
Advanced Workow Patterns

W.M.P. van der Aalst1? and A.P. Barros2 and A.H.M. ter Hofstede3 and B.

Kiepuszewski4??

1 Eindhoven University of Technology, Faculty of Technology and Management,

Department of Information and Technology, P.O. Box 513, NL-5600 MB, Eindhoven,

The Netherlands. w.m.p.v.d.aalst@tm.tue.nl
2 Distributed Systems Technology Centre, The University of Queensland, Brisbane

Qld 4072, Australia, abarros@dstc.edu.au
3 Cooperative Information Systems Research Centre, Queensland University of

Technology, P.O. Box 2434, Brisbane Qld 4001, Australia, arthur@icis.qut.edu.au
4 Mincom Limited, P.O. Box 1397, Brisbane Qld 4001, Australia, bartek@mincom.com

Abstract. Conventional workow functionality like task sequencing,

split parallelism, join synchronization and iteration have proven e�ective

for business process automation and have widespread support in current

workow products. However, newer requirements for workows are en-

countered in practice, opening grave uncertainties about the extensions

for current languages. Di�erent concepts, although outwardly appear-

ing to be more or less the same, are based on di�erent paradigms, have

fundamentally di�erent semantics and di�erent levels of applicability -

more specialized for modeling or more generalized for workow engine

posit. By way of developmental insight of new requirements, we de�ne

workow patterns which are described imperatively but independently

of current workow languages. These patterns provide the basis for an

in-depth comparison of 12 workow management systems. As such, the

work reported in this paper can be seen as the academic response to

evaluations made by prestigious consulting companies. Typically, these

evaluations hardly consider the workow modeling language and rout-

ing capabilities and focus more on the purely technical and commercial

aspects.

1 Introduction

Background

Workow technology continues to be subjected to on-going development in its

traditional application areas of business process modeling and business process

? Part of this work was done at CTRG (University of Colorado, USA) during a sab-

batical leave.
?? This research was partially supported by an ARC SPIRT grant \Component System

Architecture for an Open Distributed Enterprise Management System with Con�g-

urable Workow Support" between QUT and Mincom.



coordination, and now in emergent areas of component frameworks and inter-

workow, business-to-business interaction. Addressing this broad and rather am-

bitious reach, a large number of workow products, mainly workow manage-

ment systems (WFMS), are commercially available, which see a large variety

of languages and concepts based on di�erent paradigms (see e.g. [1, 4{6, 9, 10,

12{14,16, 17]).

As current provisions are compared and as newer concepts and languages

are embarked upon, it is striking how little, other than standards glossaries,

is available for central reference. One of the reasons attributed to the lack of

consensus of what constitutes a workow speci�cation is the organizational level

of de�nition imparted by workows. The absence of a universal organizational

\theory", it is contended, explains and ultimately justi�es the major di�erences -

opening up a \horses for courses" diversity for di�erent business domains. What

is more, the comparison of di�erent workow products winds up being more of

a dissemination of products and less of a critique - \bigger picture" di�erences

of workow speci�cations are highlighted, as are technology, typically platform

dependent, issues.

Workow speci�cations can be understood, in a broad sense, from a num-

ber of di�erent perspectives (see [10]). The control-ow perspective (or process)

perspective describes activities and their execution ordering through di�erent

constructors, which permit ow of execution control, e.g., sequence, splits, par-

allelism and join synchronization. Activities in elementary form are atomic units

of work, and in compound form modularize an execution order of a set of ac-

tivities. The data perspective layers business and processing data on the control

perspective. Business documents and other objects which ow between activities,

and local variables of the workow, qualify in e�ect pre- and post-conditions of

activity execution. The resource perspective provides an organizational structure

anchor to the workow in the form of human and device roles responsible for

executing activities. The operational perspective describes the elementary ac-

tions executed by activities, where the actions map into underlying applications.

Typically, (references to) business and workow data are passed into and out of

applications through activity-to-application interfaces, allowing manipulation of

the data within applications.

Clearly, the control ow perspective provides an essential insight into a work-

ow speci�cation's e�ectiveness. The data ow perspective rests on it, while the

organizational and operational perspectives are ancillary. If workow speci�ca-

tions are to be extended to meet newer processing requirements, control ow

constructors require a fundamental insight and analysis. Currently, most work-

ow languages support the basic constructs of sequence, iteration, splits (AND

and OR) and joins (AND and OR) - see [13]. However, the interpretation of even

these basic constructs is not uniform and it is often unclear how more complex

requirements could be supported. Indeed, vendors are a�orded the opportunity

to recommend implementation level \hacks" such as database triggers and ap-

plication event handling. The result is that neither workow speci�cations or

clean insight into newer requirements is advanced.



Problem

Even without formal quali�cation, the distinctive features of di�erent workow

languages allude to fundamentally di�erent semantics. Some languages allow

multiple instances of the same activity type at the same time in the same work-

ow context while others do not. Some languages structure loops with one entry

point and one exit point, while in others loops are allowed to have arbitrary

entry and exit points. Some languages require explicit termination activities for

workows and their compound activities while in others termination is implicit.

Such di�erences point to di�erent insights of suitability and di�erent levels of

expressive power.

The challenge, which we undertake in this paper, is to understand how com-

plex requirements can be addressed in the current state of the art. These re-

quirements, in our experiences, recur quite frequently in the analysis phases

of workow projects, and present grave uncertainties when looking at current

products. Given the fundamental di�erences indicated above, it is tempting to

build extensions to one language, and therefore one semantic context. Such a

strategy is rigorous and its results would provide a detailed and unambiguous

view into what the extensions entail. Our strategy is more practical. We wish to

draw a more broader insight into the implementation consequences for the big

and potentially big players. With the increasing maturity of workow technol-

ogy, workow language extensions, we feel, should be levered across the board,

rather than slip into \yet another technique" proposals.

Approach

We indicate new requirements for workow languages through workow pat-

terns. As described in [15], a pattern \is the abstraction from concrete form

which keeps recurring in speci�c non-arbitrary contexts". Gamma et al. [8] �rst

catalogued systematically some 23 design patterns which describe the smallest

recurring interactions in object-oriented systems. The design patterns, as such,

provided independence from the implementation technology and at the same

time independence from the essential requirements of the domain that they were

attempting to address (see also e.g. [7]).

For our purpose, patterns address business requirements in an imperative

workow style expression, but are removed from speci�c workow languages.

Thus they do not claim to be the only way of addressing the business require-

ments. Nor are they \alienated" from the workow approach, thus allowing a

potential mapping to be positioned closely to di�erent languages and implemen-

tation solutions. Along the lines of [8], patterns are described through: conditions

that should hold for the pattern to be applicable; examples of business situa-

tions; problems, typically semantic problems, of realization in current languages;

and implementation solutions.

The rest of the paper describes only four workow patterns. These patterns

are just a small sample of the many patterns we have identi�ed. In [3] we report

26 patterns. It will be assumed throughout that the reader is familiar with



the basic functionality of current workows: sequence, splits (OR and AND),

joins (OR and AND) and iteration. The goal of this paper is not to provide a

comprehensive overview of workow functionality: It only shows the avor of the

research that has been conducted. For a more complete overview we refer to [3].

2 Advanced Synchronization Patterns

In most workow engines two basic forms of synchronization are supported,

AND-join and OR-join. Although the actual semantics of these constructs di�er

from system to system, it can be safely assumed that the intention of the AND-

join is to synchronize two (or more) concurrent threads, whereas the intention

of the OR-join is to merge two threads into one with the (implicit) assumption

that only one thread will be active during run-time. Many di�erent business

scenarios require more advanced synchronization patterns. An example of such

an advanced synchronization pattern is the so-called Synchronizing Merge.

Pattern 1 (Synchronizing Merge)

Description A point in the workow process where multiple paths converge

into one single thread. If more than one path is taken, synchronization of the

active threads needs to take place. If only one path is taken, the alternative

branches should reconverge without synchronization.

Synonyms Synchronizing join

Examples

- After executing the activity evaluate damage the activity contact �re de-

partment or the activity contact insurance company is executed. However,

it is also possible that both need to be executed. After either or both of

these activities have been completed, the activity submit report needs to be

performed (exactly once).

Problem The main diÆculty with this pattern is to decide when to synchronize

and when to merge. Synchronizing alternative ows leads to potential deadlocks

and merging parallel ows may lead to unwanted, multiple execution of the

activity that follows the standard OR-join construct.

Solutions

- The two workow engines known to the authors that provide a straight-

forward construct for the realization of this pattern are MQSeries/Workow

and InConcert. As noted earlier, if a synchronising merge follows an OR-split

and more than one outgoing transition of that OR-split can be triggered, it

is not until runtime that we can tell whether or not synchronization should

take place. MQSeries/Workow works around that problem by passing a

False token for each transition that evaluates to False and a True token for

each transition that evaluates to True. The merge will wait until it receives

tokens from each incoming transition. InConcert does not use a False token

concept. Instead it passes a token through every transition in a graph. This

token may or may not enable the execution of an activity depending on the

entry condition. This way every activity having more than one incoming



transition can expect that it will receive a token from each one of them, thus

deadlock cannot occur. The careful reader may note that these evaluation

strategies require that the workow process does not contain cycles.

- In all other workow engines the implementation of the synchronizing merge

is not straightforward. The common design pattern is to avoid the explicit

use of the OR-split that may trigger more than one outgoing transition and

implement it as a combination of AND-splits and OR-splits that guarantee

to trigger only one of the outgoing transitions (we will call such splits XOR-

splits for the remaining of this paper). This way we can easily synchronize

corresponding branches by using AND-join and OR-join constructs.

2

The synchronizing merge is just an example of an advanced synchronization

pattern. In [3] we have identi�ed additional ones such as the Multi-merge, the

Discriminator, and the N-out-of-M Join.

3 Structural Patterns

Di�erent workow management systems impose di�erent restrictions on their

workow models. These restrictions (e.g., arbitrary loops are not allowed, only

one �nal node should be present, etc.) are not always natural from a modeling

point of view and tend to restrict the speci�cation freedom of the business an-

alyst. As a result, business analysts either have to conform to the restrictions

of the workow language from the start, or they model their problems freely

and transform the resulting speci�cations afterwards. A real issue here is that

of suitability. In many cases the resulting workows may be unnecessarily com-

plex which impacts end-users who may wish to monitor the progress of their

workows.

An example of a typical structural requirement imposed by some of the work-

ow products is that the workow model is to contain only one ending node, or

in case of many ending nodes, the workow model will terminate when the �rst

one is reached. Again, most business models do not follow this pattern - it is

more natural to think of a business process as terminated once there is nothing

else to be done.

Pattern 2 (Implicit Termination)

Description A given subprocess should be terminated when there is nothing

else to be done. In other words, there are no active activities in the workow

and no other activity can be made active (and at the same time the workow is

not in deadlock).

Examples

- This semantics is typically assumed for every workowmodel at the analysis

stage.

Problem Most workow engines terminate the process when an explicit Final

node is reached. Any current activities that happen to be running by that time



will be aborted.

Solutions

- Some workow engines (Sta�ware, MQSeries/Workow, InConcert) would

terminate the (sub)process when there is nothing else to be done.

- The typical solution to this problem is to transform the model to an equiv-

alent model that has only one terminating node. The complexity of that

task depends very much on the actual model. Sometimes it is easy and fairly

straightforward, typically by using a combination of di�erent join constructs

and activity repetition. There are cases when it is not possible to do so.

Clearly one of the cases when it is impossible is a model that involves multi-

ple instances (see section 4). The required semantics is impossible to achieve

without resorting to external triggers.

2

Another pattern described in [3] is the so-called Arbitrary Cycle (cf. [11]). Vir-

tually every workow engine has constructs that support the modeling of loops.

Some of the workow engines provide support only for what we will refer to as

structured cycles. Structured cycles can have only one entry point to the loop

and one exit point from the loop and they cannot be interleaved. They can be

compared to WHILE loops in programming languages while arbitrary cycles are

more like GOTO statements. This analogy should not deceive the reader though

into thinking that arbitrary cycles are not desirable as there are two impor-

tant di�erences here with \classical" programming languages: 1) the presence

of parallelism which in some cases makes it impossible to remove certain forms

of arbitrariness and 2) the fact that the removal of arbitrary cycles may lead

to workows that are much harder to interpret (and as opposed to programs,

workow speci�cations also have to be understood at runtime by their users).

4 Patterns involving multiple instances of an activity

Many workow management systems have problems with the phenomenon that

we will refer to asmultiple instances. From a theoretical point of view the concept

is relatively simple and corresponds to more than one token in a given place in a

Petri-net representation of the workow graph. From a practical point of view it

means that one activity on a workow graph can have more than one running,

active instance at the same time. As we will see, it is a very valid and frequent

requirement. The fundamental problem with the implementation of this pattern

is that due to design constraints and lack of anticipation for this requirement

most of the workow engines do not allow for more than one instance of the same

activity to be active at the same time. As an example we discuss one pattern

dealing with multiple instances.

Pattern 3 (Multiple Instances Requiring Synchronization)

Description For one case an activity is enabled multiple times. The number

of instances may not be known at design time. After completing all instances of



that activity another activity has to be started.

Examples

- When booking a trip, the activity book ight is executed multiple times if

the trip involves multiple ights. Once all bookings are made, the invoice is

to be sent to the client.

- The requisition of a 100 computers results in a certain number of deliveries.

Once all deliveries are processed, the requisition has to be closed.

Problem Most workow engines do not allow multiple instances. Languages

that do allow multiple instances (e.g. Fort�e and Verve) do not provide any con-

struct that would allow for synchronization of these instances. Languages that

support the asynchronous subprocess invocation (e.g. Visual WorkFlo through

the Release construct) do not provide any means for for the synchronization of

spawned o� subprocesses.

Solutions

- If the number of instances (or maximum number of instances) is known at

design time, then it is easy to synchronize the multiple instances implemented

through activity repetition by using basic synchronization.

- If the language supports multiple instances and decomposition that does

not terminate unless all activities are �nished, then multiple instances can be

synchronized by placing the workow sub-ow containing the loop generating

the multiple instances inside the decomposition block. The activity to be

done once all instances are completed can then follow that block.

- MQSeries/Workow's Bundle construct can be used when the number of

instances is known at some point during runtime to synchronize all created

instances.

- In most workow languages none of these solutions can be easily imple-

mented. The typical way to tackle this problem is to use external triggers.

Once each instance of an activity is completed, the event should be sent.

There should be another activity in the main process waiting for events.

This activity will only complete after all events from each instance are re-

ceived.

2

Pattern 3 is just an example of a pattern dealing with multiple instances. In [3]

we have identi�ed additional ones. Figure 1 illustrates some design patterns for

dealing with multiple instances. Workow (a) can be implemented in languages

supporting multiple concurrent instances of an activity as well as implicit termi-

nation (see Pattern 2). An activity B will be invoked here many times, activity

C is used to determine if more instances of B are needed. Once all instances of

B are completed, the subprocess will complete and activity E can be processed.

Implicit termination of the subprocess is used as the synchronizing mechanism

for the multiple instances of activity B. Workow (b) can be implemented in lan-

guages that do not support multiple concurrent instances. Activity B is invoked

asynchronously, typically through an API. There is no easy way to synchronize



B

B

AND

A

XOR

B
AND

B

B

1 instance

2 instances

3 instances

Task A: Determine
the number of required
instances of B

Solution for NumInst<=3

AND
AND

XOR

E

B

Sub

Merge

B

C

XORE
More instances needed

No more instances needed

AND Task C: Determine
if more instances of B
are needed

Merge

B

C

XOR
More instances needed

No more instances needed

Task C: Determine
if more instances of B
are needed

Invoke
B

Workflow (a)

Workflow (b)

Workflow (c)

Fig. 1. Design patterns for multiple instances

all instances of activities B. Finally workow (c) demonstrates a simple imple-

mentation when it is known during design time that there will be no more than

three instances of B.

5 State-based Patterns

In real workows, most workow instances are in a state awaiting processing

rather than being processed. Most computer scientists, however, seem to have a

frame of mind, typically derived from programming, where the notion of state

is interpreted in a narrower fashion and is essentially reduced to the concept

of data. As this section will illustrate, there are real di�erences between work

processes and computing and there are business scenarios where an explicit no-

tion of state is required. As the notation we have deployed so far is not suitable

for capturing states explicitly, we adopt the variant of Petri-nets as described

in [2] when illustrating the patterns in this section. Petri-nets provide a possi-

ble solution to modeling states explicitly (an example of a commercial workow

management system based on Petri-nets is COSA).



Moments of choice, such as e.g. supported by constructs as XOR-splits/OR-

splits, in workow management systems are typically of an explicit nature, i.e.,

they are based on data or they are captured through decision activities. This

means that the choice is made a-priori, i.e., before the actual execution of the

selected branch starts an internal choice is made. Sometimes this notion is not

appropriate. Consider Figure 2 adopted from [2]. In this �gure two workows

are depicted. In both workows, the execution of activity A is followed by the

execution of B or C. In workow (a) the moment of choice is as late as possible.

After the execution of activity A there is a \race" between activities B and C. If

the external message required for activity C (this explains the envelope notation)

arrives before someone starts executing activity B (the arrow above activity B

indicates it requires human intervention), then C is executed, otherwise B. In

workow (b) the choice for either B or C is �xed after the execution of activity

A. If activity B is selected, then the arrival of an external message has no impact.

If activity C is selected, then activity B cannot be used to bypass activity C.

Hence, it is important to realize that in workow (a), both activities B and C

were, at some stage, simultaneously scheduled. Once an actual choice for one

of them was made, the other was disabled. In workow (b), activities B and C

were at no stage scheduled together.

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
��� A D

(a)

(b)

c1 c2 c3 c4

c5c4c1

A

c2

B

C

D

B

C

c3

explicit OR split

implicit OR split

Fig. 2. Illustrating the di�erence between implicit (a) and explicit (b) XOR-splits

Many workow management systems abstract from states between subse-

quent activities, and hence have diÆculties modeling implicit choices.

Pattern 4 (Deferred Choice)

Description A point in the workow process where one of several branches is

chosen. In contrast to the XOR-split, the choice is not made explicitly (e.g., based

on data or a decision) but several alternatives are o�ered to the environment.

However, in contrast to the AND-split, only one of the alternatives is executed.

This means that once the environment activates one of the branches the other



alternative branches are withdrawn. It is important to note that the choice is

delayed until the processing in one of the alternative branches is actually started,

i.e., the moment of choice is as late as possible.

Synonyms External choice, Implicit choice.

Examples

- After receiving the products there are two ways to transport the products to

the department. The selection is based on the availability of the correspond-

ing resources. Therefore, the choice is deferred until a resource is available.

- See the choice between B and C in Figure 2. Activity A may represent the

sending of a form to a customer. Activity C corresponds to the processing

of the form once it is returned. Activity B corresponds to situation where

the form is not received in time and some alternative action is taken.

Problem Many workow management systems support the XOR-split but do

not support the implicit XOR-split. Since both types of choices are desired (see

example), the absence of the implicit OR-split is a real problem.

Solutions

- Assume that the workow language being used supports AND-splits and

the cancellation of activities. The implicit XOR-split can be realized by en-

abling all alternatives via an AND-split. Once the processing of one of the

alternatives is started, all other alternatives are cancelled. Consider the im-

plicit choice between B and C in Figure 2(a). After A both B and C are

enabled. Once B is selected/executed, activity C is cancelled. Once C is

selected/executed, activity B is cancelled. Note that the solution does not

always work because B and C can be selected/executed concurrently.

- Another solution to the problem is to replace the implicit XOR-split by an

explicit XOR-split, i.e., an additional activity is added. All triggers activat-

ing the alternative branches are redirected to the added activity. Assuming

that the activity can distinguish between triggers, it can activate the proper

branch. Consider the example shown in Figure 2. By introducing a new ac-

tivity E after A and redirecting triggers from B and C to A, the implicit

XOR-split can be replaced by an explicit XOR-split based on the origin of

the �rst trigger. Note that this solution moves part of the routing to the

application or task level.

2

In [3] we have identi�ed several patterns related to the Deferred Choice. An

example of such a pattern is the so-called Milestone. In this pattern one branch

of a parallel process is o�ered a time window by another branch to executed

certain parts of the process. Other related patterns are Cancel Activity, Cancel

Case, and Interleaved Parallel Routing. These patterns have in common that an

explicit notion of states is required and that they are supported by only a few

workow management systems.

It is interesting to think about the reason why many workow products have

problems dealing with state-based patterns. The systems that abstract from

states are typically based on messaging, i.e., if an activity completes, it noti�es



or triggers other activities. This means that activities are enabled by the receipt

of one or more messages. State-based patterns have in common that an activity

can become disabled (temporarily). However, since states are implicit and there

are no means to disable activities (i.e., negative messages), these systems have

problems dealing with the constructs mentioned. Note that the synchronous

nature of patterns such as the deferred choice (i.e., Pattern 4) further complicates

the use of asynchronous communication mechanisms such as message passing

using \negative messages" (e.g., messages to cancel activities).

6 Epilogue

The four workow patterns described in this paper correspond to routing con-

structs encountered when modeling and analyzing workows. These patterns

illustrate the more complete set of 26 workow patterns reported [3]. Several

patterns are diÆcult, if not impossible, to realize using many of the workow

management systems available today. As indicated in the introduction, the rout-

ing functionality is hardly taken into account when comparing/evaluating work-

ow management systems. The system is checked for the presence of sequential,

parallel, conditional, and iterative routing without considering the ability to

handle the more subtle workow patterns described in this paper. The evalua-

tion reports provided by prestigious consulting companies such as the \Big Six"

(Andersen Worldwide, Ernst & Young, Deloitte & Touche, Coopers & Lybrand,

KPMG, and Price Waterhouse) typically focus on purely technical issues (Which

database management systems are supported?), the pro�le of the software sup-

plier (Will the vendor be taken over in the near future?), and the marketing

strategy (Does the product speci�cally target the telecommunications indus-

try?). As a result, many enterprises select a workow management system that

does not �t their needs.

We have used a comprehensive set of workow patterns to compare the func-

tionality of 12 workow management systems (COSA, Visual Workow, Fort�e

Conductor, Meteor, Mobile, MQSeries/Workow, Sta�ware, Verve Workow, I-

Flow, InConcert, Changengine, and SAP R/3 Workow), cf. [3]. From the com-

parison it is clear that no tools support all the selected patterns. In fact, many

of these tools only support a fraction of these patterns and the best of them only

support about 50%. Speci�cally the limited support for state-based patterns and

advanced synchronization patterns (e.g., multiple instances, merge, N-out-of-M)

is worth noting. Typically, when confronted with questions as to how certain

complex patterns need to be implemented in their product, workow vendors

respond that the analyst may need to resort to the application level, the use of

external events or database triggers. This however defeats the purpose of using

workow engines in the �rst place. Therefore, it is worthwhile to use the set of

patterns given in [3] as a check list when selecting a workow product.

Disclaimer. We, the authors and the associated institutions, assume no legal

liability or responsibility for the accuracy and completeness of any product-



speci�c information contained in this paper. However, we made all possible e�orts

to make sure that the results presented are, to the best of our knowledge, up-

to-date and correct.

References

1. W.M.P. van der Aalst. Chapter 10: Three Good reasons for Using a Petri-net-

based Workow Management System. In T. Wakayama et al., editor, Information

and Process Integration in Enterprises: Rethinking documents, The Kluwer In-

ternational Series in Engineering and Computer Science, pages 161{182. Kluwer

Academic Publishers, Norwell, 1998.
2. W.M.P. van der Aalst. The Application of Petri Nets to Workow Management.

The Journal of Circuits, Systems and Computers, 8(1):21{66, 1998.
3. W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and B. Kiepuszewski.

Workow Patterns. Unpublished (46 pages), 2000.
4. W.M.P. van der Aalst and A.H.M. ter Hofstede. Veri�cation of Workow Task

Structures: A Petri-net-based Approach. Information Systems, 25(1):43{69, 2000.
5. A. Do�ga�c, L. Kalinichenko, M. Tamer �Ozsu, and A. Sheth, editors. Workow

Management Systems and Interoperability, volume 164 of NATO ASI Series F:

Computer and Systems Sciences. Springer-Verlag, Berlin, 1998.
6. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workow Systems. In

M. Ajmone Marsan, editor, Application and Theory of Petri Nets 1993, volume

691 of Lecture Notes in Computer Science, pages 1{16. Springer-Verlag, Berlin,

1993.
7. M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading,

Massachusetts, 1997.
8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts,

1995.
9. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workow Manage-

ment: From Process Modeling to Workow Automation Infrastructure. Distributed

and Parallel Databases, 3:119{153, 1995.
10. S. Jablonski and C. Bussler. Workow Management: Modeling Concepts, Archi-

tecture, and Implementation. International Thomson Computer Press, 1996.
11. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On Structured Workow

Modelling. In B. Wangler and L. Bergman, editors, 12th International Conference,

CAiSE 2000, volume 1789 of Lecture Notes in Computer Science, pages 431{445,

Stockholm, Sweden, June 2000. Springer-Verlag, Berlin.
12. T.M. Koulopoulos. The Workow Imperative. Van Nostrand Reinhold, New York,

1995.
13. P. Lawrence, editor. Workow Handbook 1997, Workow Management Coalition.

John Wiley and Sons, New York, 1997.
14. F. Leymann and D. Roller. Production Workow: Concepts and Techniques.

Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.
15. D. Riehle and H. Z�ullighoven. Understanding and Using Patterns in Software

Development. Theory and Practice of Object Systems, 2(1):3{13, 1996.
16. T. Sch�al. Workow Management for Process Organisations, volume 1096 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin, 1996.
17. WFMC. Workow Management Coalition Terminology and Glossary (WFMC-

TC-1011). Technical report, Workow Management Coalition, Brussels, 1996.


