
Mining Uncertain Event Data in Process
Mining?

Marco Pegoraro �[0000−0002−8997−7517] and Wil M.P. van der
Aalst[0000−0002−0955−6940]

Process and Data Science Group (PADS)
Department of Computer Science, RWTH Aachen University, Aachen, Germany

{pegoraro,wvdaalst}@pads.rwth-aachen.de
http://www.pads.rwth-aachen.de/

Abstract. Nowadays, more and more process data are automatically
recorded by information systems, and made available in the form of event
logs. Process mining techniques enable process-centric analysis of data,
including automatically discovering process models and checking if event
data conform to a certain model. In this paper we analyze the previously
unexplored setting of uncertain event logs: logs where quantified un-
certainty is recorded together with the corresponding data. We define
a taxonomy of uncertain event logs and models, and we examine the
challenges that uncertainty poses on process discovery and conformance
checking. Finally, we show how upper and lower bounds for conformance
can be obtained aligning an uncertain trace onto a regular process model.

1 Introduction

Over the last decades, the concept of process has become more and more central
in formally describing the activities of businesses, companies and other similar
entities, structured in specific steps and phases. A process is thus defined as
a well-structured set of activities, possibly performed by multiple actors (re-
sources), which contribute to the completion of a specific task or to the achieve-
ment of a specific goal.

The processes that govern the innards of business companies are increasingly
supported by software tools. Performing specific activities is both aided and
recorded by process-aware information systems (PAISs), which support the de-
finition and management of processes. The information regarding the execution
of processes, which includes time, case and activity information, can then be
extracted from PAISs in the form of an event log, a database or file containing
the digital trace of the operations carried out in the context of the execution of
a process and recorded as events. The discipline of process mining concerns the
automatic analysis of event logs, with the goal of extracting knowledge regarding

? In International Conference on Process Mining (ICPM 2019). DOI:
10.1109/ICPM.2019.00023. ©IEEE. Please do not print this document unless
strictly necessary.

ar
X

iv
:1

91
0.

00
08

9v
1 

 [
cs

.A
I]

  2
0 

Se
p 

20
19

http://www.pads.rwth-aachen.de/


2 Pegoraro et al.

e.g. the structure of the process, the conformity of events to a specific norma-
tive process model, the performances in executing the process, the relationships
between groups of actors in the process.

In this paper we will consider the analysis of a specific class of event logs:
the logs that contain uncertain event data. Uncertain events are recordings of
executions of specific activities in a process which are enclosed with an indication
of uncertainty in the event attributes. Specifically, we consider the case where
the attributes of an event are not recorded as a precise value but as a range or
a set of alternatives.

The recording of uncertain event data is a common occurrence in process
management. The Process Mining Manifesto [2] describes a fundamental pro-
perty of event data as trustworthiness, the assumption that the recorded data
can be considered correct and accurate. In a general sense, uncertainty as defined
here is an explicit absence of trustworthiness, with an indication of uncertainty
recorded together with the event data. In the taxonomy of event data proposed in
the Manifesto the logs at the two lower levels of quality frequently lack trustwor-
thiness, and thus can be uncertain. This encompasses a wide range of processes,
such as event logs of document and product management systems, error logs of
embedded systems, worksheets of service engineers, and any process recorded to-
tally or partially on paper. There are many possible causes behind the recording
of uncertain event data, such as:

– Incorrectness. In some instances, the uncertainty is simply given by errors
occurred while recording the data itself. Faults of the information system,
or human mistakes in a data entry phase can all lead to missing or altered
event data that can be subsequently modeled as uncertain event data.

– Coarseness. Some information systems have limitations in their way of record-
ing data - often tied to factors like the precision of the data format - such that
the event data can be considered uncertain. A typical example is an informa-
tion system that only records the date, but not the time, of the occurrence of
an event: if two events are recorded in the same day, the order of occurrence
is lost. This is an especially common circumstance in the processes that are,
partially or completely, recorded on paper and then digitalized. Another fac-
tor that can lead to uncertainty in the time of recording is the information
system being overloaded and, thus, delaying memorization of data. This type
of uncertainty can also be generated by the limited sensibility of a sensor.

– Ambiguity. In some cases, the data recorded is not an identifier of a certain
event attribute; in these instances, the data needs to be interpreted, either
automatically or manually, in order to obtain a value for the event attribute.
Uncertainty can arise if the meaning of the data is ambiguous and cannot
be interpreted with precision. Example are data in the form of images, text,
or video.

Aside from the causes, we can individuate other types of uncertain event logs
based on the frequency of uncertain data. Uncertainty can be infrequent, when
a specific attribute is only seldomly recorded together with explicit uncertainty;
the uncertainty is rare enough that uncertain events can be considered outliers.



Mining Uncertain Event Data in Process Mining 3

Conversely, frequent uncertain behavior of the attribute is systematic, pervasive
in a high number of traces, and thus not to be considered an outlier. The un-
certainty can be considered part of the process itself. These concepts are not
meant to be formal, and are laid out to distinguish between logs that are still
processable regardless of the uncertainty, and logs where the uncertainty is too
invasive to analyze them with existing process mining techniques.

In this paper we propose a taxonomy of the different types of explicit un-
certainty in process mining, together with a formal, mathematical formulation.
As an example of practical application, we will consider the case of conformance
checking [5], and we will apply it to uncertain data by assessing what are the
upper and lower bounds on the conformance score for possible values of the
attributes in an uncertain trace.

The rest of this paper is organized as follows. Section II discusses previous
and related work in the management of uncertain data. Section III proposes
a taxonomy of the different possible types of uncertain process data. Section
IV contains the formal definitions needed to manage uncertainty. Section V
describes a practical application of process mining over uncertain event data, the
case of conformance checking through alignments. Section VI shows experimental
results on computing conformance checking scores for uncertain data. Finally,
Section VII concludes the paper and discusses about future work.

2 Related Work

As mentioned, the occurrence of data containing uncertainty - in a broad sense
- is common both in more classic disciplines like statistics and Data Mining [8]
and in process mining [2]; and logs that show an explicit uncertainty in the
control flow perspective can be classified in the lower levels of the quality ranking
proposed in the process mining manifesto.

Within process mining there exist various techniques to deal with a kind of
uncertainty different from the one that we analyze here: missing or incorrect
data. This can be considered as a form of non-explicit uncertainty: no measure
or indication on the nature of the uncertainty is given in the event log. The
work of Suriadi et al. [11] provides a taxonomy of this type of issues in event
logs, laying out a series of data patterns that model errors in process data. In
these cases, and if this behavior is infrequent enough to allow the event log to
remain meaningful, the most common way for existing process mining techniques
to deal with missing data is by filtering out the affected traces and performing
discovery and conformance checking on the resulting filtered event log. While
filtering out missing values is straightforward, various methodologies of event
log filtering have been proposed in the past to solve the problem of incorrect
event attributes: the filtering can take place thanks to a reference model, which
can be given as process specification [12], or from information discovered from
the frequent and well-formed traces of the same event log; for example extracting
an automaton from the frequent traces [7], computing conditional probabilities of



4 Pegoraro et al.

frequent sequences of activities [9], or discovering a probabilistic automaton [13].
In the latter cases, the noise is identified as infrequent behavior.

Some previous work attempt to repair the incorrect values in an event log.
Conforti et al. [6] propose an approach for the restoration of incorrect times-
tamps based on a log automaton, that repairs the total ordering of events in
a trace based on correct frequent behavior. Fani Sani et al. [10] define outlier
behavior as the unexpected occurrence of an event, the absence of an event that
is supposed to happen, and the incorrect order of events in the trace; then, they
propose a repairing method based on probabilistic analysis of the context of an
outlier (events preceding or following the anomalous event). Again, both of these
methods define anomalous/incorrect behavior on the basis of the frequency of
occurrence.

The main driving reasons behind this work is to provide the means to treat
uncertainty as a relevant part of a process; thus, we aim not to filter it out
but model it. In conclusion, there are two novel aspects regarding uncertain
data that we intend to address in this work. The first is the explicitness of
uncertainty : we work with the underlying assumption that the actual value of
the uncertain attribute, while not directly provided, is described formally. This
is the case when meta-information about the uncertainty in the attribute is
available, either deduced from the features of the information system(s) that
record the logs or included in the event log itself. Note that, as opposed to all
previous work on the topic, the fact that uncertainty is explicit in the data
means that the concept of uncertain behavior is completely separated from the
concept of infrequent behavior. The second is the goal of modeling uncertainty :
we consider uncertainty part of the process. Instead of filtering or cleaning the
log we introduce the uncertainty perspective in process mining by extending the
currently available techniques to incorporate it.

3 A Taxonomy of Uncertain Event Data

The goal of this section of the paper is to propose a categorization of the different
types of uncertainty that can appear in process mining. In process management,
a central concept is the distinction between the data perspective (the event log)
and the behavioral perspective (the process model). The first one is a static
representation of process instances, the second summarizes the behavior of a
process. Both can be extended with a concept of explicit uncertainty: this concept
also implies an extension of the process mining techniques that have currently
been implemented.

In this paper we will focus on uncertainty in event data, while the concept
of uncertainty applied to models will be examined in a future work. Specifically,
as an example application we will consider computing the conformance score of
uncertain process data on classical models.

We can individuate two different notions of uncertainty:



Mining Uncertain Event Data in Process Mining 5

– Strong uncertainty : the possible values for the attributes are known, but the
probability that the attribute will assume a certain instantiation is unknown
or unobservable.

– Weak uncertainty : both the possible values of an attribute and their respec-
tive probabilities are known.

In the case of a discrete attribute, the strong notion of uncertainty consists
on a set of possible values assumed by the attribute. In this case, the probability
for each possible value is unknown. Vice-versa, in the weak uncertainty scenario
we also have a discrete probability distribution defined on that set of values.
In the case of a continuous attribute, the strong notion of uncertainty can be
represented with an interval for the variable. Notice that an interval do not
indicate a uniform distribution; there is no information on the likelihood of values
in it. Vice-versa, in the weak uncertainty scenario we also have a probability
density function defined on a certain interval. Figure 1 summarizes this concepts.
This leads to very simple representations of explicit uncertainty.

Fig. 1. The four different types of uncertainty.

In this paper we consider only the control flow and time perspective of a pro-
cess – namely, the attributes of the events that allow to discover a process model.
These are the unique identifier of a process instance (case ID), the timestamp
(often represented by the distance from a fixed origin point, e.g. the Unix Epoch),
and the activity identifier of an event. Case IDs and activities are values cho-
sen from a finite set of possible values; they are discrete variables. Timestamps,
instead, are represented by numbers and thus are continuous variables.

We will also describe an additional type of uncertainty, which lays on the
event level rather that the attribute level:



6 Pegoraro et al.

– Indeterminate event : there is a chance that the event did not take place even
though it was recorded in the event log. Indeterminate events are indicated
with a ? symbol, while determinate (regular) events are marked with a !
symbol.

Table 1. An example of strongly uncertain trace.

Case ID Timestamp Activity Indet. event

{0, 1} 2011-12-05T00:00 A !

0 2011-12-07T00:00 {B, C, D} !

0
[2011-12-06T00:00,
2011-12-10T00:00]

D ?

0 2011-12-09T00:00 {A, C} !

{0, 1, 2} 2011-12-11T00:00 E ?

Table 2. An example of weakly uncertain trace.

Case ID Timestamp Activity Indet. event

{0:0.9, 1:0.1} 2011-12-05T00:00 A !

0 2011-12-07T00:00 {B:0.7, C:0.3} !

0 N (2011-12-08T00:00, 2) D ?:0.5

0 2011-12-09T00:00 {A:0.2, C:0.8} !

{0:0.4, 1:0.6} 2011-12-11T00:00 E ?:0.7

Examples of strongly and weakly uncertain traces are shown in Tables 1
and 2 respectively.

4 Definitions

Let us now provide a formal definition of the concept of uncertainty applied to
event data.

Definition 1 (Power Set). The power set of a set A is the set of all possible
subsets of A, and is denoted with P(A). PNE(A) denotes the set of all the non-
empty subsets of A: PNE(A) = P(A) \ {∅}.

Definition 2 (Multiset). A multiset is an extension of the concept of set that
keeps track of the cardinality of each element. B(A) is the set of all multisets
over some set A. Multisets are denoted with square brackets, e.g. b = [x, x, y].

Definition 3 (Sequence). Given a set X, a finite sequence over X of length
n is a function s ∈ X∗ : {1, . . . , n} → X, and it is written as s = 〈s1, s2, . . . , sn〉.
Over the sequence s we define |s| = n, s[i] = si and x ∈ s ⇐⇒ x ∈ set(s).



Mining Uncertain Event Data in Process Mining 7

Definition 4 (Universes). Let UE be the set of all the event identifiers. Let
UC be the set of all the case id identifiers. Let UA be the set of all the activity
identifiers. Let UT be the totally ordered set of all the timestamp identifiers. Let
UO = {!, ?}, where the “!” symbol denotes determined events, and the “?” symbol
denotes indeterminate events.

Definition 5 (Events). Let us denote with EC = UE×UC×UA×UT the universe
of certain events. ESU = UE × PNE(UC) × PNE(UA) × PNE(UT ) × UO is the
universe of strongly uncertain events. EWU = {(e, f) ∈ UE × (UC ×UA ×UT 6→
[0, 1]) |

∑
(a,c,t)∈dom(f) f(c, a, t) ≤ 1} is the universe of weakly uncertain events.

Over a strongly uncertain event (e, cs, as, ts, u) ∈ ESU we define the following
projection functions: πESU

c (e) = cs, π
ESU
a (e) = as, π

ESU
t (e) = ts and πESU

o (e) = o.

Definition 6 (Event logs). A certain event log is a set of events LC ⊆ EC
such that every event identifier in LC is unique. A strongly uncertain event log
is a set of events LSU ⊆ ESU such that every event identifier in LSU is unique.
A weakly uncertain event log is a set of events LWU ⊆ EWU such that every
event identifier in LWU is unique.

A weakly uncertain event log LWU ⊆ EWU has a corresponding strongly
uncertain event log LWU = LSU ⊆ ESU such that LSU = {(e, cs, as, ts, o) ∈
ESU | ∃(e′,f)∈LWU

, e = e′ ∧
cs = {c ∈ UC | ∃a,t((c, a, t) ∈ dom(f) ∧ f(c, a, t) > 0)} ∧
as = {a ∈ UA | ∃c,t((c, a, t) ∈ dom(f) ∧ f(c, a, t) > 0)} ∧
ts = {t ∈ UT | ∃c,a((c, a, t) ∈ dom(f) ∧ f(c, a, t) > 0)} ∧
(o = ! ⇐⇒ (

∑
(c,a,t)∈dom(f) f(c, a, t)) = 1) ∧

(o = ? ⇐⇒ (
∑

(c,a,t)∈dom(f) f(c, a, t)) < 1)}.

Definition 7 (Realization of an event log). LC ⊆ EC is a realization of
LSU ⊆ ESU if and only if:

– For all (e, c, a, t) ∈ LC there is a distinct (e′, cs, as, ts, o) ∈ LSU such that
e′ = e, a ∈ as, c ∈ cs and t ∈ ts;

– For all (e, cs, as, ts, o) ∈ LSU with o = ! there is a distinct (e′, c, a, t) ∈ LC
such that e′ = e, a ∈ as, c ∈ cs and t ∈ ts.

RL(LSU ) is the set of all such realizations of the log LSU .

Note that these definition allow us to transform a weakly uncertain log into a
strongly uncertain one, and a strongly uncertain one in a set of certain logs.

5 Conformance Checking on Uncertain Event Data

As a preliminary application of process mining over uncertain event data we
now focus on conformance checking. Starting from an event log and a process
model, conformance checking verifies if the event data in the log conforms to the
model, providing a diagnostic of the deviations. Conformance checking serves



8 Pegoraro et al.

many purposes, such as checking if process instances follow a specific normative
model, assessing if a certain execution log has been generated from a specific
model, or verifying the quality of a process discovery technique.

The specific scenario we consider in this paper includes:

– Strong uncertainty on the activity;

– Strong uncertainty on the timestamp;

– Strong uncertainty on indeterminate events.

All three can happen concurrently. Table 3 shows such a trace, which we will
use as running example. It is worth noticing that the specific case of uncertainty
on the case ID causes a problem; since an event can have many possible case
IDs, it can belong to different traces. In data format where the event are already
aggregated into traces, such as the very common XES standard, this means
that the information related to a trace can be non local to the trace itself, but
can be stored in some other points of the log. We will focus on the problem of
uncertainty on the case ID attribute in a future work.

Firstly, we will lay down some simplified notation in order to model in a more
compact way the problem at hand.

Definition 8 (Simple traces and logs). σC ∈ U∗A is a simple untimed trace.
TC denotes the universe of simple untimed traces. LSC ∈ B(TC) is a simple
untimed log.

σCT ∈ (UA×UT )∗ is a simple timed trace if and only if σCT = 〈(a1, t1), (a2, t2),
. . . , (an, tn)〉 and ∀1≤i<j≤n, ti < tj. TCT denotes the universe of simple timed
traces. LSCT ∈ B(TCT ) is a simple timed log.

σU ∈ P(UE × PNE(UA) × UT × UT × UO) is a simple uncertain trace if
for all (e, as, tmin, tmax, u) ∈ σU , tmin < tmax and all the event identifiers
are unique. TU denotes the universe of simple uncertain traces. LSU ∈ B(TU )
is a simple uncertain log if all the event identifiers in the log are unique. For
eSU = (e, as, tmin, tmax, o) ∈ σU we define the following projection functions:

π
LS

U
a (eSU ) = as, π

LS
U

tmin
(eSU ) = tmin, π

LS
U

tmax
(eSU ) = tmax and π

LS
U

o (eSU ) = o.

Definition 9 (Realization of a simple trace). σCT ∈ TCT is a timed real-
ization of σU ∈ TU if and only if:

– For all (a, t) ∈ σCT there is a distinct (as, tmin, tmax, u) ∈ σU such that
a ∈ as and tmin ≤ t ≤ tmax;

– For all (as, tmin, tmax, u) ∈ σU with u = ! there is a distinct (a, t) ∈ σCT
such that a ∈ as and tmin ≤ t ≤ tmax.

We denote with RT (σU ) the set of all such timed realizations of the trace σU .
For σCT ∈ TCT we denote with πA(σCT ) the simple untimed trace σC ∈ TC
such that |σCT | = |σC | = n and for all 1 ≤ i ≤ n, σCT (i) = (a, t): σC(i) = a.
For σU ∈ TU , R(σU ) = {πA(σCT ) | σCT ∈ RT (σU )} is the set of all (untimed)
realizations of σU .



Mining Uncertain Event Data in Process Mining 9

These simplified traces and logs can be related to the more general frame-
work described in the previous section through the following transformation:
let LSU ⊆ ESU be a strongly uncertain log and let g : UE 6→ UC be a function
mapping events onto cases such that dom(g) = {e | (e, cs, as, ts, u) ∈ LSU} and
for all (e, cs, as, ts, u) ∈ LSU , g(e) ∈ cs. Thus, for c ∈ rng(g), g−1(c) = {e ∈
UE | g(e) = c}. The simple uncertain event log defined by g on LSU is LSU =
[{(e, πESU

a (e),min(πESU
t (e)),max(πESU

t (e)), πESU
o (e)) | e ∈ g−1(c)} | c ∈ rng(g)].

The conformance checking algorithm that we are applying in this paper
is based on alignments. Introduced by Adriansyah [3], conformance checking
through alignments finds deviations between a trace and a Petri net model of
a process by creating a correspondence between the sequence of activities exe-
cuted in the trace and the firing of the transitions in the Petri net. An example
of alignments is given in Figure 2.

Definition 10 (System Net). A system net is a tuple SN = (P, T, F, l,Minit,
Mfinal) with P the set of places, T the set of transitions, P ∩ T = ∅, F ⊆
(P × T ) ∪ (T × P ) the flow relation and l ∈ T 6→ UA a labeling function over
transitions. A marking M ∈ B(P ) is a multiset of places; Minit ∈ B(P ) is the
initial marking of the net, and Mfinal ∈ B(P ) is the final marking of the net.
USN is the universe of system nets.

A system net SN defines a directed graph with nodes P ∪ T and edges F .
For any x ∈ P ∪ T , • x = {y | (y, x) ∈ F} denotes the set of input nodes and
x •= {y | (x, y) ∈ F} denotes the set of output nodes. A transition t ∈ T is
enabled in marking M of net SN , denoted as (SN,M)[t〉, if each of its input
places •t contains at least one token. An enabled transition t may fire, i.e., one
token is removed from each of the input places •t and one token is produced
for each of the output places t•. If t /∈ dom(l), it is called invisible. To indicate
invisible transitions we use the placeholder symbol τ ; by definition τ /∈ dom(l).
An occurrence of visible transition t ∈ dom(l) corresponds to observable activity
l(t). Given a system net, φ(SN ) is the set of all possible visible activity sequences,
i.e. the labels of complete firing sequences starting in Minit and ending in Mfinal

projected onto the set of observable activities. Given the set of activity sequences
φ(SN ) obtainable via complete firing sequences on a certain system net, we can
define a perfectly fitting event log as a set of traces which activity projection is
contained in φ(SN ).

These definitions allow us to build alignments in order to compute the fitness
of trace on a certain model. An alignment is a correspondence between a sequence
of activities (extracted from the trace) and a sequence of transitions with the
relative labels (fired in the model while replaying the trace). The first sequence
indicates the “moves in the log” and the second indicates the “moves in the
model”. If a move in the model cannot be mimicked by a move in the log, then
a “�” (“no move”) appears in the top row; conversely, if a move in the log
cannot be mimicked by a move in the model, then a “�” (“no move”) appears
in the bottom row.“no moves” not corresponding to invisible transitions point
to deviations between model and log. A move is a pair (x, (y, t)) where the first



10 Pegoraro et al.

element refers to the log and the second element to the model. A “�” in the
first element of the pair indicates a move on model, in the second element it
indicates a move on log.

An alignment is a sequence of moves such that after removing all “�” sym-
bols, the top row corresponds to a trace in the log and the bottom row corre-
sponds to a firing sequence starting in Minit and ending Mfinal . Notice that if
t /∈ dom(l) is an invisible transition, the activation of t is indicated by a “�”
on the log in correspondence of t and the placeholder label τ . Hence, the middle
row corresponds to a visible path when ignoring the τ steps. Figure 2 shows a
model with two examples of alignments, one of a fitting trace and the other of
a non-fitting trace.

Definition 11 (Alignment). Let σC ∈ LC be a trace and t ∈ φf (SN ) a com-
plete firing sequence of system net SN . An alignment of σC and t∗ is a sequence
of moves γ ∈ AM ∗ such that the projection on the first element (ignoring �)
yields σ and the projection on the last element (ignoring� and transition labels)
yields t.

A trace and a model can have several possible alignments. In order to se-
lect the most appropriate one, we introduce a function that associate a cost to
undesired moves - the ones associated with deviations.

Definition 12 (Cost of Alignment). Cost function δ ∈ ALM → IN assigns
costs to legal moves. The cost of an alignment γ ∈ ALM ∗ is the sum of all costs:
δ(γ) =

∑
(x,y)∈γ δ(x, y).

In this paper we use a standard cost function δS that assigns cost zero to
synchronous moves and moves on invisible transitions, and unit costs to moves
on log or moves on model.

Definition 13 (Optimal Alignment). Let LC ∈ B(TC) be a simple untimed
event log and let SN ∈ USN be a system net with φ(SN ) 6= ∅.

– For σC ∈ LC , we define: ΓσC ,SN = {γ ∈ ALM
∗ | ∃t∗∈φf (SN ) γ is an

alignment of σC and t∗}.
– An alignment γ ∈ ΓσC ,SN is optimal for trace σC ∈ LC and system net SN

if for any γ′ ∈ ΓσC ,M : δ(γ′) ≥ δ(γ).
– λSN ∈ E∗ → ALM

∗ is a deterministic mapping that assigns any trace σC to
an optimal alignment, i.e., λSN (σC) ∈ ΓσC ,SN and λSN (σC) is optimal.

– costs(LC ,SN , δ) =
∑
σC∈L δ(λSN (σC)) are the misalignment costs of the

whole event log.

Depending on the possible values for as, tmin, tmax, and u there are multiple
possible realizations of a trace. This means that, given a model, a simple un-
certain trace could be fitting for certain realizations, but non-fitting for others.
The question we are interested in answering is: given a simple uncertain trace
and a Petri net process model, is it possible to find an upper and lower bound
for the conformance score? More formally, when usually we are interested in the



Mining Uncertain Event Data in Process Mining 11

Fig. 2. Example of alignments on a model. The alignment γ1 shows that the trace
〈a, d, b, e, h〉 is perfectly fitting the model. The alignment γ2 shows that the trace
〈a, b, d, b, e, h〉 is misaligned with the model in one point.

optimal alignments (the ones with the minimal cost), we are now interested in
the minimum and maximum cost of alignments in the realization set of a simple
uncertain trace.

Table 3. The uncertain trace used as running example for the application of Confor-
mance Checking on uncertainty.

Case ID Timestamp Activity Indet. event

0 2011-12-05T00:00 A !

0 2011-12-07T00:00 {B, C} !

0
[2011-12-06T00:00
2011-12-10T00:00]

D !

0 2011-12-09T00:00 {A, C} !

0 2011-12-11T00:00 E ?

Definition 14 (Upper and Lower Bound on Alignment Cost for a Trace).
Let σU ∈ TU be a simple uncertain trace, and let SN ∈ USN be a system net.
The upper bound for the alignment cost is a function δmax : TU → N such that
δmax(σU ) = maxσC∈R(σU ) λSN (σC). The lower bound for the alignment cost is
a function δmin : TU → N such that δmin(σU ) = minσC∈R(σU ) λSN (σC).



12 Pegoraro et al.

A simple way to compute the upper and lower bounds for the cost of an
uncertain trace is using a bruteforce approach: enumerating the possible realiza-
tions of the trace, then searching for the costs of optimal alignments for all the
realizations, and picking the minimum and maximum as bounds.

The technique to compute the optimal alignment [3] is as follows. Firstly, it
creates an event net, a sequence-structured system net able to replay only the
trace to align. The transitions in the event net have labels corresponding to the
activities in the trace. Then, a product net should be computed; it is the union
of the event net and the model together with synchronous transitions added.
These additional transitions are paired with transitions in the event net and in
the process model that have the same label; they are then connected with arcs
from the input places and to the output places of those transitions. The product
net is able to represent moves on log, moves on model and synchronous moves by
means of firing transitions: the transitions of the event net correspond to moves
on log, the transitions of the process model correspond to moves on model, the
added synchronous transitions correspond to synchronous moves. The union of
the initial and final markings of the event net and the process model constitute
respectively the initial and final marking of the product net: every complete
firing sequence on the product net corresponds to a possible alignment. Lastly,
the product net is translated to a state space, and a state space exploration via
the A∗ algorithm is performed in order to find the complete firing sequence that
yields the lowest cost.

Let us define formally the construction of the event net and the product net:

Definition 15 (Event Net). Let σC ∈ TC be a simple untimed trace. The event
net en : TC → USN of σC is a system net en(σC) = (P, T, F, l,Minit,Mfinal)
such that:

– P = {pi | 1 ≤ i ≤ |σC |+ 1},
– T = {ti | 1 ≤ i ≤ |σC |},
– F =

⋃
1≤i≤{(pi, ti), (ti, pi+1)}

– l : T → UA such that for all 1 ≤ i ≤ |σC |, l(ti) = σC [i],
– Minit = {p1},
– Mfinal = {p|P |}.

Definition 16 (Product of two Petri Nets). Let S1 = (P1, T1, F1, l1,Minit1 ,
Mfinal1) and S2 = (P2, T2, F2, l2,Minit2 ,Mfinal2) be two system nets. The pro-
duct net of S1 and S2 is the system net S = S1⊗S2 = (P, T, F, l,Minit,Mfinal)
such that:

– P = P1 ∪ P2,
– T ⊆ (T1 ∪ {�} × T2 ∪ {�}) such that T = {(t1,�) | t1 ∈ T1} ∪ {(�, t2) |
t2 ∈ T2} ∪ {(t1, t2) ∈ (T1 × T2) | l1(t1) = l2(t2) 6= τ},

– F ⊆ (P × T ) ∪ (T × P ) such that
F = {(p, (t,�)) | p ∈ P1 ∧ t ∈ T1 ∧ (p, t) ∈ F1} ∪
{((t,�), p) | t ∈ T1 ∧ p ∈ P1 ∧ (t, p) ∈ F1} ∪
{(p, (t,�)) | p ∈ P2 ∧ t ∈ T2 ∧ (p, t) ∈ F2} ∪



Mining Uncertain Event Data in Process Mining 13

{((t,�), p) | t ∈ T2 ∧ p ∈ P2 ∧ (t, p) ∈ F2} ∪
{(p, (t1, t2)) | p ∈ P1 ∪ P2 ∧ (t1, t2) ∈ T ∩ (T1 × T2)} ∪
{((t1, t2), p) | p ∈ P1 ∪ P2 ∧ (t1, t2) ∈ T ∩ (T1 × T2)}

– l : T → UA such that for all (t1, t2) ∈ T , l((t1, t2)) = l1(t1) if t2 =�,
l((t1, t2)) = l2(t2) if t1 =�, and l((t1, t2)) = l1(t1) otherwise,

– Minit = Minit1 ]Minit2 ,
– Mfinal = Mfinal1 ]Mfinal2 .

We now present a technique which improves the performance of calculating
the lower bound for conformance cost over using a bruteforce method. We will
produce a version of the event net that embeds the possible behaviors of the
uncertain trace. We define a behavior net, a Petri net that can replay all and
only the realizations of an uncertain trace.

In order to obtain such a Petri net we first built a directed graph representing
the uncertain trace as an intermediate step. We also need to present the concept
of transitive reduction: given a directed graph G, its transitive reduction G′ is
a graph with the same set of vertices, the same reachability between vertices,
and a minimal number of arcs, such that every pair of vertices is connected by
at most one path. The transitive reduction of a directed acyclic graph always
exists and is unique [4].

We can then define the behavior graph, which contains a vertex for each
uncertain event in the trace and contains an edge between two vertices if the
corresponding uncertain events may happen one directly after the other.

Definition 17 (Behavior Graph). Let σU ∈ TU be a simple uncertain trace.
A behavior graph bg : TU → UG is the transitive reduction of a directed graph
(V,E), where V is the set of vertices and E ⊆ V ×V is the set of directed edges,
such that:

– V = σU
– E = {(v1, v2) | v1 ∈ V, v2 ∈ V, π

LS
U

tmax
(v1) < π

LS
U

tmin
(v2)}

The behavior graph provides a structured representation of the uncertainty
on the timestamp: when a specific vertex has two or more outbound edges,
the events corresponding to the destination vertices can occur in any order,
concurrently with each other. The property of UT of being totally ordered and
the property tmin < tmax of all simple uncertain traces ensure that the behavior
graph is acyclic both before and after the transitive reduction. We can see the
result on the example trace in Figures 3 and 4.

We then obtain a behavior net by replacing every vertex in the behavior
graph with one or more transitions in a XOR configuration, each representing
an activity contained in the πA set of the corresponding uncertain event. The
edges of the behavior graph become connection through places in the behavior
net.

Definition 18 (Behavior Net). Let σU ∈ TU be a simple uncertain trace,
and let bg(σU ) = (V,E) be the corresponding behavior graph. A behavior net
bn : TU → USN is a system net bn(σU ) = (P, T, F, l,Minit,Mfinal) such that:



14 Pegoraro et al.

Fig. 3. The behavior graph of the trace
in Table 3 before applying the transi-
tive reduction.

Fig. 4. The same behavior graph after
the transitive reduction.

– T = {(v, a) | v ∈ V ∧a ∈ πL
S
U

a (v)}∪{(v, τ) | v ∈ V ∧a ∈ πL
S
U

a (v)∧πL
S
U

o (v) =?}
– P = E ∪ {start, end}
– F = {((v1, a), (v1, v2)) | (v1, a) ∈ T, (v1, v2) ∈ E} ∪
{((v1, v2), (v2, a)) | (v1, v2) ∈ P, (v2, a) ∈ E} ∪
{(start, (v, a)) | (v, a) ∈ T ∧ ∀v∗∈V π

LS
U

tmin
(v) < π

LS
U

tmin
(v∗)} ∪

{((v, a), end) | (v, a) ∈ T ∧ ∀v∗∈V π
LS

U
tmax

(v) > π
LS

U
tmax

(v∗)}
– l = {((v, a), a) | (v, a) ∈ T ∧ a 6= τ}
– Minit = {start}
– Mfinal = {end}

Fig. 5. The behavior net corresponding to the uncertain trace in Table 3.

In Figure 5 we can see the behavior net corresponding to the uncertain trace
in Table 2. It is important to notice that every set of edges in the behavior graph
with the same source vertex generate an AND split in the behavior net, and a
set of edges with the same destination vertex generate an AND join. At the same
time, the transitions which labels correspond to different possible activities in
an uncertain event will appear in a XOR construct inside the behavior net.

This means that every set of events which timestamps allow for overlapping
will be represented in the behavior net by transitions inside an AND construct,
and will then allow to execute in the net all the possible sequences of events
obtained choosing a possible value for the uncertain timestamp attribute. In the
same fashion, an event with uncertainty on the activity will be represented by
a number of transitions in a XOR construct, that allows to replay any possible
choice for the activity attribute. It follows that, by construction, for a certain
simple uncertain trace σU we have that φ(bn(σU )) = R(σU ).



Mining Uncertain Event Data in Process Mining 15

We can use the behavior net of an uncertain trace σU in lieu of the event net
to compute alignments with a model SN ∈ USN ; the search algorithm returns
an optimal alignment, a sequence of moves (x, (y, t)) with x ∈ UA, y ∈ UA and
t transition of the model SN . After removing all “�” symbols, the sequence of
first elements of the moves will describe a complete firing sequence σX of the
behavior net. Since σX is complete, σX ∈ φ(bn(σU )) and, thus, σX ∈ R(σU ). It
follows that σX is a realization of σU , and the search algorithm ensures that σX
is a realization with optimal conformance cost for the model SN : δ(λSN (σX)) =
minσC∈R(σU ) λSN (σC) = δmin(σU ).

6 Experiments

The technique to compute conformance for strongly uncertain traces and to
create the behavior net hereby described has been implemented for testing, using
the code for alignments already provided in the process mining Python library
PM4Py [1]. Uncertainty has been represented in the XES standard through
meta-attributes and constructs such as lists, such that any XES importer can
read an uncertain log file. The algorithm was designed to be fully compatible
with non-uncertain XES event logs; the meta-attributes for uncertainty were
designed to be partly compatible with other process mining algorithms – meta-
attributes describing the possible values for an uncertain activity or the interval
of an uncertain timestamp can also specify a “fallback value” that other process
mining software will read as (certain) activity or timestamp value.

Two experiments were run: the first to inspect the bounds for conformance
score as increasingly more uncertainty is added to an event log; the other test
assesses the difference in performance between the bruteforce method and the
behavior net. We ran the tests on synthetic event logs where we added un-
certainty. This way we can control the amounts of uncertainty in event data.
Through the ProM plugin “Generate block-structured stochastic Petri nets” we
generated Petri nets of different sizes in terms of number of transitions n; then,
we used PM4Py in order to generate event logs adding uncertainty to attributes.
Activities and timestamps are uncertain with probability p; also, events have a
chance to be indeterminate with probability p.

The pipeline for the first experiment was the following: we generated a model
with n = 10; we executed the model to obtain 250 traces; we added deviations
to events (every event has 20% chances to have the wrong activity, every pair of
consecutive events have 20% chances of having the timestamps swapped, every
trace has 40% chances to have an additional event). We then added uncertainty
to the events: each event has probability p of having two possible values for the
activity, probability p of having an uncertain timestamp, and probability p to be
an indeterminate event. We calculated the bounds on conformance cost of the
log so generated and repeated the procedure for increasing values of p.

Figure 6 shows the results. We can see that the cost shows the expected be-
havior: at p = 0 the two bounds coincide, since the traces are certain and have
only one realization. Conversely, the log with p = 0.6 has a total of 1629 devia-



16 Pegoraro et al.

Fig. 6. The change in lower and upper bound for conformance checking of an event log
with increasing probability of having uncertainty on event data.

tions on the worst case scenario (6.52 on average per trace), and 747 deviations in
the best case scenario (2.99 on average per trace); a process that includes traces
with comparable uncertainty has thus a huge difference in behavior between the
best case scenario and worst case scenario. The evaluation of the best and worst
case scenario for uncertain traces can give useful indications to a business user
on the parts of the process where there is a high risk of deviation, in order to
enhance them.

The second experiment concerns the performance of calculating the lower
bound of the cost via the behavior net versus the bruteforce method of separately
listing all the realizations of an uncertain trace, evaluating all of them through
alignments, then picking the best value. We used a constant value of p = 0.2 and
logs of 100 traces for this test, with progressively increasing values of n.

Figure 7 summarizes the results. As the diagram shows, the difference in
time between the two methods tends to diverge quickly even on a logarithmic
scale. With n = 5, the behavior net provides the lower bound in 40.4% of the
time required by the bruteforce method. For n = 20, the largest model we could
test, the behavior net takes 0.04% of the time needed by the bruteforce method.
This shows a very large improvement in the computing time for the lower bound
computation, so the best case scenario for the conformance cost of an uncer-
tain trace can be obtained efficiently thanks to the structural properties of the
behavior net.



Mining Uncertain Event Data in Process Mining 17

Fig. 7. Effect on time performance of calculating the lower bound for conformance cost
with the bruteforce method vs. the behavior net.

7 Conclusion

As the need of quickly and effectively analyze process data has arisen in the
recent past and is growing to this day, many new types of information regarding
events are recorded; this calls for new techniques able to provide an adequate
interpretation of the new data. In this paper we presented a new paradigm for
process mining applied to event data: explicit uncertainty. We described the
possible form it can assume, building a taxonomy of different types of uncer-
tainty. We then designed a formal mathematical infrastructure to define the
various flavors of uncertainty shown in the taxonomy. Then, in order to assess
the practical applications of the uncertainty framework, we applied it to a well
consolidated technique for conformance checking: aligning data to a reference
Petri net. The results can provide insights on the possible violations of process
instances recorded with uncertainty against a normative model. The behavior
net provides an efficient way to compute the lower bound for the conformance
cost – i.e. the best case scenario for conformity of uncertain process data – with a
large improvement on time performance with respect to a bruteforce procedure.

The approaches shown here can be extended in a number of ways. An impor-
tant step in this line of research is assessing the technique on real-life logs. From a
performance perspective, to improve the usability of alignments over uncertainty
we shall optimize the computation of the upper bound of the conformance cost.
Another natural continuation of this work is extending the conformance checking
technique to logs with weak uncertainty. Many possibilities can be pursued to



18 Pegoraro et al.

broaden the concept of uncertainty on different process mining methods: for ex-
ample, discovering a Petri net from an uncertain event log, or develop techniques
to mine Petri nets that embed uncertainty information about the process.

References

1. Pm4py, http://pm4py.pads.rwth-aachen.de/
2. Van der Aalst, W., Adriansyah, A., De Medeiros, A.K.A., Arcieri, F., Baier, T.,

Blickle, T., Bose, J.C., Van Den Brand, P., Brandtjen, R., Buijs, J., et al.: Process
mining manifesto. In: International Conference on Business Process Management.
pp. 169–194. Springer (2011)

3. Adriansyah, A.: Aligning observed and modeled behavior (2014)
4. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.

SIAM Journal on Computing 1(2), 131–137 (1972)
5. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:

Relating Processes and Models. Springer (2018)
6. Conforti, R., La Rosa, M., ter Hofstede, A.: Timestamp repair for business process

event logs (2018), http://hdl.handle.net/11343/209011, [preprint]
7. Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior

from business process event logs. IEEE Transactions on Knowledge and Data En-
gineering 29(2), 300–314 (2017)

8. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier (2011)
9. Sani, M.F., van Zelst, S.J., van der Aalst, W.M.: Improving process discovery

results by filtering outliers using conditional behavioural probabilities. In: Interna-
tional Conference on Business Process Management. pp. 216–229. Springer (2017)

10. Sani, M.F., van Zelst, S.J., van der Aalst, W.M.: Repairing outlier behaviour in
event logs. In: International Conference on Business Information Systems. pp. 115–
131. Springer (2018)

11. Suriadi, S., Andrews, R., ter Hofstede, A.H., Wynn, M.T.: Event log imperfection
patterns for process mining: Towards a systematic approach to cleaning event logs.
Information Systems 64, 132–150 (2017)

12. Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning structured event logs: A
graph repair approach. In: Data Engineering (ICDE), 2015 IEEE 31st International
Conference on. pp. 30–41. IEEE (2015)

13. van Zelst, S.J., Sani, M.F., Ostovar, A., Conforti, R., La Rosa, M.: Filtering spuri-
ous events from event streams of business processes. In: International Conference
on Advanced Information Systems Engineering. pp. 35–52. Springer (2018)

http://pm4py.pads.rwth-aachen.de/
http://hdl.handle.net/11343/209011

	Mining Uncertain Event Data in Process Mining

