
Noname manuscript No.
(will be inserted by the editor)

Discovering More Precise Process Models from Event
Logs by Filtering Out Chaotic Activities

Niek Tax · Natalia Sidorova · Wil M. P.
van der Aalst

Received: date / Accepted: date

Abstract Process Discovery is concerned with the automatic generation of a
process model that describes a business process from execution data of that
business process. Real life event logs can contain chaotic activities. These activities
are independent of the state of the process and can, therefore, happen at rather
arbitrary points in time. We show that the presence of such chaotic activities
in an event log heavily impacts the quality of the process models that can be
discovered with process discovery techniques. The current modus operandi for
filtering activities from event logs is to simply filter out infrequent activities. We
show that frequency-based filtering of activities does not solve the problems that
are caused by chaotic activities. Moreover, we propose a novel technique to filter
out chaotic activities from event logs. We evaluate this technique on a collection
of seventeen real-life event logs that originate from both the business process
management domain and the smart home environment domain. As demonstrated,
the developed activity filtering methods enable the discovery of process models
that are more behaviorally specific compared to process models that are discovered
using standard frequency-based filtering.

Keywords Information Systems · Business Process Intelligence · Process Mining ·
Knowledge Discovery

1 Introduction

Process Mining [1] is a scientific discipline that bridges the gap between process
analytics and data analysis and focuses on the analysis of event data logged during
the execution of a business process. Events contain information on what was done,
by whom, for whom, where, when, etc. Such event data is often readily available
from information systems such as ERP, CRM, or BPM systems. Process discovery,
which plays a prominent role in process mining, is the task of automatically

Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513, 5600MB Eindhoven, The Netherlands
Email: E-mail: {n.tax,n.sidorova,w.m.p.v.d.aalst}@tue.nl

ar
X

iv
:1

71
1.

01
28

7v
1

 [
cs

.D
B

]
 3

 N
ov

 2
01

7

2 Niek Tax et al.

generating a process model that accurately describes a business process based on
such event data. Many process discovery techniques have been developed over the
last decade (e.g. [7, 15, 16, 17, 20, 33, 47]), producing process models in various
forms, such as Petri nets [29], process trees [7], and BPMN models [30].

Figure 1b shows an example process model from [1] that describes a compen-
sation request process. The process model consists of eight process steps (called
activities): (A) register request, (B) examine thoroughly, (C) examine casually, (D)
check ticket, (E) decide, (F) re-initiate request, (G) pay compensation, and (H)
reject request. Figure 1a shows a small example event log consisting of six execution
trails of the process model. The Inductive Miner [20] process discovery algorithm
provides the guarantee that it can re-discover the process model from an event log
given that all pairs of activities that can directly follow each other in the process
are present in the event log, i.e., the log is directly-follows complete. Since the log
in Figure 1a is directly-follows complete, applying the Inductive Miner to this log
results in the process model in Figure 1b, which generated the log.

However, the presence of activities that can occur spontaneously at any point in
the process execution, which we will call chaotic activities, substantially impacts the
quality of the resulting process models obtained with process discovery techniques.
Figure 2a contains the event log obtained from the one in Figure 1a by adding
activity (X) the customer calls at random points, since customers can call the call
center multiple times at any point in time during the execution of the process.
Figure 2b shows the resulting process model discovered by the Inductive Miner
[20] from the event log of Figure 2a. The process model discovered from the “clean”
example log without activity X (Figure 1b) was very simple, interpretable, and
accurate with respect to the behavior allowed in the process. In contrast, the
process model discovered from the log containing X (Figure 2b) is very complex,
hard to interpret, and it overgeneralizes by allowing for too much behavior that
is not possible in the process. We consider X to be a so-called chaotic activity
because it does not have a clear position in the process model and it complicates
the discovery of the rest of the process. The reason for the decline in the quality
of process models discovered from logs with chaotic activities is that the directly
follows relations, which many process discovery algorithms operate on, are affected
by chaotic activities. Examples of such process discovery algorithms include the
Inductive Miner [19], the Heuristics Miner [45], and Fodina [4]. In a sequence of
activities 〈. . . , A,C, . . . 〉, where A was directly followed by C, the addition of a
chaotic activity X can turn the sequence into 〈. . . , A,X,C, . . . 〉, thereby obfuscating
the directly-follows relation between activities A and C.

Event sequences

〈A,B,D,E,H〉
〈A,D,C,E,G〉
〈A,C,D,E,F,B,D,E,G〉
〈A,D,B,E,H〉
〈A,C,D,E,F,D,C,E,F,C,D,E,H〉
〈A,C,D,E,G〉

(a)

A

B

C

D

E
G

H
F

(b)

Fig. 1 (a) Event log with A=register request, B=examine thoroughly, C=examine casually,
D=check ticket, E=decide, F=re-initiate request, G=pay compensation, H=reject request, and
(b) the Petri net mined from this log with the Inductive Miner [20].

Title Suppressed Due to Excessive Length 3

Event sequences

〈X,A,B,D,E,H〉
〈A,D,C,E,G〉
〈A,X,C,D,E,F,B,D,X,E,G〉
〈A,D,B,E,H〉
〈A,C,D,E,F,D,C,E,F,C,D,E,X,H〉
〈A,C,X,D,E,G〉

(a)

A

D

E

F

B

X

C

G

H

(b)

Fig. 2 (a) The event log from Figure 1a with an added chaotic activity X, and (b) the Petri
net mined from this log with the Inductive Miner [20].

In this paper, we show that existing approaches do not solve the problem of
chaotic activities and we present a technique to handle the issue. This paper is
structured as follows: in Section 2 we introduce basic concepts used throughout
the paper. In Section 3 we propose an approach to filter out chaotic activities.
In Section 4 we evaluate our technique using synthetic data where we artificially
insert chaotic activities and check whether the filtering techniques can filter out
the inserted chaotic activities. Additionally, Section 4 proposes a methodology
to evaluate activity filtering techniques in a real-life setting where there is no
ground truth knowledge on which activities are truly chaotic, and motivates this
methodology by showing that its results are consistent with the synthetic evaluation
on the synthetic datasets. In Section 5 the results on a collection of seventeen
real-life event logs are discussed. In Section 6 we discuss how the activity filtering
techniques can be used in a toggle-based approach for human-in-the-loop process
discovery. In Section 7 we discuss related techniques in the domains of process
discovery and the filtering of event logs. Section 8 concludes this paper and discusses
several directions for future work.

2 Preliminaries

In this section, we introduce concepts and notation throughout this paper.

X = {a1, a2, . . . , an} denotes a finite set. P(X) denotes the power set of X,
i.e., the set of all possible subsets of X. X\Y denotes the set of elements that
are in set X but not in set Y , e.g., {a, b, c}\{a, c}={b}. X∗ denotes the set of all
sequences over a set X and σ = 〈a1, a2, . . . , an〉 denotes a sequence of length n,
with σ(i) = ai and 〈〉 the empty sequence. σ�X is the projection of σ on X, e.g.
〈a, b, c, a, b, c〉�{a,c} = 〈a, c, a, c〉. σ1 · σ2 denotes the concatenation of sequences σ1
and σ2, e.g., 〈a, b, c〉 · 〈d, e〉 = 〈a, b, c, d, e〉.

A partial function f∈X9Y with domain dom(f) can be lifted to sequences
over X using the following recursive definition: (1) f(〈〉) = 〈〉; (2) for any σ∈X∗
and x ∈ X:

4 Niek Tax et al.

f(σ · 〈x〉) =

{
f(σ) if x/∈dom(f),
f(σ) · 〈f(x)〉 if x∈dom(f).

A multiset (or bag) over X is a function B : X→N which we write as
[aw1

1 , aw2
2 , . . . , awn

n], where for 1≤i≤n we have ai∈X and wi∈N+. The set of all
multisets over X is denoted B(X).

In the context of process mining, we assume the set of all process activities Σ
to be given. Event logs consist of sequences of events where each event represents
a process activity.

Definition 1 (Event, Trace, and Event Log) An event e in an event log is
the occurrence of an activity e∈Σ. We call a (non-empty) sequence of events σ∈Σ+

a trace. An event log L∈B(Σ+) is a multiset of traces.

L=[〈a, b, c〉2, 〈b, a, c〉3] is an example event log over process activities Σ = {a, b, c},
consisting of 2 occurrences of trace 〈a, b, c〉 and three occurrences of trace 〈b, a, c〉.
Activities(L) denotes the set of process activitiesΣ that occur in L, e.g., Activities(L) =
{a, b, c}. #(a, L) denotes the number of occurrences of activity a in log L, e.g.,
#(a, L) = 5.

A process model notation that is frequently used in the area of process mining
is the Petri net. Petri nets can be automatically transformed into process model
notations that are commonly used in business environments, such as BPMN
and BPEL [23]. A Petri net is a directed bipartite graph consisting of places
(depicted as circles) and transitions (depicted as rectangles), connected by arcs. A
transition describes an activity, while places represent the enabling conditions of
transitions. Labels of transitions indicate the type of activity that they represent.
Unlabeled transitions (τ -transitions) represent invisible transitions (depicted as
gray rectangles), which are only used for routing purposes and are not recorded in
the event log.

Definition 2 (Labeled Petri net) A labeled Petri net N = 〈P, T, F, `〉 is a tuple
where P is a finite set of places, T is a finite set of transitions such that P∩T=∅,
F⊆(P×T)∪(T×P) is a set of directed arcs, called the flow relation, and `:T9Σ is
a partial labeling function that assigns a label to a transition, or leaves it unlabeled
(the τ -transitions).

We write •n and n• for the input and output nodes of n ∈ P ∪ T (according
to F). A state of a Petri net is defined by its marking m∈B(P) being a multiset
of places. A marking is graphically denoted by putting m(p) tokens on each place
p∈P . State changes occur through transition firings. A transition t is enabled (can
fire) in a given marking m if each input place p∈•t contains at least one token.
Once t fires, one token is removed from each input place p∈•t and one token is
added to each output place p′∈t•, leading to a new marking m′=m− •t+ t•.

A firing of a transition t leading from marking m to marking m′ is denoted as

step m
t−→m′. Steps are lifted to sequences of firing enabled transitions, written

m
γ−→m′ and γ∈T ∗ is a firing sequence.
Defining an initial and a set of final markings allows defining the language

accepted by a Petri net as a set of finite sequences of activities.

Definition 3 (Accepting Petri Net) An accepting Petri net is a triplet APN =
(N,m0,MF), where N is a labeled Petri net, m0∈B(P) is its initial marking, and

Title Suppressed Due to Excessive Length 5

MF⊆B(P) is its set of possible final markings. A sequence σ∈Σ∗ is a trace of

an accepting Petri net APN if there exists a firing sequence m0
γ−→mf such that

mf∈MF , γ∈T ∗ and `(γ)=σ.

In the Petri nets that are shown in this paper, places that belong to the initial
marking contain a token and places belonging to a final marking contain a bottom
right label fi with i a final marking identifier or are simply marked as in case of
a single final marking.

The language L(APN) is the set of all its traces, i.e., L(APN) = {l(γ)|
γ∈T ∗∧∃mf∈MFm0

γ−→mf}, which can be of infinite size when APN contains
loops. While we define the language for accepting Petri nets, in theory, L(M) can
be defined for any process model M with formal semantics. We denote the universe
of process models as M. For each M∈M, L(M) ⊆ Σ+ is defined.

A process discovery method is a function PD : B(Σ+)→M that provides a
process model for a given event log. The goal is to discover a process model that is
a good description of the process from which the event log was obtained, i.e., it
should allow for all the behavior that was observed in the event log (called fitness)
while it should not allow for too much behavior that was not seen in the event log
(called precision). For an event log L, L̃={σ∈Σ+|L(σ)>0} is the trace set of L.
For example, for log L=[〈a, b, c〉2, 〈b, a, c〉3], L̃={〈a, b, c〉〈b, a, c〉}. For an event log
L and a process model M , we say that L is fitting on M if L̃⊆L(M). Precision is
related to the behavior that is allowed by a model M that was not observed in the
event log L, i.e., L(M)\L̃.

3 Information-Theoretic Approaches to Activity Filtering

We consider a chaotic activity to be an activity that can occur at any point in
the process and that thereby complicates the discovery of the rest of the process
by obfuscating the directly-follows relations of the event log. In this section, we
propose a technique to detect chaotic activities in event logs and to filter them out
from those event logs.

We extend the function #(a, L) to the function #(σ, L) to count the number
of occurrence of a sequence σ, in L:
#(σ, L)=

∑
σ′∈L |{0≤i≤|σ

′|−|σ|
∣∣ ∀1≤j≤|σ|σ′(i+j)=σ(j)}|.

The directly-follows ratio, denoted dfr(a, b, L), represents the ratio of the events
of activity a that are directly followed by an event of activity b in event log L, i.e.,
dfr(a, b, L)=#(〈a,b〉,L)

#(a,L) .

Likewise, the directly-precedes ratio, denoted dpr(a, b, L), represents the ratio
of the events of activity a that are directly preceded by an event of activity b in
event log L, i.e., dpr(a, b, L)=#(〈b,a〉,L)

#(a,L) .

Lc contains the traces of event log L appended with an artificial end event that
we represent with c. For each σ = 〈e1, e2, . . . , en〉 in log L, log Lc contains a trace
σc = 〈e1, e2, . . . , en, c〉. Likewise, Lb contains the traces of event log L prepended
with an artificial start event b, i.e., for each σ = 〈e1, e2, . . . , en〉 in log L, log Lb

contains a trace σb = 〈b, e1, . . . , en〉. The artificial start and end events allow us
to define the ratio of start events of an activity, e.g., dfr(a, c, Lc) and dpr(a, b, Lb)

6 Niek Tax et al.

represent the ratio of events of activity a that respectively occur at the end of a
trace and at the beginning of a trace.

Assuming an arbitrary but consistent order over the set of process activi-
ties Activities(L), dfr(a, L) represents the vector of values dfr(a, b, Lc) for all
b∈Activities(L) ∪ {c} and dpr(a, L) represents the vector of values dpr(a, b, Lb)
for all b ∈ Activities(L) ∪ {b}. From a probabilistic point of view, we can regard
dfr(a, L) and dpr(a, L) as the empirical estimates of the categorical distributions
over respectively the activities directly prior to a and directly after a, where the
empirical estimates are based on #(a, L) trials.

3.1 Direct Entropy-based Activity Filtering

We define the entropy of an activity in an event log L based on its directly-follows
ratio vector and the directly-precedes ratio vector by using the usual definition of
function for the categorical probability distribution: H(X) = −

∑
x∈X x log2(x). We

define the entropy of activity a ∈ Activities(L) in log L as: H(a, L) = H(dfr(a, L))+
H(dpr(a, L)). In case there are zero probability values in the directly follows or
directly precedes vectors, i.e., 0 ∈ dfr(a, L) ∨ 0 ∈ dpr(a, L), then the value of the
corresponding summand 0 log2(0) is taken as 0, which is consistent with the limit
lim
p→0+

p log2(p) = 0.

For example, let event log L = [〈a, b, c, x〉10, 〈a, b, x, c〉10, 〈a, x, b, c〉10], then
dfr(a, L) = 〈0, 2030 , 0,

10
30 , 0〉, using the arbitrary but consistent ordering 〈a, b, c, x, c〉,

indicating that 20 out of 30 events of activity a are followed by b and 10 out of 30
by x. Likewise dpr(a, L)=〈0, 0, 0, 0, 1〉, using the arbitrary but consistent ordering
〈a, b, c, x, b〉, indicating that all events of activity a are preceded by b. This leads
to H(dfr(a, L)) = 0.918, H(dpr(a, L)) = 0, and H(a, L) = 0.918. Furthermore,
H(b, L) = 1.837, H(c, L) = 1.837, and H(x, L) = 3.170, showing that activity x has
the highest entropy of the probability distributions for preceding and succeeding
activities. We conjecture that activities that are chaotic and behave randomly to a
high degree have high values of H(a, L).

Algorithm 1 An activity filtering approach based on entropy.

Input: event log L
Output: list of event logs Q

Initialisation :
1: L′ = L
2: Q = 〈L′〉

Main Procedure:
3: while |Activities(L′)| > 2 do
4: acts = Activities(L′)
5: a′ = arg maxa∈acts H(a, L′)
6: L′ = L′ �acts\{a′}
7: Q = Q · 〈L′〉
8: end while
9: return Q

Title Suppressed Due to Excessive Length 7

Algorithm 1 describes a greedy approach to iteratively filter the most randomly
behaving (chaotic) activity from the event log. The algorithm takes an event log L
as input and produces a list of event logs, such that the first element of the list
contains a version of L with one activity filtered out, and each following element of
the list has one additional activity filtered out compared to the previous element.

In the example event log L, Algorithm 1 starts by filtering out activity x,
followed by activity b or c. The algorithm stops when there are two activities left in
the event log. The reason not to filter any more activities past this point is closely
related to the aim of process discovery: uncovering relations between activities.
From an event log with less than two activities no relations between activities can
be discovered.

3.2 The Entropy of Infrequent Activities and Laplace Smoothing

We defined entropy of the activities in an event log L is based on the directly-follows
ratios dfr and the directly-precedes ratios dpr of the activities in L. The empirical
estimates of the categorical distributions dfr(a, L) and dpr(a, L) become unreliable
for small values of #(a, L). In the extreme case, when #(a, L)=1, dfr(a, L) assigns
an estimate of 1 to the activity that the single activity a in L happens to be
preceded by and contains a probability of 0 for the other activities. Likewise, when
#(a, L)=1, dpr(a, L) assigns value 1 to one activity and value 0 to all others.
Therefore, #(a, L)=1 leads to H(dfr(a, L))=0 and H(dfr(a, L))=0. This shows an
undesirable consequence of Algorithm 1, infrequent activities are unlikely to be
filtered out. In the extreme case, the activities that occur only once, which are the
last in line activities to be filtered out. This effect is undesired, as very infrequent
activities should not be the primary focus of the process model discovered from an
event log.

We aim to mitigate this effect by applying Laplace smoothing [48] to the
empirical estimate of the categorical distributions over the preceding and succeeding
activities. Therefore, we define a smoothed version of the directly-follows and
directly-precedes ratios, dfrs(a, b, L)= α + #(〈a,b〉,L)

α(|Activities(L)|+1)+#(a,L) , with smoothing

parameter α∈R≥0. The value of dfrs(a, b, L) will always be between the empirical
estimate dfr(a, b, L) and the uniform probability 1

|Activities(L)|+1 , depending on

the value α. Similar to dfr and dpr , dfrs(a, L) represents the vector of values
dfrs(a, b, Lc) for all b∈Activities(L) ∪ {c} and dprs(a, L) represents the vector
of values dprs(a, b, Lb) for all b ∈ Activities(L) ∪ {b}. From a Bayesian point
of view, Laplace smoothing corresponds to the expected value of the posterior
distribution that consists of the categorical distribution given by dfr(a, L) and a
Dirichlet distributed prior that assigns equal probability to each of the possible
number of next activities |Activities(L)|+ 1 (including c). Parameter α indicates
the weight that is assigned to the prior belief w.r.t. the evidence that is found in
the data. An alternative definition of the entropy of log L, based on the smoothed
distributions over the preceding and succeeding activities, is as follows: Hs(a, L) =
H(dfrs(a, L)) +H(dprs(a, L)). The smoothed direct entropy-based activity filter is
similar to Algorithm 1, where function H in line 5 of the algorithm is replaced by
Hs. Function H(a, L) starts from the assumption that an activity is non-chaotic
unless we see sufficient evidence in the data for it’s chaoticness, function Hs(a, L)

8 Niek Tax et al.

Algorithm 2 An indirect activity filtering approach based on entropy.

Input: event log L
Output: list of event logs Q

Initialisation :
1: L′ = L
2: Q = 〈L′〉

Main Procedure:
3: while |Activities(L′)| > 2 do
4: acts = Activities(L′)
5: a′ = arg mina∈acts H(L′ �acts\{a})
6: L′ = L′ �acts\{a′}
7: Q = Q · 〈L′〉
8: end while
9: return Q

in contrast starts from the assumption that is is chaotic, unless we see evidence
sufficient evidence in the data for it’s non-chaoticness.

Categorical distribution dfr(a, L) consists of |Activities(L)|+ 1, therefore, the
maximum entropy of an activity decreases as more activities get filtered out of
the event log. The keep the values of Hs(a, L) comparable between iterations of
the filtering algorithm, we propose to gradually increase the weight of the prior by
setting weight parameter α to 1

|Activities(L)| .

3.3 Indirect Entropy-based Activity Filtering

An alternative approach to the method proposed in Algorithm 1 is to filter out
activities such that the other activities in the log become less chaotic. We define
the total entropy of an event log L as the sum of the entropies of the activities in
the log, i.e., H(L) =

∑
a∈Activities(L)H(a, L).

Algorithm 2 describes a greedy approach that iteratively filters out the activity
that results in the lowest total log entropy. We call this approach the indirect
entropy-based activity filter, as opposed to the direct entropy-based activity filter
(Algorithm 1), which selects the to-be-filtered activity directly based on the activity
entropy, instead of based on the total log entropy after removal.

3.4 An Indirect Entropy-based Activity Filter with Laplace Smoothing

Just like the direct entropy-based activity filter, the indirect entropy-based activity
filter is sensitive to infrequent activities. To deal with this problem, the ideas of
the indirect entropy-based activity filtering method and Laplace smoothing can be
combined, using the following definition for smoothed log entropy:

Hs(L) =
∑
a∈Activities(L)H

s(a, L).

The algorithm for indirect entropy-based activity filtering with Laplace smooth-
ing is identical to Algorithm 2, in which function H in line 5 is replaced by function
Hs.

Title Suppressed Due to Excessive Length 9

Process Model
Synthetic
Event Log

Log with Frequent
Randomly-Positioned

Activities

k = 1, 2, . . .

Log with Infrequent
Randomly-Positioned

Activities

k = 1, 2, . . .

Log with Uniform
Randomly-Positioned

Activities

k = 1, 2, . . .

Filtered Event Log

Filtered Event Log

Filtered Event Log

(1) generate

(2) insert k frequent
randomly-positioned activities

(2) insert k infrequent
randomly-positioned activities

(2)
insert k
uniform

randomly-positioned activities

(3) filter activities

(3) filter activities

(3) filter activities

(4) compare

Fig. 3 An overview of the proposed evaluation methodology on synthetic data.

4 Evaluation using Synthetic Data

In this section we evaluate the activity filtering techniques using synthetic data.
Figure 3 gives an overview of the evaluation methodology. First, as step (1), we
generate a synthetic event log from a process model such that we know that
all activities of this model are non-chaotic. We take well-known process models
introduced by Maruster et al. [27], which respectively consist of 12 and 22 activities
and are commonly referred to as the Maruster A12, A22 models. The Maruster
A12 and A22 models are shown respectively in Figures 4a and 5a. We generated
25 traces by simulation from Maruster A12 to form log LA12 and generated 400
traces from Maruster A22 to form log LA22. Then, in step (2), we artificially
insert activities that we position at random positions in the log. Since we chose the
positions in the log of those activities randomly, we assume those activities to be
chaotic. We vary the number (k) of randomly-positioned activities that we insert,
to assess how well the chaotic activity filtering techniques are able to deal with
different numbers of randomly-positioned activities in the event log. Furthermore,
we vary the frequency of the randomly-positioned activities that we insert, where
we distinguish between three types of randomly-positioned activities:

Frequent randomly-positioned activities the number of events inserted for
all k randomly-positioned activities is maxa∈Activities(L) #(a, L).

Infrequent randomly-positioned activities the number of events inserted for
all k randomly-positioned activities is mina∈Activities(L) #(a, L).

Uniform randomly-positioned activities for each of the k inserted randomly-
positioned activities the frequency is chosen at randomly from a uniform proba-
bility distribution with minimum value mina∈Activities(L) #(a, L) and maximum
value maxa∈Activities(L) #(a, L).

In step (3) we filter out all the inserted randomly-positioned activities from the
event log, by removing activities one-by-one using the activity filtering approaches,
until all k artificially inserted activities have been removed again. We then count how
many of the activities that were originally in the process model we also removed
during this procedure (step (4)). Using this approach, we compare the direct
entropy-based activity filtering approach (with and without Laplace smoothing)

10 Niek Tax et al.

(a)

(b)

(c)

Fig. 4 (a) The synthetic process model Maruster A12, from which we generate an event log L,
consisting of 25 traces, from which the process model can be rediscovered with the Inductive
Miner [19], (b) the process model discovered by the Inductive Mining when we insert one
uniform randomly-positioned activity X to LA12, and (c) the process model discovered by the
Inductive Miner after inserting a second randomly-positioned activity Y to LA12.

with the indirect entropy-based activity filtering approach (with and without
Laplace smoothing). Furthermore, we compare those activity filtering techniques
with activity filtering techniques that are based on the frequency of activities,
such as filtering out the activities starting from the least frequent activity (least-
frequent-first), or starting from the most frequent activity (most-frequent-first).
Frequency-based activity filtering techniques are the current default approach for
filtering activities from event logs.

The original process models A12 and A22 can be rediscovered from generated
event logs LA12 and LA22 with the Inductive Miner [19] when there are no added
randomly-positioned activities. Figure 4b shows the process model discovered by
the Inductive Miner [19] after inserting one uniform randomly-positioned activity,

Title Suppressed Due to Excessive Length 11

(a)

(b)

Fig. 5 (a) The synthetic process model Maruster A22, from which we generate an event
log LA22, consisting of 400 traces, from which the process model is re-discoverable with the
Inductive Miner [19], and (b) the process model discovered by the Inductive Miner after inserting
a uniform randomly-positioned activity X to LA22.

activity X, into LA12. The insertion of activity X causes the Inductive Miner to
create a model that overgeneralizes the behavior of the event log, as indicated by
many silent transitions in the process model that allow activities to be skipped.
Adding a second uniform randomly-positioned activity Y to LA12 results in the
Inductive Miner discovering a process model (shown in Figure 4c) that overgeneral-
izes even further, allowing for almost all sequences over the set of activities. Figure
5b shows the process model discovered by the Inductive Miner after inserting two
uniform randomly-paced activities (X and Y) into LA22. The addition of X and
Y has the effect that activity C is no longer positioned at the correct place in the
process model, but it is instead put in parallel to the whole process, making the
process model overly general, as it wrongly allows for activity C to occur before A
and B, or after D, E, F , and G. Figures 4b, 4c and 5b further motivate the need
for filtering out chaotic activities.

12 Niek Tax et al.

Table 1 The number of incorrectly filtered activities per filtering approach on LA12 and LA22

with k added Uniform (U) / Frequent (F) /Infrequent (I) chaotic activities.

Maruster A12 (Number of inserted randomly-positioned activities →)
Approach 1 2 4 8 16 32 64 128

U F I U F I U F I U F I U F I U F I U F I U F I

Direct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 4 0 12 10 1 12
Direct (α= 1

|A|) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 6 6 2 12

Indirect 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 2 0 1 3 1 6
Indirect (α= 1

|A|) 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 2 0 1 2 1 10

Least-frequent-first 9 12 0 11 12 0 6 12 0 11 12 0 11 12 0 12 12 0 12 12 0 12 12 0
Most-frequent-first 11 0 12 3 0 12 7 0 12 10 0 12 12 0 12 12 0 12 12 0 12 12 0 12

Maruster A22 (Number of inserted randomly-positioned activities →)
Approach 1 2 4 8 16 32 64 128

U F I U F I U F I U F I U F I U F I U F I U F I

Direct 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5
Direct (α= 1

|A|) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5

Indirect 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1
Indirect (α= 1

|A|) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1

Least-frequent-first 16 22 0 17 22 0 6 22 0 21 22 0 19 22 0 22 22 0 22 22 0 22 22 0
Most-frequent-first 7 0 22 8 0 22 19 0 22 17 0 22 19 0 22 22 0 22 22 0 22 22 0 22

Frequent randomly-positioned activities will impact the quality of process mod-
els discovered with process discovery to a higher degree than infrequent randomly-
positioned activities. Each randomly-positioned activity that is inserted at a random
position in the event log is placed in-between two existing events in that log (or at the
start or end of the trace). By inserting randomly-positioned activity X in-between
two events of activities A and C respectively, the directly-follows relation between
activities A and C gets weakened. Therefore, the impact of randomly-positioned
activity X is proportional to its frequency #(X,L).

4.1 Results

Table 1 reports the number of activities that were originally part of the synthetic
process models A12 and A22 that were wrongly filtered out from LA12 and LA22

as an effect of removing all inserted randomly-positioned activities from these
logs. If this number is 12 for Maruster A12 or 22 for Maruster A22 this indicates
that all activities of the original process model needed to be filtered out before
the activity filtering technique was able to remove all inserted chaotic activities.
The results show that the direct filtering approach can perfectly distinguish be-
tween actual activities from the process and artificial chaotic activities for up
to 32 uniform randomly-positioned activities inserted activities to LA12, up to
64 frequent randomly-positioned activities, and up to 16 infrequent randomly-
positioned activities. Infrequent randomly-positioned activities are the hardest type
of randomly-positioned activities to correctly filter out, as their infrequency can
have the effect that the probability distributions over their surrounding activities
can by chance have low entropy. Using Laplace smoothing with α = 1

|Activities(L)|
mitigates this effect, but does not completely solve it: the number of incorrectly
removed activities drops from 12 to 0 as an effect of Laplace smoothing for 32
added randomly-positioned activities, and from 12 to 6 for 64 added randomly-
positioned activities. The indirect activity filter starts making errors already at
lower numbers of added randomly-positioned activities than the direct activity
filter; however, it is more stable to errors for higher numbers of added randomly-
positioned activities, i.e., fewer activities get incorrectly removed for 64 and 128

Title Suppressed Due to Excessive Length 13

added randomly-positioned activities. In contrast to direct activity filtering, Laplace
smoothing does not seem to reduce the number of wrongly removed activities for
indirect activity filtering. In fact, surprisingly, the number of incorrectly removed
activities even increased from 6 to 10 as an effect of using Laplace smoothing for 128
infrequent randomly-positioned activities added to LA12. The direct and indirect
filtering approaches, both with and without Laplace smoothing, outperform the
currently widely used approach of filtering out infrequent activities from the event
log (least-frequent-first filtering). Furthermore, a second frequency-based activity
filtering technique is included in the evaluation in which the most-frequent activities
are removed from the event log (most-frequent first filtering). Both Frequency-based
filtering approaches are not able to filter out the randomly-positioned activities
inserted to LA12 and LA22, even for small numbers of added randomly-positioned
activities.

4.2 An Evaluation Methodology for Event Data without Ground Truth
Information

In a real-life data evaluation that we perform in the following section, there is
no ground truth knowledge on which activities of the process are chaotic. This
motivates a more indirect evaluation in which we evaluate the quality of the process
model discovered from the event log after filtering out activities with the proposed
activity filtering techniques. In this section we propose a methodology for evaluation
of activity filtering techniques by assessing the quality of discovered process models,
we apply this evaluation methodology to the Maruster A12 and Maruster A22
event logs, and we discuss the agreement between the findings of Table 1 and the
quality of the discovered process models.

There are several ways to quantify the quality of a process model for an event
log. Ideally, a process model M should allow for all behavior that was observed in
the event log L, i.e., L̃ \ L(M) should be as small as possible, preferably empty.
The fitness quality dimension covers this. Furthermore, model M should not allow
for too much additional behavior that was not seen in the event log, i.e., L(M) \ L̃
should be as small as possible. This aspect is called precision. For each process
model that we discovered, we measure fitness and precision with respect to the
filtered log. Fitness is measured using the alignment-based fitness measure [3] and
we measure precision using negative event precision [44]. Based on the fitness and
precision results we also calculate F-score [11], i.e., the harmonic mean between
fitness and precision.

Precision is likely to increase by filtering out one or more activities from an
event log independently of which activities are removed from the log, as a result of
two factors. First, precision measures express L(M) \ L̃ in terms of the number
of activities that are enabled at certain points in the process, w.r.t. the number
of activities seen that were actually observed at these points in the process. With
the log and model containing fewer activities after filtering, the number of enabled
activities is likely to decrease as well. Secondly, activity filtering leads to log L′ that
contains less behavior than original log L (i.e., L̃′ is smaller than L̃), this makes it
easier for process discovery methods to discover a process model with less behavior.
These two factors make precision values between event logs with different numbers
of activities filtered out incomparable. The degree to which the behavior of filtered

14 Niek Tax et al.

Maruster A12 − 32 added

Maruster A12 − 4 added Maruster A12 − 8 added Maruster A12 − 16 added

Maruster A12 − 0 added Maruster A12 − 1 added Maruster A12 − 2 added

0.00 0.25 0.50 0.75

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Minimum % of activities explained

F−
sc

or
e

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

0.00 0.25 0.50 0.75

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

Fig. 6 F-score on the log generated from the Maruster A12 model with inserted artificial
chaotic activities.

Maruster A12 − 32 added

Maruster A12 − 4 added Maruster A12 − 8 added Maruster A12 − 16 added

Maruster A12 − 0 added Maruster A12 − 1 added Maruster A12 − 2 added

0.00 0.25 0.50 0.75

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
0
1
2
3
4

0
5

10
15
20
25

0.0

2.5

5.0

7.5

0
4
8

12
16

0.0

0.5

1.0

0

2

4

6

0
5

10
15
20
25

Minimum % of activities explained

N
on

de
te

rm
in

is
m

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

Fig. 7 Nondeterminism on the log generated from the Maruster A12 model with inserted
artificial chaotic activities.

log L′ decreases w.r.t. an unfiltered log L depends on the activities that are filtered
out: when very chaotic activities are filtered from L the behavior decreases much
more than when very structured activities are filtered from L. One effect of this
is that too much behavior in a process model affects the precision of that model
more for the log from which the non-chaotic activities are filtered out than for the
log from which the chaotic activities are filtered out.

To measure the behavior allowed by the process model independent of which
activities are filtered from the event log is to determine the average number of
enabled activities when replaying the traces of the log on the model. To deal
with traces of the event log that do not fit the behavior of the process model,
we calculate alignments [3] between log and model. Alignments are a function
Γm : M× Σ+ → B(P)+ that map each trace from the event log to a sequence
of markings 〈m0, . . . ,mf 〉 that are reached to replay that trace on the model,

Title Suppressed Due to Excessive Length 15

with m0 the initial marking and mf∈MF , such that for each two consecutive
markings 〈mi,mi+1〉 there exists a transition t ∈ T such that mi+1 = mi−•t+ t•.
Furthermore, alignments also provide a function Γ t :M×Σ+ → T+ that provides
the sequence of transitions 〈t0, . . . tn〉 that matches the changes in the sequence of
markings, i.e., m1 = m0 − •t0 + t0•, etc. For each trace σ ∈ Σ+ that fits a process
model N ∈ M the alignment l(Γ t(N,σ)) = σ. For unfitting traces σ ∈ Σ+, the
alignment is such that l(Γ t(N,σ)) is as close as possible to l according to some cost
function. We refer to Adriansyah et al. [3] for a more exhaustive introduction of
alignments. Let Γ t denote the sequence consisting of only the visible transitions in
Γ t, and let Γm correspondingly denote the sequence of markings prior to each firing
of a visible transition. Given a marking m ∈ B(P) we define the nondeterminism
of that marking to be the number of reachable visible transitions that can be fired

as first next visible transition from m, i.e., nondeterminism(m) = |{a∈Σ|m γ−→
mi ∧ t∈γ ∧ l(t) = a ∧ ∀γi∈γγi∈dom(l) =⇒ γi=t}|. We define the nondeterminism
of a model N ∈ M given a trace σ ∈ Σ+ as the average nondeterminism of the
markings Γm(N,σ) and define the nondeterminism for a model N and a log L as
the average nondeterminism over the traces of L.

Figure 6 shows the F-scores measured for different percentages of activities
filtered out from the Maruster LA12 log with different numbers of uniform chaotic
activities added. Note that the line stops when further removal of activities does
not lead to further improvement in F-score. Note that on the original event log with
0 chaotic activities added the F-score on the original log is already 1.0, resulting
in no lines being drawn. With one chaotic activity added, the least-frequent-first
filter needs to remove 75% of the activities before it ends up with F-score 1, which
can be explained by the fact that 9 out of 12 non-chaotic needed to be removed
in order with the least-frequent-first filter to remove all uniform chaotic activities,
as shown in Table 1. All entropy-based activity filtering techniques remove the
chaotic activity in the first filtering step, immediately leading to an F-score of 1.0.
Up until 8 added chaotic activities there is no difference between the entropy-based
activity filtering techniques in terms of F-score of the resulting process models,
which is consistent with the fact that all these filtering techniques were found to
filter without errors for these number of inserted chaotic activities in Table 1. For
16 and 32 activities, the direct filtering methods outperform the indirect filtering
methods, consistent with the fact that the indirect approach made one filtering error
according to the ground truth for these numbers of added chaotic activities. Note
that the least-frequent-first filter is outperformed by the entropy-based filtering
methods in terms of F-score of the discovered models, as would be expected given
the filtering results according to the ground truth.

Figure 7 shows the results in terms of nondeterminism measured for different
percentages of activities filtered out from the Maruster LA12 log with various
numbers of uniform chaotic activities added. The results show very clearly that
when filtering out a number of activities that is identical to the number of added
chaotic activities (this corresponds to 92% for one added activity, 86% for two
added activities, 75% for 4 added activities, 60% for 8 added activities, 43% for 16
added activities, and 27% for 32 added activities), the nondeterminism reaches a
value of 1.5, which is the nondeterminism value of the model discovered from the
original log without added chaotic activities. The least-frequent-first filter, however,
leads to process models where many activities are enabled on average, therefore

16 Niek Tax et al.

Table 2 An overview of the event logs used in the experiments

Name Category # traces # events # activities

BPI’12 [41] Business 13087 164506 23
BPI’12 resource 10939 [39] Business 49 1682 14
Environmental permit [6] Business 1434 8577 27
SEPSIS [26] Business 1050 15214 16
Traffic Fine [10] Business 150370 561470 11
Bruno [5] Human behavior 57 553 14
CHAD 1600010 [28] Human behavior 26 238 10
MIT A [36] Human behavior 16 2772 27
MIT B [36] Human behavior 17 1962 20
Ordonez A [31] Human behavior 15 409 12
van Kasteren [18] Human behavior 23 220 7
Cook hh102 labour [9] Human behavior 18 576 18
Cook hh102 weekend [9] Human behavior 18 210 18
Cook hh104 labour [9] Human behavior 43 2100 19
Cook hh104 weekend [9] Human behavior 18 864 19
Cook hh110 labour [9] Human behavior 21 695 17
Cook hh110 weekend [9] Human behavior 6 184 14

overgeneralizing the process behavior, as an effect of filtering out nonchaotic
activities instead of the added chaotic activities.

5 Evaluation using Real Life Data

For the experiments on real-life event logs we do not artificially insert chaotic
activities to event logs, but instead filter directly on the activities that are present
in these logs. Whether these logs contain chaotic activities that impact process
discovery results is not known upfront. Therefore, we apply different activity
filtering techniques to these logs and use them to filter out a varying number of
activities, after which we assess the quality of the process model that is discovered
from these filtered logs. Table 2 gives an overview of the real-life event logs that we
use in the experiment. In total, we include five event logs from the business domain.
Furthermore, we include twelve event logs that contain events of human behavior,
recorded in smart home environments or through wearable devices. Mining process
model descriptions of daily life is a novel application of process mining that has
recently gained popularity [12, 22, 35, 40, 38]. Furthermore, human behavior event
data are often challenging for process discovery because of the presence of highly
chaotic activities, like going to the toilet. We perform the experiments with activity
filtering techniques on real-life data with RapidProM [2], which is an extension
that adds process mining capabilities to the RapidMiner platform for repeatable
scientific workflows.

For each event log, we apply seven different activity filtering techniques for com-
parison: 1) direct entropy filter without Laplace smoothing, 2) direct entropy filter
with Laplace smoothing (α= 1

|Activities(L)|), 3) indirect entropy filter without Laplace

smoothing, 4) indirect entropy filter with Laplace smoothing (α= 1
|Activities(L)|), 5)

least-frequent-first filtering, 6) most-frequent-first filtering, 7) filtering the activities
from the log in a random order. Recall that the activity filtering procedure stops
at the point where all but two activities are filtered from the event log because
process models that contain just one activity do not communicate any information

Title Suppressed Due to Excessive Length 17

BPI '12 BPI '12 resource 10939 Environmental permit SEPSIS Traffic Fine Management

IM
IM

f 20

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Minimum % of activities explained

F
−

sc
or

e

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

Fig. 8 F-score on business logs dependent on the minimum share of activities remaining.

regarding the relations between activities. For each event log and for each activity
filtering approach we discover a process model after each filtering step (i.e., after
each removal of an activity). The process discovery step is performed with two
process discovery approaches: the Inductive Miner [19], and the Inductive Miner
infrequent (20%) [20].

5.0.1 Results on Business Process Event Logs

Figure 8 shows the F-score of the process models discovered with the Inductive
Miner [19] and the Inductive Miner with infrequent behavior filtering [20] (20%
filtering) on the five business event logs for different percentages of activities filtered
out and different activity filtering techniques. The figure shows an increasing trend
in F-score for all event logs when more activities are filtered from the event log.
Furthermore, the line for the least-frequent-first filtering approach is below the lines
of the entropy-based filtering techniques for most of the percentages of activities
removed on most event logs, which shows that entropy-based filtering enables the
discovery of models with higher F-score compared to simply filtering out infrequent
activities. There are a few exceptions where filtering out infrequent activities
outperforms the entropy-based techniques, e.g., the Inductive Miner on the BPI ’12
resource 10939 event log (around 40% of activities explained) and the traffic fines
event log (around 55% of activities explained). It differs between event logs which
of the entropy-based techniques performs best: for the environmental permit log the
indirect filter without Laplace smoothing almost dominates the other techniques
while for the SEPSIS log the direct filter without Laplace smoothing outperforms
the other techniques. Generally, it seems that the use of Laplace smoothing harms
F-score, as most parts of the lines of indirect filtering with Laplace smoothing are
below the lines of the indirect approach without Laplace smoothing, and similar for
the direct approach with and without Laplace smoothing. However, the detrimental
effect of Laplace smoothing does not seem to be large, and in some cases, the usage
of Laplace smoothing in filtering increases the F-score of the discovered models.

Figure 9 shows the nondeterminism of the process models as a function of the
minimum percentage of activities. The green dashed line indicates the nondetermin-
ism of the flower model, i.e., the process model that allows for all behavior over the

18 Niek Tax et al.

BPI '12 BPI '12 resource 10939 Environmental permit SEPSIS Traffic Fine Management

IM
IM

f 20

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0

5

10

15

0

2

4

6

Minimum % of activities explained

N
on

de
te

rm
in

is
m

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

Flower model

Fig. 9 Nondeterminism on business behavior logs dependent on the minimum share of the
activities remaining.

BPI '12 BPI '12 resource 10939 Environmental permit SEPSIS Traffic Fine Management

IM
f 20

0.00

0.25

0.50

0.75

1.00

Fi
tn

es
s

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

Most−frequent−first

Random

Fig. 10 Fitness on business logs with least 75% of the activities remaining.

activities. The lines stop when further removal of activities does not lead to further
improvement of nondeterminism. It is clear that the filtering mechanism of the
Inductive Miner helps to discover process models that are more behaviorally con-
strained, as the nondeterminism values are lower for the Inductive Miner infrequent
20% compared to the Inductive Miner without filtering. However, the results show
even when already using the 20% frequency filter of the Inductive Miner infrequent,
the chaotic activity filter can lead to an additional reduction of nondeterminism.
Furthermore, the results on the environmental permit log and the SEPSIS log show
that filtering several chaotic activities from the event log also enables the discovery
of a model with low nondeterminism using the Inductive Miner without filtering.
Which of the activity filtering approaches works best seems to be dependent on
the event log: the indirect entropy-based filter leads to the models with the lowest
nondeterminism on the traffic fine event log, the environmental permit event log,
while the direct entropy-based filter works better for some percentages of remaining
activities for the SEPSIS log and the BPI ’12 resource 10939 log.

Title Suppressed Due to Excessive Length 19

BPI '12 BPI '12 resource 10939 Environmental permit SEPSIS Traffic Fine Management

IM
IM

f 20

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5Pr
ec

is
io

n

Fig. 11 Precision on business logs with least 75% of the activities remaining.

Figures 10 and 11 show the fitness and precision values for the business process
event logs at the filtering step that leads to the highest F-score while describing at
least 75% of the activities of the original log. In addition to the filtering techniques
shown in Figure 8 it also shows the frequency-based activity filter where the most
frequent activities are filtered out first, and a random baseline is shown which
iteratively picks a random activity from the event log to filter out. The error bar for
the random activity filter indicates one standard error of the mean (SEM) based on
eight repetitions of applying the filter. The black dotted horizontal lines indicate
the fitness and precision values of the process models discovered from the original
event log without filtering any activities. Note that the fitness values are only shown
for the Inductive Miner infrequent 20% [20] because the Inductive Miner without
infrequent behavior filter [19] provides the formal guarantee that the fitness of the
discovered model is 1. Figure 10 shows that generally, the differences in fitness
between the models discovered from the filtered logs are very minor, and very close
to the fitness of the unfiltered log (i.e., the dotted line). Figure 11, however, shows
that the entropy-based filtering approaches outperform filtering out activities based
on frequency and filtering out random activities from the event log. The F-scores of
the discovered process models is determined mostly by the precision of the models
because the activity filtering impacts precision more than it impacts fitness. One
exception is the BPI’12 resource 10939 log [39], where the fitness decreases to
below 0.75 as a result of applying one of the two frequency-based filters, while the
precision increase as an effect of applying the filter is only minor.

5.0.2 Results on Human Behavior Event Logs

Figure 12 shows the maximum F-score for different human behavior event logs
as a function of the minimum percentage of activities that are remaining in the
log. Again, the general pattern is that the F-score of the discovered process model
decreases when the minimum percentage of events explained increases, as the
process discovery task gets easier for smaller numbers of activities. The figure
shows that filtering infrequent activities from the event log is dominated in terms

20 Niek Tax et al.

Bruno CHAD 1600010 MIT A MIT B Ordonez A van Kasteren

IM
IM

f 20

0.00 0.25 0.50 0.75 0.0 0.2 0.4 0.6 0.8 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.0 0.2 0.4 0.6 0.8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Minimum % of activities explained

F
−

sc
or

e

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

Fig. 12 F-score on human behavior logs dependent on the minimum share of activities.

Bruno CHAD 1600010 MIT A MIT B Ordonez A van Kasteren

IM
IM

f 20

0.00 0.25 0.50 0.75 0.0 0.2 0.4 0.6 0.8 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.0 0.2 0.4 0.6 0.8

0

5

10

15

0

5

10

Minimum % of activities explained

N
on

de
te

rm
in

is
m

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

Flower model

Fig. 13 Nondeterminism on human behavior logs dependent on the minimum share of the
activities remaining.

of F-score by the entropy-based filtering techniques. Like on the business process
event logs, there are mixed results on which of the four configurations of the
entropy-based filtering technique leads to the highest F-score: on the CHAD event
log the indirect activity filter outperforms the direct activity filter when using the
Inductive Miner infrequent 20%; however, the direct activity filter leads to higher
F-score for the Inductive Miner when filtering more than 50% of the activities.

Figure 13 shows the nondeterminism results for the human behavior event logs.
It is noticeable that the nondeterminism values of the process models that are
discovered when filtering very few activities are much closer to the flower model
compared to what we have seen before for the business process event logs. This is
caused by human behavior event logs having much more variability in behavior
compared to execution data from business processes, resulting in a much harder
process discovery task. After filtering several chaotic activities, the nondeterminism
drops significantly to ranges comparable to nondeterminism values seen for logs
from the business process domain. This shows that the problem of chaotic activities
is much more prominent in human behavior event logs than in business process event
logs. The entropy-based activity filtering approaches lead to more deterministic

Title Suppressed Due to Excessive Length 21

Bruno CHAD MIT A MIT B Ordonez A van Kasteren

IM
IM

f 20

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8Pr
ec

is
io

n

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

Most−frequent−first

Random

Fig. 14 Precision on human behavior logs with at least 50% of the activities.

process models compared to filtering out infrequent activities. Two clear examples
of this are the MIT B log and the Ordonez A log, on which filtering out infrequent
activities after several filtering steps results in a flower model (i.e., nondeterminism
is identical to that of the flower model), while entropy-based activity filters enable
the discovery of a model with nondeterminism close to one (i.e., very close to a
sequential model) while at the same time keeping 75% of the activities in the event
log.

Figure 14 shows the precision values for the human behavior logs for the
filtering step that leads to the highest F-score while describing at least 50% of the
activities of the original log. Similarly to what we have seen in the nondeterminism
graph, removing random activities from the log and removing infrequent activities
from the log results in smaller precision increases compared to the entropy-based
activity filters. Furthermore, it is noticeable that removing frequent activities from
the log works quite well to improve the precision of models discovered from the
human behavior application domain. The reason for this is that some of the chaotic
activities that are present in many of those event logs, including going to the toilet
and getting a drink, also happen to be frequent. On the van Kasteren event log
the indirect activity filter with Laplace smoothing leads to the largest increase in
precision when mining a model with at least 50% of the activities (from 0.324 to
0.732 with the Inductive Miner infrequent 20%).

Table 3 shows in which order activities are filtered from the van Kasteren event
log by 1) the indirect entropy-based activity filter with Laplace smoothing and
2) the least-frequent-first filter. It shows that the entropy-based filter filters use
toilet as the first activity, which from domain knowledge we know to be a chaotic
activity, as people generally just go to the toilet whenever they need to, regardless
of which other activities they have just performed. For the infrequent activity filter
use toilet would be the last choice of the activities to filter out, because it is the
most frequent activity in the van Kasteren event log.

Figures 15a and 15b show the corresponding process models discovered with
the Inductive Miner infrequent 20% from the logs filtered with the indirect activity
filter with Laplace smoothing and the infrequent activity filter respectively. The

22 Niek Tax et al.

Table 3 Left: the order in which activities are filtered using the direct activity filter with
Laplace smoothing (α = 1

|Activities(L)|) on the van Kasteren log. Right: the order in which the

activities are filtered using the least-frequent-first filter.

Order
Filtered activity

(indirect entropy-based filter
with Laplace smoothing)

Filtered activity
(least-frequent-first filter)

1 Use toilet Prepare dinner
2 Get drink Get drink
3 Leave house Prepare breakfast
4 Take shower Take shower
5 Go to bed Go to bed
6 Prepare breakfast Leave house
7 Prepare dinner Use toilet

(a)

(b)

Fig. 15 (a) The model discovered with Inductive Miner infrequent 20% on the Van Kasteren
log after filtering all but four activities with the indirect approach with Laplace smoothing,
and (b) the model discovered from the same log with the same miner when filtering all but
four activities when filtering out the least frequent activities.

process model discovered after filtering three activities with the Indirect entropy-
based activity filter with Laplace smoothing is very specific on the behavior that it
described: after going to bed, either the logging ends, or prepare breakfast occurs
next, followed by taking a shower. After taking a shower, there is a possibility to
either go to bed again or to prepare dinner before going to bed. The process model
discovered after filtering three activities with the infrequent activity filter allows
for many more traces: it starts with go to bed followed by use toilet, after which
any of the activities go to bed, take shower, and leave house can occur as next event
or the logging can end. Furthermore, the activities leave house and take shower
can occur in any order, and take shower can also be skipped.

Figure 16 shows the results on F-score for the human behavior event logs by
Cook et al. [9]. The results on the Cook event logs are in-line with the results on
the human behavior event logs, however, on these event logs, it is even more clear

Title Suppressed Due to Excessive Length 23

 hh102 labour hh102 weekend hh104 labour hh104 weekend hh110 labour hh110 weekend

IM
IM

f 20

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Minimum % of activities explained

F
−

sc
or

e

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

Fig. 16 F-score on cook’s human behavior logs dependent on the minimum share of the
activities remaining.

 hh102 labour hh102 weekend hh104 labour hh104 weekend hh110 labour hh110 weekend

IM
IM

f 20

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0

4

8

12

16

0.0

2.5

5.0

7.5

10.0

12.5

Minimum % of activities explained

N
on

de
te

rm
in

is
m

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

Flower model

Fig. 17 Nondeterminism on cook’s human behavior logs dependent on the minimum share of
the activities remaining.

that filtering out infrequent activities leads to suboptimal process models in terms
of F-score. Which of the filtering approaches results in the optimal process model
in terms of F-score is very dependent on the event log and the minimum number
of activities to be remained after filtering: each of the four configurations of the
entropy-based filtering approach is optimal for at least one combination of log and
minimum percentage of activities explained.

Figure 17 shows the results in terms of nondeterminism for the same event
logs. Filtering infrequent activities at high percentages of activities explained has
much lower nondeterminism compared to the flower model, while further left on
the graph, after filtering out more activities, the nondeterminism of filtering out
infrequent activities gets closer to the flower model. This shows that filtering out
infrequent activities can even be harmful to the quality of the obtained process
discovery result. The nondeterminism values obtained with the four configurations
of the entropy-based filtering approach are generally close to each other, where the
optimal configuration is dependent on the log and the number of filtered activities.

24 Niek Tax et al.

0

1

2

3

4

0.00 0.25 0.50 0.75

Minimum % of activities explained

A
ve

ra
ge

 W
in

ni
ng

 N
um

be
r

Filter
Direct

Direct (a=1/|A|)

Indirect

Indirect (a=1/|A|)

Least−frequent−first

Most−frequent−first

Random

Fig. 18 The average winning number for the seven activity filtering techniques dependent
on the minimum ratio of activities explained, averaged over the 17 event logs used in the
experiment.

Table 4 Kendall τb rank correlation between five activity filtering methods, mean and standard
deviation over the 17 event logs.

Direct Direct (α= 1
|A|) Indirect Indirect (α= 1

|A|) Least-frequent-first

Direct 1.0 0.2956 0.0829 0.1408 0.0504
Direct (α= 1

|A|) 0.2956 1.0 0.0698 0.0536 0.1454

Indirect 0.0829 0.0698 1.0 0.6852 -0.0275
Indirect (α= 1

|A|) 0.1408 0.0536 0.6852 1.0 -0.0392

Least-frequent-first 0.0504 0.1454 -0.0275 -0.0392 1.0

5.0.3 Aggregated Analysis Over All Event Logs

We have observed in Figures 9, 13, and 17 that the entropy-based activity filtering
techniques perform differently on different datasets and for different numbers of
activities filtered. To evaluate the overall performance of activity filtering techniques,
we use the number of other filtering techniques that it can beat over all the seventeen
event logs of Table 2. This metric, known as winning number, is commonly used
for evaluation in the Information Retrieval (IR) field [32, 37]. Formally, winning
number is defined as

Wx
i =

∑17
j=1

∑7
k=1 1{Nx

i (j)<Nx
k (j)}

where j is the index of an event log, i and k are indices of activity filtering
techniques, Nx

i (j) is the performance of the i-th algorithm on the j-th event log
in terms of nondeterminism where each least x% of activities are explained and
1{Nx

i (j)<Nx
k (j)} is the indicator function

1{Nx
i (j)<Nx

k (j)} =

{
1, if Nx

i (j) < Nx
k (j),

0, otherwise.

We define W
x
i =

Wx
i

17 as the average number of other activity filtering techniques
that are outperformed by filtering technique i at the point where at least x% of
activities are explained.

Figure 18 shows the average winning number W
x
i for different values of x and

for the seven different activity filtering techniques. We observe that for higher ratios

Title Suppressed Due to Excessive Length 25

Table 5 Number of event logs for which we can reject the null hypothesis that the orderings
of activities returned by activity filters are uncorrelated, according to the tau test.

Direct Direct (α= 1
|A|) Indirect Indirect (α= 1

|A|) Least-frequent-first

Direct 17 5 1 2 0
Direct (α= 1

|A|) 5 17 1 1 3

Indirect 1 1 17 17 3
Indirect (α= 1

|A|) 2 1 17 17 3

Least-frequent-first 0 3 3 3 17

of activities explained the differences between filtering techniques are smaller than
for lower numbers of activities explained. Intuitively this can be explained by the
fact that for lower ratios of activities explained more activities have been filtered
out from the log. Therefore the effect of the filtering techniques is more clearly
visible. The figure shows that, up until +-74% of activities explained, the indirect
entropy-based activity filtering technique leads to the most deterministic process
models averaged over all event logs included in the experiment, where it outperforms
between 4 and 4.5 other filtering techniques. Between +-75% and +- 87.5% the
indirect entropy-based activity filtering technique with Laplace smoothing results
in the highest average winning number, although the difference with the indirect
entropy-based filtering technique seems negligible. Filtering out random activities
from the event log outperforms none of the 6 other activities filtering techniques for
the most of the graph, indicating that frequency-based filtering clearly outperforms
filtering random activities.

To investigate to what degree the order in which activities are removed from the
logs differs between the activity filtering techniques we calculate Kendall’s tau (τb)
rank correlation for each log between the activity filtering techniques in a pairwise
way. Table 4 shows the rank correlation values found between the activity filters,
averaged over the 17 event logs. The indirect activity filter with Laplace smoothing
and the indirect activity filter without Laplace smoothing generate orderings over
the activities of a log that are strongly correlated. Between the direct activity filter
without Laplace smoothing and the direct activity filter without Laplace smoothing
there is only a weak correlation. All the other activity filtering techniques are
uncorrelated or very weakly correlated. Using the Kendall τb statistic, we apply a
tau test for each pair of activity filtering techniques on each event log to test the
null hypothesis that the two orderings in which activities are filtered by the two
activity filtering techniques are uncorrelated, using a significance level α = 0.05.

For each pair of activity filtering techniques Table 5 shows the number of
event logs for which the null hypothesis was rejected, i.e., the number of event
logs for which the order in which activities are filtered is statistically correlated.
The indirect activity filters with and without Laplace smoothing create correlated
orderings of activities for all seventeen event logs. For all other pairs of activity
filtering techniques the orderings in which activities are filtered are only correlated
with for low numbers of event logs.

26 Niek Tax et al.

Fig. 19 A mockup of the proposed way to use the activity filters in an interactive setting.

6 Entropy-based Toggles for Process Discovery

In the previous section we have shown that all four configurations of the entropy-
based activity filtering technique lead to more deterministic process models com-
pared to simply filtering out infrequent activities. However, the differences in
determinism of the process models that are discovered after applying any of the
four configurations are small and dependent on the event log to which they are
applied. Furthermore, all four configurations of the activity filtering technique
simply impose an ordering over the activities, but do not specify at which step the
filtering should be stopped. Additionally, the proposed filtering technique ignores
the semantics of activities: activities that are chaotic may still be relevant for the
process. Leaving them out of the process model to discover will harm the usefulness
of the discovered process model.

To address the three issues we propose to use the filtering technique as a sorting
technique over the activities in combination with toggles that interactively allow the
process analyst to “disable” (filter out) or “enable” activities, and then rediscover
and visualize the process model according to the new settings. This approach is
similar to the Inductive Visual Miner [21], an interactive implementation of the
Inductive Miner [20] algorithm which allows the process analyst to filter the event
log interactively using a slider-based approach. The Inductive visual miner contains
two sliders: with one slider activities can be filtered using the least-frequent-first
filter, where the user can control how many activities are filtered out by moving
the slider up and down. We propose to replace this slider with a sorted list of
activities and toggles, as this allows the process analyst to override the ordering of
the activities that is determined by the activity filtering technique with domain
knowledge. Figure 19 shows a mockup of the proposed way to use the activity
filter. Activities are by default sorted using the chaotic activity filter, showing the
entropy to indicate the assessed degree of chaoticness of each activity. Based on
this information, the process analyst can choose to rely on the filtering technique
and filter out the top of the list or to override this list with domain knowledge.
Furthermore, other activity filtering techniques, such as the least-frequent-first
filter, can be included as an additional column on which the activities of the process

Title Suppressed Due to Excessive Length 27

can be sorted. This allows the process analyst to control how many activities, and
which activities, are filtered out of the process model, and thereby also empowers
the user to prevent the removal of semantically important activities that should
not be removed. Furthermore, this approach allows the process analyst to explore
himself which of the filtering techniques leads to the most useful process model
from the event log that he is analyzing.

7 Related Work

Real life events logs often contain all sorts of data quality issues [34], include
incorrectly logged events, events that are logged in the wrong order, and events
that took place without being logged. Instances of such data quality issues are
often referred to as noise. Many event log filtering techniques have been proposed
to address the problem of noise. Existing filtering techniques in the process mining
field can be classified into four categories: 1) event filtering techniques, 2) process
discovery techniques that have an integrated filtering mechanism build in, 3) trace
filtering techniques, and 4) activity filtering techniques. We use these categories to
discuss and structure related work.

7.1 Event filtering

Conforti et al. [8] recently proposed a technique to filter out outlier events from an
event log. The technique starts by building a prefix automaton of the event log,
which is minimal in terms of the number of arcs in the automaton, using an Integer
Linear Programming (ILP) solver. Infrequent arcs are removed from the minimal
prefix automaton, and finally, the events belonging to removed arcs are filtered out
from the event log.

Lu et al. [25] advocate the use of event mappings [24] to distinguish between
events that are part of the mainstream behavior of a process and outlier events.
Event mappings compute similar behavior and dissimilar behavior between each
two executions of the process as a mapping: the similar behavior is formed by all
pairs of events that are mapped to each other, whereas events that are not mapped
are dissimilar behavior.

Fani Sani et al. [13] proposes the use of sequential pattern mining techniques
to distinguish between events that are part of the mainstream behavior and outlier
events.

All three of the event filtering techniques listed above aim filter out outlier
events from the event log, while keeping the mainstream behavior. Event filtering
techniques model the frequently occurring contexts of activities and filter out the
contexts of activities that occur infrequently in the log. For example, consider an
activity B such that 98% of its occurrences are in context 〈. . . , A,B,C, . . . 〉, with
the remaining 2% of the events of activity B are in context 〈. . . , D,B,E, . . . 〉, then
the B events that occur between D and E will be filtered out by event filtering
techniques. Note that our filtering technique is orthogonal to event filtering: it would
consider activity B to be nonchaotic and would not filter out anything. However,
when a log L contains a chaotic activity X, then event filtering techniques are not
able to remove all events of this chaotic activity. One of the contexts of X will

28 Niek Tax et al.

by chance be more frequent than other contexts, i.e., for some activity A, it will
hold that ∀B ∈ Activities(L) : #(〈A,X〉, L) > #(〈B,X〉, L), even though 〈A,X〉
might only be slightly more frequent. This will result in X events after a B being
removed, while the X events after an A remain in the log. Applying a process
discovery technique to this filtered log will then result in a process model where
activity X is misleadingly positioned after activity A, while in fact X can happen
anywhere in the process. The activity filtering technique presented in this paper
will instead detect that activity X is chaotic, and completely remove it from the
event log, preventing the misleading effect of event filtering.

7.2 Process Discovery Techniques with Integrated Filtering

Several process discovery algorithms offer integrated filtering mechanisms as part
of the approach. The Inductive Miner (IM) [19] is a process discovery algorithm
which first discovers a directly-follows graph from the event logs, where activities
are connected that directly follow each other in the log, from which in a second
step a process model is discovered. The directly-follows relations are affected by
the presence of a chaotic activity X: sequence 〈. . . , A,X,C, . . . 〉 leads to false
directly-follows relations between A and X and between X and C, while the
directly-follows relation between A and C is obfuscated by X. The Inductive Miner
infrequent (IMf) [20] is an extension of the IM where infrequent directly-follows
relations are filtered out from the set of directly-follows relations that are used
to generate to process models. The filtering mechanism of IMf can help to filter
out the directly-follows relations between A and X and between X and C, but it
does not help to recover the obfuscated directly-follows relation between A and
C. Instead, the activity filtering technique presented in this paper filters out the
chaotic activity X, leading to sequence 〈. . . , A,X,C, . . . 〉 being transformed into
〈. . . , A,C, . . . 〉, thereby recovering the directly follows relation between A and C.

The Heuristics Miner [45] and the Fodina algorithm [4], in addition to the
directly-follows relation, defines an eventually-follows relation between activities
and allows the process analyst to filter out infrequent directly-follows and eventually
follows relations. Two activities A and B are in an eventually-follows relation when
A is eventually followed by B, before the next appearance of A or B. The eventually-
follows relation, unlike the directly-follows relation, is not impacted by the presence
of chaotic activities. The Heuristic Miner [45] and Fodina [4] both include filtering
methods for the directly-follows and eventually-follows relations that are similar in
nature to the filtering mechanism that is used in the Inductive Miner infrequent
[20]. However, the use of sequential orderings and parallel constructs in the mining
approaches of the Heuristic Miner [11] and Fodina [4] is based on the directly-
follows relations only, with the eventually follows relations being used for the
mining of long-term dependencies. Furthermore, in contrast to the Inductive Miner,
the process models discovered with the Heuristic Miner [45] or Fodina [4] can be
unsound, i.e., the can contain deadlocks.

The ILP-miner [46] is a process discovery algorithm where a set of behavioral
constraints over activities is discovered for each prefix (called the prefix-closure)
of the event log, based on which a process model is discovered that satisfies these
constraints using Integer Linear Programming (ILP). Van Zelst et al. [47] proposed
a filtering technique for the ILP-miner where the prefix closure of the event log

Title Suppressed Due to Excessive Length 29

is filtered prior to solving the ILP problem by removing infrequently observed
prefixes. It is easy to see that a chaotic activity X affect the prefix-closure that
is discovered from the event log: given log consisting of two traces 〈A,X,C〉 and
〈X,A,C〉, activity X causes the prefixes closures of the two traces to have no
overlap in states, while without activity X the two traces are identical. This makes
the filtering method of the prefix-closure proposed by Van Zelst et al. [47] less
effective, as frequent prefixes randomly get distributed over several infrequent
prefixes when chaotic activities are present. Instead, the chaotic activity filtering
technique presented in this paper would remove chaotic activity X, leading to
traces 〈A,X,C〉 and 〈X,A,C〉 becoming identical after filtering, therefore leading
to a simpler process model while still describing the behavior of the event log
accurately.

The Fuzzy Miner [16] is a process discovery algorithm that aims at mining
models from flexible processes, and it discovers a process model without formal
semantics. The Fuzzy Miner discovers this graph by extracting the eventually
follows relation from the event log, which is not affected by chaotic activities.
Similar to the Heuristics Miner [45] and Fodina [4] the Fuzzy Miner allows to filter
out infrequent eventually-follows relations between activities. In practice, the lack
of formal semantics of the Fuzzy Miner models hinders the usability of the models,
as the models are not precise on what behavior is allowed in the process under
analysis.

7.3 Trace filtering

Ghionna et al. [14] proposed a technique to identify outlier traces from the event
log that consists of two steps: 1) mining frequent patterns from the event log, and
2) applying MCL clustering [43] on the traces, where the similarity measure for
traces is defined on the number of patterns that jointly characterize the execution
of the traces. Traces that are not assigned to a cluster by the MCL clustering
algorithm are considered to be outlier traces and are filtered from the event log.
It is easy to see that trace filtering techniques address a fundamentally different
problem than chaotic activity filtering: in the event log shown in Figure 2b there
are only two traces that do not contain an instance of chaotic activity X, therefore,
even if a trace filtering technique would be able to perfectly filter out traces that
contain a chaotic event, the number of remaining traces will become too small to
mine a fitting and precise process model when the chaotic activity is frequent.

7.4 Activity filtering

The modus operandi for filtering activities is to simply filter out infrequent activities
from the event log. The plugin ’Filter Log using Simple Heuristics’ in the ProM
process mining toolkit [42] offers tool support for this type of filtering. The Inductive
Visual Miner [21] is an interactive process discovery tool that implements the
Inductive Miner [20] process discovery algorithm in an interactive way: the process
analyst can filter the event log using sliders and is then shown the process model
that is discovered from this filtered log. One of the available sliders in the Inductive
Visual Miner offers the same frequency-based activity filtering functionality. The

30 Niek Tax et al.

working assumption behind filtering out infrequent activities is that when there
are just a few occurrences of an activity, there is probably not enough evidence
to establish their relation to other activities to model their behavior. However,
as we have shown in this paper, for frequent but chaotic activities, while they
are frequent enough to establish their relation to other activities, complicate the
process discovery task by lowering directly-follows counts between other activities
in the event log. The activity filtering technique presented in this paper is able to
filter out chaotic activities, thereby reconstructing the directly-follows relations
between the non-chaotic activities of the event log, at the expense of losing the
chaotic activities.

8 Conclusion & Future Work

In this paper, we have shown the possible detrimental effect of the presence of
chaotic activities in event logs on the quality of process models produced by process
discovery techniques. We have shown through synthetic experiments that frequency-
based techniques for filtering activities from event logs, which is currently the modus
operandi for activity filtering in the process mining field, do not necessarily handle
chaotic activities well. As shown, chaotic activities can be frequent or infrequent.
We have proposed four novel techniques for filtering chaotic from event logs, which
find their roots in information theory and Bayesian statistics. Through experiments
on seventeen real-life datasets, we have shown that all four proposed activity
filtering techniques outperform frequency-based filtering on real data. The indirect
entropy-based activity filter has been found to be the best performing activity
filter overall averaged over all datasets used in the experiments; however, the
performance of the four proposed activity filtering techniques is highly dependent
on the characteristics of the event log.

Because the performance of the filtering techniques was found to be log-
dependent, we propose the use the activity filtering techniques in a slider-based
approach where the user can filter activities interactively and directly see the
process model discovered from the filtered event log. Ultimately, only the user can
decide which activities to include. In future work, we aim to construct a hybrid
activity filtering technique that combines the four techniques proposed in this
paper by using supervised learning techniques from the data mining field to predict
the effect of removing a particular activity.

References

1. van der Aalst WMP (2016) Process mining: data science in action. Springer
2. van der Aalst WMP, Bolt A, van Zelst SJ (2017) RapidProM: Mine your

processes and not just your data. In: Hofmann M, Klinkenberg R (eds) Rapid-
Miner: Data Mining Use Cases and Business Analytics Applications, Chapman
& Hall/CRC Data Mining and Knowledge Discovery Series, p To Appear.

3. Adriansyah A, van Dongen BF, van der Aalst WMP (2011) Conformance
checking using cost-based fitness analysis. In: Proceedings of the 15 IEEE
International Enterprise Distributed Object Computing Conference (EDOC),
IEEE, pp 55–64

Title Suppressed Due to Excessive Length 31

4. vanden Broucke SKLM, De Weerdt J (2017) Fodina: a robust and flexible
heuristic process discovery technique. Decision Support Systems

5. Bruno B, Mastrogiovanni F, Sgorbissa A, Vernazza T, Zaccaria R (2013)
Analysis of human behavior recognition algorithms based on acceleration
data. In: Proceedings of the IEEE International Conference on Robotics and
Automation, IEEE, pp 1602–1607

6. Buijs JCAM (2014) Receipt phase of an environmental permit ap-
plication process (WABO), CoSeLoG project. doi:10.4121/uuid:
a07386a5-7be3-4367-9535-70bc9e77dbe6

7. Buijs JCAM, van Dongen BF, van der Aalst WMP (2012) A genetic algorithm
for discovering process trees. In: Proceedings of the 2012 IEEE Congress on
Evolutionary Computation, IEEE, pp 1–8

8. Conforti R, La Rosa M, ter Hofstede AHM (2017) Filtering out infrequent
behavior from business process event logs. IEEE Transactions on Knowledge
and Data Engineering 29(2):300–314

9. Cook DJ, Crandall AS, Thomas BL, Krishnan NC (2013) CASAS: A smart
home in a box. Computer 46(7):62–69

10. De Leoni M, Mannhardt F (2015) Road traffic fine management process.
doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

11. De Weerdt J, De Backer M, Vanthienen J, Baesens B (2011) A robust F-
measure for evaluating discovered process models. In: Proceedings of the IEEE
Symposium on Computational Intelligence and Data Mining (CIDM), IEEE,
pp 148–155

12. Dimaggio M, Leotta F, Mecella M, Sora D (2016) Process-based habit min-
ing: Experiments and techniques. In: Proceedings of the International IEEE
Conference on Ubiquitous Intelligence & Computing, IEEE, pp 145–152

13. Fani Sani M, van Zelst SJ, van der Aalst WMP (2017) Improving process
discovery results by filtering outliers using conditional behavioural probabilities.
In: Proceedings of the International Workshop on Business Process Intelligence,
Springer

14. Ghionna L, Greco G, Guzzo A, Pontieri L (2008) Outlier detection techniques
for process mining applications. In: International Symposium on Methodologies
for Intelligent Systems, Springer, pp 150–159

15. Goedertier S, Martens D, Vanthienen J, Baesens B (2009) Robust process
discovery with artificial negative events. Journal of Machine Learning Research
10(Jun):1305–1340

16. Günther CW, van der Aalst WMP (2007) Fuzzy mining–adaptive process
simplification based on multi-perspective metrics. In: International Conference
on Business Process Management, Springer, pp 328–343

17. Herbst J (2000) A machine learning approach to workflow management. In:
European Conference on Machine Learning, Springer, pp 183–194

18. van Kasteren T, Noulas A, Englebienne G, Kröse B (2008) Accurate activ-
ity recognition in a home setting. In: Proceedings of the 10th International
Conference on Ubiquitous Computing, ACM, pp 1–9

19. Leemans SJJ, Fahland D, van der Aalst WMP (2013) Discovering block-
structured process models from event logs - a constructive approach. In: Inter-
national Conference on Applications and Theory of Petri Nets and Concurrency,
Springer, pp 311–329

10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

32 Niek Tax et al.

20. Leemans SJJ, Fahland D, van der Aalst WMP (2013) Discovering block-
structured process models from event logs containing infrequent behaviour. In:
International Conference on Business Process Management, Springer, pp 66–78

21. Leemans SJJ, Fahland D, van der Aalst WMP (2014) Process and deviation
exploration with inductive visual miner. In: Proceedings of the BPM Demo
Track, CEUR-WS.org, vol 1295, p 46

22. Leotta F, Mecella M, Mendling J (2015) Applying process mining to smart
spaces: Perspectives and research challenges. In: International Conference on
Advanced Information Systems Engineering, Springer, pp 298–304

23. Lohmann N, Verbeek E, Dijkman R (2009) Petri net transformations for
business processes–a survey. In: Transactions on petri nets and other models
of concurrency II, Springer, pp 46–63

24. Lu X, Fahland D, van der Aalst WMP (2014) Conformance checking based on
partially ordered event data. In: International Conference on Business Process
Management, Springer, pp 75–88

25. Lu X, Fahland D, van den Biggelaar FJHM, van der Aalst WMP (2015) Detect-
ing deviating behaviors without models. In: Proceedings of the International
Workshop on Business Process Intelligence, Springer, pp 126–139

26. Mannhardt F (2016) Sepsis cases - event log. doi:10.4121/uuid:
915d2bfb-7e84-49ad-a286-dc35f063a460

27. Maruster L, Weijters AJMM, Aalst WMPvd, Bosch Avd (2006) A rule-based
approach for process discovery: Dealing with noise and imbalance in process
logs. Data Mining & Knowledge Discovery 13(1):67–87

28. McCurdy T, Glen G, Smith L, Lakkadi Y (2000) The national exposure re-
search laboratory’s consolidated human activity database. Journal of Exposure
Analysis and Environmental Epidemiology 10(6):566–578

29. Murata T (1989) Petri nets: Properties, analysis and applications. Proceedings
of the IEEE 77(4):541–580

30. Object Management Group (2011) Notation (BPMN) version 2.0. OMG Speci-
fication

31. Ordónez FJ, de Toledo P, Sanchis A (2013) Activity recognition using hybrid
generative/discriminative models on home environments using binary sensors.
Sensors 13(5):5460–5477

32. Qin T, Liu TY, Xu J, Li H (2010) LETOR: A benchmark collection for
research on learning to rank for information retrieval. Information Retrieval
13(4):346–374

33. Solé M, Carmona J (2013) Region-based foldings in process discovery. IEEE
Transactions on Knowledge and Data Engineering 25(1):192–205

34. Suriadi S, Andrews R, ter Hofstede AHM, Wynn MT (2017) Event log imper-
fection patterns for process mining: Towards a systematic approach to cleaning
event logs. Information Systems 64:132–150

35. Sztyler T, Völker J, Carmona Vargas J, Meier O, Stuckenschmidt H (2015)
Discovery of personal processes from labeled sensor data: An application of
process mining to personalized health care. In: Proceedings of the International
Workshop on Algorithms & Theories for the Analysis of Event Data, CEUR-
WS.org, pp 31–46

36. Tapia EM, Intille SS, Larson K (2004) Activity recognition in the home
using simple and ubiquitous sensors. In: International Conference on Pervasive
Computing, Springer, pp 158–175

10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

Title Suppressed Due to Excessive Length 33

37. Tax N, Bockting S, Hiemstra D (2015) A cross-benchmark comparison of 87
learning to rank methods. Information Processing & Management 51(6):757–
772

38. Tax N, Sidorova N, Haakma R, van der Aalst WMP (2016) Event abstraction
for process mining using supervised learning techniques. In: Proceedings of the
SAI Intelligent Systems Conference, Springer

39. Tax N, Sidorova N, Haakma R, van der Aalst WMP (2016) Mining local process
models. Journal of Innovation in Digital Ecosystems 3(2):183–196

40. Tax N, Sidorova N, Haakma R, van der Aalst WMP (2017) Mining process
model descriptions of daily life through event abstraction. In: Intelligent Systems
and Applications, Springer, p To appear.

41. Van Dongen B (2012) BPI challenge 2012. doi:10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f

42. Van Dongen BF, de Medeiros AKA, Verbeek HMW, Weijters AJMM, Van
Der Aalst WMP (2005) The ProM framework: A new era in process mining
tool support. In: International Conference on Application and Theory of Petri
Nets, Springer, pp 444–454

43. Van Dongen S (2008) Graph clustering via a discrete uncoupling process. SIAM
Journal on Matrix Analysis and Applications 30(1):121–141

44. Vanden Broucke SKLM, De Weerdt J, Vanthienen J, Baesens B (2013) De-
termining process model precision and generalization with weighted artificial
negative events. IEEE Transactions on Knowledge and Data Engineering

45. Weijters AJMM, Ribeiro JTS (2011) Flexible heuristics miner (FHM). In:
Proceedings of the IEEE Symposium on Computational Intelligence and Data
Mining (CIDM), IEEE, pp 310–317

46. van der Werf JMEM, van Dongen BF, Hurkens CAJ, Serebrenik A (2009)
Process discovery using integer linear programming. Fundamenta Informaticae
94(3):387–412

47. van Zelst SJ, van Dongen BF, van der Aalst WMP (2015) Avoiding over-
fitting in ILP-based process discovery. In: International Conference on Business
Process Management, Springer International Publishing, pp 163–171

48. Zhai C, Lafferty J (2004) A study of smoothing methods for language models
applied to information retrieval. ACM Transactions on Information Systems
22(2):179–214

10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

	1 Introduction
	2 Preliminaries
	3 Information-Theoretic Approaches to Activity Filtering
	4 Evaluation using Synthetic Data
	5 Evaluation using Real Life Data
	6 Entropy-based Toggles for Process Discovery
	7 Related Work
	8 Conclusion & Future Work

