
Component-Based Software Architectures:
A Framework Based on Inheritance of Behavior

W.M.P. van der Aalst a;c;d;1 K.M. van Hee b;c;2

R.A. van der Toorn b;c;3

aFaculty of Technology Management, Department of Information and Technology,
Eindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The

Netherlands
bDeloitte & Touche Bakkenist, P.O. Box 23103, NL-1100 DP Amsterdam, The

Netherlands
cFaculty of Mathematics and Computing Science, Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
dDepartment of Computer Science, University of Colorado at Boulder, Campus Box 430,

Boulder, CO 80309-0430, USA

Abstract

Software architectures shift the focus of developers from lines-of-code to coarser-grained
components and their interconnection structure. Unlike fine-grained objects, these compo-
nents typically encompass business functionality and need to be aware of the underlying
business processes. Hence, the interface of a component should reflect relevant parts of the
business process and the software architecture should emphasize the coordination among
components. To shed light on these issues, we provide a framework for component-based
software architectures focusing on the process perspective. The interface of a component is
described in terms of Petri nets and projection inheritance is used to determine whether a
component “fits”. Compositionality and substitutability are key issues for component-based
development. This paper provides new results to effectively deal with these issues.

Key words: Software architectures, components, Petri nets, inheritance.

1 E-mail: w.m.p.v.d.aalst@tm.tue.nl
2 E-mail: kvhee@bakkenist.nl
3 E-mail: rvdtoorn@bakkenist.nl

Preprint submitted to Science of Computer Programming 21 July 2000

1 Introduction

Research in the domain of component-based software architectures [17,33,34] de-
veloped along two lines. On the one hand, there are contributions focussing on a
formal foundation for the definition of software architectures. Examples are the
many Architecture Description Languages (ADLs), e.g., ARMANI, Rapide, Dar-
win, Wright, and Aesop, that have been proposed (cf. [28]). Another example is
the extension of UML based on the ROOM language [32] which allows for the
specification of capsules (i.e., components), subcapsules, ports, connectors, and
protocols. On the other hand, more pragmatic approaches focusing on concrete
infrastructures have been developed. These approaches typically deploy middle-
ware technology such as ActiveX/DCOM, CORBA, and Enterprise JavaBeans or
focus on proprietary architectures such as the ones used for Enterprise Resource
Planning (ERP) systems (e.g., SAP R/3 middleware). Both lines of research are
characterized by a focus on the component interface and the coordination between
components rather than the inner workings of components. The ultimate goal is
that information systems can be assembled from large-grained components based
on a thorough understanding of the business processes without detailed knowledge
of the inner workings of fine-grained components (i.e., objects) [34].

In this paper, we focus on the dynamic behavior of components rather than the
passing of data, the signature of methods, and naming issues. Since we want to rea-
son about consistency of components with respect to their dynamics, we need an
architectural framework which provides a formal basis for modeling and analyzing
the dynamics of components. The framework presented in this paper is based on
Petri nets [31]. The choice for Petri nets over other formal methods such as process
algebra and state charts is primarily motivated by the availability of advanced in-
heritance notions and concrete inheritance-preserving transformation rules [4,10].

Component Specification (CS)

Component Architecure (CA)

CP1 CP2 CP3 CP4

Component

Component Specification (CS)

Component Architecure (CA)

CP1 CP2 CP3 CP4

Component

Fig. 1. A component consists of a component specification, a component architecture, and
component placeholders.

2

Figure 1 illustrates the notion of component we will use throughout this paper.
A component has a Name and a Component Specification (CS). The component
specification gives the functionality provided by the component and is specified in
terms of a particular variant of Petri nets [2] called C-nets. The internal structure
of a component is given by a Component Architecture (CA). The component archi-
tecture may refer to other components by using Component Placeholders (CPs).
Every component placeholder describes the functionality of a component used in
the component architecture in terms of a C-net. A component is closed if it contains
no other components, i.e., there are no component placeholders in its architecture.
One can think of such a component as being atomic. A System Architecture (SA)
is a set of interconnected components, i.e., component placeholders are linked to
concrete components.

i

o

open

send

receive

close

CS
channel i

o

send_message

receive_message

CP
message_
handler

(a) component specification (c) component placeholder

i

o

open

send

receive

close

CA
channel

(b) component architecture

m
es

sa
ge

_h
an

dl
er

by_pass

start_maintenance

end_maintenance

service_channel

Fig. 2. The component channel.

Figure 2 shows a component named channel in terms of the framework used in this
paper. The channel is described by (a) its specification, (b) its architecture, and (c)
the specification of the only component placeholder named message handler. The
component specification of channel is given in terms of a C-net, i.e., a labeled Petri
net with a uniquely identified starting point (the source place i) and a uniquely iden-
tified termination point (the sink place o). Transitions are labeled. Labels are either
visible or not. Communication with the environment is via these transition labels.
Figure 2(a) shows that the channel component has four visible labels: open, send,
receive, and close. As the component specification shows, the channel component
is activated via label open and deactivated via label close. In-between activation

3

and deactivation, the component can send and receive messages in an alternating
manner. The component specification does not describe the internal architecture
of the system: It only lists the external functionality. The inner structure of the
component is given by the component architecture. Figure 2(b) shows that com-
ponent channel contains one subcomponent message handler and four transitions
by pass, start maintenance, service channel, and end maintenance. The transitions
correspond to atomic operations which are not grouped into subcomponents. Sub-
components are specified by component placeholders. The channel component has
only one subcomponent: message handler. The corresponding component place-
holder depicted in Figure 2(c) shows that the functionality of this subcomponent
is straightforward: send message is followed by receive message. Note that the la-
bels of the subcomponent are mapped onto labels of the channel component, e.g.,
send message of message handler is mapped onto send of channel. The component
placeholder is not concerned with the internal structure of the subcomponent: It
only specifies the minimal functionality that is expected of any component plugged
into this placeholder.

i

o

send_message

receive_message

CS
message_
handler

(a) component specification

(b) component architecture

status_report

i

o

send_message

receive_message

CA
message_
handler

status_report

prepare_transmissiontransmit

NOK

OK
update_log

Fig. 3. The component message handler.

Figure 3 shows another component. This component can be plugged into the place-
holder of the channel component (i.e, message handler in Figure 2(b,c)). The com-
ponent shown in Figure 3 is named message handler and is closed, i.e., the com-
ponent does not contain any placeholders. The architecture of the message handler
(Figure 3) shows that for the actual transmission of messages several operations
need to be performed which are not visible in the component specification, i.e.,

4

Figure 3(a), nor in the component placeholder, i.e., Figure 2(c). Although in this ex-
ample the component placeholder and the component are named message handler,
it is not required that both bear the same name. It is required that the component
realizes the functionality of the placeholder it is plugged into. Note that the com-
ponent message handler offers additional functionality not specified in the compo-
nent placeholder of channel: The component message handler can provide status
reports but this feature is not used/required in the component channel.

i

o

open

send

receive

close

by_pass

start_maintenance

end_maintenance

service_channel

prepare_transmissiontransmit

NOK

OK
update_log

status_report

Fig. 4. The flattened system architecture composed of the channel and message handler
components.

A system architecture is composed of a set of components such that there is one
top-level component and all component placeholders are mapped onto components.
For example the channel component shown in Figure 2 where the placeholder is
mapped onto the message handler component shown in Figure 3, is an example
of a system architecture composed of two components. The behavior of a system
architecture is defined by the C-net which is obtained by recursively replacing each
placeholder by a concrete component. Figure 4 shows the flattened system archi-
tecture composed of the components channel and message handler.

The framework illustrated in Figure 1 is used to address one of the key issues of
component-based software development: consistency. A component is consistent
if, assuming the correct operation of the components that are used, its architecture
actually provides the functionality specified in the component specification. A sys-
tem architecture is consistent if its components are consistent and every component
placeholder is mapped onto a component which actually provides the functionality
specified in the component placeholder. Clearly consistency is very important in
the context of component-based software development: Will a component “fit” or
not? Consider for example the component channel. Does the architecture of chan-
nel shown in Figure 2(b) realize the specification shown in Figure 2(a)? Moreover,
does the component message handler shown in Figure 3 realize the specification of

5

the placeholder shown in Figure 2(c)? In this paper, we address these consistency
issues.

Consistency can be characterized by the term substitutability: Will the system oper-
ate as specified if the specification is replaced by the actual component? There are
clear links between substitutability and inheritance. In earlier publications we pro-
posed four notions of inheritance [4,10]. This paper uses the notion of projection
inheritance to check whether a component actually provides the external behavior
required. The inheritance notion is equipped with concrete inheritance-preserving
design patterns and allows for modular conformance testing of the system architec-
ture. Moreover, the replacement of one component by another is supported in two
ways: (1) projection inheritance can be used to test locally whether the new com-
ponent has the desired behavior, and (2) the transfer rules defined in [5] allow for
automatic on-the-fly reconfiguration (i.e., migration while the component is active)
by mapping the state of the old component onto the new component.

The main result of the paper is a theorem which shows that projection inheritance
is compositional, i.e., if a fragment of a Petri net is replaced by another fragment
which is a subclass of the original fragment, then the resulting Petri net is a subclass
of the original Petri net.

Consider again the system architecture composed of the components channel and
message handler. If in Figure 2(b) the placeholder is replaced by its specification
shown in Figure 2(c), then the resulting C-net is a subclass of the component speci-
fication shown in Figure 2(a) under projection inheritance. The architecture shown
in Figure 3(b) is a subclass of the specification shown in Figure 3(a). The compo-
nent specification shown in Figure 3(a) is also a subclass of the component place-
holder shown in Figure 2(c). Based on the compositionality of projection inheri-
tance, we can prove that from these three properties it automatically follows that
the flattened system architecture shown in Figure 4 is a subclass of the specification
of the top-level component shown in Figure 2(a).

The remainder of the paper is organized as follows. First, we introduce the notions
this work builds upon (i.e., Petri nets, C-nets, soundness, branching bisimulation,
and projection inheritance). Then, we introduce the framework for component-
based software architectures followed by the main result of this paper: the proof
that a consistent component architecture actually provides the external behavior it
promises. To conclude, we point out some related work and discuss future exten-
sions.

6

2 Preliminaries

2.1 Place/Transition nets

In this section, we define a variant of the classic Petri-net model, namely labeled
Place/Transition nets. For a more elaborate introduction to Petri nets, the reader is
referred to [13,30,31]. Let U be some universe of identifiers; let L be some set of
action labels. Lv = L\{�} is the set of all visible labels. (The role of � , the silent
action, will be explained later.)

Definition 1 (Labeled P/T-net) A labeled Place/Transition net is a tuple (P; T;M;

F; `) where:

• P ⊆ U is a finite set of places,
• T ⊆ U is a finite set of transitions such that P ∩ T = ∅,
• M ⊆ Lv is a finite set of methods such that M ∩ (P ∪ T) = ∅,
• F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation, and
• ` : T → M ∪ {�} is a labeling function.

Each transition has a label which refers to the method or operation that is executed
if the transition fires. However, if the transition bears a � label, then no method is
executed. Note that there can be many transitions with the same label, i.e., executing
the same method.

Let (P; T;M; F; `) be a labeled P/T-net. Elements of P ∪T are referred to as nodes.
A node x ∈ P ∪ T is called an input node of another node y ∈ P ∪ T if and only if
there exists a directed arc from x to y; that is, if and only if xFy. Node x is called
an output node of y if and only if there exists a directed arc from y to x. If x is a
place in P , it is called an input place or an output place; if it is a transition, it is
called an input or an output transition. The set of all input nodes of some node x

is called the preset of x; its set of output nodes is called the postset. Two auxiliary
functions • ; • : (P ∪ T) → P(P ∪ T) are defined that assign to each node
its preset and postset, respectively. For any node x ∈ P ∪ T , •x = {y | yFx}
and x• = {y | xFy}. Note that the preset and postset functions depend on the
context, i.e., the P/T-net the function applies to. If a node is used in several nets,
it is not always clear to which P/T-net the preset/postset functions refer. Therefore,
we augment the preset and postset notation with the name of the net whenever

confusion is possible:
N•x is the preset of node x in net N and x

N• is the postset of
node x in net N .

Definition 2 (Marked, labeled P/T-net) A marked, labeled P/T-net is a pair (N; s),
where N = (P; T;M; F; `) is a labeled P/T-net and where s is a bag over P denot-
ing the marking (also called state) of the net. The set of all marked, labeled P/T-nets
is denoted N .

7

For some bag X over alphabet A and a ∈ A, X(a) denotes the number of occur-
rences of a in X , often called the cardinality of a in X . The set of all bags over A
is denoted B(A). The empty bag, which is the function yielding 0 for any element
in A, is denoted 0. For the explicit enumeration of a bag we use square brackets
and superscripts to denote the cardinality of the elements. For example, [a2; b; c3]
denotes the bag with two elements a, one b, and three elements c. In this paper, we
allow the use of sets as bags.

Definition 3 (Transition enabling) Let (N; s) be a marked, labeled P/T-net in N ,
where N = (P; T;M; F; `). A transition t ∈ T is enabled, denoted (N; s)[t〉, if and
only if each of its input places p contains a token. That is, (N; s)[t〉 ⇔ •t ≤ s.

If a transition t is enabled in marking s (notation: (N; s)[t〉), then t can fire. If,
in addition, t has label a (i.e., a = `(t) is the associated method, operation, or
observable action) and firing t results in marking s′, then (N; s) [a〉 (N; s′) is used
to denote the potential firing.

Definition 4 (Firing rule) The firing rule [〉 ⊆ N × L × N is the smallest
relation satisfying for any (N; s) in N , with N = (P; T;M; F; `), and any t ∈ T ,
(N; s)[t〉 ⇒ (N; s) [`(t)〉 (N; s− •t+ t•).

Definition 5 (Firing sequence) Let (N; s0) withN = (P; T;M; F; `) be a marked,
labeled P/T-net in N . A sequence � ∈ T ∗ is called a firing sequence of (N; s0) if
and only if � = " or, for some positive natural number n ∈ IN, there exist markings
s1; : : : ; sn ∈ B(P) and transitions t1; : : : ; tn ∈ T such that � = t1 : : : tn and, for
all i with 0 ≤ i < n, (N; si)[ti+1〉 and si+1 = si − •ti+1 + ti+1• . Sequence � is
said to be enabled in marking s0, denoted (N; s0)[�〉. Firing the sequence � results
in the unique marking s, denoted (N; s0) [�〉 (N; s), where s = s0 if � = " and
s = sn otherwise.

Definition 6 (Reachable markings) The set of reachable markings of a marked,
labeled P/T-net (N; s) ∈ N with N = (P; T;M; F; `), denoted [N; s〉, is defined as
the set {s′ ∈ B(P) | (∃ � : � ∈ T ∗ : (N; s) [�〉 (N; s′))}.

Definition 7 (Connectedness) A labeled P/T-net N = (P; T;M; F; `) is weakly
connected, or simply connected, if and only if, for every two nodes x and y in
P ∪ T , x(F ∪ F−1)∗y. Net N is strongly connected if and only if, for every two
nodes x and y in P ∪ T , xF ∗y.

Definition 8 (Directed path) Let (P; T;M; F; `) be a labeled P/T-net. A path C

from a node n1 to a node nk is a sequence 〈n1; n2; : : : ; nk〉 such that niFni+1 for
1 ≤ i ≤ k − 1. C is elementary if and only if for any two nodes ni and nj on C,
i �= j ⇒ ni �= nj . C is non-trivial if and only if it contains at least two nodes.

Definition 9 (Union of labeled P/T-nets) Let N0 = (P0; T0;M0; F0; `0) and N1 =

(P1; T1;M1; F1; `1) be two labeled P/T-nets such that (P0 ∪ P1) ∩ (T0 ∪ T1) = ∅

8

and such that, for all t ∈ T0 ∩ T1, `0(t) = `1(t). The union N0 ∪ N1 of N0 and N1

is the labeled P/T-net (P0 ∪P1; T0 ∪T1; F0 ∪F1; `0 ∪ `1). If two P/T-nets satisfy the
abovementioned two conditions, their union is said to be well defined.

Definition 10 (Boundedness) A marked, labeled P/T-net (N; s) ∈ N is bounded
if and only if the set of reachable markings [N; s〉 is finite.

Definition 11 (Safeness) A marked, labeled P/T-net (N; s) ∈ N with N = (P; T;

M; F; `) is safe if and only if, for any reachable marking s′ ∈ [N; s〉 and any place
p ∈ P , s′(p) ≤ 1.

Definition 12 (Dead transition) Let (N; s) be a marked, labeled P/T-net in N . A
transition t ∈ T is dead in (N; s) if and only if there is no reachable marking
s′ ∈ [N; s〉 such that (N; s′)[t〉.

Definition 13 (Liveness) A marked, labeled P/T-net (N; s) ∈ N with N = (P; T;

M; F; `) is live if and only if, for every reachable marking s′ ∈ [N; s〉 and transition
t ∈ T , there is a reachable marking s′′ ∈ [N; s′〉 such that (N; s′′)[t〉.

2.2 Component nets

For the modeling of components we use labeled P/T-nets with a specific structure.
We will name these nets component nets (C-nets).

Definition 14 (C-net) Let N = (P; T;M; F; `) be a labeled P/T-net. Net N is a
component net (C-net) if and only if the following conditions are satisfied:

(1) instance creation: P contains an input (source) place i ∈ U such that •i = ∅,
(2) instance completion: P contains an output (sink) place o ∈ U such that o• =

∅,
(3) connectedness: �N = (P; T∪{�t};M; F∪{(o; �t); (�t; i)}; `∪{(�t; �)}) is strongly

connected, and
(4) visibility: for any t ∈ T such that t ∈ (i• ∪ •o): `(t) ∈ Lv.

Note that the connectedness requirement implies that there is one unique source and
one unique sink place. For the readers familiar with the work presented in [1–3]:
C-nets are WF-nets with the additional requirement that the start transitions i• and
end transitions •o have a non-� label. Figures 2(a), 2(c), and 3(a) show examples
of C-nets. The structure of a C-net allows us to define the following functions.

Definition 15 (source; sink ; start ; stop; strip) Let N = (P; T;M; F; `) be a C-
net.

(1) source(N) is the (unique) input place i ∈ P such that •i = ∅,

9

(2) sink(N) is the (unique) output place o ∈ P such that o• = ∅,
(3) start(N) = {t ∈ T | i ∈ •t} is the set of start transitions,
(4) stop(N) = {t ∈ T | o ∈ t• } is the set of stop transitions, and
(5) strip(N) = (P ′; T;M; F∩((P ′×T)∪(T×P ′)); `) with P ′ = P\{source(N);

sink(N)} is the C-net without source and sink place.

Definition 14 only gives a static characterization of a C-net. Components will have
a life-cycle which satisfies the following requirements.

Definition 16 (Soundness) A C-net N with source(N) = i and sink(N) = o is
said to be sound if and only if the following conditions are satisfied: 4

(1) safeness: (N; [i]) is safe,
(2) proper completion: for any reachable marking s ∈ [N; [i]〉, o ∈ s implies

s = [o],
(3) completion option: for any reachable marking s ∈ [N; [i]〉, [o] ∈ [N; s〉, and
(4) dead transitions: (N; [i]) contains no dead transitions.

The set of all sound C-nets is denoted C. The first requirement states that a sound
C-net is safe. The second requirement states that the moment a token is put in place
o all the other places should be empty, which corresponds to the termination of a
component without leaving dangling references. The third requirement states that
starting from the initial marking [i], i.e., activation of the component, it is always
possible to reach the marking with one token in place o, which means that it is
always feasible to terminate successfully. The last requirement, which states that
there are no dead transitions, corresponds to the requirement that for each transition
there is an firing sequence activating this transition. Note that each of the C-nets
shown in Figures 2(a), 2(c), and 3(a) is sound.

The following theorem shows that soundness can be expressed in terms of two
well-known properties: liveness and safeness.

Theorem 17 (Characterization of soundness) Let N = (P; T;M; F; `) be a C-
net and �N = (P; T ∪{�t}; F ∪{(o; �t); (�t; i)}; `∪{(�t; �)}) the short-circuited version
of N . N is sound if and only if (�N; [i]) is live and safe.

PROOF. The proof is similar to the proof of Theorem 11 in [1]. The only dif-
ference is that in this paper a stronger notion of soundness is used, which implies
safeness rather than boundedness of the short-circuited net. �

The fact that soundness coincides with standard properties such as liveness and
safeness allows us to use existing tools and techniques to verify soundness of a

4 Note that [i] and [o] are bags containing the input respectively output place of N.

10

given C-net.

The following lemma shows that start/stop transitions share a unique source/sink
place.

Lemma 18 Let N = (P; T;M; F; `) be a sound C-net, i.e., N ∈ C. For any t ∈ T ,
(i) if i = source(N) and t ∈ start(N), then •t = {i}, and (ii) if o = sink(N) and
t ∈ stop(N), then t• = {o}.

PROOF. See [3]. �

The alphabet operator � is a function yielding the set of visible labels of all transi-
tions of the net that are not dead.

Definition 19 (Alphabet operator �) Let (N; s) be a marked, labeled P/T-net in
N , with N = (P; T;M; F; `). � : N → P(Lv) is a function such that �(N; s) =

{`(t) | t ∈ T ∧ `(t) �= � ∧ t is not dead}.

Since sound C-nets do not contain dead transitions, �(N; [i]) equals {`(t) | t ∈
T ∧ `(t) �= �}, which is denoted by �(N).

2.3 Branching bisimilarity

To formalize projection inheritance, we need to formalize a notion of equivalence.
In this paper, we use branching bisimilarity [18] as the standard equivalence rela-
tion on marked, labeled P/T-nets in N .

The notion of a silent action is pivotal to the definition of branching bisimilarity.
Silent actions are actions (i.e., transition firings) that cannot be observed. Silent
actions are denoted with the label � , i.e., only transitions in a P/T-net with a label
different from � are observable. Note that we assume that � is an element of L. The
� -labeled transitions are used to distinguish between external, or observable, and
internal, or silent, behavior. A single label is sufficient, since all internal actions are
equal in the sense that they do not have any visible effects.

In the context of components, we want to distinguish successful termination from
deadlock. A termination predicate defines in what states a marked P/T-net can ter-
minate successfully. If a marked, labeled P/T-net is in a state where it cannot per-
form any actions or terminate successfully, then it is said to be in a deadlock. Based
on the notion of soundness, successful termination corresponds to the state with
one token in the sink place.

11

Definition 20 The class of marked, labeled P/T-nets N is equipped with the fol-
lowing termination predicate: ↓ = {(N; [o]) | N is a C-net ∧ o = sink(N)}.

To define branching bisimilarity, two auxiliary definitions are needed: (1) a relation
expressing that a marked, labeled P/T-net can evolve into another marked, labeled
P/T-net by executing a sequence of zero or more � actions; (2) a predicate express-
ing that a marked, labeled P/T-net can terminate by performing zero or more �

actions.

Definition 21 The relation =⇒ ⊆ N × N is defined as the smallest relation
satisfying, for any p; p′; p′′ ∈ N , p =⇒ p and (p =⇒ p′ ∧ p′ [�〉 p′′) ⇒ p =⇒ p′′.

Definition 22 The predicate ⇓ ⊆ N is defined as the smallest set of marked, la-
beled P/T-nets satisfying, for any p; p′ ∈ N , ↓ p ⇒ ⇓ p and (⇓ p∧p′ [�〉p) ⇒ ⇓ p′.

Let, for any two marked, labeled P/T-nets p; p′ ∈ N and action � ∈ L, p [(�)〉 p′
be an abbreviation of the predicate (� = � ∧ p = p′) ∨ p [�〉 p′. Thus, p [(�)〉 p′
means that zero � actions are performed, when the first disjunct of the predicate is
satisfied, or that one � action is performed, when the second disjunct is satisfied.
For any observable action a ∈ L\{�}, the first disjunct of the predicate can never
be satisfied. Hence, p [(a)〉 p′ is simply equal to p [a〉 p′, meaning that a single a

action is performed.

Definition 23 (Branching bisimilarity) A binary relation R ⊆ N × N is called
a branching bisimulation if and only if, for any p; p ′; q; q′ ∈ N and � ∈ L,

(1) pRq ∧ p [�〉 p′ ⇒
(∃ q′; q′′ : q′; q′′ ∈ N : q =⇒ q′′ ∧ q′′ [(�)〉 q′ ∧ pRq′′ ∧ p′Rq′);

(2) pRq ∧ q [�〉 q′ ⇒
(∃ p′; p′′ : p′; p′′ ∈ N : p =⇒ p′′ ∧ p′′ [(�)〉 p′ ∧ p′′Rq ∧ p′Rq′); and

(3) pRq ⇒ (↓ p ⇒ ⇓ q ∧ ↓ q ⇒ ⇓ p).

Two marked, labeled P/T-nets are called branching bisimilar, denoted p∼b q, if and
only if there exists a branching bisimulation R such that pRq.

�

�

�

p

p′

p

p′

q

q′′ = q′

q

q′′

q′

Fig. 5. The essence of a branching bisimulation.

Figure 5 shows the essence of a branching bisimulation. The firing rule is depicted
by arrows. The dashed lines represent a branching bisimulation. A marked, labeled
P/T-net must be able to simulate any action of an equivalent marked, labeled P/T-

12

net after performing any number of silent actions, except for a silent action which it
may or may not simulate. The third property in Definition 23 guarantees that related
marked, labeled P/T-nets always have the same termination options.

Branching bisimilarity is an equivalence relation on N , i.e., ∼b is reflexive, sym-
metric, and transitive. See [10] for more details and pointers to other notions of
branching bisimilarity.

i

a

o

b

c d

e

i

a

o

t

b

c d

e

t

i

a

o

t

b

c d

e

t

?

N1 N0 N2

Fig. 6. Three marked C-nets: the first two are branching bisimilar and the third one is not
branching bisimilar to the other two.

To illustrate the relevance of branching bisimilarity as an equivalence notion we use
the three marked C-nets shown in Figure 6. Each of the nets has the following visi-
ble behavior: either the trace abce is realized or trace abde is realized. Therefore, it
is interesting to investigate whether the three marked C-nets are branching bisim-
ilar. (N0; [i]) and (N1; [i]) are branching bisimilar. However, (N0; [i]) and (N2; [i])

are not, i.e., although they are trace equivalent (N0; [i]) �∼b (N2; [i])! The reason is
that in N0 the moment of choice between c and d is made after the execution of b
while in N2 the choice is made before the execution of b. This distinction is vital

13

when dealing with components. Assume that b corresponds to sending a request
to a component and that c is executed in case of a positive response and that d is
executed in case of a negative response. In N0 the C-net can handle both a positive
response (c) and a negative response (d) after sending the request (b). However, in
N2 the C-net can handle either the positive or the negative response, i.e., the choice
between c and d is made before the execution of b. Clearly, the latter C-net is not
acceptable, since it assumes that before sending the request the answer of the sup-
plier is already known. This simple example shows that straightforward notions of
equivalence such as trace equivalence (after abstraction of internal steps) are not
selective enough for the problems addressed in this paper. Therefore, we use the
more refined notion of branching bisimilarity.

Definition 24 (Behavioral equivalence of C-nets) For any two C-nets N0 and N1

in C, N0
∼= N1 if and only if (N0; [i])∼b (N1; [i]).

Consider the three nets shown in Figure 6: N0
∼= N1, N0 �∼= N2, and N1 �∼= N2.

2.4 Inheritance

In [4,5,10] four notions of inheritance have been identified. Unlike most other no-
tions of inheritance, these notions focus on the dynamics rather than data and/or
signatures of methods. These inheritance notions address the usual aspects: (1) sub-
stitutability (Can the superclass be replaced by the subclass without breaking the
system?), (2) subclassing (implementation inheritance: Can the subclass use the
implementation of the superclass?), and (3) subtyping (interface inheritance: Can
the subclass use or conform to the interface of the superclass?). The four inheritance
notions are inspired by a mixture of these three aspects.

In this paper, we restrict ourselves to one of the four inheritance notions: projection
inheritance. In the future we hope to extend our component framework with other
notions of inheritance (cf. Section 7). The basic idea of projection inheritance can
be characterized as follows.

If it is not possible to distinguish the behaviors of x and y when arbitrary methods
of x are executed, but when only the effects of methods that are also present in y

are considered, then x is a subclass of y.

For projection inheritance, all new methods (i.e., methods added in the subclass)
are hidden. Therefore, we introduce the abstraction operator �I that can be used to
hide methods.

Definition 25 (Abstraction) Let N = (P; T;M; F; `0) be a labeled P/T-net. For
any I ⊆ Lv, the abstraction operator �I is a function that renames all transition
labels in I to the silent action � . Formally, �I(N) = (P; T;M; F; `1) such that, for

14

any t ∈ T , `0(t) ∈ I implies `1(t) = � and `0(t) �∈ I implies `1(t) = `0(t).

The definition of projection inheritance is straightforward, given the abstraction
operator and branching bisimilarity as an equivalence notion.

Definition 26 (Inheritance) For any two sound C-nets N0 and N1 in C, N1 is a
subclass of N0 under projection inheritance, denoted N1 ≤pj N0, if and only if
there is an I ⊆ Lv such that (�I(N1); [i])∼b (N0; [i]).

It is easy to show that ≤pj is a partial order, i.e., ≤pj is reflexive, anti-symmetric,
and transitive [10].

Proposition 27 Assuming ∼=, as defined in Definition 24, as the equivalence on
sound C-nets ≤pj is a partial order.

i

o

a

c

N0

b

i

o

a

c

N1

b d

i

o

a

c

N2

b

e

i

o

a

c

N3

b f

i

o

a

c

N4

b g

Fig. 7. N2, N3, and N4 are subclasses of N0 under projection inheritance.

Let us consider the five C-nets shown in Figure 7 to illustrate the notion of projec-
tion inheritance. N1 is not a subclass of N0 because hiding of the new task d results
in a potential trace where a is followed by c without executing b, i.e., the C-net
where d is renamed to � is not branching bisimilar. N2 is a subclass of N0 because
hiding e in N2 results in a behavior equivalent to the behavior of N0, i.e., the addi-
tion of e only postpones the execution of b and does not allow for a bypass such as
the one in N1. N3 is also a subclass of N0: Hiding the parallel branch containing f

yields the original behavior. Finally, N4 is also a subclass of N0.

Based on the notion of projection inheritance we have defined three inheritance-

15

preserving transformation rules. These rules correspond to design patterns when
extending a superclass to incorporate new behavior: (1) adding a loop, (2) inserting
methods in-between existing methods, and (3) putting new methods in parallel with
existing methods. Without detailed proofs we summarize some of the results given
in [4,5,10].

Theorem 28 (Projection-inheritance-preserving transformation rule PPS) Let
N0 = (P0; T0;M0; F0; `0) be a sound C-net in C. If N = (P; T;M; F; `) is a labeled
P/T-net with place p ∈ P such that

(1) p �∈ {i; o}, P0 ∩ P = {p}, T0 ∩ T = ∅,
(2) (∀ t : t ∈ T : `(t) �∈ �(N0)),
(3) (∀ t : t ∈ T ∧ p ∈ •t : `(t) �= �),
(4) (N; [p]) is live and safe, and
(5) N1 = N0 ∪N is well defined,

then N1 is a sound C-net in C such that N1 ≤pj N0.

PROOF. N is added to N0 such that it forms a subclass under projection inher-
itance. (In fact, it is a subclass under all four notions of inheritance identified in
[4,5,10].) It is straightforward to prove that this is the case. The added net N forms
an arbitrary complex extension which can consume tokens from place p as long as
it is guaranteed that eventually every token is returned. The labels of the transitions
in N should not appear in N0. This way it is possible to abstract from them and it
is possible to construct a branching bisimulation. A detailed proof can be found in
[5]. �

Note that PPS can be used to construct the subclass N2 in Figure 7 from the C-net
N0 shown in the same figure.

Theorem 29 (Projection-inheritance-preserving transformation rule PJS) Let
N0 = (P0; T0;M0; F0; `0) be a sound C-net in C. If N = (P; T;M; F; `) is a labeled
P/T-net with place p ∈ P and transition tp ∈ T such that

(1) p �∈ {i; o}, P0 ∩ P = {p}, T0 ∩ T = {tp}, (tp; p) ∈ F0, and
N•tp = {p},

(2) (∀ t : t ∈ T\T0 : `(t) �∈ �(N0)),
(3) (N; [p]) is live and safe, and
(4) N1 = (P0; T0;M0; F0\{(tp; p)}; `0)∪(P; T;M; F\{(p; tp)}; `) is well defined,

then N1 is a sound C-net in C such that N1 ≤pj N0.

PROOF. In the C-net N0 an arc connecting transition tp and place p is replaced by
a P/T-net N . In the resulting C-net N1, transition tp produces tokens for places in

16

N instead of p. However, the properties of N guarantee that eventually every firing
of transition tp is followed by the production of a single token for p. Moreover, the
moment N marks p all other places in N are empty and the labels of the transitions
in N do not appear in N0. Therefore, it is possible to abstract from the transitions
in N and construct a branching bisimulation (cf. [5]) and thus it is shown that N1

is a subclass of N0 under projection inheritance. �

Transformation rule PJS can be used to construct N4 from N0 in Figure 7.

Theorem 30 (Projection-inheritance-preserving transformation rule PJ3S) Let
N0 = (P0; T0;M0; F0; `0) be a sound C-net in C. Let N = (P; T;M; F; `) be a la-
beled P/T-net. Assume that q ∈ U is a fresh identifier not appearing in P0 ∪ T0 ∪
P ∪ T . If N contains a place p ∈ P and transitions ti; to ∈ T such that

(1)
N•p = {to}, p

N• = {ti},
(2) P0 ∩ P = ∅, T0 ∩ T = {ti; to},
(3) (∀ t : t ∈ T\T0 : `(t) �∈ �(N0)),
(4) (N; [p]) is live and safe,
(5) N1 = N0 ∪ (P\{p}; T; F\{(p; ti); (to; p)}; `) is well defined,
(6) q is implicit in (N

q

0
; [i]) with N

q

0
= (P0 ∪ {q}; T0; F0 ∪ {(ti; q); (q; to)}; `0),

and
(7) N

q

0
is a sound C-net,

then N1 is a sound C-net in C such that N1 ≤pj N0.

PROOF. C-net N0 contains two transitions ti and to such that every firing of ti
is followed by precisely one firing of to. Given this requirement it is possible to
add a P/T-net N which is executed in parallel. N is activated by ti (i.e., places in
N become marked) and is required to mark the additional input places of to after
every activation. This implies that to is not constrained by the added part: It is still
guaranteed that (eventually) every firing of ti is followed by precisely one firing of
to. Moreover, no tokens are left in N because of the requirement that (N; [p]) is live
and safe. Note that places p and q have been added for technical reasons and do not
appear in the resulting net N1. The transitions in N have labels not appearing in N0.
Therefore, it is possible to abstract from N and construct a branching bisimulation.
A detailed proof can be found in [5]. Similar proofs for theorems 28, 29, and 30
(where the safety requirements are replaced by free-choice requirements) can be
found in [4,10]. �

Transformation rule PJ3S can be used to construct subclass N3 from superclass
N0 in Figure 7.

17

Rule PPS can be used to insert a loop or iteration at any point in the process,
provided that the added part always returns to the initial state. Rule PJS can be
used to insert new methods by replacing a connection between a transition and a
place by an arbitrary complex subnet. Rule PJ3S can be used to add parallel be-
havior, i.e., new methods which are exectuted in parallel with existing methods.
The inheritance-preserving transformation rules distinguish the work presented in
[4,5,10] from earlier work on inheritance. The rules correspond to design constructs
that are often used in practice, namely iteration, sequential composition, and paral-
lel composition. If a designer sticks to these rules, inheritance is guaranteed!

3 Framework

In this section we formalize the concepts introduced in Section 1. As illustrated by
Figure 1, a component consists of a component specification (CS) and a compo-
nent architecture (CA), and the component architecture may contain a number of
component placeholders (CPs).

Definition 31 (Component) A component c is a tuple (CS;CA) where:

(1) CS = (P S; T S;MS ; F S; `S) is a sound C-net called the component specifi-
cation of c, and

(2) CA = (PA; TA; CA; FA; `A) is the component architecture of c such that:
(a) PA ⊆ U are the places in the component architecture,
(b) TA ⊆ U are the transitions in the component architecture,
(c) CA is a set of component placeholders such that every cp ∈ CA is a com-

ponent specification, i.e., cp = (P SA

cp
; T SA

cp
;MSA

cp
; F SA

cp
; `SA

cp
) is a sound

C-net,
(d) B = {(cp; l) ∈ CA × Lv | l ∈ MSA

cp
} is the set of bindings,

(e) FA ⊆ (PA× (TA∪B))∪ ((TA∪B)×PA) is called the component flow
relation, and

(f) `A : TA ∪ B → MS ∪ {�} is the component labeling function.

The component specification defines the interface of a component in terms of a
C-net. The purpose of the component architecture is to actually realize/implement
this specification, i.e., the architecture is typically much more detailed and may
contain other components. For closed components CA = ∅. For non-closed com-
ponents the architecture contains a set of placeholders CA. The placeholders are
used for plugging in other components. Closed components are atomic in sense
that it is not possible to plug in subcomponents. Each placeholder specifies the re-
quired interface of the component to be plugged in. There are two types of arcs
in the architecture: (1) normal arcs (i.e., arcs between places and transitions) and
(2) subcomponent arcs which connect places in the architecture to methods inside
the components plugged into the component placeholders. To address methods in-

18

side subcomponents, a set of bindings B is introduced. Note that `A can be used
to map methods inside the components plugged into the component placeholders
onto methods used in the component specification, i.e., each method associated to a
component placeholder is mapped onto either � or a visible method in M S . More-
over, `A also maps ordinary transitions in the architecture onto a label in M S ∪{�}.
The methods and transitions that are mapped onto � by `A are not visible from
outside the component.

Both Figure 2 and Figure 3 show examples of components. The component mes-
sage handler is closed; the component channel is not.

Figure 8 shows another example of a component. This component represents a very
simple coffee machine which accepts coins and either returns coins or serves coffee.
The component specification (CS coffee machine) shows that after activating the
machine (method switch on) a coin can be inserted (method insert coin). After
an internal choice (i.e., two � -labeled transitions sharing one input place) either
method reject coin or method serve coffee is enabled. After executing one of these
two methods the machine returns to a state where it accepts a new coin. In parallel
the machine can be deactivated using the method switch off. Since the machine can
be busy serving coffee, there is another method (switched off) which corresponds
to the actual switch-off operation.

The architecture of the component coffee machine is described by the remaining
three diagrams in Figure 8. The two smaller diagrams correspond to component
placeholders. The larger diagram in the middle describes the overall architecture
of the component and refers to the two component placeholders. The component
placeholder coin handler takes care of accepting and rejecting coins. The compo-
nent placeholder brewing facility takes care of the actual brewing and serving of
coffee. Note that at the architectural level one can see the interaction between com-
ponents inside the machine. Both subcomponents are activated/deactivated when
the machine is switched on/off. After a coin is inserted the coin handler sends a re-
quest to the brewing facility. The brewing facility either acknowledges the request
(OK) and serves coffee or sends a notification to the coin handler (NOK) resulting
in the returning of the coin inserted. Note that external methods (i.e., the meth-
ods offered in the component specification) are linked to concrete transitions in the
architectural model or are mapped onto internal methods provided by component
placeholders. Also note that places in the component architecture are connected to
concrete transitions or methods provided by component placesholders, e.g., place
OK is connected to method OK! of the component placeholder brewing facility and
method OK? of the component placeholder coin handler.

Assumption In the remainder we assume that there are no name clashes, i.e., all
component specifications, placeholders, and component architectures use different
identifiers for places and transitions. The only identifiers shared among component

19

i

o

switch_on

insert_coin

reject_coin

serve_coffee

switch_off

i

o

activate_bf

request?

OK!

NOK!

serve_coffee

deactivate_bf

i

o

request!

insert_coin

NOK?

OK?

reject_coin

deactivate_ch

activate_ch

i

o

switch_on

insert_coin

reject_coin

serve_coffee

switch_off

co
in

_h
an

d
le

r
b

re
w

in
g

_f
ac

ili
ty

request

NOKOK

CS
coffee_machine

CA
coffee_machine

CP
brewing_facility

CP
coin_handler

switched_off

switched_off

Fig. 8. The component coffee machine.

specifications, placeholders, and component architectures are the action labels.

The architecture of a component should provide the functionality promised in its
specification. Therefore, we define the function cat which allows us to define

20

component consistency.

Definition 32 (Flattened component) LetCA = (PA; TA; CA; FA; `A) be a com-
ponent architecture such that for any cp ∈ CA: strip(cp) = (P SA

cp
; T SA

cp
;MSA

cp
;

F SA

cp
; `SA

cp
) is the stripped component specification. The corresponding flattened

architecture is the labeled P/T net cat(CA) = (P; T;M; F; `) with:

(1) P = PA ∪ (
S
cp∈CA P SA

cp
),

(2) T = TA ∪ (
S
cp∈CA T SA

cp
),

(3) F = (FA ∩ ((PA × TA) ∪ (TA × PA))) ∪ (
S
cp∈CA F SA

cp
∪ {(p; t) ∈ PA ×

T SA

cp
| (p; (cp; `SA

cp
(t))) ∈ FA}∪{(t; p) ∈ T SA

cp
×PA | ((cp; `SA

cp
(t)); p) ∈ FA}),

(4) dom(`) = T , for any t ∈ TA: `(t) = `A(t), and for any cp ∈ CA and
t ∈ T SA

cp
: `(t) = `A(cp; `SA

cp
(t)), and

(5) M = rng(`)\{�}.

Figure 9 shows the flattened architecture of the component channel shown in Fig-
ure 2: The component placeholder message handler is replaced by the closed com-
ponent message handler shown in Figure 3.

i

o

open

send

receive

close

by_pass

start_maintenance

end_maintenance

service_channel

Fig. 9. The flattened component channel.

Components are single-threaded in the following sense: There may be parallel be-
havior inside the component, but the component itself is only instantiated once.
Therefore, we consider the phenomenon called multiple activation an anomaly. To
explain this anomaly we introduce the term activation. A component is activated if
at least one of the places in the component is marked (except the source and sink
place). Note that a component becomes activated after one of the start transitions
fires. A component becomes deactivated if each of its internal places is empty after
one of the stop transitions fires. Ideally, every activation is followed by a deactiva-
tion. The soundness property is defined for C-nets which are activated only once.
Therefore, all kinds of undesired side effects can occur if a component is activated
for the second time without being deactivated first. To formulate the requirement
that there is no multiple activation, we define the notion of activation safeness.

Definition 33 (Activation safeness) Let (N; s) be a marked, labeled P/T-net in N ,

21

where N = (P; T;M; F; `). A subset of places P ′ ⊆ P is activation safe in (N; s)

if and only if for any reachable state s′ ∈ [N; s〉, any transition t ∈ •P ′\P ′• , and
any place p ∈ P ′: (N; s′)[t〉 implies s′(p) = 0.

A set of places P ′ is activation safe if all transitions producing tokens for P ′ but
not consuming tokens from P ′ are not enabled as long as there are tokens in P ′.

i

o

handle_B

handle_A

deactivate_A

deactivate_B

activate

CS
handler

p1
p2

p3
p4

Fig. 10. The specification of a component which deadlocks after being activated twice.

To illustrate the relevance of activation safeness we use the component specifica-
tion shown in Figure 10. The component specification is sound. However, if the
component is activated twice, it can deadlock. Suppose that start transition activate
is executed twice. Both p1 and p2 will contain two tokens. Suppose that handle A
and handle B are executed once. In the resulting state places p1, p2, p3, and p4 are
marked. Suppose that handle A is executed again. In the resulting state only stop
transition deactivate A is enabled. Firing deactivate A results in the state marking
p3 and p4. In this state none of the transitions is enabled, i.e., the component gets
stuck in a state where it is not possible to terminate properly. The deadlock is a re-
sult of the fact that a component which is activated multiple times exhibits behavior
which is not considered when checking for soundness.

To avoid deadlocks such as the one illustrated using Figure 10, the architecture of
each component should be such that each of its subcomponents are activation safe.
Using Definition 33, we can formulate the notion of consistency. In a consistent
component each subcomponent should be activation safe. Moreover, the flattened
component should be sound and a subclass of the component specification.

Definition 34 (Consistent) Let (CS;CA) be a component with CS = (P S; T S;

MS ; F S; `S),CA = (PA; TA; CA; FA; `A), and for any cp ∈ CA: cp = (P SA

cp
; T SA

cp
;

MSA

cp
; F SA

cp
; `SA

cp
), and let N = cat(CA) = (P; T; C; F; `) and i = source(N).

(CS;CA) is consistent if and only if

(1) (∀ t : t ∈ start(N) ∪ stop(N) : `(t) ∈ �(CS)),

22

(2) N is a sound C-net, i.e., N ∈ C,
(3) N ≤pj CS, and
(4) (∀ cp : cp ∈ CA : P SA

cp
\{source(cp); sink(cp)} is activation safe in (N; [i])),

i.e., there is no multiple activation.

Definition 34 gives the minimal set of requirements any component should satisfy.
The first requirement states that the start and stop transitions of the flattened ar-
chitecture have visible labels that appear in the component specification, i.e., it is
not allowed to activate or deactivate a component by new methods. The flattened
architecture, i.e., the functionality guaranteed by the architecture provided the cor-
rect operation of subcomponents, is sound. The flattened architecture is a subclass
of the component specification with respect to projection inheritance. Finally, we
require subcomponents to be started and stopped correctly, no multiple activation
is allowed. Note that after terminating the subcomponent it may be activated again.

Both Figure 2 and Figure 3 show examples of components which are consistent.

The component shown in Figure 8 is not consistent for the following two rea-
sons. First of all, the flattened architecture is not sound. Suppose that the method
switch off is initiated directly after inserting a coin. The subcomponent brewing fa-
cility can be deactivated immediately. However, the coin handler cannot be deac-
tivated and will send a request to the brewing facility, the brewing facility will not
respond to the request, and the machine will deadlock. Another reason for incon-
sistency is the fact that the brewing facility sends an OK to the coin handler before
actually serving coffee. Therefore, one can insert a new coin before completely
handling the previous request. This behavior does not invalidate the soundness re-
quirement but yields a flattened architecture which is not a subclass of the original
architecture.

The alternative component shown in Figure 11 does not have these deficiencies and
is consistent. This component deactivates the coin handler before deactivating the
brewing facility. Moreover, the coffee is served before the coin handler is notified.

From the requirements stated in Definition 34, we can derive that the architecture
of a component has a structure similar to a C-net, i.e., one unique source place and
one unique sink place.

Lemma 35 Let (CS;CA) be a consistent component with CA = (P A; TA; CA;

FA; `A). There is precisely one i ∈ PA such that {t ∈ TA | (t; i) ∈ FA} ∪
{(cp; l) ∈ CA × Lv | ((cp; l); i) ∈ FA} = ∅ and precisely one o ∈ PA such that
{t ∈ TA | (o; t) ∈ FA} ∪ {(cp; l) ∈ CA × Lv | (o; (cp; l)) ∈ FA} = ∅.

PROOF. Since cat(CA) is a C-net there is a place i = source(cat(CA)).
Clearly, {t ∈ TA | (t; i) ∈ FA} ∪ {(cp; l) ∈ CA × Lv | ((cp; l); i) ∈ FA} = ∅.
For any other place, it is easy to show that cat(CA) adds at least one input arc.

23

i

o

switch_on

insert_coin

reject_coin

serve_coffee

switch_off

i

o

activate_bf

request?

OK!

NOK!

serve_coffee

deactivate_bf

i

o

request!

insert_coin

NOK?

OK?

reject_coin

deactivate_ch

activate_ch

i

o

switch_on

insert_coin

reject_coin

serve_coffee

switch_off

co
in

_h
an

d
le

r
b

re
w

in
g

_f
ac

ili
ty

request

NOKOK

CS
coffee_machine

CA
coffee_machine

CP
brewing_facility

CP
coin_handler

switched_off

switched_off

Fig. 11. A consistent version of the coffee machine component: The two subcomponents
are deactivated sequentially and coffee is served before the acknowledgement is sent.

Similarly, it can be shown that there is precisely one sink place. �

Since there is one source/sink place in the architecture of a component, we can
define the functions source , sink , and strip in a straightforward manner for the

24

architecture of a consistent component.

The first requirement in Definition 34 can be checked by simply inspecting the la-
bels of start and stop transitions. The second requirement can be checked using the
result stated in Theorem 17. The third requirement is either guaranteed by stick-
ing to the inheritance-preserving transformation rules or by deploying a branching
bisimulation checker (e.g., the inheritance checker in Woflan [35]). The last require-
ment (activation safeness) does not correspond to well-established notions such as
liveness, safeness, and bisimulation and may be hard to check since there are no
efficient analysis techniques/tools to verify this requirement. Therefore, we intro-
duce a stronger requirement which can be validated syntactically (i.e., based on
the structure of the flattened net). This requirement states that there is not a path
from a transition inside one of the subcomponents to one of its start transitions
not containing one of its stop transitions, i.e., the topology of the net guarantees
that a subcomponent cannot trigger itself indirectly before it is deactivated. In other
words: there is no self triggering. The following property defines the absence of
self triggering and shows that the absence of self triggering assures that there is no
multiple activation.

Proposition 36 (Self triggering) Let be (CS;CA) be a component satisfying the
first three requirements stated in Definition 34 (i.e., proper start/stop labels, N is a
sound C-net, and N is a subclass of CS). If (∀ cp; t; t′ : cp ∈ CA ∧ t ∈ T SA

cp
∧ t′ ∈

start(cp) : all non-trivial directed paths in N from t to t ′ contain at least one
occurrence of a transition in stop(cp)) and (∀ cp : cp ∈ CA : (∩ t : t ∈ start(cp) :
N•t) �= ∅) (i.e., start transitions share input places), then (CS;CA) is consistent.

PROOF. To prove this property, we need to show that each subcomponent (i.e.,
component placeholder) is activation safe. Let cp ∈ CA be an arbitrary component.
Let Pcp = P SA

cp
\{source(cp); sink(cp)} be the set of internal places of this compo-

nent. We need to prove that Pcp is activation safe in (N; [i]). We use proof by contra-
diction, i.e., we assume that there is a firing sequence � such that (N; [i]) [�〉(N; s),
t ∈ start(cp), (N; s)[t〉, and p ∈ Pcp is marked in s. Without loss of generality,
we further assume that s was the first state in the sequence having these prop-
erties (i.e., a start transition is enabled while a place in Pcp is marked). Partition
the sequence � in two subsequences �1 and �2 such that �2 contains all firings
since the last firing of a transition in stop(cp), i.e., �1 is either empty or ends with
the last firing of a transition in stop(cp). The first sequence ends in state s′ (i.e.,
(N; [i]) [�1〉 (N; s′)). Note that in s′ all places in Pcp are empty. (Otherwise there
would have been a prefix of � containing the anomaly.) Now we concentrate on the
second subsequence: (N; s′) [�2〉 (N; s). In this sequence no transition in stop(cp)

fires. Therefore, we remove all transitions stop(cp) from N and name the new net
N ′. Note that (N ′; s′)[�2〉(N ′; s). The requirement that all non-trivial directed paths
in N from a transition inside cp to one of the start transitions in cp contain at least

25

one of the stop transitions in cp implies that we can partition the transitions of N ′

in two subsets TX and TY such that {t ∈ T\Tk | tN
′• ∩ N

′• start(cp) �= ∅} ⊆ TX ,

Tk ⊆ TY , and
N

′• TX ∩ TY
N

′• = ∅ because all stop transitions have been re-
moved. Now we apply the well-known exchange lemma (see for example page 23
in [13]) which allows us to project �2 onto the transitions in TX and TY : �2X and

�2Y . Since
N

′• TX ∩ TY
N

′• = ∅, the exchange lemma shows that we can first
execute �2X followed by �2Y . Let state s′′ be the state after executing �2X , i.e.,
(N ′; s′) [�2X〉 (N ′; s′′). It is easy to see that in s′′ at least one of the input places of
the start transitions of cp contains multiple tokens, because start transitions share
input places. (Note that �2Y marks a place in Pcp, i.e., fires at least one start transi-
tion of cp, and also enables a start transition of cp without adding any new tokens to
the input places.) Therefore, the safeness property is violated. The sequence com-
posed of �1 followed by �2X is also possible in (N; [i]). Therefore, (N; [i]) cannot
be a sound C-net and we find a contradiction. �

Property 36 shows that the only way that a subflow becomes activated multiple
times (i.e., the place is not activation safe), is through self triggering. Note that in
none of the components presented thus far there is any self-triggering. Therefore,
each of the components shown in figures 2, 3, and 11 is activation safe.

A system architecture consists of a set of components where components are plug-
ged into placeholders of other components. In Section 1 we introduced a system
architecture composed of the channel (Figure 2) and message handler (Figure 3)
components.

Definition 37 (System architecture) Let C be a set of components with for any
c ∈ C, c = (CSc; CAc), CSc = (P S

c
; T S

c
;MS

c
; F S

c
; `S

c
), CAc = (PA

c
; TA

c
; CA

c
; FA

c
;

`A
c
), and LC = {(c; cp) | c ∈ C ∧ cp ∈ CA

c
}. A system architecture (C; cmap) is a

set of components C and a mapping cmap : LC → C.

A component can not be plugged into more than one placeholder, i.e., it is not
possible to have two separate components sharing a third component. In addition,
recursive structures are not allowed. Moreover, there should be one top-level com-
ponent which contains all other components. The latter requirement has been added
for presentation purposes and does not limit the application of the framework: Any
set of components can be embedded into one component. A system architecture
satisfying these requirements is called well-formed.

Definition 38 (Well-formed) Let (C; cmap) be a system architecture such that
for any c ∈ C: c = (CSc; CAc), CSc = (P S

c
; T S

c
;MS

c
; F S

c
; `S

c
), and CAc =

(PA

c
; TA

c
; CA

c
; FA

c
; `A

c
). C is well-formed if and only if the relation R = {(c; c′) ∈

C × C | (c; cp) ∈ LC ∧ cmap(c; cp) = c′} describes a rooted directed acyclic

26

graph. 5

i

o

activate_bf

request?

OK!

NOK!

serve_coffee

deactivate_bf

CS
brewing_facility

ready_signal

i

o

activate_bf

request?

OK!

NOK!

serve_coffee

deactivate_bf

CA
brewing_facility

ready_signal

brew

dispense_cup

heat_water

Fig. 12. The component brewing facility.

Clearly the system architecture introduced in Section 1 is well-formed: The only
placeholder in channel is mapped onto the component message handler. Let us also
consider the system architecture for a coffee machine. The component shown in
Figure 11 is the top-level component. The architecture of the top-level component
has two component placeholders. The placeholder brewing facility is mapped onto
the component brewing facility shown in Figure 12 and the placeholder coin hand-
ler is mapped onto a component with a component specification and architecture
identical to the C-net describing the placeholder (see Figure 13). Note that both sub-
components are closed, i.e., the system architecture for a coffee machine has two
levels and comprises three components. Clearly, this simple system architecture is
well-formed.

5 A directed acyclic graph is rooted if there is a node r such that every node of the graph
can be reached by a directed path from r.

27

i

o

request!

insert_coin

NOK?

OK?

reject_coin

deactivate_ch

activate_ch

CS
coin_handler

i

o

request!

insert_coin

NOK?

OK?

reject_coin

deactivate_ch

activate_ch

CA
coin_handler

Fig. 13. The component coin handler.

Similar to consistency at a component level, we can define consistency at the level
of a system architecture.

Definition 39 (Consistent) Let (C; cmap) be a well-formed system architecture
such that for any c ∈ C: c = (CSc; CAc), CSc = (P S

c
; T S

c
;MS

c
; F S

c
; `S

c
), and

CAc = (PA

c
; TA

c
; CA

c
; FA

c
; `A

c
). (C; cmap) is consistent if and only if

(1) each component c ∈ C is consistent, and
(2) for all c ∈ C, c′ ∈ C, and cp ∈ CA

c
such that cmap(c; cp) = c′:

(a) CSc′ ≤pj cp, and
(b) (∀ t : t ∈ start(CSc′) ∪ stop(CSC′) : `S

c′(t) ∈ �(cp)).

A well-formed system architecture is consistent if the individual components are
consistent and appropriate components are plugged into the placeholders, i.e., if a
component is plugged into the placeholder, then its specification should be a sub-
class of the C-net specifying the placeholder and the plugged-in component should
not introduce other methods for activating and deactivating components. The latter
requirement has been added to avoid the activation/deactivation of a component
by methods not present in the C-net specifying the placeholder, i.e., without this

28

requirement the subcomponents could easily deadlock or lead to unbounded be-
havior.

Consider the system architecture for the coffee machine composed of the top-level
component shown in Figure 11, the component brewing facility shown in Fig-
ure 12, and the component coin handler shown in Figure 13. Each of the three com-
ponents is consistent. Note that the component brewing facility offers the method
ready signal to its environment, i.e., the component generates a signal every time
a cup of coffee has been served and thus offers more functionality than needed.
Also note that the architecture of the component brewing facility shows details not
present in the component specification, e.g., the internal steps brew, dispense cup,
and heat water. The steps brew and dispense cup are executed after the request
for a coffee is received. In-between these steps the brewing facility can produce
an error which is reported via method NOK!. The internal step heat water is exe-
cuted periodically (e.g., driven by a thermostat) and in parallel with the handling
of requests. The component specification of brewing facility is a subclass of the
component placeholder in Figure 11. The component specification of coin handler
coincides with the corresponding placeholder and, consequently, is also a subclass.
Therefore, the system architecture for the coffee machine is consistent.

Clearly the system architecture introduced in Section 1 is also consistent.

A consistent system architecture satisfies a number of requirements. In the remain-
der of this paper, we will concentrate on the question whether these requirements
imply the correct operation of the entire system, i.e., Is it guaranteed that the sys-
tem actually realizes the functionality suggested by the specification of the top-level
component?

4 Compositionality results

Based on the framework introduced in the previous section, we focus on the ques-
tion whether consistency guarantees the correct operation of the whole system ar-
chitecture. To be more precise, we will show that:

• the flattened system architecture is a sound C-net, i.e., if all component place-
holders are replaced by actual components, then the resulting system is free of
deadlocks and other anomalies,

• the flattened system architecture is a subclass of the specification of the top-
level component under projection inheritance, i.e., the system realizes the desired
behavior.

To prove these statements, we first formulate and prove a rather general theorem.
This theorem addresses the notion of compositionality in the context of projection

29

inheritance.

NC

N1

NA

NB

N0

NA
subclass of

subclass of

Fig. 14. The essence of Theorem 40: if NW

C
is a subclass of NW

B
, then N1 is a subclass of

N0.

Figure 14 illustrates the essence of Theorem 40: Consider a sound C-net N0 com-
posed of NA and NB . NA and NB communicate through a set of common places
PA∩PB . NB is chosen in such a way that if we remove the places PA∩PB and add
a source and a sink place, we obtain a sound C-net NW

B
. In addition, it is assumed

that there is no multiple activation. Moreover, there are three additional P/T nets
NC , NW

C
, and N1. N1 is composed of NA and NC . The connections between NA

and NC in N1 are essentially the same as the connections between NA and NB in
N0, e.g., PA∩PC = PA∩PB (see Theorem 40 for details). Moreover, NC is chosen
in such a way that if we remove the places PA ∩ PC and add a source and a sink
place, we obtain a sound C-net NW

C
which is a subclass of NW

B
under projection

inheritance. Under these conditions N1 is guaranteed to be sound and a subclass of
N0. In other words: Theorem 40 shows that inheritance is some kind of congruence
under the composition of C-nets.

Theorem 40 (Compositionality of projection inheritance) Let N0 = (P0; T0; M0;

F0; `0), N1 = (P1; T1; M1; F1; `1), NA = (PA; TA;MA; FA; `A), NB = (PB; TB;

MB; FB; `B), NC = (PC ; TC ;MC ; FC ; `C), NW

B
= (PW

B
; TW

B
;MW

B
; FW

B
; `W

B
), and

NW

C
= (PW

C
; TW

C
;MW

C
; FW

C
; `W

C
) be labeled P/T-nets. If

(1) N0 is a sound C-net in C with source place i = source(N0) and sink place
o = sink(N0),

(2) N0 = NA ∪NB is well defined,
(3) N1 = NA ∪NC is well defined,
(4) TA ∩ TB = ∅,
(5) TA ∩ TC = ∅,
(6) PA ∩ PB = PA ∩ PC ,
(7) NW

B
is a sound C-net in C such that strip(NW

B
) = (PB\PA; TB;MB; FB ∩

((PW

B
× TW

B
) ∪ (TW

B
× PW

B
)); `B), iB = source(NW

B
), oB = sink(NW

B
), and

{iB; oB} ∩ P0 = ∅,
(8) NW

C
is a sound C-net in C such that strip(NW

C
) = (PC\PA; TC ;MC ; FC ∩

30

((PW

C
× TW

C
) ∪ (TW

C
× PW

C
)); `C), iC = source(NW

C
), oC = sink(NW

C
), and

{iC ; oC} ∩ P1 = ∅,
(9) (∀ t : t ∈ start(NW

C
) ∪ stop(NW

C
) : `W

C
(t) ∈ �(NW

B
)), i.e., no new labels are

introduced for the start and stop transitions,

(10) (∀ t : t ∈ TB∧`B(t) = � : (
N0• t∩PA = ∅)∧ (t

N0• ∩PA = ∅)), i.e., transitions
with a � label are not connected to “outside places”,

(11) (∀ t : t ∈ TC ∧ `1(t) �∈ �(NW

B
) : (

N1• t ∩ PA = ∅) ∧ (t
N1• ∩ PA = ∅)), i.e.,

transitions with a “new label” are not connected to outside places,

(12) (∀ t; t′ : t ∈ TB ∧ t′ ∈ TC ∧ `B(t) = `C(t
′) : (

N0• t ∩ PA =
N1• t′ ∩ PA) ∧ (t

N0•
∩ PA = t′

N1• ∩ PA)),
(13) PW

B
is activation safe in (N0; [i]), and

(14) NW

C
≤pj N

W

B
,

then N1 is a sound C-net in C such that N1 ≤pj N0.

PROOF. The proof consists of three parts. First, we provide some useful observa-
tions. Then, we show that there is a branching bisimulation between (N0; [i]) and
�I(N1; [i]) (I = �(N1)\�(N0)). Finally, we show that N1 is a sound C-net and
conclude that N1 ≤pj N0 using the branching bisimulation.

Part A
The following observations are useful for the remainder of the proof:

(1) Since NW

C
≤pj N

W

B
, �(NW

B
) ⊆ �(NW

C
) and there is a branching bisimulation

RBC such that (NW

B
; [iB]) RBC�I(N

W

C
; [iC]) with I = �(NW

C
)\�(NW

B
) =

�(N1)\�(N0). Without loss of generality we assume thatRBC ⊆ {((NW

B
; sB);

(NW

C
; sC)) | sB ∈ [NW

B
; [iB]〉 ∧ sC ∈ [NW

C
; [iC]〉}.

 This follows directly from the definition of projection inheritance.
(2) {`B(t) | t ∈ start(NW

B
)} = {`C(t) | t ∈ start(NW

C
)}, i.e., the sets of start

labels coincide.
 Since (∀ t : t ∈ start(NW

C
)∪ stop(NW

C
) : `W

C
(t) ∈ �(NW

B
)) start transitions

in both NW

B
and �I(N

W

C
) are visible (i.e., not �). Since all actions enabled

in [iB] respectively [iC] are visible and (NW

B
; [iB]) RBC�I(N

W

C
; [iC]), these

action sets have to match and therefore the sets of start labels coincide.
(3) {`B(t) | t ∈ stop(NW

B
)} = {`C(t) | t ∈ stop(NW

C
)}, i.e., the sets of stop

labels coincide.
 For similar reasons the stop transitions are visible. If there is a stop transition
in one net with a label not appearing in the other net as a label of a stop
transition, then it is easy to show that this is in contradiction with (NW

B
; [oB])

RBC �I(N
W

C
; [oC]).

(4) (∀ t; t′ : t ∈ TB ∧ t′ ∈ TB ∧ `B(t) = `B(t
′) : (

N0• t ∩ PA =
N0• t′ ∩ PA) ∧ (t

N0•
∩PA = t′

N0• ∩PA)), i.e., transitions in TB with identical labels have identical

31

effects on the interface PA ∩ PB .
 If both transitions have a � label, then there are no connections to the inter-
face PA∩PB . If the transitions have a visible label, then there is a correspond-
ing transition in NC . Since the connections of this transition in NC to places
in PA ∩ PB are identical to those of t and t′, the external connections of t and
t′ have to match.

(5) (∀ t; t′ : t ∈ TC ∧ t′ ∈ TC ∧ `C(t) = `C(t
′) : (

N1• t ∩ PA =
N1• t′ ∩ PA) ∧ (t

N1•
∩PA = t′

N1• ∩PA)), i.e., transitions in TC with identical labels have identical
effects on the interface PA ∩ PC .
 If both transitions have a � label or a label not used in NB , then there are no
connections to the interface PA∩PB . If the transitions have a visible label used
in NB , then there is a corresponding transition in NB . Since the connections
of this transition in NB to places in PA ∩ PC are identical to those of t and t′,
the external connections of t and t′ have to match.

(6) For any t ∈ start(NW

B
), there exists a t′ ∈ start(NW

C
) such that `B(t) =

`C(t
′) and

N0• t =
N1• t′, and for any t ∈ stop(NW

C
), there exists a t′ ∈

stop(NW

B
) such that `C(t) = `B(t

′) and t
N1• = t′

N0• .
 This follows directly from the requirement that all start and stop labels are
visible, the sets of start labels coincide, the sets of stop labels coincide, and
transitions in different nets with identical commonly visible labels have iden-
tical sets of input/output places.

(7) N0, N1, NW

B
, and NW

C
completely determine NA, NB , and NC .

 NA = N0 ∩ N1, NB = (
N0• TW

B
∪ TW

B

N0• ; TW

B
;MW

B
; F0 ∩ ((PB × TB) ∪

(TB × PB)); `
W

B
), and NC = (

N1•TW

C
∪ TW

C

N1• ; TW

C
;MW

C
; F1 ∩ ((PC × TC) ∪

(TC × PC)); `
W

C
).

(8) Any marking s0 ∈ [N0; [i]〉 can be partitioned into sA and sB such that s0 =

sA + sB , sA ∈ B(PA), sB ∈ B(P0\PA), and sB = 0 or sB ∈ [NW

B
; [iB]〉.

 Initially, sB is empty. (Note that i ∈ PA.) The only way to mark places in
P0\PA is to fire a transition in start(NW

B
). However, PW

B
is activation safe.

Therefore, the start transitions are blocked until PB\PA = P0\PA is empty
again and it is not possible to reach states outside [NW

B
; [iB]〉.

Part B
Based on RBC and N0, N1, NW

B
, and NW

C
as defined above. We define R01 as

follows:R01 = {((N0; sA+sB); �I(N1; sA+sC)) | sA ∈ B(PA)∧sB ∈ B(P0\PA)∧
sC ∈ B(P1\PA) ∧ sA + sB ∈ [N0; [i]〉 ∧ sA + sC ∈ [N1; [i]〉 ∧ ((sB = 0 ∧ sC =

0)∨ ((NW

B
; sB)RBC�I(N

W

C
; sC)))}. We show that R01 is a branching bisimulation

and that (N0; [i])R01�I(N1; [i]).

Consider two markings s0 ∈ [N0; [i]〉 and s1 ∈ [N1; [i]〉 such that (N0; s0)R01

�I(N1; s1). The bags s0 and s1 can be partitioned as in the definition of R01, i.e.,
s0 = sA + sB , s1 = sA + sC , sA ∈ B(PA), sB ∈ B(P0\PA), sC ∈ B(P1\PA). For
these two markings we will verify the three requirements stated in the definition of

32

branching bisimilarity.

(1) Assume that t ∈ T0 is such that (N0; s0) [`0(t)〉 (N0; s
′
0
). Bag s′

0
can be par-

titioned into s′
A

and s′
B

as before. We need to prove that there exist s′
1
; s′′

1

such that (N1; s1) =⇒ (N1; s
′′
1
) [(`0(t))〉 (N1; s

′
1
) ∧ (N0; s0)R01(N1; s

′′
1
) ∧

(N0; s
′
0
)R01 (N1; s

′
1
).

• If t ∈ TA, then t is also enabled in (N1; s1) and firing t only affects places

in PA because
N0• t ∪ t

N0• =
N1• t ∪ t

N1• ⊆ PA. Moreover, `0(t) =

`1(t). Therefore, s′′
1
= s1 and s′

1
= s′

A
+ sC are such that (N1; s1) =⇒

(N1; s
′′
1
) [(`0(t))〉 (N1; s

′) ∧ (N0; s0)R01(N1; s
′′
1
) ∧ (N0; s

′
0
)R01(N1; s

′
1
).

• If t �∈ TA, then t ∈ TB .
· Assume t ∈ start(NW

B
). Since PW

B
is activation safe in (N0; [i]), sB =

0. Moreover, sC = 0, because sB = 0, (N0; s0)R01�I(N1; s1), and
there is no sC such that (NW

B
; 0)RBC(�I(N

W

C
; sC)). Since transition

t ∈ start(NW

B
), each place in

N0• t is marked in both s0 and s1. More-
over, `0(t) �= � . Clearly, there is a t′ ∈ TC such that `0(t) = `1(t

′)

and
N1• t′ = N0• t ⊆ B(PA). Since s0 and s1 are identical with respect

to the places in PA, t′ is also enabled in (N1; s1). Moreover, the result
of firing t′ is identical to t with respect to the places in PA. Let s′

C
be

such that (NW

C
; [iC])[`C(t

′)〉(NW

C
; s′

C
) and (NW

B
; s′

B
)RBC�I(N

W

C
; s′

C
).

Such a s′
C

exists because (NW

B
; [iB]) RBC �I(N

W

C
; [iC]). It is easy

to see that s′′
1

= s1 and s′
1

= s′
A
+ s′

C
are such that (N1; s1) =⇒

(N1; s
′′
1
)[(`0(t))〉(N1; s

′
1
)∧(N0; s0)R01(N1; s

′′
1
) ∧ (N0; s

′
0
)R01(N1; s

′
1
).

· Assume t ∈ stop(NW

B
). Clearly, sB �= 0. Hence, (NW

B
; sB) RBC

(�I(N
W

C
; sC)). Transition t is also enabled in (NW

B
; sB). Since NW

B
is

sound, sB ∈ [NW

B
; [iB]〉, and t ∈ stop(NW

B
), we deduce that (NW

B
; sB)

[`(t)〉 (NW

B
; [oB]). Hence, s′

B
= 0. Since (NW

B
; sB)RBC(�I(N

W

C
; sC)),

it is straightforward to show that in (NW

C
; sC) a sequence consisting

of zero or more silent steps can be executed followed by the firing
of a transition t′ such that `0(t) = `1(t

′). Let s′
C

be the resulting
marking. Since NW

C
is sound, sC ∈ [NW

C
; [iC]〉, and t′ ∈ stop(NW

C
),

s′
C

= [oC]. Clearly, the same sequence can be executed in (N1; s1)

leading to s′
1
. Note that in s′

1
only places in PA are marked. Since the

effects of transitions t in N0 and t′ in N1 on the places in PA are iden-
tical, s′

1
= s′

0
. Therefore, there are s′′

1
and s′

1
such that (N1; s1) =⇒

(N1; s
′′
1
) [(`0(t))〉(N1; s

′)∧(N0; s0)R01(N1; s
′′
1
)∧(N0; s

′
0
)R01(N1; s

′
1
).

· Assume t ∈ TB\(start(NW

B
) ∪ stop(NW

B
)). Since sB �= 0, (NW

B
; sB)

RBC (�I(N
W

C
; sC)).

If `0(t) = � , then choose s′
1
= s′′

1
= s1. It is easy to see that

(N1; s1) =⇒ (N1; s
′′
1
) [(`0(t))〉 (N1; s

′) ∧ (N0; s0)R01(N1; s
′′
1
) ∧

(N0; s
′
0
)R01(N1; s

′
1
).

If `0(t) �= � , then it is straightforward to show that in (NW

C
; sC) a

sequence consisting of zero or more silent steps can be executed
followed by the firing of a transition t′ such that `0(t) = `1(t

′).

33

Let s′
C

be the resulting marking. Clearly, (NW

B
; s′

B
)RBC(�I(N

W

C
;

s′
C
)) and s′

C
∈ B(P1\PA), i.e., s′

C
does not mark oC . The same

sequence can be executed in (N1; s1) leading to s′
1
. The effect of

the execution of t′ on the places in PA is identical to the effect of
t on the places in PA , i.e., (∀ t; t′ : t ∈ TB ∧ t′ ∈ TC ∧ `B(t) =

`C(t
′) : (

N0• t∩PA =
N1• t′∩PA)∧(tN0• ∩PA = t′

N1• ∩PA)). There-
fore, there are s′′

1
and s′

1
such that (N1; s1) =⇒ (N1; s

′′
1
) [(`0(t))〉

(N1; s
′) ∧ (N0; s0)R01(N1; s

′′
1
) ∧ (N0; s

′
0
)R01(N1; s

′
1
).

(2) Assume that t ∈ T1 is such that (N1; s1) [`1(t)〉 (N1; s
′
1
). We need to prove

that there exist s′
0
; s′′

0
such that (N0; s0) =⇒ (N0; s

′′
0
) [(`1(t))〉 (N0; s

′
0
) ∧

(N0; s
′′
0
)R01 (N1; s1) ∧ (N0; s

′
0
)R01(N1; s

′
1
). The proof is almost identical to

the proof in the other direction. The only issue which should be noted is that if
t ∈ start(NW

C
) is enabled in (N1; s1), then sC = 0: Because t is also enabled

in (N0; s0) and PW

B
is activation safe, sB = 0. Moreover, there is no sC such

that (NW

B
; 0) RBC (�I(N

W

C
; sC)). Hence, sC = 0.

(3) Assume ↓ s0. We need to prove that ⇓ s1. ↓ s0 implies that s0 = [o], sA = [o],
and sB = 0. If sC = 0, then s1 = [o] and ⇓ s1 (in fact ↓ s1). It is not possible
that sC �= 0, because this would imply that (NW

B
; 0)RBC�I(N

W

C
; sC) which

is not possible. Similarly, it can be shown that ↓ s1 implies ⇓ s0.

From the definition of R01 it follows that (N0; [i])R01�I(N1; [i]).

Part C
It remains to be proven that N1 is a sound C-net. It is easy to see that N1 is a C-net:
There is one source place i, one sink place o, and every node is on a path from i to
o. To prove that N1 is sound, consider an arbitrary marking s1 ∈ [N1; [i]〉. For this
marking there is a counterpart s0 in the original net (N0) such that s0 ∈ [N0; [i]〉 and
(N0; s0)R01�I(N1; s1). Using s0 we verify the four requirements for soundness:

• (N1; [i]) is safe because, for any place p ∈ PA, s1(p) = s0(p) ≤ 1, and there is a
marking sC ∈ [NW

C
; [iC]〉 such that for any place p ∈ P1\PA: s1(p) = sC(p) ≤ 1.

• Suppose that o ∈ s1. Since N0 is sound, s0 = [o]. Since (N0; s0)R01 �I(N1; s1),
the other places in PA are empty. The places in P1\PA are also empty, be-
cause otherwise there would be a nonempty bag sC such that sC �= [oB] and
(NW

B
; 0)RBC �I(N

W

C
; sC). Clearly this is not possible because from sC it would

be possible to fire a non-� -labeled transition.
• From s0 it is possible to reach the marking [o] in N0 because N0 is sound. Since

(N0; s0)∼b �I(N1; s1) it is possible to do the same in N1 starting from s1.
• To prove that there are no dead transitions in (N1; [i]), we first consider transi-

tions in TA. Suppose a transition t ∈ TA is enabled in (N0; s0), then t is also
enabled in (N1; s1). Since there are no dead transitions in (N0; [i]), it is possible
to enable any transition t ∈ TA starting from (N1; [i]). Transitions in T1\TA are
not dead, because there are no dead transitions in (NW

C
; [iC]).

34

Since N1 is a sound C-net and R01 is a branching bisimulation, we conclude that
N1 ≤pj N0. �

To show that a consistent well-formed system architecture actually provides the
functionality assured by the specification of the top-level component, we define a
function aat to translate a system architecture into a labeled P/T net.

Definition 41 (Flattened architecture) Let (C; cmap) be a well-formed system
architecture such that for any c ∈ C: c = (CSc; CAc), CSc = (P S

c
; T S

c
;MS

c
; F S

c
;

`S
c
), and CAc = (PA

c
; TA

c
; CA

c
; FA

c
; `A

c
). The corresponding flattened architecture is

the labeled P/T net aat(C; cmap) obtained by applying the following algorithm:

Step 1 ct is the top level component, i.e., the root of the directed acyclic graph R men-
tioned in Definition 38.
CA = (PA; TA; CA; FA; `A) := CAct

hmap(cp) := cmap(ct; cp) for all cp ∈ CA

ct

Step 2 If CA = ∅, then stop and output aat(C; cmap) = (P A; TA; rng(`A); FA; `A),
otherwise goto Step 3.

Step 3 Select a cp ∈ CA.
c := hmap(cp)

CA′ = (PA′
; TA′

; CA′
; FA′

; `A
′
) := strip(CAc)

PA′′
:= PA ∪ PA′

TA′′
:= TA ∪ TA′

CA′′
:= (CA\{cp}) ∪ CA

c

FA′′
:= (FA\((({cp}×Lv)×PA)∪(PA×({cp}×Lv))))∪FA′∪{(p; x) ∈ PA×

dom(`A
′
) | (p; (cp; `A′

(x))) ∈ FA}∪{(x; p) ∈ dom(`A
′
)×PA | ((cp; `A′

(x)); p)

∈ FA}
dom(`A

′′
) := (dom(`A)\({cp} × L)) ∪ dom(`A

′
).

For any x ∈ dom(`A
′′
): if x ∈ dom(`A

′
), then `A

′′
(x) := `A(cp; `A

′
(x)), other-

wise `A
′′
(x) := `A(x).

CA′′ := (PA′′
; TA′′

; CA′′
; FA′′

; `A
′′
)

hmap(cp′) := cmap(c; cp′) for all cp′ ∈ CA

c

CA := CA′′

Goto Step 2.

To flatten the system architecture, the placeholders in the top-level component are
replaced by the architectures of the corresponding components. Then the newly
introduced placeholders are replaced by the component architectures, etc., until
there are only closed components.

Figure 4 shows the flattened system architecture introduced in Section 1, i.e., the
system composed of the components shown in figures 2 and 3.

35

Note that the flattened architecture corresponds to the actual behavior of the system
and that there are similarities with flattening other types of hierarchical Petri nets
[19]. The following theorem uses the compositionality result of Theorem 40 to
show that consistency implies the proper operation of the whole system.

Theorem 42 (Consistency implies soundness and conformance) Let (C; cmap)

be a consistent well-formed system architecture with top-level component ct =

(CS;CA). aat(C; cmap) is a sound C-net and aat(C; cmap)≤pj CS.

PROOF. The algorithm specified in Definition 41 unfolds a component architec-
ture CA = (PA; TA; CA; FA; `A) in a number of steps. We will show that at any
point in time cat(CA)≤pj CSct using induction.

Initially, CA = CAct. Since the top-level component ct is consistent, cat(CA) is
a sound C-net and cat(CA)≤pj CSct (see Definition 34).

Assume that cat(CA) ∈ C, cat(CA) ≤pj CSct, and cp ∈ CA, c = hmap(cp),
CA′ = strip(CAc), and CA′′ as defined in Step 3 of the algorithm. We will prove
that CA′′ is a sound C-net in C and cat(CA′′) ≤pj cat(CA) using Theorem 40.
Let N0 = cat(CA), N1 = cat(CA′′), NW

B
= cp, and NW

C
= cat(CAc).

It is easy to verify that N0, N1, NW

A
, and NW

B
satisfy the requirements stated in

Theorem 40:

(1) N0 is a sound C-net because we assume cat(CA) ∈ C.
(2) N0 = NA ∪NB is well defined because the subnets do not share transitions.
(3) N1 = NA ∪NC is for the same reason well defined.
(4) TA ∩ TB = ∅, see assumption on name clashes.
(5) TA ∩ TC = ∅, see assumption on name clashes.
(6) PA ∩ PB = PA ∩ PC , follows directly from the construction.
(7) NW

B
is a sound C-net because placeholder cp ∈ C.

(8) NW

C
is a sound C-net because c is consistent and therefore cat(CAc) is

sound.
(9) Since (C; cmap) is consistent, the set of labels used by start(cp) equals the set

of labels used by start(CSc). Moreover, since c is consistent, the set of labels
used by start(cat(CAc)) also equals the set of labels used by start(CSc).
Since cp and cat(CAc) use the same set of labels for start transitions, the
construction in Step 3 (which is purely based on labels) guarantees that the
set of labels used by start(NW

C
) is a subset of �(NW

B
). Similar remarks hold

for the labels of stop transitions. Hence, (∀ t : t ∈ start(NW

C
) ∪ stop(NW

C
) :

`W
C
(t) ∈ �(NW

B
)).

(10) Since only transitions with non-� labels in cp are connected to places in CA

by the cat function, (∀ t : t ∈ TB ∧ `B(t) = � : (
N0• t ∩ PA = ∅) ∧ (t

N0•
∩ PA = ∅)).

(11) Consider a transition t ∈ cat(CAc) with a label not used in cp. There is no

36

way to connect t to places in CA using cat(CA′′) because the label does not

appear in the flow relation FA. Hence, (∀ t : t ∈ TC ∧ `1(t) �∈ �(NW

B
) : (

N1•
t ∩ PA = ∅) ∧ (t

N1• ∩ PA = ∅)).
(12) Similarly, one can show that (∀ t; t′ : t ∈ TB ∧ t′ ∈ TC ∧ `B(t) = `C(t

′) : (
N0•

t ∩ PA =
N1• t′ ∩ PA) ∧ (t

N0• ∩ PA = t′
N1• ∩ PA)).

(13) PW

B
is activation safe in (N0; [i]). This follows directly from the consistency

of CA which is invariant under the replacements.
(14) NW

C
= cat(CAc) ≤pj CSc, because c is consistent. CSc ≤pj cp = NW

B
,

because (C; cmap) is consistent. Hence, NW

C
≤pj N

W

B
.

Hence CA′′ is a sound C-net in C and cat(CA′′) ≤pj cat(CA). Since ≤pj is
transitive, we conclude: cat(CA′′)≤pj CSct . �

Theorem 42 shows that a consistent system architecture is sound (i.e., no deadlocks,
livelocks, or other anomalies) and that the actual behavior conforms to the specifi-
cation. Moreover, the theorem also shows that it is possible to replace any consis-
tent component by another consistent component which has an interface which is a
subclass of the corresponding placeholder, i.e., the result can be used to effectively
address substitutability issues!

Figure 4 shows the flattened system architecture introduced in Section 1. Since
a system architecture composed of the components shown in figures 2 and 3 is
consistent, the C-net shown in Figure 4 is guaranteed to be sound. Moreover, the
C-net shown in Figure 4 is a subclass of the specification shown in Figure 2(a).

Also consider the system architecture composed of the components coffee machine,
brewing facility, and coin handler presented earlier. Since the system architecture
is consistent, the actual behavior of the system conforms to the specification, i.e.,
the flattened system architecture is a subclass of the component specification shown
in Figure 11. Moreover, the components brewing facility and coin handler can be
replaced by other components satisfying a subclass/superclass relationship without
jeopardizing the correct operation of the overall system!

5 Extensions based on other notions of inheritance

In Section 2.4, we mentioned the fact that in [4,5,10] four notions of inheritance
have been identified. However, we introduced only one notion, i.e., projection in-
heritance, to avoid confusion. In this section we discuss potential future extensions
of our framework based on other notions of inheritance.

Recall that the basic idea of projection inheritance can be characterized as follows.

37

If it is not possible to distinguish the behaviors of x and y when arbitrary methods
of x are executed, but when only the effects of methods that are also present in y

are considered, then x is a subclass of y.

For projection inheritance, all new methods (i.e., methods added in the subclass)
are hidden using the abstraction operator �I . In a way all new methods are made
internal such that the environment of the component cannot detect any differences.
This means that a subclass under projection inheritance cannot offer any new func-
tionality visible on the external interface of a component. Given this limitation, it
is interesting to explore other notions of inheritance. Another basic form of inheri-
tance is protocol inheritance which is based on blocking instead of abstraction.

If it is not possible to distinguish the external behavior of x and y when only
methods of x that are also present in y are executed, then x is a subclass of y.

Intuitively, this alternative form of inheritance conforms to blocking calls to meth-
ods new in x. Component x is said to inherit the protocol of y if after blocking the
new methods no environment can tell the difference between x and y. As long the
new functionality is not “touched”, the behavior of x and y is branching bisimilar.
For a formal definition of protocol inheritance we refer to [4,5,10] where the en-
capsulation operator @H is used to block a set of methods H . In Figure 7, N1 and
N2 are subclasses of N0 with respect to protocol inheritance.

The two mechanisms (i.e., blocking and hiding) result in two orthogonal inheritance
notions. Therefore, we also consider combinations of the two mechanisms. A C-net
is a subclass of another C-net under protocol/projection inheritance if and only if
both by hiding the new methods and by blocking the new methods one cannot detect
any differences, i.e., it is a subclass under both protocol and projection inheritance.
In Figure 7, N2 is the only subclass of N0 with respect to protocol/projection inheri-
tance. The two mechanisms can also be used to obtain a weaker form of inheritance.
A component is a subclass of another component under life-cycle inheritance if and
only if by blocking some newly added methods and by hiding some others one can-
not distinguish between them. Life-cycle inheritance is more general than the other
three inheritance relations. All C-nets shown in Figure 7 are subclasses of N0 with
respect to life-cycle inheritance. A detailed study of the four inheritance relations
and the corresponding inheritance-preserving transformation rules can be found in
[5,10].

At the moment, we are extending the framework to life-cycle inheritance. This
extension will be realized as follows. In a systems architecture each component
plugged into a placeholder is augmented with two lists of methods: one list for
the methods that are hidden and another list for the methods that are blocked. The
methods that are hidden are handled as described in this paper, i.e., these methods
are made internal. The methods that are blocked are simply removed. In addition
all inactive parts are also removed. Note that blocking one method on the interface

38

of a component can deactivate large parts of the component. Given the proper re-
quirements, we can generalize the main theorems presented in this paper, e.g., we
can still prove that consistency of the system architecture implies soundness and
conformance. Based on this result, it is easy to see that the framework can also be
extended to protocol inheritance as being a special case of life-cycle inheritance.
Moreover, the fourth notion of inheritance, protocol/projection inheritance, is a spe-
cial case of the three other forms of inheritance. Therefore, the framework can also
support this form of inheritance by simply restricting the notion of inheritance be-
ing used.

6 Related work

This paper presents a framework and results that build upon earlier results on WF-
nets [1–3], inheritance [4,5,10], and a previous framework for component-based
software architectures with Petri nets [20]. In [9] a software architecture is defined
as the structure, which comprises software components, the externally visible prop-
erties of those components, and the relationships among them. A good architecture
gives future flexibility: The possibility to evolve while maintaining the integrity
and the quality attributes of a system. Quality attributes, also called architectural
drivers, are used to measure the quality of an architecture. The quality attributes [9]
of an architecture are performance, security, availability, functionality, usability,
modifiability, portability, reusability, and integrability. Analysis and simulation of
the architecture are used to determine them. Often these qualities compete and any
design decision involves trade-offs. For instance between modifiability and perfor-
mance or between scalability and reliability.

A general approach to develop architectures with their quality attributes is not avail-
able. Approaches to solve architectural problems are to categorize architectures and
their particularities and to reuse reference models [25], to use patterns [12,14], or
to use architectural blueprints [26]. But in most cases ad-hoc methods are used to
solve architectural problems. The choice of the Architecture Description Language
(ADL) often determines the ability to solve an architectural problem. In this section
we relate the framework presented in this paper to other ADLs. In [29] an ADL is
defined as a language that provides a concrete syntax and a conceptual framework
for characterizing architectures. The conceptual framework typically subsumes the
ADL’s underlying semantic theory. Furthermore, in [29] a criterion which enables
to determine whether or not a particular notation is an ADL is presented. An ADL
must provide the means for the explicit specification of the building blocks of an
architectural description: components, connectors and architectural configurations.
Clearly the framework presented in this paper satisfies this criterion. First, compo-
nents are first-class citizens of the framework (cf. Definition 31). Second, connec-
tors between components can be identified in component architectures as a combi-
nation of (Petri net) places and arcs. The places and arcs connect the components in

39

a component architecture. Third, it is obvious that for all component specifications
multiple architectural configurations are allowed.

How does our framework relate to the numerous ADLs available on the market to-
day? Examples are ARMANI, Rapide, Aesop, MetaH, UniCon, Darwin, Wright,
C2 and SADL [15]. ADLs such as ARMANI, Rapide, Darwin, Wright, and Aesop
typically view software architectures statically [28], i.e., analysis primarily focuses
on syntactical and topological issues. Nevertheless, Darwin offers the possibility
to execute “what if” scenarios and Rapide offers a constraint checker based on
simulation. Another approach is the addition of process specifications to existing
middleware technology, e.g., in [11] CORBA IDL’s are extended with Petri nets
to incorporate dynamic behavior. Several strategies to compare and to relate ADLs
have been presented the last years. One strategy is by using the architecture in-
terchange language ACME [16]. Its purpose is to capture the similarities of ADLs
and to support the mapping of architectural specifications from one ADL to another.
ACME is suited to do this at the syntactical level, but not (yet) at the semantic level.
Another strategy to classify ADLs is by architectural domains, i.e., the problems or
areas of concern that need to be addressed by ADLs [28]. The ADLs investigated
in [28] are all supported by tools, which are tightly interwoven with the ADL. The
framework presented in this paper has not (yet) been fully implemented in a tool.
However Petri-net tools support the concepts of the framework. For the simulation
of architectures ExSpect [8] and other tools are available and for analysis Woflan
[35] can be used. We will now discuss to what extent the framework is able to sup-
port the architectural domains defined in [28]. In the discussion we will separate
the framework from the supporting toolset.

1. Representation. The framework provides a graphical notation of architectures by
components and their methods in addition to the notation of labeled P/T-nets. By
separating the specification from the architecture of a component, components
are well understood among different stakeholders. For instance managers use
the component specification to understand its behavior, while software engineers
typically drill down in the hierarchy of the component architecture.

2. Design Process Support. There is no support on design decisions.
3.a. Static analysis. The component specifications and the flattened architectures

of the framework are C-nets. The workflow analysis tool Woflan [35] can be
used to perform correctness checks based on the properties defined in this paper.
Definition 14 is an example of a static property that can be checked using Woflan.

3.b. Dynamic analysis. The framework has well defined semantics and therefore
the behavior can be observed by executing the architecture. Petri-net simulation
tools can be used to execute component specifications and flattened nets of ar-
chitectures. The framework is extendable with color, time and priorities [19,22].
The addition of timing information enables to measure performance aspects of
the architecture. The tool ExSpect [8] can be used to analyze the performance of a
given architecture using simulation. More sophisticated checks can be performed
using Woflan [35]. Woflan 2.1 can analyze both soundness (Definition 16) and

40

projection inheritance (Definition 26).
4.a. Specification-Time evolution. The subtyping mechanism used to support speci-

fication-time evolution is process inheritance [5]. This can be used to determine
whether a component is a subclass of another component, and also whether the
flattened net of an architecture is a subclass of the flattened net of another archi-
tecture.

4.b. Execution-Time evolution. The subtyping mechanisms mentioned in (4.a) al-
low to define migration rules for dynamic change. The rules are defined in [5]
and can be used to migrate states between equivalent components.

5. Refinement. The refinement of framework architectures is supported by the hi-
erarchy notion that is incorporated in the component definition.

6. Traceability. Traceability mechanisms between the various architectural views
(implementation, process, control flow, data flow, graphical or textual) are not
incorporated in the framework. However architectures specified in the framework
are integrated models and it is possible to derive views from such models. For
instance the tool ExSpect [6,8] allows us to generate message sequence charts
[21] from models; these are interaction scenarios between components.

7. Simulation/Executability. The dynamic behavior of the framework architectures
can be simulated by ExSpect. In ExSpect, data elements can be added to the
framework which allows for the observation of data transformations.

The framework introduced in this paper has a particular focus on the consistency
of the dynamic behavior of components and architectures. It is not primarily in-
tended to describe the data flow, the signature of method, or other aspects. But it
enables software engineers to solve synchronization problems in complex architec-
tures of distributed components that may have complex interaction scenarios. If we
compare the framework with other ADLs, then we see that it still has a broad fo-
cus (it addresses almost all the architectural domains in the list). Nevertheless, the
framework provides particular strong results with respect to refinement and evolu-
tion of architectures. Key to these results are the inheritance-preserving transforma-
tion rules which preserve the behavior of a component. In the last decade several
researchers [7,23,24,27] explored notions of behavioral inheritance (also named
subtyping or substitutability). Researchers in the domain of formal process mod-
els (e.g., Petri nets and process algebras) have tackled similar questions based on
the explicit representation of a process by using various notions of (bi)simulation
[10]. The inheritance notion used in this paper is characterized by the fact that it is
equipped with both inheritance-preserving transformation rules to construct sub-
classes (see Section 2.4 and [4,10]) and transfer rules to migrate instances from a
superclass to a subclass and vice versa [5]. These features are relevant for a both
constructive and robust approach towards truly component-based software devel-
opment.

41

7 Conclusion

In this paper we introduced a framework to model software architectures. Like any
framework for software architectures the interaction amongst components is em-
phasized. Unlike most frameworks the scope is restricted to the dynamics of soft-
ware architectures, i.e., we abstract from data and other relevant perspectives. This
restriction is motivated by the fact that the dynamic behavior of components in a
software architecture is often ignored or described at a level which defies formal
analysis. We think it is important to incorporate the dynamic behavior of compo-
nents as first-class citizens in an architectural framework: Concurrency issues are
very important for the design of large software systems and should not be ignored.
Clearly, it is not possible to do formal analysis on real-life systems if all perspec-
tives (including data) are incorporated. Therefore, we choose to abstract from non-
behavioral aspects.

The framework presented in this paper has been used to address one of the key is-
sues of component-based software development: consistency. We have defined con-
sistency at the level of a single component and at the level of a system architecture.
Clearly consistency is very important in the context of component-based software
development: Will a component “fit” or not? To answer this question, we put the
notion of projection inheritance [4,10] to work. Projection inheritance can be used
to check whether a component actually provides the external behavior required. The
inheritance notion is equipped with concrete inheritance-preserving design patterns
and allows for modular conformance testing of the system architecture. One of the
main results of the paper is Theorem 40 which shows that projection inheritance
is compositional. Based on the compositionality of projection inheritance, we can
prove that consistency implies the correct behavior of the overall system, i.e., the
system is free of deadlocks and other anomalies and realizes the specification of
the top-level component.

In the future, we plan to extend our framework with other notions of inheritance.
The three other notions of inheritance presented in [4,10] can also be used to ob-
tain complementary compositionality results. For example, the notion of protocol
inheritance [4,10], which is based on encapsulation rather than abstraction of meth-
ods, allows for very generic components whose functionality is only partly used in
a given context. Another extension of our framework is the dynamic replacement
of components using the transfer rules presented in [5]. The transfer rules allow for
the on-the-fly migration of execution states from one component to another as long
as there is a subclass/superclass relationship. We also plan to work on the extension
with data and methods signatures. For example, it would be interesting to extend
the work presented in [11] with our notion of inheritance. Finally, we plan to adapt
our tools Woflan [35] and ExSpect [8] to serve the framework presented in this
paper. Woflan can be used to check the requirements involving soundness and con-
sistency, i.e., Woflan 2.1 can verify soundness and projection inheritance. ExSpect

42

Fig. 15. A screenshot of Woflan (front) and ExSpect (back): Woflan can be used to check
consistency and ExSpect can be used to prototype software architectures.

can be used as a prototyping environment for experimenting with component-based
software architectures. Both tools have been developed under the supervision of the
first two authors and are illustrated in Figure 15.

Acknowledgements The authors would like to thank Twan Basten for his excellent
work on inheritance of dynamic behavior and Eric Verbeek for the development of
Woflan.

References

[1] W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in
Computer Science, pages 407–426. Springer-Verlag, Berlin, 1997.

[2] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[3] W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using
Petri-net-based Techniques. In Business Process Management: Models, Techniques,
and Empirical Studies, volume 1806 of Lecture Notes in Computer Science, pages
161–183. Springer-Verlag, Berlin, 2000.

43

[4] W.M.P. van der Aalst and T. Basten. Life-cycle Inheritance: A Petri-net-based
Approach. In P. Azéma and G. Balbo, editors, Application and Theory of Petri Nets
1997, volume 1248 of Lecture Notes in Computer Science, pages 62–81. Springer-
Verlag, Berlin, 1997.

[5] W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An approach to
tackling problems related to change. Theoretical Computer Science, 2000 (to appear).

[6] W.M.P. van der Aalst, P. de Crom, R. Goverde, K.M. van Hee, W. Hofman, H. Reijers,
and R.A. van der Toorn. ExSpect 6.4: An Executable Specification Tool for
Hierarchical Colored Petri Nets. In M. Nielsen and D. Simpson, editors, Application
and Theory of Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science,
pages 455–464. Springer-Verlag, Berlin, 2000.

[7] P. America. Designing an Object-Oriented Programming Language with Behavioral
Subtyping. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Foundation
of Object-Oriented Languages, volume 489 of Lecture Notes in Computer Science,
pages 60–90. Springer-Verlag, Berlin, 1991.

[8] Deloitte & Touche Bakkenist. ExSpect Home Page. http://www.exspect.com.

[9] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Series in
Software Engineering. Addison Wesley, Reading, MA, USA, 1998.

[10] T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra. PhD
thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, December
1998.

[11] R. Bastide and P. Palanque et al. Petri-Net Based Behavioural Specification of CORBA
Systems. In Application and Theory of Petri Nets 1999, volume 1639 of Lecture Notes
in Computer Science, pages 66–85. Springer-Verlag, Berlin, 1999.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern Oriented
Software Architecture: A system of Patterns. John Wiley and Sons, New York, 1996.

[13] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series. Addison Wesley,
Reading, MA, USA, 1995.

[15] D. Garlan, R.T. Monroe, and D. Wile. ADL’s and Related Languages, Carnegie
Mellon. http://www.cs.cmu.edu/ ˜acme/adltk/adls.html.

[16] D. Garlan, R.T. Monroe, and D. Wile. Acme: An Architecture Description Interchange
Language. In Proceedings of CASCON’97, pages 169–183, Toronto, Ontario,
November 1997.

[17] D. Garlan and M. Shaw. An introduction to software architecture. In V. Ambriola and
G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering,
pages 1–39, Singapore, 1993. World Scientific Publishing Company.

44

[18] R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in
Bisimulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

[19] K.M. van Hee. Information System Engineering: a Formal Approach. Cambridge
University Press, 1994.

[20] K.M. van Hee, R.A. van der Toorn, J. van der Woude, and P. Verkoulen. A Framework
for Component Based Software Architectures. In W.M.P. van der Aalst, J. Desel,
and R. Kaschek, editors, Software Architectures for Business Process Management
(SABPM’99), pages 1–20, Heidelberg, Germany, June 1999. Forschungsbericht Nr.
390, University of Karlsruhe, Institut AIFB, Karlsruhe, Germany.

[21] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1996 (MSC96).
Technical report, ITU-TS, Geneva, 1996.

[22] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1996.

[23] H. Kilov and W. Harvey, editors. Object-Oriented Behavioral Specifications, volume
371 of The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, Boston, MA, USA, 1996.

[24] H. Kilov, B. Rumpe, and I. Simmonds, editors. Behavioral Specifications of
Businesses and Systems, volume 523 of The Kluwer International Series in
Engineering and Computer Science. Kluwer Academic Publishers, Boston, MA, USA,
1999.

[25] M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, and H. Lipson. Attribute-
Based Architecture Styles. In Software Architecture, Proceedings of the First Working
IFIP Conference on Software Architecture (WICSA1), pages 225–243, San Antonio,
TX, 1999.

[26] P. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 12(6):42–50,
November 1995.

[27] B. Liskov and J. Wing. A Behavioral Notion of Subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, November 1994.

[28] N. Medvidovic and D. Rosenblum. Domains of Concern in Software Architectures
and Architecture Description Languages . In Proceedings of the USENIX Conference
on Domain-Specific Languages, pages 199–212, Santa Barbara, October 1997.

[29] N. Medvidovic and R.N. Taylor. A Framework for Classifying and Comparing
Architecture Description Languages. In Proceedings of the Sixth European Software
Engineering Conference together with the Fifth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 60–67, Zurich, Switzerland, 1997.

[30] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
77(4):541–580, April 1989.

[31] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

45

[32] B. Selic and J. Rumbaugh. Using UML for Modeling Complex Real-Time Systems.
http://www.objectime.com/otl/technical/umlrt.html.

[33] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[34] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, 1998.

[35] E. Verbeek and W.M.P. van der Aalst. Woflan Home Page, Eindhoven University of
Technology, Eindhoven, The Netherlands. http://www.win.tue.nl/ ˜woflan.

46

