset collectively has the same input and output as the newly added place. In
Figure 3c, this set corresponding to the new place p5 is {[p3]}. Typically, all
the activity combinations are added to CS , as the projected behavior of acti-
vity combinations remains unchanged. For example, in Figure 3c, the projected
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behavior between activities of the net does not change at all after the addition
of the new place. However, in very few cases the projected behavior of activity
combinations might have changed, if at least one of the bags in Pset contains the
place io of the short circuited FC WF net. For example, in Figure 4b, Pset corre-
sponding to the newly added place p7 is {[p6, p4, io, p1, p2]}. Since Pset contains
io, no activity combinations are added to CS . This is also because the projected
behavior between some activities has indeed changed as shown in Figure 4 (e.g.
td and tb changed from parallel to a sequential construct).

4.5 Addition of a new transition

Figure 3d shows the addition of a new transition using the so-called linearly
dependent transition rule [8]. Addition of a new transition usually results in
the introduction of a choice or loop in the model. There exists a set of bags
of transitions Tset, which have the same effect on the short circuited FC WF
net, as the newly added transition. In Figure 3d, this set corresponding to the
newly added transition td is {[tb]}. We use this information to calculate the

i
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p1

a

ta p2

b

tb p3

c

tc p4

⊥

o

(a) An example labeled FC WF net. > and
⊥ are silent transitions. t1, t1 and t3 are
transitions labeled with activities a, b and
c resp.

>

p1

a

ta p2

b

tb p3

c

tc p4

⊥

io

(b) Short circuited version of the FC WF
net from 3a
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a

ta p2

b

tb p3
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tc p4

⊥
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(c) Adding a new parallel place to the short
circuited FC WF net from Figure 3b using
the linearly dependent place rule.
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ta p2

b
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dtd

p3

p5

c

tc p4

⊥

io

(d) Adding a new choice transition to
the short circuited FC WF net from Fi-
gure 3c using the linearly dependent tran-
sition rule.

> p1

a

ta p2

b

tb

dtd

p6

e

te p3

p5

c

tc p4 ⊥

io

(e) Adding a new transition and place in sequence to the short circuited FC WF net
from Figure 3d using the ψ′

A rule in between transitions tb, td and places p3, p5.

Fig. 3: Synthesis rules [9] applied to short circuited FC WF nets.
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>

p1
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ta p2

b
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p5

d
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p3

c

tc p4

⊥
p6

io

(a) A short circuited FC WF net, where
td is in parallel with tb.

>

p1

a

ta p2

b

tb

p5

p7

d

td

p3

c

tc

p6

p4

⊥

io

(b) Adding a new place to the net from Fi-
gure 4a using linearly dependent place rule.
The result is that d and b are now in sequence
(that is, d is followed by b).

Fig. 4: Addition of a new place resulting in introduction of sequential construct.

set of activity combinations CS whose projected behavior does not change. No
elements are added to CS , if any bag from Tset contains > or ⊥. This is for
reasons similar the one described in Sub-section 4.4. The second scenario is
when none of the bags from Tset contain > or ⊥, i.e. ∀E∈Tset

>,⊥ /∈ E. Let TL
be the set of all the labels represented by the transitions in Tset. An activity
combination for a subset of activities As (s.t. the label of newly added transition
is not in As) is added to CS if As ∩ TL = ∅. Consider the model from Figure 3d
derived from Figure 3c by adding a new transition labeled d (TL = {b}). If the
cardinality is chosen to be 2, then combination of activities {a, b} and {b, c}
are not added to CS . For example, consider the projection of activities {b, c} as
shown in Figure 5a. In the new net projected (and reduced) on activities {b, c},
there is a possibility to skip the activity b, via τd. Hence there is additional
behavior introduced corresponding to activity b which was not present in the
prior projected net. Hence such activity combinations are not added to CS , and
are candidates for recalculation. As a counter example, it is easy to see that the
previous activity pair of {a, c} has the same projected behavior, as shown in
Figure 5b, after the introduction of td, and hence this activity combination is
added to CS .

4.6 Addition of a new transition and a new place

Adding a new transition and a new place using the so-called abstraction rule
[8] results in a new sequence in the model. For example, Figure 3e is derived
by adding a new transition (labeled e) and a new place (p6) to the model from
Figure 3d. If the newly added transition is labeled with an activity which is not
already present in the model, then for any chosen cardinality, all the activity

>

p2

b

tb

τd

p3

c

tc p4

⊥

io

(a) Projecting (and reducing) the net
from Figure 3d onto {b, c}.

>

p1

a

ta p2

b

τb

dτd

p3

c

tc p4

⊥

io

(b) Projecting the net from Figure 3d onto
{a, c}.

Fig. 5: Projected behavior for k = 2 corresponing to the new net after adding td
(Figure 3d).
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Fig. 6: (A) shows the conformance of the modeled activities according to the
event log: the density of blue color indicates the frequency, the red (darker)
and green (lighter) bars above the transitions indicate the distribution of fitting
and non-fitting events. The tabular view (B) shows the individual scores of
the activity sets (k=2 in this case). The user can dig deeper to explore the
relationship between any activity set by choosing the desired visualization.

combinations from Figure 3d are behaviorally equivalent in Figure 3e. That is,
if the transition for newly added activity e is made silent, then the net would be
behaviorally equivalent to the previous net. Hence all the activity combinations
from Figure 3d are added to CS .

5 Implementation and Visualization

The technique has been implemented in the Interactive Process Mining package
of the nightly build version of ProM tool4. Figure 6 shows and discusses the
visualization of our technique. There are two views, one showing the aggregated
visualization of conformance information across all the activity combinations
directly on the process model. The other view shows a tabular view of all the
activity combinations, along with the corresponding metrics. The user can in-
teract with the activity combinations from the tabular view, and visualize the
reduced models containing only those activities present in the selected activity
combination. This allows the user to dig deeper to analyze the intricacies of
fragmented process models with a certain cardinality, as shown in Figure 8.

6 Evaluation

We evaluate the approach presented in this paper by comparing it with state-
of-the-art conformance techniques. The goal of this evaluation is to show the
effectiveness of our approach in an interactive setting, measured in terms of per-
formance times and correctness of the result. We use two real-life event logs: (i)
the Sepsis event log5 containing the workflow data for roughly 1000 patients suf-

4 http://www.promtools.org/doku.php?id=nightly
5 https://data.4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
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(b) Performance times for the Sepsis event
log.

Fig. 7: The time(s) taken after each interaction (step) for conformance analysis.

fering from Sepsis in a hospital. A normative process model is already available
for this event log at [12]. (ii) the BPIC 2011 event log6 containing hospital data
for cancer patients from a Dutch hospital - filtered to retain only top 40% of
the most frequent activities, resulting in a total of around 10000 events. We use
the inductive miner [10] to discover a process model from the filtered event log.
In order to replicate an interactive scenario, starting with a process model wit-
hout any activities, we interactively re-construct each process model using the
synthesis rules based approach. After each “interaction” (step), conformance is
recalculated using following techniques: the decomposed replay technique [20],
the recomposed replay technique [19], projected conformance checking [11] (with
k=2), the technique presented in this paper (with k=2) and the regular align-
ments technique [4]. The fitness (i.e., the faithfulness of the model to the log),
precision (i.e., the extent to which behavior not seen in the log is allowed by
the model) and time taken for recalculation w.r.t. each technique are recorded.
The fitness and precision values are scored from 0 (worst) to 1 (best) in all the
techniques.

Figure 7 compares the performance of each approach in terms of time taken
after each step. It is quite evident that the traditional approaches, along with
decomposed and recomposed approaches can be extremely slow, especially as the
size of the process model increases. It was observed that the traditional approach
for calculating fitness/precision could take more than 30 mins for both the event
logs for the final step. It should however be observed that even though the decom-
posed approaches are slower, the quality values computed using these techniques
were identical to the alignment based conformance technique [4] (which can be
considered as a baseline for fitness value). It should be noted that increasing
the value of k can potentially improve the accuracy, however even with a value
of k = 2 our approach is within 5% of the baseline and is much faster than
the traditional approaches as we exploit the inherent rules used during process
composition. [11] is typically faster than most of the approaches. However, [11]

6 http://www.win.tue.nl/bpi/2011/challenge
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Fig. 8: The view of projected alignment on activities ‘CRP’ and ‘ER Registration’
from the Sepsis event log.

provides very limited diagnostic information about the transitions in the FC WF
net, especially when there are duplicate activities present in the model. That is,
if there are duplicate occurrences of an activity in the FC WF net, then [11]
would assign them the same fitness and precision value. Our approach is more
robust and can distinguish the difference in behavior of duplicate occurrences
of activities in the FC WF net, for e.g. Figure 8. Moreover, by projecting the
model on a subset of activities, as shown in Figure 8, we can find the relations-
hip between activities which may not be directly connected in the overall model.
Also, in contrast to all the other techniques, during many steps in the process
construction, the response time of our approach is almost zero, or close to zero.
These are the changes in the process model wherein the projected behavior of
all the activity combinations was the same in the iterated model.

7 Conclusion and Future work

In this paper, we presented a framework to enable fast conformance checking
in an interactive process discovery setting. We instantiated this frameowrk to
exploit the underlying principles used in interactive process discovery to calculate
fast conformance by incrementally studying the change in the structure of a
model. By using two real-life event logs we were able to show that the approach
suggested in this paper is faster compared to many state-of-the-art conformance
checking techniques. Furthermore, even though the actual fitness (and precision)
scores are only approximated, they are still very close to the original values as
computed using the traditional alignment-based conformance checking approach.
In the future, we would like to extend the technique presented in this paper to
combine it with other conformance checking techniques such as the one in [11].
Furthermore, we would also like to explore the effect of different values of k in
terms of performance time and accuracy.
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