
Fairness-Aware Process Mining

Mahnaz Sadat Qafari and Wil van der Aalst

Rheinisch-Westfälische Technische Hochschule Aachen(RWTH), Aachen, Germany
m.s.qafari@pads.rwth-aachen.de,wvdaalst@pads.rwth-aachen.de

Abstract. Process mining is a multi-purpose tool enabling organiza-
tions to improve their processes. One of the primary purposes of process
mining is finding the root causes of performance or compliance problems
in processes. The usual way of doing so is by gathering data from the
process event log and other sources and then applying some data mining
and machine learning techniques. However, the results of applying such
techniques are not always acceptable. In many situations, this approach
is prone to making obvious or unfair diagnoses and applying them may
result in conclusions that are unsurprising or even discriminating. In this
paper, we present a solution to this problem by creating a fair classifier
for such situations. The undesired effects are removed at the expense of
reduction on the accuracy of the resulting classifier.

1 Introduction

Motivation. Academic and commercial process mining tools aim to find the root
causes of performance or compliance problems in processes. Mainly, a classifier,
say a decision tree, is created using the data gathered from the process and then
the rule mining is done using that decision tree [7]. However, this approach may
lead to diagnoses that are not valuable. In some cases, the main cause of the
problem is already known and essentially cannot be altered. Also, due to the
strong correlation of the known main cause and the problem, it may become
impossible to see the other minor but probably more practically valuable causes
of the problem. Consider the following two scenarios: (i) there is a bottleneck in
the process and it is caused by the busiest employee, or (ii) there are deviations
caused by the most experienced resources taking the most difficult cases. In
these scenarios, it is likely that the busiest employees or the most experienced
resources are declared the main reasons for the bottleneck or deviations in the
process. This is not just unfair but also does not provide novel insights (just
stating the obvious). Even if we remove the attribute conveying the employee
or the resource, still rules that proxy these attributes would be revealed as the
result of the traditional rule mining [10]. In these cases, it is essential to make
inference about the less trivial root-causes of the problem in the process.

As another application, consider that for a given process we are interested
in questions which are related to investigating the process while ignoring the
effect of different values of a particular attribute. “Following the progress of
career paths while eliminating gender differences” is one example of these sorts

2 M. S. Qafari et al.

of situations where we need to remove the correlation between two attributes in
the data.

Discrimination-aware data mining. Each population can be partitioned into
several subgroups according to the properties of its members, e.g., race, age, or
academic degree. Discrimination means treating a subgroup of people, called
sensitive group, in an unfair way merely because of being a member of that
subgroup. There is a possibility that negligent usage of new advanced technolo-
gies, especially in the field of data mining and machine learning, inadvertently
cause discrimination. To avoid these phenomena, detecting discrimination and
designing fair predictors have been studied intensively.

Demographic parity indicates the portion of people in the sensitive subgroup
who receive the desired result must be the same as the whole population. To
maintain this criterion, in some approaches the training data is manipulated [3, 4,
10]. In another approach, [10], the representation of the data is changed, and the
fairness is maintained as a side-effect of fair representations. In [5], demographic
parity in a decision tree is retained by taking into account the information gain
of the sensitive attribute as well as the class attribute as the criteria used for
splitting the internal nodes. In [5], the relabeling technique is also used to further
decrease the discrimination in the resulting decision tree. Besides demographic
parity, other notions of fairness have been formalized in the literature. We refer
the interested readers to [1] for a review of various fairness criteria.

Process mining. Process mining is the link between model-based process anal-
ysis and data-oriented analysis techniques; a set of techniques that support the
analysis of business processes based on event logs. In this context, several works
have been dedicated to decision mining and finding the correlation among the
process data and making predictions [2, 6, 7].

Ethical and legal effects of process mining can be considered in two cate-
gories; confidentiality and fairness issues. Confidentiality in the process mining
has recently received attention [9]. To the best of our knowledge, there is no
work in the area of process mining dedicated to investigating fairness issues.
This is the first publication considering discrimination within a given process.
The extended version of this paper is available in [8].

Our Results. We provide a solution for the previously mentioned problems. Spec-
ifying a problem in the process, we propose an approach by adopting the tech-
niques available in data mining for removing discrimination from classifiers in
the area of process mining to avoid unfair or obvious conclusions in such sce-
narios. We do that by declaring the attribute that indicates the existence of the
problem in the given situation as the class attribute and the attribute that we
want to decrease its dependency to the class attribute as the sensitive attribute.
We consider the class attribute to be binary with the following two values: +
indicates the desirable result conveying the problem of interest has not been
faced while − has the opposite meaning. The sensitive attribute is also assumed
to be binary, where / convey belonging to the sensitive group while , convey

Fairness-Aware Process Mining 3

belonging to the rest of the population (favorable group). Now, we can consider
the problem as a discriminatory case and remove the dependency of the class
and the sensitive attributes in the resulting classifier by creating a fair classifier.
Doing so, the resulting rules would not be discriminatory against the sensitive
group. Also, this technique masks some of the causes of that problem and focus
on the other ones.

The rest of the paper is organized as follow. In Section 2, we present the
problem statement. A high-level overview of the proposed approach is presented
in Section 3. The experimental results of applying the implemented method on
a real event log are presented in Section 4. Finally, in Section 5, we summarize
our approach and discuss directions for further research.

2 Problem Statement

To analyze conformance and performance problems, we use event data and pro-
cess models (discovered or hand-made).1 An event log is a collection of traces
and each trace is a collection of events related to the same case. Also each trace
may be associated with some attributes. Consider Uact as the universe of all
possible activity names, Utime the universe of all possible timestamps, Uatt the
universe of all possible attribute names, Uval the universe of all possible values,
and, Umap : Uatt 67→ Uval. Also, let values : Uatt 7→ P(Uval) be the function that
returns the set of all possible values for each attribute name. We define an event
log as follows:

Definition 1 (Event Log). An event is an element of Uact × Utime × Umap
and the universe of all possible events is denoted by E. A log is an element of
P(Umap × P(E)) and the universe of all possible logs is denoted by L. We call
each t ∈ L, where L ∈ L, a trace.

stamp. To work with event logs, we need the following helper functions:

– Given an event e = (act, time,map) ∈ E , πact(e) = act, πtime(e) = time,
and, πmap(e) = map.

– Given t = (map,E) ∈ L, where L ∈ L, then πmap(t) = map and πevents(t) =
E.

– Given E ∈ P(E), then πmaxtime(E) = arg maxe∈E πtime(e), πact(E) = {e ∈
E|πact(e) = act}, and, E≤time = {e ∈ E|πtime(e) ≤ time}.

We assume that each event in a given log L has a unique timestamp.
If the problem in the process is about the traces, like delay in some cases, then

for a given trace all the values of its trace and event-level attributes might be
relevant. However, if the problem is related to a specific activity, like a bottleneck

1 We assume the reader to be familiar with the concepts like set, multi-set, and func-
tion. Given a non-empty set X, we denote all the non-empty subsets of X by P(X).
Given two sets A and B, a partial function f : A 67→ B is defined as a function
f : A′ 7→ B for some A′ ⊆ A. We say f(a) = ⊥ if a 6∈ A′.

4 M. S. Qafari et al.

in activity act, then we need to extract the data from the trace attributes plus
the attributes of a subset of its events that occur before the occurrence of that
specific event. Also, the class attribute may occur several times in a given trace.
We define the notion of a situation to handle such cases as follows:

Definition 2 (Situation). We define a situation as an element in (Umap ×
P(E)). The set of all possible situations is denoted by Usit. Given a log L ∈ L,
we define the set of all situations derived from it as:

SL =
⋃

(map,E)∈L

(⋃
e∈E

{(map,E≤πtime(e))}
)
.

It is obvious that L ⊆ SL. Any S ⊆ SL is called a situation subset of L. For a
given log L, there are two main types of situation subsets. The first one is the
trace situation subset which is SL,⊥ = L. The second type is the event specified
situation subsets which includes all SL,act = {(map,E) ∈ SL|πact(πmaxtime(E)) =
act}, where act ∈ Uact and SL,act 6= ∅.

To specify an attribute, besides the name of the attribute, we need to know
if it is a trace or an event attribute and if it is an event attribute, we need to
know to which events does it belong. To concretely specify an attribute, we use
the situation feature notion defined as follows:

Definition 3 (Situation Feature). For any given a ∈ Uact ∪ {⊥} and att ∈
Uatt, we call sf a,att : Usit 67→ Uval a situation feature. Given a situation (map,E),
we define sf a,att((map,E)) as follows:

sf a,att((map,E)) =

{
map(att) a = ⊥
πmap(πmaxtime(πa(E)))(att) a ∈ Uact

.

We denote the universe of all possible situation features by Usf . Given a situation
feature sf a,att, we define values(sf a,att) = values(att). Also, for a given n ∈ N,
EP ∈ Unsf is a situation feature extraction plan of size n, where Unsf is defined
as Usf × · · · × Usf︸ ︷︷ ︸

n times

.

A situation feature extraction plan can be interpreted as the schema, the tuple
composed of those situation features that are relevant to the given problem in
the process.

The first step of solving any problem is concretely specifying the problem.
We call such a problem description a situation specification which is defined as
follows:

Definition 4 (Situation Specification). A situation specification is a tuple
SS = (EP , ssf , csf , ε) in which

(i) EP ∈ Unsf , where n ∈ N, is the situation feature extraction plan which in-
cludes all the situation features for which we are going to investigate their
effect on the given problem.

Fairness-Aware Process Mining 5

(ii) ssf ∈ Usf , the sensitive situation feature where values(ssf) = {,,/} and
ssf 6∈ EP.

(iii) csf ∈ Usf , the class situation feature where values(csf) = {+,−}, csf 6∈ EP,
and csf 6= ssf .

(vi) ε ∈ [0, 1], indicating the acceptable level of discrimination against ssf (the
amount of acceptable dependency between ssf and csf).

For a given situation specification, we go through the following three steps:
(1) Enriching the log, (2) Extracting the data, and (3) Learning fair classifier.
The general approach of our method is depicted in Figure 2.

Fig. 1. The general framework proposed for fair root-cause analysis. First, according
to the situation specification the event log is enriched by preprocessing the log and
other sources of information. Then, the data is extracted from the enriched event log.
Finally, two standard and fair classifier are created. Based on the analysis result, it is
possible to adapt the situation specification to gather additional insights.

3 Approach

We go through every one of the steps for creating a fair classifier for a given
situation specification, mentioned in the previous section, in more details.

1. Enriching the log. Let SS = (EP , ssf , csf , ε) be the given situation specifica-
tion. If EP includes situation features that can not be directly extracted from the
given log L, we enrich the log by augmenting each trace of it. In this step, we add
some attribute values to the traces and its events. These added attributes can
be related to any one of different process characteristics; time perspective, data
flow-perspective, control-flow perspective, conformance perspective, or resource
organization perspective. They may be driven from the given log, conformance
checking results from replaying the traces on a given Petri-net model, or any
external information resource like the weather information.

2. Extracting the data. To discover meaningful dependency results by the clas-
sifier, we need to capture the data such that the causality relations among them
and the class attribute are not violated. To do so, given csf = sf a,att, we apply
the following two rules while extracting the data:

6 M. S. Qafari et al.

1. If a ∈ Uact, each trace may map to several situations and the data should be
extracted from that part of the trace that happens before the occurrence of
csf . However, if a = ⊥, then csf is related to a trace level attribute and the
data should be extracted from the whole trace.

2. The value of the independent situation feature with the closest occurrence
time to the occurrence of csf must be collected.

The second rule is valid assuming that if one of the independent situation features
has happened several times before the occurrence of csf in a trace, the one that
is chronologically closest to the occurrence of csf , has the most effect on it.

To follow the first rule, for the given log L and the situation specification
SS = (EP , ssf , csf , ε), where csf = sf a,att, we set S = SL,⊥ if a = ⊥ and we set
S = SL,act if a = act.

The final step for extracting the data is creating a data table and annotating
each row of the table by adding the values of sensitive and class situation feature
to it.

Definition 5 (Situation Feature Table). Given a situation feature extraction
plan EP = (sf a1,att1 , . . . , sf an,attn), and a situation set S ⊆ Usit, a situation
feature table is a multi-set which is defined as:

TS,EP = [(sf a1,att1(s), . . . , sf an,attn(s))|s ∈ S].

For a log L ∈ L, S ⊆ SL, we call TS,EP a situation feature table of L.
For a given situation feature table TS,EP and csf , ssf ∈ Ussf for which ssf 6=

csf and csf , ssf 6∈ EP and ∀s∈S (csf (s) 6= ⊥ ∧ ssf (s) 6= ⊥), we define an
annotated situation table ATS,EP,ssf ,csf as:

ATS,EP,ssf ,csf = [(sf a1,att1(s), . . . , sf an,attn(s), ssf (s), csf (s))|s ∈ S].

We call each element of ATS,EP,ssf ,csf an instance. For a given instance insts =
(sf a1,att1(s), . . . , sf an,attn(s), ssf (s), csf (s)) we define πEP (insts) =

(
sf a1,att1(s),

. . . , sf an,attn(s)
)
, πssf (insts) = ssf (s), and, πcsf (insts) = csf (s).

Here, ssf is the sensitive and csf is the class (label) situation feature. Also, each
member of insts ∈ ATS,EP,ssf ,csf where s ∈ S can be seen as a row of the data
table in which πEP (insts) = (sf a1,att1(s), . . . , sf an,attn(s)) is the tuple including
independent attribute values and πcsf (insts) = csf (insts) is the class attribute
value of insts.

3. Learning fair classifier. We define a classifier as follows:

Definition 6 (Classifier). Let S be a set of situations and EP = (sf a1,att1 , . . . ,
sf an,attn) be a situation extraction plan and csf ∈ Usf such that ∀1≤i≤nsf ai,atti 6=
csf , then a classifier is a function class : TS,EP 7→ values(csf).

Given a classifier class and an annotated situation table ATL,EP,ssf ,csf , then
the accuracy of class over ATL,EP,ssf ,csf is measured as:

acc(class,ATL,EP,ssf ,csf) =
|[inst ∈ ATL,EP,ssf ,csf |class(πEP (inst)) = πcsf (inst)]|

|ATL,EP,ssf ,csf |
.

Fairness-Aware Process Mining 7

For fairness, we use demographic parity as the main concept. To measure the
discrimination in the data, we use the measure mentioned in [5], which is:

disc(ATL,EP,ssf ,csf) =
|[inst ∈ ATL,EP,ssf ,csf |πssf (inst) = , ∧ πcsf (inst) = +]|

|[inst ∈ ATL,EP,ssf ,csf |πssf (inst) = ,]|
−

|[inst ∈ ATL,EP,ssf ,csf |πssf (inst) = / ∧ πcsf (inst) = +)]|
|[inst ∈ ATL,EP,ssf ,csf |πssf (inst) = /]|

.

By replacing πcsf (inst) with class(πEP (inst)) in this equation, we can measure
the discrimination imposed by the classifier class.

For the classifier, we use decision trees. It is worth mentioning that both the
classifier and the measure of discrimination can be changed according to the
given application.

The first step toward removing the discrimination has already been taken
during the creation of the classifier by not considering the sensitive situation
feature for the classification purpose (Definition 6). As mentioned in many works,
e.g. [10], this is not enough due to the existence of correlation among different
situation feature values in a given situation feature table. The discrimination in
the classifier can be further eliminated by relabeling technique. In this paper,
we relabel leaves in the decision tree to balance accuracy and fairness. However,
other methods of creating a discrimination free classifiers can be used.

In the implemented plug-in two classifiers are generated. The first one is
a tree classifier that is generated by J48 tree classifier implementation of C4.5
algorithm in WEKA package. Then, if the level of discrimination in the resulting
decision tree is more than an acceptable threshold ε, the leaves of the decision tree
are relabeled to create a fair classifier. For the relabeling, we use an algorithm
similar to the one mentioned in [5]. In [5], the leaves of the tree are ordered
in descending order of the ratio of the discrimination gain and accuracy lose
of relabeling each leaf. Then according to this order, leaves are relabeled until
the discrimination in the classifier tree is lower than ε. As mentioned in [5], the
problem of finding the set of leaves to be relabeled such that the discrimination
in the decision tree is lower than a given threshold ε with the lowest possible
negative effect on the accuracy of the decision tree is equivalent to the knapsack
problem. In the relabeling algorithm implemented in the ProM plug-in, we use
dynamic programming and rounding to choose approximately the best possible
set of leaves to be relabeled.

Note that in the context of process mining and root cause analysis, changing
the class label from + to - and from - to + at the same time may not be desirable.
So in some cases we may need to restrict the relabeling technique to just desirable
or just undesirable labeled leaves of the tree. If we restrict the relabeling, there
might be cases where the discrimination of the fair tree is higher than given ε.

4 Implementation and Experimental Results

The approach presented in Section 3 has been implemented as a plug-in of ProM
which is an open-source framework for process mining. The implemented plug-

8 M. S. Qafari et al.

in is available under the name Discrimination aware decision tree. The inputs
of the plug-in are the event log, the Petri-net model of the process, and, the
conformance checking results of replaying the given log on the given model. The
current implementation focuses on three types of problems in a given process:
(1) routing problems, (2) deviation problems, and (3) performance problems.

To illustrate the fair analysis of these problems we use one real data log, the
hospital billing2 event log. We use the last 20000 traces of hospital billing log
in the experiments which include 71188 activities. In this initial evaluation, we
created a controlled experiment with a known ground truth. In each experiment,
the discrimination is added to the event log artificially and then the altered log is
used to evaluate the method and investigate the effect of removing discrimination
on the accuracy of the created fair decision tree. In all the experiments the same
setting has been used. For example in all the experiments ε = 0.05 and there
was no limit for applying relabeling technique. Also for each event log, the same
set of independent situation features has been chosen and all the parameters for
creating the decision tree were the same. 60 percent of the data has been used for
training, and 40 percent of the data has been used for testing the classifier. The
results of our experiment are depicted in Figure 2. The charts respectively show
the results of applying our technique when there is (a) a performance problem,
(b) a routing problem, and (c) a conformance problem in the hospital billing
process.

As is depicted in Figure 2, we can reduce the discrimination on the sensitive
group at the expense of some reduction at the accuracy of the classifier. As ex-
pected, as the level of discrimination increases in the data, the amount of the
accuracy of the classifier that needs to be sacrificed for removing the discrimina-
tion increases. We need to be careful using this technique, as there are occasions
where discrimination may be put on the favorable group. This phenomenon is
also unfair. Surprisingly, in some cases like Figure 2(c), the fair decision tree
outperforms the standard decision tree in terms of accuracy. This phenomenon
has been reported in [5] as well.

The chart in Figure 3, demonstrates the level of discrimination in the fair
decision tree and its accuracy for different settings of parameter ε. As expected,
the accuracy of the fair decision tree is lower when ε is smaller. Here, we use
delay in traces as the class situation feature.

5 Conclusion

The first step toward enhancing a process by removing one of its performance
or compliance problems is diagnosing the root causes of that problem. By using
standard data mining techniques for detecting the causes, the results might be
obvious and mainly regarding those parts of the process that can not be altered.
To reveal other less vivid causes of the problem we need to mask the obvious
ones. We did so by looking at the cause that we need to ignore its effect on the

2 https://data.4tu.nl/repository/collection:event logs real

Fairness-Aware Process Mining 9

Fig. 2. The result of applying the imple-
mented ProM plug-in on a real event log.
In all these charts, the blue curve exhibits
the level of discrimination in data (also by
the x-axis.), the orange curve shows the
level of discrimination in standard decision
tree, the gray curve shows the level of dis-
crimination in a fair decision tree, the yel-
low curve exhibits the accuracy of the stan-
dard decision tree, and, the green curve ex-
hibits the accuracy of the fair tree. Chart
(a) shows the results of applying our tech-
nique when there is a performance prob-
lem in the process for which we consider
the delay in the traces. Chart (b) shows
the results of applying our technique when
there is a routing problem in the process
for which we consider the choice between
taking “BILLED” and skipping this tran-
sition in the hospital billing process. Chart
(c) shows the results of applying our tech-
nique when there is a conformance prob-
lem in the process for which we consider
the existence of deviation in the traces. In
all these experiments ε = 0.05. In all these
experiments, the level of discrimination in
the fair classifiers are less than the given
threshold ε. Also, as the level of discrimi-
nation increases in the data, the difference
between the accuracy of the fair decision
tree and standard decision tree increases.
In chart (c), the fair decision tree demon-
strates a better performance than the stan-
dard decision tree in terms of accuracy.

Fig. 3. The result of applying imple-
mented plug-in with different values for pa-
rameter ε which is depicted in purple in the
chart. In this chart, the value of ε shown by
the pink curve. The level of discrimination
in the data in all these experiments are the
same. In all these experiments, the level of
discrimination in the fair decision tree is
lower than the given threshold ε. Also, the
accuracy of the fair decision tree tends to
be lower for the lower values of ε.

10 M. S. Qafari et al.

problem as the sensitive attribute. Then we remove the dependency between the
sensitive and the class attributes from the created classifier. This is done at the
expense of a small reduction in the accuracy of the resulting classifier.

This research has several applications; detecting the discrimination within
a process, removing the discrimination from the process by replacing the fair
classifier with the current one, making more accurate and realistic judgments
about the root causes of the problem at hand.

This research can be extended in several directions. The first one is to add
new derived attributes to the log when enriching the log. The other one is altering
the fairness criteria, the classification method, or the technique for creating the
discrimination-free classifier depending on the application.

References

1. Berk, R., Heidari, H., Jabbari, S., Kearns, M., Roth, A.: Fairness in criminal jus-
tice risk assessments: The state of the art. Sociological Methods & Research p.
0049124118782533 (2018)

2. Fani Sani, M., van der Aalst, W., Bolt Irondo, A., Garćıa-Algarra, J.: Subgroup
discovery in process mining. In: Abramowicz, W. (ed.) Business Information Sys-
tems. pp. 237–252. Lecture Notes in Business Information Processing, Springer,
Germany (2017). https://doi.org/10.1007/978-3-319-59336-4 17

3. Kamiran, F., Calders, T.: Classification with no discrimination by preferential sam-
pling. In: Informal proceedings of the 19th Annual Machine Learning Conference of
Belgium and The Netherlands (Benelearn’10, Leuven, Belgium, May 27-28, 2010).
pp. 1–6 (2010)

4. Kamiran, F., Calders, T.: Data preprocessing techniques for classification with-
out discrimination. Knowledge and Information Systems 33(1), 1–33 (Oct 2012).
https://doi.org/10.1007/s10115-011-0463-8

5. Kamiran, F., Calders, T., Pechenizkiy, M.: Discrimination aware deci-
sion tree learning. In: Proceedings of the 2010 IEEE International Con-
ference on Data Mining. pp. 869–874. ICDM ’10, IEEE Computer So-
ciety, Washington, DC, USA (2010). https://doi.org/10.1109/ICDM.2010.50,
http://dx.doi.org/10.1109/ICDM.2010.50

6. Leemans, S., Fahland, D., Aalst, van der, W.: Process and deviation exploration
with inductive visual miner pp. 46–50 (2014)

7. de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Inf. Syst. 56(C), 235–257 (Mar 2016). https://doi.org/10.1016/j.is.2015.07.003,
https://doi.org/10.1016/j.is.2015.07.003

8. Qafari, M.S., Aalst, van der, W.: arxiv: Fairness-aware process mining (2019),
https://arxiv.org/abs/1908.11451

9. Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Ensuring confidentiality
in process mining. In: Proceedings of the 8th International Symposium on Data-
driven Process Discovery and Analysis (SIMPDA 2018), Seville, Spain, December
13-14, 2018. pp. 3–17 (2018), http://ceur-ws.org/Vol-2270/paper1.pdf

10. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representa-
tions. In: Proceedings of the 30th International Conference on International Confer-
ence on Machine Learning - Volume 28. pp. III–325–III–333. ICML’13, JMLR.org
(2013), http://dl.acm.org/citation.cfm?id=3042817.3042973

