
Everything You Always Wanted To Know About Petri
Nets, But Were Afraid To Ask

Wil M.P. van der Aalst1,2[0000−0002−0955−6940]

1 Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
2 Fraunhofer Institute for Applied Information Technology, Sankt Augustin, Germany

wvdaalst@pads.rwth-aachen.de

Abstract. Business Process Management (BPM), Process Mining (PM), Work-
flow Management (WFM), and other approaches aimed at improving processes
depend on process models. Business Process Model and Notation (BPMN), Event-
driven Process Chains (EPCs), and UML activity diagrams all build on Petri nets
and have semantics involving ‘playing the token game’. In addition, process anal-
ysis approaches ranging from verification and simulation to process discovery and
compliance checking often depend on Petri net theory. For the casual user, there
is no need to understand the underlying foundations. However, BPM/PM/WFM
researchers and ‘process experts’ working in industry need to understand these
foundational results. Unfortunately, the results of 50 years of Petri net research
are not easy to digest. This tutorial paper provides, therefore, an entry point into
the wonderful world of Petri nets.

Keywords: Petri Nets · Business Process Management · Process Mining.

1 Petri Nets and Business Process Management

Since their inception in 1962, Petri nets have been used in a wide variety of application
domains. A more recent development is the foundational role of Petri nets in Business
Process Management (BPM) [8] and related fields such as Process Mining (PM) [2]
and Workflow Management (WFM) [3]. Many WFM systems are based on Petri nets.
In fact, the first prototypes developed in the late 1970-ties (e.g., Officetalk and SCOOP)
already used Petri nets [1]. In today’s BPM/WFM systems, this is less visible. However,
popular modeling languages such as Business Process Model and Notation (BPMN),
Event-driven Process Chains (EPCs), and UML activity diagrams all borrow ideas from
Petri nets (e.g., the ‘token game’ to describe semantics and to implement BPM/WFM
engines and simulation tools) [5].

Petri nets also play a major role in the analysis of processes and event data. Many
simulation tools are based on Petri nets [5]. Petri nets are also used for the verification of
processes in WFM/BPM systems, e.g., to check soundness [4]. However, this possibility
is not used much in practice. Conversely, Process Mining (PM) is much more widely
used than simulation and verification. Petri nets are the most widely used representation
in PM [2]. There are dozens of techniques that can discover a Petri net from event data.
Moreover, almost all conformance checking techniques use Petri nets internally.



2 Wil M.P. van der Aalst

p1

t1 t3

p3

p5

get 
goods

express 
delivery

p2

t2 t4

p4get 
payment

standard 
delivery

[p2,p3]

[p1,p2]

[p1,p4]

[p5][p3,p4]

t3

t4

Fig. 1. An accepting Petri net N1 (left) with transitions T1 = {t1, t2, t3, t4}, places P1 =
{p1, p2, p3, p4, p5}, initial marking [p1, p2], and final marking [p5]. N1 allows for traces
traces(N1) = {〈t1, t2, t3〉, 〈t2, t1, t3〉, 〈t1, t2, t4〉, 〈t2, t1, t4〉}. The reachability graph (right)
shows the reachable markings states(N1) = {[p1, p2], [p1, p4], [p2, p3], [p3, p4], [p5]}.

This short paper is based on a tutorial with the same name presented at the 17th
International Conference on Business Process Management (BPM 2019) in Vienna in
September 2019. Here, we can only show a few of the ‘gems in Petri nets’ relevant for
BPM, PM, and WFM.

2 Accepting Petri Nets

Figures 1 and 2 show two so-called accepting Petri nets. These Petri nets have an initial
state and a final state. States in Petri nets are called markings that mark certain places
(represented by circles) with tokens (represented by black dots). The accepting Petri net
N1 in Figure 1 has five places. In the initial marking, [p1, p2] two places are marked.
Since a place may have multiple tokens, markings are represented by multisets. Tran-
sitions (represented by squares) are the active components able to move the Petri nets
from one marking to another marking. N1 has four transitions. A transition is called
enabled if each of the input places has a token. An enabled transition may fire (i.e., oc-
cur) thereby consuming a token from each input place and producing a token for each
output places. In the marking showing in Figure 1, both t1 and t2 are enabled. Firing t1
removes a token from p1 and adds a token to p3. Firing t2 removes a token from p2 and
adds a token to p4. In the resulting marking [p3, p4] both t3 and t4 are enabled. Note
that both transitions require both input places to be marked. However, only one of them
can fire. Firing t3 (or t4) removes a token from both p3 and p4 and adds one token to
p5. Transitions may be labeled, e.g., transitions t1, t2, t3, and t4 represent the activities
“get goods”, “get payment”, “express delivery”, and “normal delivery” respectively. For
simplicity, we ignore the transition labels and only use the short transition names.

The behavior of an accepting Petri net is described by all traces starting in the initial
marking and ending in the final marking. 〈t1, t2, t3〉 is one of the four traces of accept-
ing Petri net N1. Figure 1 also shows the reachability graph of N1. The reachability
graph shows all reachable markings and their connections. N1 has five reachable states.

Accepting Petri net N2 depicted in Figure 2 also has five reachable states, but allows
for infinitely many traces (due to the loop involving t1 and t2).



Everything You Always Wanted To Know About Petri Nets 3

p1

t1 t3

p2

p5

receive store

t2 t4

p3alert pay

p4

[p3,p4]

[p2,p3]

[p2,p5]

[p1] [p4,p5]

t1

t2

Fig. 2. An accepting Petri net N2 (left) with initial marking [p1] and final mark-
ing [p4, p5]. N2 allows for infinitely many traces traces(N2) = {〈t1, t3, t4〉,
〈t1, t4, t3〉, 〈t1, t2, t1, t3, t4〉, 〈t1, t2, t1, t4, t3〉, 〈t1, t2, t1, t2, t1, t3, t4〉, . . .}. The reachabil-
ity graph (right) shows the reachable markings states(N2) = {[p1], [p2, p3], [p2, p5], [p3, p4],
[p4, p5]}.

3 Petri Nets Are More Declarative Than You Think

Petri nets are typically considered ‘procedural’ (like an imperative program) and not
‘declarative’. However, an accepting Petri net without places allows for any trace in-
volving the transitions in the net. Each place corresponds to a constraint. Consider for
example the accepting Petri net N3 in Figure 3. Place p1 models the constraint that t1
should occur precisely once. Place p2 models the constraint that t2 can only occur after
t1 or t3. Each occurrence of t2 requires an earlier occurrence of t1 or t3 and, at the
end, the number of occurrences of t2 is one less than the sum of t1 and t3. Place p3
models the constraint that each t4 occurrence should be preceded by a t2 occurrence
and, at the end, the number of occurrences of both t2 and t4 need to be the same. Note
that transition t5 is not constrained by one of the places and can occur at any point in
time and an arbitrary number of times. Removing a place can only enable more traces,
thus illustrating the declarative nature of Petri nets (anything is possible unless specified
otherwise).

4 Structure Theory and the Marking Equation

Structure theory focuses on behavioral properties that can be derived from the structural
properties of a Petri net [6, 7, 9]. It is impossible to go into details. Therefore, we restrict

p1

t1

t2

t3

t4

t5
p2

p3

Fig. 3. An accepting Petri net N3 with initial marking [p1] and final marking [p2] showing the
declarative nature of Petri nets.



4 Wil M.P. van der Aalst

ourselves to the marking equation which nicely shows how linear algebra can be used
to exploit the structure of a Petri net. To start, we represent the first two Petri nets as
a matrix with a row for each place and a column for each transition. The so-called
incidence matrix shows the ‘net effect’ of firing a transition (column) on each place
(row).

N1 =



t1 t2 t3 t4

p1 −1 0 0 0
p2 0 −1 0 0
p3 1 0 −1 −1
p4 0 1 −1 −1
p5 0 0 1 1

 N2 =



t1 t2 t3 t4

p1 −1 1 0 0
p2 1 −1 −1 0
p3 1 −1 0 −1
p4 0 0 1 0
p5 0 0 0 1


The incidence matrix imposes an order on places (rows) and transitions (columns).

For N1 and N2, the order is p1, p2, p3, p4, p5 and t1, t2, t3, t4. t = (1, 1, 1, 0)T is an
example of a transition column vector assigning value 1 to t1, t2, and t3 and value
0 to t4. p = (1, 1, 0, 0, 0)T is an example of a place column vector assigning value
1 to p1 and p2, and value 0 to p3, p4, and p5. Assume that p′ and p′′ are two place
column vectors representing the initial marking p′ and a target marking p′′. If p′′ is
reachable from p′ in some Petri net having incidence matrix N, then the so-called
marking equation

p′ +N · t = p′′

has a solution for some transition column vector t with non-negative values.
Consider N1 in Figure 1. We are interested in the different ways to get from the

initial marking [p1, p2] to the final marking [p5]. Hence, p′ = (1, 1, 0, 0, 0)T and p′′ =
(0, 0, 0, 0, 1)T , resulting in the following marking equation:

p′ +N · t =


1
1
0
0
0

+


−1 0 0 0
0 −1 0 0
1 0 −1 −1
0 1 −1 −1
0 0 1 1

 ·


t1
t2
t3
t4

 =


0
0
0
0
1

 = p′′

Hence, we can infer from the marking equation that t1 = 1, t2 = 1, and t3 + t4 = 1.
Since N1 allows for trace 〈t1, t2, t3〉, we know that t1 = t2 = t3 = 1 and t4 = 0 should
be a solution. Suppose we would like to know whether N1 allows for trace 〈t1, t3, t4〉.
Since t1 = t3 = t4 = 1 and t2 = 0 is not solution of the marking equation, we know
that 〈t1, t3, t4〉 is impossible without replaying the trace. For such a small example, this
may seem insignificant. However, the marking equation provides a powerful ‘algebraic
overapproximation’ of all possible traces. Note that the marking equation provides a
necessary but not a sufficient condition. The algebraic overapproximation can be used
to quickly prune search spaces in verification and conformance checking. For example,
the marking equation can be used to guide the search for so-called optimal alignments
in conformance checking [2].



Everything You Always Wanted To Know About Petri Nets 5

The marking equation is related to place and transitions invariants. Any solution of
the equation p ·N = 0 is a place invariant. For net N1:

p ·N = (p1, p2, p3, p4, p5) ·


−1 0 0 0
0 −1 0 0
1 0 −1 −1
0 1 −1 −1
0 0 1 1

 = (0, 0, 0, 0) = 0

For example, p = (p1, p2, p3, p4, p5) = (1, 0, 1, 0, 1) is the place invariant show-
ing that the number of tokens in the places p1, p3, and p5 is constant. The so-called
‘weighted token sum’ is constant for any initial marking. Given the initial marking
[p1, p2], the weighted token sum is 1. If the initial marking is [p12, p3, p43, p5], the
weighted token sum is (2× 1) + (0× 0) + (1× 1) + (3× 0) + (1× 1) = 4 and will
not change. p = (0, 1, 0, 1, 1), p = (1, 1, 1, 1, 2), and p = (1,−1, 1,−1, 0) are other
place invariants since p ·N1 = 0.

Any solution of the equation N · t = 0T is a transition invariant. For net N2:

N · t =


−1 1 0 0
1 −1 −1 0
1 −1 0 −1
0 0 1 0
0 0 0 1

 ·


t1
t2
t3
t4

 =


0
0
0
0
0

 = 0T

Any non-negative solution points to firing sequences returning to the same state. For
example, t = (t1, t2, t3, t4)T = (3, 3, 0, 0)T is the transition invariant showing that if
we are able to execute t1 and t2 three times, we return to the initial state. Again this
property is independent of the initial marking. Trace invariants can again be seen as an
‘algebraic overapproximation’ of all possible traces returning to the same state.

5 A Beautiful Subclass: Free-Choice Petri Nets

The three models shown in figures 1, 2, and 3 are all free-choice Petri nets. These
nets satisfy the constraint that any two transitions having the same place as input place
should have identical sets of input places. Formally, for any two transitions t1, t2 ∈ T
such that •t1 ∩ •t2 6= ∅: •t1 = •t2. In Figure 1, •t3 ∩ •t4 6= ∅, but •t3 = •t4 =
{p3, p4}. The free-choice requirement implies that choice and synchronization are ‘sep-
arable’, i.e., choices are ‘free’ and not controlled by places that are not shared by all
transitions involved in the choice. Free-choice Petri nets are very relevant for BPM,
PM, and WFM, because most modeling languages have constructs (e.g., gateways in
BPMN, control nodes in UML activity diagrams, and connectors in EPCs) modeling
AND/XOR-splits/joins. As a result, choice (XOR-split) and synchronization (AND-
join) are separated.

To exploit the properties of free-choice Petri nets, we often ‘short-circuit’ the ac-
cepting Petri net, i.e., we add a transition consuming tokens from the places in the final
marking and producing tokens for the places in the initial marking. This implies that



6 Wil M.P. van der Aalst

when reaching the final marking, it is possible to do a ‘reset’ and start again from the
initial state.

We refer to [7] for the many results known for free-choice Petri nets, e.g., Com-
moner’s Theorem, the two Coverability Theorems, the Rank Theorem, the Synthesis
Theorem, the Home Marking Theorem, the two Confluence Theorems, the Shortest
Sequence Theorem, and the Blocking Marking Theorem.

6 Conclusion

This short paper should be considered as a ‘teaser’ for researchers and experts working
on BPM, PM, and WFM. Although often not directly visible, many techniques and tools
depend on Petri nets. See [5–7, 9] to learn more about the Petri net theory. For the use
of Petri nets in BPM, PM, and WFM, see [1–4].

Acknowledgments: We thank the Alexander von Humboldt (AvH) Stiftung for sup-
porting our research.

References

1. W.M.P. van der Aalst. Business Process Management: A Comprehensive Survey. ISRN Soft-
ware Engineering, pages 1–37, 2013. doi:10.1155/2013/507984.

2. W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer-Verlag, Berlin, 2016.
3. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and

Systems. MIT Press, Cambridge, MA, 2004.
4. W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H.M.W. Verbeek,

M. Voorhoeve, and M.T. Wynn. Soundness of Workflow Nets: Classification, Decidability,
and Analysis. Formal Aspects of Computing, 23(3):333–363, 2011.

5. W.M.P. van der Aalst and C. Stahl. Modeling Business Processes: A Petri Net Oriented Ap-
proach. MIT Press, Cambridge, MA, 2011.

6. E. Best and H. Wimmel. Structure Theory of Petri Nets. In K. Jensen, W.M.P. van der Aalst,
G. Balbo, M. Koutny, and K. Wolf, editors, Transactions on Petri Nets and Other Models
of Concurrency (ToPNoC VII), volume 7480 of Lecture Notes in Computer Science, pages
162–224. Springer-Verlag, Berlin, 2013.

7. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge, UK, 1995.

8. M. Dumas, M. La Rosa, J. Mendling, and H. Reijers. Fundamentals of Business Process
Management. Springer-Verlag, Berlin, 2013.

9. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.


