
Modeling and Reasoning over Declarative Data-Aware
Processes with Object-Centric Behavioral Constraints

Alessandro Artale1, Alisa Kovtunova1, Marco Montali1, and Wil M.P. van der Aalst2

1 Free University of Bozen-Bolzano, Italy
surname@inf.unibz.it

2 Process and Data Science, RWTH Aachen University, Germany
wvdaalst@pads.rwth-aachen.de

Abstract. Existing process modeling notations ranging from Petri nets to BPMN
have difficulties capturing the data manipulated by processes. Process models of-
ten focus on the control flow, lacking an explicit, conceptually well-founded in-
tegration with real data models, such as ER diagrams or UML class diagrams. To
overcome this limitation, Object-Centric Behavioral Constraints (OCBC) models
were recently proposed as a new notation that combines full-fledged data models
with control-flow constraints inspired by declarative process modeling notations
such as DECLARE and DCR Graphs. We propose a formalization of the OCBC
model using temporal description logics. The obtained formalization allows us
to lift all reasoning services defined for constraint-based process modeling no-
tations without data, to the much more sophisticated scenario of OCBC. Fur-
thermore, we show how reasoning over OCBC models can be reformulated into
decidable, standard reasoning tasks over the corresponding temporal description
logic knowledge base.

1 Introduction

Despite the plethora of notations available to model business processes, process model-
ers struggle to capture real-life processes using mainstream notations such as Business
Process Model and Notation (BPMN), Event-driven Process Chains (EPC), and UML
activity diagrams. All such notations require the simplifying assumption that each pro-
cess model focuses on a single, explicitly defined case notion (also referred to as process
instance). The discrepancy between the single case view and reality becomes evident
when using process mining techniques to reconstruct processes based on the available
data [2]. Process mining starts from the available data and, unless one is using a Busi-
ness Process Management (BPM) or Workflow Management (WFM) system for process
execution, explicit case information is typically missing. Process-centric diagrams us-
ing BPMN, EPCs, or UML describe the life-cycle of individual cases. When formal
languages like Petri nets, automata, and process algebras are used to describe business
processes, they tend to model cases in isolation, and the data perspective is secondary
or missing completely. Languages like BPMN allow modelers to attach data to pro-
cesses, but without the possibility to express complex constraints over such data (e.g.,
cardinality constraints, is-a links, disjointness, covering, etc. as in ER/UML/ORM data
models). Mainstream business process modeling notations describe the lifecycle of one

type of process instance at a time missing the opportunity to capture the co-evolution
of multiple, interacting instances. In particular, complex constraints over data attached
to processes must influence the behavior of the process itself—e.g., consider the man-
agement of different orders, where the evolution of one order impacts on the possible
evolutions of the related orders.

Object-Centric Behavioral Constraint (OCBC) [3, 21, 22] models have been pro-
posed as a modeling language that combines ideas from declarative, constraint-based
languages like DECLARE [1], and from data modeling languages. OCBC allows to:
(i) describe the temporal interaction between activities in a given process and to at-
tach (structured) data to processes in a unified framework; (ii) model the interactions
between multiple process instances, specifically when there is a one-to-many or many-
to-many relationship between them. Fig. 1 illustrates the way in which OCBC models
tackle the above two issues. Register Email and Send Invite are two activities re-
lated to object classes Person and Meeting, respectively. A meeting is organized by
many persons, each of which can in turn organize many meetings. The double-headed
arrow connecting Register Email and Send Invite expresses the constraint that an
invitation for a meeting can be sent only if at least one organizer of that meeting has
previously registered her e-mail. Assuming that the object targeted by each activity is
indeed a case for that activity, this simple example already contains two distinct case
notions (Person and Meeting) that are intertwined. In conventional notations, this can
only be modeled from the viewpoint of one of the two instances: the registration pro-
cess of a person or the invitation process for a meeting. Taking the latter viewpoint using
conventional notations such as BPMN would require to explicitly introduce a loop to
handle the registration of one or more persons organizing a meeting. However, this is in-
correct because one registration may be followed by many meetings. One-to-many and
many-to-many relationships lead to convergence and divergence problems that cannot
be handled in notations describing isolated cases.

Register
Email

Send
Invite

Person Meeting
∗

organizes

∗

of
0..1

1
is for

0..1
1

Fig. 1: An OCBC constraint

OCBC models are related to artifact- and data-
centric approaches [12, 16, 19] aiming to integrate
data and processes. However, this is not done in a
single diagram representing different types of pro-
cess instances and their interactions. In addition,
these approaches usually assume complete knowl-
edge over the data, and require to fully spell out
data updates when specifying the activities [26, 14]. The few proposals dealing with
artifact-centric models with incomplete knowledge [10] do not come with a fully inte-
grated, declarative semantics as done here, but follow instead the Levesque functional
approach [20] to separate the evolution of the system from the inspection of (incom-
plete) knowledge in each state.

This paper provides a complete characterization of the formal semantics of the
OCBC approach, unambiguously defining the logical meaning of OCBC constraints.
We provide a visual and textual syntax for OCBC, then defining the semantics of the
different modeling constructs in terms of temporal description logics, i.e., a temporal
extension of (fragments of) the well-known OWL language. The obtained formaliza-
tion, in turn, allows us to lift all reasoning services defined for constraint-based process

6

7

8

Create
Order

Pay
Order

Pick
Item

Wrap
Item

Deliver
Items

Order Order Line Delivery

Product

Customer

1

contains

∗

∗

belongs to 1

∗

is for

1

1..∗
results in

0..1

1 receives

∗

creates
1

1

1

closes

1
fills2

1

1
prepares

1

refers to

1

1

3

5

4

Fig. 2: Example of an OCBC model

modeling notations without data, to the much more sophisticated setting of OCBC. In
particular, we show how reasoning over OCBC models can be reformulated into decid-
able, standard reasoning tasks over the corresponding temporal description logic knowl-
edge base, giving solid foundations to the boundaries of decidability and complexity of
reasoning over processes and their manipulated data.

The paper is organized as follows. We present a running example in Sect. 2. Sect. 3
briefly illustrates the temporal DL that will be used to encode and reason over OCBC
models. Sect. 4 shows the syntax for OCBC models and their semantics via the temporal
DL encoding. Reasoning and verification tasks for OCBC models are tackled in Sect. 5.
We present our remarks and future work in Sect. 6.

2 Running Example

The driving assumption underlying our proposal is that processes are modeled as a
mirror of their manipulated data. Such data is structured according to complex data
modeling constraints (see the lower part of Fig. 2). Data can be attached to activities
(see the dotted lines of Fig. 2) and ad-hoc co-reference constraints can be expressed on
those manipulated data (see the dash-dotted lines of Fig. 2) describing how activities
can share/reuse the same data objects.

Example 1. Fig. 2 shows an OCBC model for a process composed by five activities
(CreateOrder, PickItem, WrapItem, PayOrder and DeliverItems) and five object
classes in the data model (Order, OrderLine, Delivery, Product and Customer).
The top part describes the temporal ordering of activities and the bottom part how ob-
jects relevant for the process execution are structured (read the lower part as a standard
UML class diagram). The middle layer (dotted lines) relates activities and data. We
now informally describe the constructs highlighted in Fig. 2. 1 There is a one-to-
one correspondence between a CreateOrder activity and an Order, i.e., the execu-
tion of a CreateOrder activity creates a unique Order and, vice-versa, due to the 1

o1 : Order

ol1 : Order Line

ol2 : Order Line

ol3 : Order Line

d1 : Delivery

d2 : Delivery

. . .

. . .

. . .

. . .

. . .

. . .

co1 : Create Order
pi1 : Pick Item

pi2 : Pick Item
wi1 : Wrap Item

wi2 : Wrap Item
pi3 : Pick Item

wi3 : Wrap Item
po1 : Pay Order

di1 : Deliver Items
di2 : Deliver Items

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

creates
fills

contains

fills

contains

prepares
prepares

fills

contains

prepares
closes

refers to

results in

results in

refers to

results in

Fig. 3: Trace fragment for the OCBC model in Fig. 2

on the CreateOrder side, each Order has been generated by a single execution of a
CreateOrder activity. 2 Every execution of the PickItem activity refers to a unique
OrderLine and each OrderLine has been generated by an execution of a PickItem

activity (and not by a WrapItem activity). 3 Each CreateOrder activity is followed
by exactly one (single arrow) PayOrder activity related to the same order. 4 Each
PayOrder activity is preceded by possibly many (double arrow) PickItem activities.
5 Whenever we execute PayOrder we will never execute PickItem on the same paid

order. 6 The dash-dotted line denotes a co-reference constraint over an object class,
imposes that when the CreateOrder creates an order instance, that order instance will
eventually be paid by executing a PayOrder activity. 7 The dash-dotted line is, in this
case, a co-reference constraint now over a relationship which imposes that when we
fill an order line it must have been contained in exactly one order created by executing
a CreateOrder activity. Since an order line instance could not exist at the same time
we create an order instance and relationships are instantiated by co-existing objects, the
UML model correctly specifies that, at each point in time, each order participates zero
or more times in the contains relation. On the other hand, the co-reference constraint
together with the mandatory cardinalities constraints and the temporal constraints be-
tween CreateOrder, PayOrder and PickItem imply the eventual existence of at least
one order line contained in any given order. 8 The dash-dotted line starting with a ×
denotes a negative co-reference constraint that forbids filling with further order lines an
order that has been closed by a PayOrder activity.

A possible execution of an OCBC process, called in the following trace fragment,
records at once events, with their execution time, and the objects they operate on. In
addition, it also captures facts that are known to hold over such objects in a given
timestamp, in particular, the classes to which objects belong to at that time, as well
as how objects are related to each other. In addition, the trace fragment captures, as
customary in a standard first-order logic setting, incomplete knowledge about a process
execution, and OCBC constraints are hence interpreted under the open-world seman-
tics. This means that a trace fragment conforms to an OCBC model if it can be extended

towards a full trace that satisfies all the constraints contained therein. A trace fragment
conforming to the OCBC model of Fig. 2 is depicted in Fig. 3 and shown in the follow-
ing first-order logic notation (but also as a DL ABox after a small transformation). We
abbreviate activity names with their initials. Instances of activities, classes and relation-
ships are timestamped denoting the execution time of the activity, and the time point
when the described fact holds (timestamps respect the time ordering starting from t0).

CO(co1, t0),PI(pi1, t1),PI(pi2, t2),WI(wi1, t3),WI(wi2, t4),PI(pi3, t5),WI(wi3, t6),PO(po1, t7),

DI(di1, t8),DI(di2, t9),creates(co1,o1, t0),fills(pi1,ol1, t1),contains(o1,ol1, t1),fills(pi2,ol2, t2),

contains(o1,ol2, t2),prepares(wi1,ol1, t3),prepares(wi2,ol2, t4),fills(pi3,ol3, t5),

contains(o1,ol3, t5),prepares(wi3,ol3, t6),closes(po1,o1, t7),refers to(di1,d1, t8),

results in(ol1,d1, t8),results in(ol2,d1, t8),refers to(di2,d2, t9),results in(ol3,d2, t9),

The process described in the example cannot be modeled using conventional process
modeling languages, because (a) three different types of instances (of activities, classes
and also relationships instances) are intertwined in a uniform framework so that no
further coding or annotations are needed, and (b) cardinality and structural constraints
in the object class model influence the allowed behavior of activities, and vice-versa.
Take, e.g., the fact that in the example we have three different OrderLine instances
(ol1,ol2,ol3), then, together with the co-reference constraints on OrderLine, we im-
plicitly enforce the occurrence of three different PickItem and WrapItem activities.

3 A Gentle Introduction to Temporal DLs

Since description logics (DLs) are able to capture data models [11, 4, 17] and are the
logical formalism underpinning ontologies expressed in the standard Web Ontology
Language OWL (www.w3.org/2007/OWL), while the linear temporal logic (LTL) is
able to formalize the temporal interweaving of the activities in a process [1], we propose
here to use temporal description logics based on TUSALCQI and its fragments [27,
18, 8] to formally describe the semantics of OCBC models and to capture in a uniform
formalism both the processes and their attached data.

TUSALCQI is one of the most expressive and still decidable temporal descrip-
tion logics. The language alphabet contains object names a0,a1, . . ., concept names
A0,A1, . . . and role names P0,P1, Then, roles R and concepts C are given by the
following grammar:

R ::= Pi | R− C ::=> | Ai | (≥ qR C) | ¬C |C1uC2 |C1 UC2 |C1 SC2

where R− denotes the inverse of the role R (obtained by reversing the relation R) and q is
a positive integer. We use the standard abbreviations: C1tC2 =¬(¬C1u¬C2),⊥=¬>,
∃R = (≥ 1R >), ∃R.C = (≥ 1R C), (≤ qR C) = ¬(≥ (q+1)R C).Furthermore, all
the temporal operators used in LTL can be expressed via S ‘since’ and U ‘until’ [18].
Operators 3F and 3P (‘sometime in the future/past’) can be expressed as 3FC =>UC
and 3PC = >SC; operators 2F (‘always in the future’) and 2P (‘always in the past’)
are defined as dual to 3F and 3P, i.e., 2FC = ¬3F¬C and 2PC = ¬3P¬C. The non-
strict operators (including the current evaluation time), denoted as 3+

P and 3+
F , can be

captured as 3+
P C = Cu3PC and 3+

F C = Cu3FC (similarly, 2+
P and 2+

F are defined

as the dual operators of 3+
P and 3+

F , respectively). The ‘always’ operator 2∗ can be
expressed as 2∗ C = 2F2PC, while the dual ‘sometime’ is defined as 3∗C = ¬2∗ ¬C.
Finally, the temporal operators ©F (‘next time’) and ©P (‘previous time’) can be defined
as ©FC =⊥UC and ©PC =⊥SC.

A TUSALCQI TBox T is a finite set of concept and role inclusion axioms of the
form C1 vC2 and R1 v R2, respectively. An ABox,A, consists of assertions of the form
©nAk(ai), ©

nPk(ai,a j), where Ak is a concept name, Pk a role name, ai, a j object names
and, for n ∈ Z,

©n = ©F · · ·©F︸ ︷︷ ︸
n times

, if n≥ 0, and ©n = ©P · · ·©P︸ ︷︷ ︸
−n times

, if n < 0.

Taken together, the TBox T and ABox A form the knowledge base (KB) K = (T ,A).
In this paper, OCBC models will be encoded using TBoxes (see Sect. 4.4), while single
process executions (i.e., trace fragments as shown in Example 1) are encoded as ABoxes
(e.g., CO(co1, t0) is encoded as ©t0CO(co1)).

A temporal interpretation is a structure of the form I = ((Z,<),∆I ,{·I | n ∈ Z}),
where (Z,<) is the linear model of time, ∆I is a non-empty interpretation domain
and I(n) gives a standard DL interpretation for each time instant n ∈ Z: I(n) =(
∆I ,aI(n)

0 ,AI(n)
0 , . . . ,PI(n)

0 , . . .
)
, assigning to each concept name Ai a unary predicate

AI(n)
i ⊆ ∆I and to each role name Pi a binary relation PI(n)

i ⊆ ∆I ×∆I . We assume
that the domain ∆I and the interpretations aIi ∈ ∆I of object names are the same for
all n ∈ Z, i.e., we adopt the constant domain assumption and rigid designators (con-
sult [18] for more details on these assumptions). At each time instant n ∈ Z, role and
concept constructs are interpreted as follows

(R−)I(n) = {(y,x) ∈ ∆
I ×∆

I | (x,y) ∈ RI(n)},

(≥qR C)I(n) =
{

x ∈ ∆
I |]{y ∈CI(n) | (x,y) ∈ RI(n)} ≥ q

}
,

(¬C)I(n) = ∆
I \CI(n), >I = ∆

I , (C1uC2)
I(n) = CI(n)

1 ∩CI(n)
2 ,

(C1 U C2)
I(n) =

⋃
k>n

(
CI(k)

2 ∩
⋂

n<m<k

CI(m)
1

)
,

(C1 SC2)
I(n) =

⋃
k<n

(
CI(k)

2 ∩
⋂

n>m>k

CI(m)
1

)
,

where]X denotes the cardinality of X . Thus, for example, x ∈ (C1 UC2)
I(n) iff there is

a moment k > n such that x ∈ CI(k)
2 and x ∈ CI(m)

1 , for all moments m between n and
k. Note that the operators S and U are ‘strict’ in the sense that their semantics does not
include the current moment of time.
Concept and role inclusion axioms (TBox) are interpreted in I globally:

I |=C1 vC2 iff CI(n)
1 ⊆CI(n)

2 for all n ∈ Z,

I |= R1 v R2 iff RI(n)
1 ⊆ RI(n)

2 for all n ∈ Z.

ABox assertions are interpreted relatively to the initial moment, 0:

I |= ©nAk(ai) iff aIi ∈ AI(n)
k ,

I |= ©nPk(ai,a j) iff (aIi ,a
I
j) ∈ PI(n)

k .

We call I a model of a KB K = (T ,A) and write I |= K if I satisfies all inclusions
in T and all assertions in A. A KB K is satisfiable if it has a model. A concept C
(role R) is satisfiable with respect to K if there are a model I of K and n ∈ Z such
that CI(n) 6= /0 (respectively, RI(n) 6= /0). It is readily seen that the concept and role
satisfiability problems are equivalent to KB satisfiability.

Reasoning in TUSALCQI w.r.t. to a KB is a problem which has been proven to be
ExpTime-complete [27, 18]. To achieve better complexity results fragments ofALCQI
must be considered. Nice results have been gained when temporalizing DL-Lite log-
ics [13, 6]—see, e.g., the temporal DL-Lite called TUSDL-Lite(HN)

bool where reasoning
has the same complexity of LTL reasoning, i.e., PSpace-complete [8].

4 The OCBC Model

We now present the syntax and graphical appearance of OCBC models, together with
their formal semantics. The original proposal of the OCBC model is the way activities
and data are related. In particular, an OCBC model captures, at once: (i) Data depen-
dencies, represented using standard data modeling constructs, i.e., classes, relationships
and constraints between them; (ii) Activities, accounting for units of work within a pro-
cess; (iii) Mutual relationships between activities and classes, linking the execution
of activities in a given process with the data objects they manipulate; (iv) Temporal
constraints between activities; (v) Co-reference constraints that enforce the application
of temporal constraints, and in particular limit their application to those activities that
indirectly co-refer thanks to the objects and relationships they point to.

4.1 The Data Model – ClaM

Data used by the activities of an OCBC model is structured according to a standard
modeling language, i.e., ER/UML/ORM. While ALCQI is able to fully capture the
semantics of such data models (see [11, 4, 17] and references therein) in the follow-
ing, just for the sake of simplicity and lack of space, we present only a subset of the
complete set of modeling constructs allowed in those standard data modeling languages
and denote such set of modeling constructs as the ClaM data model (which stands for
CLAss data Model). In particular, the following syntax limits ClaM to capture object
classes that can be organized along ISA hierarchies (with possibly disjoint sub-classes
and covering constraints), binary relationships between object classes and cardinalities
expressing participation constraints of object classes in relationships.

Definition 1 (ClaM Syntax). A conceptual schema Σ in the Class Model, ClaM, is a
tuple Σ = (UC,UR,τ,#dom,#ran, ISA,DISJ,COV), where:

– UC is the universe of object classes. We denote object classes as O1,O2, . . .;
– UR is the universe of binary relationships among object classes. We denote rela-

tionships as R1,R2, . . .;
– τ :UR→UC×UC is a total function associating a signature to each binary relation-

ship. If τ(R) = (O1,O2) then O1 is the range and O2 the domain of the relationship;
– #dom :UR×UC 7→N×(N∪{∞}) is a partial function defining cardinality constraints

on the domain of a relationship. #dom(R,O) is defined only if τ(R) = (O,O1);

A B

response

A B

unary-response

A B

non-response

A B

precedence

A B

unary-precedence

A B

non-precedence

A B

responded-existence

A B

non-coexistence

response(A,B) If A is executed, then B must be executed afterwards.
unary-response(A,B) If A is executed, then B must be executed exactly once afterwards.
precedence(A,B) If A is executed, then B must have been executed before.
unary-precedence(A,B) If A is executed, then B must have been executed exactly once before.
responded-existence(A,B) If A is executed, then B must also be executed (either before or afterwards).
non-response(A,B) If A is executed, then B will not be executed afterwards.
non-precedence(A,B) If A is executed, then B was never executed before.
non-coexistence(A,B) A and B cannot be both executed.

Fig. 4: Types of temporal constraints between activities and their intuitive semantics

– #ran : UR×UC 7→N×(N∪{∞}) is a partial function defining cardinality constraints
on the range of a relationship. #ran(R,O) is defined only if τ(R) = (O1,O);

– ISA⊆UC×UC is a binary relation defining the super-class and sub-class hierarchy
on object classes. If ISA(C1,C2) then C1 is said to be a sub-class of C2 while C2 is
said to be a super-class of C1;

– DISJ ⊆ 2UC ×UC is a binary relation defining the set of disjoint sub-classes in an
ISA hierarchy;

– COV ⊆ 2UC ×UC is a binary relation defining the set of sub-classes covering the
super-class in an ISA hierarchy.

As for the full-fledged syntax of ER/UML/ORM, their formal set-theoretic semantics,
and their translation as ALCQI KBs we refer to [11, 4, 17]. Concerning the semantics
of the ClaM constructs, cardinality constraints are interpreted as the number of times
each instance of the involved class participates in the given relationship, ISA is inter-
preted as sub-setting, DISJ and COV are interpreted in the obvious way using disjoint-
ness/union between classes, relationships are interpreted as binary predicates, while the
relationship signature acts as a typing for its arguments.

Example 2. The lower part of the OCBC model shown in Fig. 2 captures the data model
as a ClaM diagram with:

UC = {Order,OrderLine,Product,Customer,Delivery};
UR = {contains,belongs to,is for,results in,receives};
τ(contains) = (Order,OrderLine), . . .

#dom(contains,Order) = (0,∞); #ran(contains,OrderLine) = (1,1); . . .

Cardinalities are shown in the diagram following the UML reading.

4.2 Temporal Constraints over Activities

Taking inspiration from the DECLARE patterns [1], we present here the temporal con-
straints between (pairs of) activities that can be expressed in OCBC. Fig. 4 graphi-

cally renders such constraints together with their intuitive meaning. In the following we
present their syntax.

Definition 2 (Temporal constraints). Let
– UA be the universe of activities, denoted with capital letters A1,A2, . . .;
– UTC be the universe of temporal constraints, i.e., UTC = {response,
unary-response, precedence, unary-precedence, responded-existence,
non- response, non-precedence, non-coexistence}, where each tc ∈ UTC is
a binary relation over activities, i.e., tc⊆ UA×UA.

The set of temporal constraints in a given OCBC model is denoted as ΣTC and is con-
ceived as a set of elements of the form tc(A1,A2), where tc ∈ UTC and A1,A2 ∈ UA.

Remark 1. We observe that the non-precedence constraint is syntactic sugar, as it
can be emulated using non-response: non-precedence(A,B)≡ non-response(B,A).
Thus, in the following we will not consider it anymore. When defining later
on the OCBC model we will consider the set Σ

+
TC of positive constraints

containing response, unary-response, precedence, unary-precedence, and
responded-existence, and the set Σ

−
TC of negative constraints containing

non-response and non-coexistence.

4.3 Syntax of OCBC Models

We are now ready to define the OCBC model starting from data models and temporal
constraints as respectively defined in Sections 4.1 and 4.2.

Definition 3 (OCBC syntax). An OCBC model,M, is a tuple:
(ClaM,ΣTC,UA,URAC ,τRAC ,#act,#obj,cref,neg-cref), where:

– ClaM is a data model as in Def. 1, and ΣTC a set of temporal constraints as in
Def. 2;

– UA is the universe of activities;
– URAC is the universe of activity-object relationships being a set of binary relation-

ships;
– τRAC :URAC → UA×UC is a total function associating a signature to each activity-

object relationship. If τRAC(R) = (A,O) then A ∈ UA and O ∈ UC;
– #act :URAC ×UA 7→ N× (N∪ {∞}) is a partial function defining cardinality con-

straints on the participation of activities in activity-object relationships. #act(R,A)
is defined only if τRAC(R) = (A,O);

– #obj :URAC ×UC 7→ {1} is a partial function denoting the activity that generated a
given object in O. #obj(R,O) is defined only if τRAC(R) = (A,O);

– cref is the partial function of co-reference constraints s.t.
cref : Σ

+
TC×URAC ×URAC 7→ UC ∪ UR;

– neg-cref is the partial function of negative co-reference constraints s.t.
neg-cref : Σ

−
TC×URAC ×URAC 7→ UC ∪ UR.

Inverses of activity-object relationships are assumed to be functional capturing the intu-
ition that a single occurrence of an activity can manipulate an object at a given point in
time. To clarify the syntax of the OCBC modeling language we illustrate the scenario
provided in Example 1.

Example 3. We consider the OCBC model in Fig. 2 where the activities are depicted
in the upper part of the figure while the lower part shows the ClaM data model for the
data manipulated by the activities of the process. The set URAC of the activity-object
relationships is: URAC = {create,closes,fills,prepares,refers to} connecting
an activity with the manipulated objects as an effect of executing the activity itself.
For example, the activity CreateOrder creates an instance of the object class Order
when it is executed. Cardinality constraints can be added to activity-object relationships
to specify participation constraints either on the activity side or on the object class side.
For example, each execution of PickItem fills one and only one OrderLine, i.e.,
#act(fills,PickItem) = (1,1). On the other hand, any OrderLine must be neces-
sarily filled by executing a PickItem activity, i.e., #obj(fills,OrderLine) = 1. The
co-reference constraints involving object classes specify constraints on how objects
connected to different activities can be shared. For example, the OrderLine instance
filled by a PickItem is the same as the one prepared by the corresponding WrapItem.
These co-reference constraints can be expressed using the following OCBC syntax:

cref
(
unary-response(PickItem,WrapItem),fills,prepares

)
= OrderLine,

cref
(
unary-precedence(WrapItem,PickItem),prepares,fills

)
= OrderLine.

The co-reference constraint 7 , and the negative co-reference constraint 8 are ex-
pressed as, respectively:

cref(unary-precedence(PickItem,CreateOrder),fills,creates) = contains;
neg-cref(non-response(PayOrder,PickItem),closes,fills) = contains.

4.4 Semantics of OCBC Models

We now focus on the semantics of OCBC models. As pointed out in Sect. 2, OCBC
models are interpreted using traces that capture the occurrence of events, the relation-
ships between events and objects, and the evolution of objects and relationships over
time. Here, we base the OCBC semantics on infinite traces (cf. Sect. 6 for a remark on
finite traces). The information recorded in an actual execution trace is interpreted under
incomplete knowledge, i.e., as a trace fragment containing explicit factual knowledge
that is known to certainly hold but, in general, only partially capturing what actually
occurred. Thus, the notion of trace as used in event log formats such as the XES IEEE
standard has to be interpreted, in our setting, as a trace fragment.

Our effort is to reconcile the process flow semantics with the data model seman-
tics. We thus resort to a knowledge base expressed in the temporal DL TUSALCQI.
In particular, we map both activities and object classes to TUSALCQI concepts,
while activity-object relationships and relationships of the data model are mapped to
TUSALCQI roles. Such an encoding of OCBC models using KBs in the temporal DL
TUSALCQI interprets constraints of an OCBC model over infinite traces, while the
ABox, that encodes the explicit factual knowledge, i.e., the trace fragment at hand, is
interpreted as a finite portion of such infinite traces. Here we detail the encoding.

Concerning the semantics of the ClaM data model, we interpret it via a mapping to
ALCQI as already discussed in Sect. 4.1. Furthermore, we can add to the data model
temporal constraints captured in TUSALCQI as shown in [5, 7].

A1 A2

O

R1 R2

(a)

A1 A2

O1 O2
R

R1 R2

(b)

A1 A2

O

R1 R2

(c)

A1 A2

O1 O2
R

R1 R2

(d)

Fig. 5: Co-reference (response) constraints over (a) object classes and (b) relationships,
with their negated versions (c-d)

As for activity-object relationships, let R ∈ URAC so that τRAC(R) = (A,O). The fol-
lowing TUSALCQI axioms captures inverse functionality, and domain and range re-
strictions for R:

(≥ 2 R− >)v⊥, ∃Rv A, ∃R− v O. (1)

A cardinality constraint of the form #obj(R,O) = 1, denoting the activity that generated
an object of class O, is captured as:

Ov3+
P (Ou∃R−).

Cardinality constraints for the participation of activities in activity-object relationships
(#act) are instead captured as classical cardinalities in data models (see [11, 5, 7]).
Semantics of co-reference constraints. Having fixed the semantics for the ClaM data
model and the one for the activity-object relationships we are left with the most tricky
aspect of OCBC, namely the semantics of co-reference constraints. In the following,
we consider the different kinds of co-reference constraints which, according to Defini-
tion 3, can be either positive or negative, and can range either over object classes (as
illustrated in Fig. 5a and 5c) or over relationships (as illustrated in Fig. 5b and 5d).
Let R1,R2 ∈ URAC , A1,A2 ∈ UA and O ∈ UC s.t. tc(A1,A2) ∈ Σ

+
TC, τRAC(R1) = (A1,O),

τRAC(R2)= (A2,O) and cref be a co-reference constraint over object classes of the form:
cref(tc(A1,A2),R1,R2) = O (as in Fig. 5a). Then, co-reference over object classes when
tc is the response temporal constraint is captured by the axiom:

∃R−1 v3F∃R−2 (2)

This expresses that ”whenever an object is in the range of R1 then sometime in the future
it must be also in the range of R2”. This semantics enforces a temporal constraint over
the activities via the co-referenced object, i.e., when the activity A1 is linked via R1 to
an object in O then it must be followed by an execution of A2 referencing the same
object via R2. Formally, the following logical implication holds:

{(1), (2),A1 v ∃R1} |= A1 v ∃R1.3F∃R−2 .A2 (3)

When tc is the unary-response temporal constraint we need to add to formula (2) an-
other formula that guarantees a unique occurrence of A2 over the co-referenced object:

∃R−2 u3P∃R−1 v2F¬∃R−2 (4)

o1 . . .

a1 : A1 b1 : A2 b2 : A2

t0 t1 t2

R1 R2 R2

(a)

o1 : O1

o2 : O2

. . .

. . .

a1 : A1 b1 : A2 b2 : A2

t0 t1 t2

R1 R2

R

R2

(b)
Fig. 6: (a) Trace fragment for (2) but not (4); (b) Trace fragment for (8) but not (10)

Fig. 6a shows a possible instantiation of the OCBC model in Fig. 5a which, in turn, is
not a valid fragment in case the temporal constraint is changed to unary-response.
Similar formulas hold when tc is a temporal constraint over the past, i.e., ei-
ther precedence (formula (5)), unary-precedence (formulas (5) and (6)) or
responded-existence (formula (7)).

∃R−1 v3P∃R−2 (5)

∃R−2 u3F∃R−1 v2P¬∃R−2 (6)

∃R−1 v3∗ ∃R−2 (7)

We now consider co-reference constraints over relationships. As in Fig. 5b, let
O1,O2 ∈ UC, R ∈ UR, with τ(R) = (O1,O2), τRAC(R1) = (A1,O1), τRAC(R2) = (A2,O2)
and cref be a co-reference of the form: cref(tc(A1,A2),R1,R2) = R. Then, the semantics
of co-reference over relationships when tc is the response constraint is captured by:

∃R−1 v3F∃R.∃R−2 (8)

Expressing that ”every object in the range of R1 sometime in the future should be con-
nected via R to an object in the range of R2.” A logical implication similar to (3) holds:

{(1), (8),A1 v ∃R1} |= A1 v ∃R1.3F∃R.∃R−2 .A2 (9)

When tc is unary-response we should add to formula (8) another formula that guar-
antees that activity A1 is followed by a single occurrence of A2 via R. The following
axiom expresses that ”whenever an object is in the range of R2 (thus under the occur-
rence of A2) and is connected via R− to an object that before was in the range of R1
(due to the occurrence of the activity A1) then, it will never be in the range of R2.”

∃R−2 u∃R
−.3P∃R−1 v2F¬∃R−2 (10)

Fig. 6b shows an instantiation of the OCBC model in Fig. 5b that, in turn, is not any-
more a valid fragment in case the temporal constraint is changed to unary-response
(because o2 is pointed to by two different instances—b1,b2—of the activity A2).
Similar formulas hold when tc is precedence (axiom (11)), unary-precedence (ax-
ioms (11) and (12)) and responded-existence (axiom (13))

∃R−1 v ∃R.3P∃R−2 (11)

∃R−2 u3F∃R−.∃R−1 v2P¬∃R−2 (12)

∃R−1 v3∗ ∃R.3∗ ∃R−2 (13)

Note that axiom (13) allows for responded-existence to be symmetric—as for ax-
iom (7)—i.e., {(13)} |= ∃R−2 v3∗ ∃R−.3∗ ∃R−1 .

We now consider co-references in the presence of negative behavioral con-
straints (see Fig. 5c-5d). We start with co-reference over object classes. In case tc is
non-response (as in Fig. 5c) then the following axiom expresses that ”whenever an
object is in the range of R1 then never in the future it could be in the range of R2”:

∃R−1 v2F¬∃R−2 . (14)

As a consequence of this axiom, and of the fact that the domains of R1 and R2 are
activities A1 and A2, while they both range over the same class O, we can also read
this negative co-reference as ”every instance of activity A1 can never be followed by
instances of A2 sharing the same object in O”. The right-hand side of the axiom is the
negation of the right-hand side of axiom (2). When tc is non-coexistence, we have

∃R−1 v2∗ ¬∃R−2 (15)

Again, the right-hand side is the negation of the right-hand side of axiom (7).
When negative co-references involve a relationship and tc is non-response (as in

Fig. 5d) the following axiom expresses that “whenever an object is in the range of R1
then never in the future it could be connected via R to an object in the range of R2 (thus
under the occurrence of A2)”:

∃R−1 v2F¬∃R.∃R−2 (16)

implying that “every instance of activity A1 can never be followed by instances of A2
sharing the same pair of objects in R”. Notice again that the right-hand side of the
above axiom is the negation of the right-hand side of axiom (8). Finally, by negating
the right-hand side of axiom (13) we capture the case when tc is non-coexistence

∃R−1 v2∗ ¬∃R.3∗ ∃R−2 (17)

Similar to responded-existence, non-coexistence over both object classes (15)
and relationships (17) is obviously symmetric. Formally, considering the co-reference
over a relationship, {(17)} |= ∃R−2 v2∗ ¬∃R−.3∗ ∃R−1 .

Altogether, an OCBC model can be captured via a TBox in TUSALCQI, and its
trace fragments using corresponding ABoxes. Overall, a TUSALCQI KB is thus able
to provide a uniform representation for OCBC, on which we can apply ad hoc reasoning
services as described in the following section.

5 Verification and Reasoning over OCBC Models

The main motivation to provide a mapping from OCBC models to a DL Knowledge
Base is the possibility of carrying out automated reasoning over them. We discuss how
the typical services for verifying declarative, constraint-based process models can be
lifted to the more sophisticated setting of OCBC. To do so, we build on the services de-
fined for the well-established DECLARE language [25, 24]. In the following, we show

how such services can be reformulated as standard reasoning tasks over TUSALCQI
knowledge bases, in turn inheriting their decidability and worst-case complexity.

LetM be an OCBC model of interest, and ρ a trace fragment overM. We denote
by TM and Aρ the TBox and ABox obtained by encodingM and ρ in TUSALCQI,
and by KM,ρ the resulting TUSALCQI KB, i.e., KM,ρ = (TM,Aρ).
Model Consistency. The most fundamental service is to check whetherM is consis-
tent, that is, supports the empty trace fragment (in turn witnessesing that it supports at
least one full trace). This directly reduces to check whether TM is satisfiable.
Activity Executability. An OCBC model may be consistent, but including so-called
dead activities [25], i.e., activities that cannot be executed at all. We can show whether
an activity A inM can be executed by verifying whether such an activity is not logically
implied to be empty in the corresponding TBox, i.e., TM 6|= Av⊥.

Create
Order

Pay
Order

Order

creates closes

(a)
Pay

Order
Wrap
Item

Order Order Line
contains

closes prepares

(b)

Fig. 7: Implied (a) and non-
implied (b) constraints by the
OCBC model of Fig. 2

Implied Properties. Let α be a model property ex-
pressible in TUSALCQI. We can check whether
M |= α by checking whether KM,ρ |= α . E.g., (3) is
a property implied byM. The presented encoding of
OCBC into TUSALCQI allows us to use its reason-
ing capabilities to detect so-called hidden constraints
[24], i.e., constraints that are implicitly present inM
even though they are not shown graphically.

Example 4. Consider again the OCBC model of
Fig. 2, and the two constraints in Fig. 7, where Fig. 7a
captures that an order can be paid only if it has been
created before, and Fig. 7b that no order line of an or-
der can be wrapped after that order is paid. It is easy
to verify that the former constraint is indeed implied,
while the latter constraint it is not. While it is true that once an order is paid no further
items can be picked for it, already picked order lines may still need to be wrapped.

Execution Trace Compliance. This amounts to check whether a trace fragment ρ sat-
isfies the constraints in M. Since ρ is a trace fragment, we require that no explicit
violation is contained in ρ and that ρ can be ’completed’ into a fully specified, infi-
nite trace that satisfies M. This corresponds to the notion of conditional compliance
recently introduced in [15]. In our setting, this amounts to check whether the ABoxAρ

encoding ρ is satisfiable w.r.t. the TBox TM, i.e., whether the KB KM,ρ is satisfiable.
Complexity considerations. Notice that, KB satisfiability and logical implication are
mutually reducible inALCQI [6] (and thus in TUSALCQI) and these reasoning prob-
lems over TUSALCQI are ExpTime-complete [27, 18], which establishes an ExpTime
upper bound for verifying properties of OCBC models. The need to use ALCQI as
the base DL is due to co-reference constraints over relationships, which requires the
power of qualified existential (∃R.C) and its dual. If we renounce such constraints
(i.e., only consider OCBC constraints co-referring on classes), we could use a tem-
poralized version of a DL-Lite dialect. In particular, the temporal DL-Lite fragment
TUSDL-Lite(HN)

bool , showed to be PSpace-complete in [8], is able to capture OCBC mod-
els with the exception of co-reference constraints over relationships while, at the level

of the data model, TUSDL-Lite(HN)
bool captures the main constructs of UML—with the

exception of ISA between relationships and n-ary relationships (cf. [4, 7] for details).

6 Conclusions

We presented the first, complete formalization of object-centric behavioral constraints
(OCBC): a new approach to business process modeling where data models and declar-
ative constraints over activities are seamlessly integrated. Our approach comes with
a logic-based semantics for OCBC in terms of an encoding into the temporal DL
TUSALCQI. This unambiguously defines the meaning of OCBC models, and lays
the foundations for reasoning over them, allowing us to understand the (decidability
and) complexity boundaries of reasoning tasks over OCBC models. TUSALCQI inter-
prets time as a linear, infinite structure, which contrasts with the finite-trace semantics
adopted in other declarative process modeling languages such as Declare. The study
of temporal description logics with finite-time semantics is rather novel [9], and may
constitute the basis for reasoning over OCBC models on finite traces.

We have considered here standard data models to capture the structural aspects of
OCBC. Variants of OCBC with non-conventional temporalized cardinality constraints
over relationships have been used [21, 22]. We intend to study whether such constraints
may impact on the decidability and complexity of reasoning over OCBC models.

In our research agenda, we are interested not only in design-time reasoning of
OCBC models, but also in enactment, monitoring, and runtime verification. This poses
two major challenges. On the one hand, a monitored trace has to be considered under
a “partially closed” semantics, that is, by interpreting it as a complete record of what
happened so far, while missing information about the future. On the other hand, a more
fine-grained analysis, in the style of [23], regarding if and how a monitored trace con-
forms to an OCBC model is needed. We intend to attack this problem by combining
finite and infinite reasoning over a partially closed knowledge base.
Acknowledgments. This research has been partially supported by the UNIBZ CRC
projects PWORM and REKAP.

References

1. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Be-
tween Flexibility and Support. Computer Science–Research and Development 23(2), 99–113
(2009)

2. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer (2016)
3. van der Aalst, W.M.P., Li, G., Montali, M.: Object-Centric Behavioral Constraints. CoRR

Technical Report, CoRR (2017), http://arxiv.org/abs/1703.05740
4. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Reasoning over

extended ER models. In: Proc. of the 26th Int. Conf. on Conceptual Modeling (ER). LNCS,
vol. 4801, pp. 277–292. Springer (2007)

5. Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information systems.
Annals of Mathematics and Artificial Intelligence 50(1–2), 5–38 (2007)

6. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and re-
lations. JAIR 36, 1–69 (2009)

7. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Complexity of reasoning over
temporal data models. In: Proc. of the 29th Int. Conf. on Conceptual Modeling (ER). LNCS,
vol. 4801, pp. 277–292. Springer (2010)

8. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for temporal con-
ceptual data modeling with description logics. ACM Transactivity on Computational Logic
(TOCL) 15(3) (2014)

9. Artale, A., Mazzullo, A., Ozaki, A.: Do you need infinite time? In: In Proc. of the 28th
International Joint Conference on Artificial Intelligence (IJCAI) (2019), to appear

10. Bagheri Hariri, B., Calvanese, D., Montali, M., De Giacomo, G., De Masellis, R., Felli, P.:
Description logic Knowledge and Action Bases. JAIR 46 (2013)

11. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artificial
Intelligence Journal 168(1–2), 70–118 (2005)

12. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of Artifact-
Centric Business Process Models. In: Proc. of the 11th Int. Enterprise Distributed Object
Computing Conf. (EDOC). LNCS, vol. 4714, pp. 288–304. Springer (2007)

13. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. Journal of Auto-
mated Reasoning 39(3), 385–429 (2007)

14. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process analysis: A
database theory perspective. In: Proc. of 32nd PODS. ACM (2013)

15. Chesani, F., De Masellis, R., Di Francescomarino, C., Ghidini, C., Mello, P., Montali,
M., Tessaris, S.: Compliance in business processes with incomplete information and time
constraints: a general framework based on abductive reasoning. Fundamenta Informaticae
159(3), 1–37 (2018)

16. Cohn, D., Hull, R.: Business Artifacts: A Data-centric Approach to Modeling Business Op-
erations and Processes. IEEE Data Engineering Bulletin 32(3), 3–9 (2009)

17. Franconi, E., Mosca, A., Solomakhin, D.: ORM2: formalisation and encoding in OWL2. In:
Proc. of Int. Workshop on Fact-Oriented Modeling (ORM). pp. 368–378 (2012)

18. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics:
theory and applications. Studies in Logic. Elsevier (2003)

19. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verification of GSM-Based Artifact-Centric
Systems by Predicate Abstractivity. In: Proc. of the 13th Int. Conf. on Service-Oriented
Computing (ICSOC). LNCS, vol. 9435, pp. 253–268. Springer (2015)

20. Levesque, H.J.: Foundations of a functional approach to knowledge representation. Artificial
Intelligence Journal 23, 155–212 (1984)

21. Li, G., de Carvalho, R., van der Aalst, W.: Automatic discovery of object-centric behavioral
constraint models. In: Int. conf. on Business Information Processing (BIS17) (2017)

22. Li, G., de Carvalho, R., de Murillas, E., van der Aalst, W.: Extracting object-centric event
logs to support process mining on databases. In: CAISE Forum. Springer (2108)

23. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime verification
of LTL-based declarative process models. In: Proc. of the 2nd International Conference on
Runtime Verification (RV). LNCS, vol. 7186, pp. 131–146. Springer (2011)

24. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative
specification and verification of service choreographies. ACM Trans. TWEB 4(1) (2010)

25. Pesic, M., Schonenberg, H., van der Aalst, W.M.: DECLARE: Full support for loosely-
structured processes. In: Proc. of the Eleventh IEEE Int. Enterprise Distributed Object Com-
puting Conference (EDOC’07). pp. 287–298. IEEE Computer Society (2007)

26. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: Proc. of the
12th Int. Conf. on Database Theory (ICDT). pp. 1–13 (2009)

27. Wolter, F., Zakharyaschev, M.: Temporalizing description logics. In: Frontiers of Combining
Systems, pp. 379 – 401. Research Studies Press-Wiley (2000)

