
Fundamenta Informaticae 168 (2019) 1–27 1

DOI 10.3233/FI-2019-1800

IOS Press

Lucent Process Models and Translucent Event Logs

Wil M.P. van der Aalst∗

Process and Data Science (PADS)

RWTH Aachen University, Germany

wvdaalst@pads.rwth-aachen.de

Abstract. A process model is lucent if no two reachable states are enabling the same set of
activities. An event log is translucent if each event carries information about the set of activities
enabled when the event occurred (normally one only sees the activity performed). Both lucency
and translucency focus on the set of enabled activities and are therefore related. Surprisingly,
these notions have not been investigated before. This paper aims to (1) characterize process
models that are lucent, (2) provide a discovery approach to learn process models from translucent
event logs, and (3) relate lucency and translucency. Lucency is defined both in terms of automata
and Petri nets. A marked Petri net is lucent if there are no two different reachable markings
enabling the same set of transitions, i.e., states are fully characterized by the transitions they
enable. We will also provide a novel process discovery technique starting from a translucent
event log. It turns out that information about the set of activities is extremely valuable for process
discovery. We will provide sufficient conditions to ensure that the discovered model is lucent and
show that a translucent event log sampled from a lucent process model can be used to rediscover
the original model. We anticipate new analysis techniques exploiting lucency. Moreover, as
shown in this paper, translucent event logs provide valuable information that can be exploited by
a new breed to process mining techniques.

Keywords: Process mining, Petri nets, lucent process models, translucent event logs

1. Introduction

First, we informally introduce the lucency and translucency notions. Then, we briefly discuss related
work and provide an outline of the paper.
∗Address for correspondence: Process and Data Science (PADS), RWTH Aachen University, Germany

2 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

1.1. Lucent process models

A process model is lucent if and only if there do not exist two states that enable the same set of
activities. Consider, for example, the marked Petri net AN 1 and automaton AM 1 in Figure 1. Both
describe the same process that can generate traces such as 〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, b, c, d, c, b, e〉, and
〈a, c, b, d, b, c, d, c, b, e〉. There are six reachable states (called markings in the context of Petri net).
Clearly, there are no two states enabling the same set of activities (represented by the five transitions
in the Petri net). For example, state s1 in AM 1 (corresponding to marking [p2, p3] in AN 1) enables
b and c (corresponding to transitions t2 and t3 in AN 1) There is no other reachable state enabling the
activity set {b, c}. Therefore, both AN 1 and AM 1 are lucent.

p1

a

p2

b

c

d

p3

e

p4

p5

p6t1

t3

t2

t4

t5

AN1 AM1

s0 d
s1

sF

s2

s3

s4

Figure 1. An accepting Petri net AN 1 = (N1, [p1], [p6]) and accepting automaton AM 1. Both are lucent.

Now consider the marked Petri net AN 2 and automaton AM 2 in Figure 2. These are not lucent.
For example, state s1 in AM 2 (corresponding to marking [p2, p5] in AN 2) enables c. However, also
state s2 (corresponding to marking [p2, p6]) enables c.

p7

AN2 AM2

p1

b

a

c

d

f

e

p2 p3 p4

p6

p5

g

t1

t2

t3

t4

t5

t7

t6

s0

sFs1

s2

s3

s4

s5

Figure 2. Another accepting Petri net AN 2 = (N2, [p1], [p7]) and accepting automaton AM 2. Both are not
lucent because there are two markings/states enabling the same set of activities {c}.

Lucency is a general notion that is independent of the modeling language used. Here, we only
consider automata and Petri nets. However, most process modeling languages (statecharts, activity
diagrams, EPCs, BPMN, process calculi, etc.) have a state notion where one can reason about the
set of enabled activities (also called actions of labels) when the model is in a particular state. Luceny
triggers interesting questions such as: How to exploit lucency during analysis? and How to check
lucency efficiently? It also triggers the question: What is the class of Petri nets for which each marking
is uniquely identified by the set of enabled transitions? A lucent marked Petri net cannot have two
different reachable markings that enable the same set of transitions.

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 3

Table 1. A fragment of an event log corresponding to AN 1 and AM 1 in Figure 1.

event case activity time enabled
e1 1 a 09:22 {a}
e2 1 b 09:34 {b, c}
e3 2 a 09:45 {a}
e4 2 c 10:12 {b, c}
e5 1 c 10:17 {c}
e6 1 e 11:06 {d, e}
e7 2 b 11:22 {b}
e8 3 a 11:55 {a}

event case activity time enabled
e9 3 c 12:13 {b, c}
e10 2 d 12:18 {d, e}
e11 2 b 13:32 {b, c}
e12 2 c 13:43 {c}
e13 3 b 13:52 {b}
e14 2 e 14:17 {d, e}
e15 3 e 14:20 {d, e}
.

Table 2. An event log corresponding to AN 2 and AM 2 in Figure 2.

event case activity time enabled
e1 1 a 11:07 {a, b}
e2 1 c 11:34 {c}
e3 2 b 11:45 {a, b}
e4 2 c 12:12 {c}
e5 2 e 12:17 {e}
e6 1 d 13:06 {d}
e7 1 g 13:22 {f, g}
e8 2 f 13:55 {f, g}

event case activity time enabled
e9 2 a 14:13 {a, b}
e10 3 b 14:18 {a, b}
e11 3 c 15:32 {c}
e12 2 c 15:43 {c}
e13 2 d 15:52 {d}
e14 2 g 16:17 {f, g}
e15 3 e 16:20 {e}
e16 3 g 16:25 {f, g}

In [1] it was shown that perpetual marked free-choice nets are always lucent. These nets are live
and bounded and also have a so-called regeneration marking. A regeneration marking serves as a
“regeneration point”, i.e., a state where all tokens mark a single cluster.

1.2. Translucent event logs

An event log is translucent if each event carries information about the set of activities possible. In tra-
ditional event logs, each event has at least three attributes: case (the process instance to which the event
belongs, e.g., an order, customer, or patient), activity (the action performed, e.g., “register request” or
“make payment”), and time (the time at which the event occurred, e.g., 2019-01-29T19:20+01:00). In
a translucent event log, each event has an additional attribute listing the set of activities enabled.

Consider for example Table 1 showing an event log generated from the process described in Fig-
ure 1. Each row corresponds to an event. The last column shows the set of activities enabled. Consider
for example event e4 which represents the occurrence of activity c for case 2 at time 10:12. When e4
occurred activities b and c were enabled. Note that Table 1 is consistent with both AN 1 and AM 1 in
Figure 1. Case 1 corresponds to the trace 〈a, b, c, e〉. We can also list all activities and make the one
selected bold: 〈a, bc, c, de〉. Cases 2 and 3 can also be represented in this way: 〈a, bc, b, de, bc, c, de〉
and 〈a, bc, b, de〉.

Table 2 shows an event log generated from the process described in Figure 2. The three cases can
be compactly represented using the notation introduced before: 〈ab, c, d, fg〉, 〈ab, c, e, fg, ab, c, d, fg〉,
and 〈ab, c, e, fg〉.

This paper presents a discovery algorithm tailored toward translucent event logs. Based on Table 1,
our algorithm is able to rediscover both AN 1 and AM 1 in Figure 1 (modulo the renaming of states

4 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

and places). The information in Table 2 is not sufficient to discover the models in Figure 2. Our
discovery algorithm will provide an underfitting process model because it is unable to distinguish the
two states enabling c. This illustrates that lucency and translucency are related. Therefore, this paper
investigates this relationship in detail.

1.3. Related work

This paper extends the work presented [1] which only considers lucency in a Petri net setting.1 This
was the first paper that defined and characterized lucency. The results for perpetual marked free-choice
nets presented later, build on “structure theory”, a branch in Petri nets [2, 3, 4, 5, 6] that asks what
behavioral properties can be derived from its structural properties [7, 8, 9]. Many different subclasses
have been studied. Examples include state machines, marked graphs, free-choice nets, asymmetric
choice nets, and nets without TP and PT handles. Structure theory also studies local structures such as
traps and siphons that may reveal information about the behavior of the Petri net and includes linear
algebraic characterizations of behavior involving the matrix equation or invariants [8, 9, 3].

Free-choice nets are well studied [10, 8, 11, 12]. The definite book on the structure theory of
free-choice nets is [9]. Also, see [8] for pointers to literature. Therefore, it is surprising that the
question whether markings are uniquely identified by the set of enabled transitions (i.e., lucency) has
not been explored in literature. Lucency is unrelated to the so-called “frozen tokens” [13]. A Petri
net has a frozen token if there exists an infinite occurrence sequence never using the token. It is
possible to construct live and bounded free-choice nets that are lucent while having frozen tokens.
Conversely, there are live and bounded free-choice nets that do not have frozen tokens and are not
lucent. Most related to the results presented in this paper is the work on the so-called blocking theorem
[14, 15]. Blocking markings are reachable markings which enable transitions from only a single
cluster. Removing the cluster yields a dead marking. The blocking theorem states that in a bounded
and live free-choice net each cluster has a unique blocking marking.

In [1], we did not cover the notion of translucency, but mentioned that lucency is interesting from
a process mining point of view. The field of process mining [16] studies problems such a process
discovery (learning process models from event logs) [17, 18, 19, 20, 21, 22, 23] and conformance
checking (analyzing discrepancies between observed and modeled behavior) [24, 25]. Unlike tradi-
tional synthesis approaches [26, 27, 28], the input (event log) is known to be a sample of the possible
behavior (like in data mining and machine learning). As far as we know, there are no process mining
techniques based on translucent event logs. Therefore, it is impossible to compare our process dis-
covery algorithm to existing approaches not using enabling information. For an overview of process
mining techniques, we refer to [16].

1.4. Outline

The remainder of this paper is organized as follows. Section 2 introduces preliminaries (automata,
Petri nets, soundness, subclasses, clusters, components, short-circuiting, etc.) and known results (e.g.,

1The paper won the best paper award at Petri Nets 2018 and the author was invited to provide this substantially extended
version.

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 5

the blocking theorem). Accepting Petri nets with a predefined initial and final marking are related to
accepting automata. Section 3 defines lucency as a (desirable) behavioral property for both marked
Petri nets and automata. Translucent event logs are introduced in Section 4. In Section 5, we present
a novel discovery algorithm and show the value of translucency. The section also explores the re-
lation between lucency and translucency. Section 6 discusses techniques to discover Petri nets from
translucent event data. Section 7 concludes the paper.

2. Preliminaries

This section introduces basic concepts related to Petri nets, subclasses of nets (e.g., free-choice nets
and workflow nets), and blocking markings.

2.1. Multisets, sequences, and functions

P(A) = {X | X ⊆ A} is the powerset of A, i.e., all subsets of A. B(A) is the set of all multisets over
some set A. For some multiset b ∈ B(A), b(a) denotes the number of times element a ∈ A appears in
b. Some examples: b1 = [], b2 = [x, x, y], b3 = [x, y, z], b4 = [x, x, y, x, y, z], and b5 = [x3, y2, z]
are multisets over A = {x, y, z}. b1 is the empty multiset, b2 and b3 both consist of three elements,
and b4 = b5, i.e., the ordering of elements is irrelevant and a more compact notation may be used for
repeating elements. The standard set operators can be extended to multisets, e.g., x ∈ b2, b2]b3 = b4,
b5 \ b2 = b3, |b5| = 6, etc. {a ∈ b} denotes the set with all elements a for which b(a) ≥ 1. b ≤ b′ if
b(a) ≤ b′(a) for all a ∈ A. Hence, b3 ≤ b4 and b2 6≤ b3 (because b2 has two x’s). b < b′ if b ≤ b′ and
b 6= b′. Hence, b3 < b4 and b4 6< b5 (because b4 = b5).

σ = 〈a1, a2, . . . , an〉 ∈ X∗ denotes a sequence overX of length |σ| = n. σi = ai for 1 ≤ i ≤ |σ|.
〈 〉 is the empty sequence. Sequences can be concatenated using “·”, e.g., 〈a, b〉 · 〈b, a〉 = 〈a, b, b, a〉.
It is also possible to project sequences: 〈a, b, b, a, c, d〉�{a,c}= 〈a, a, c〉.

Definition 2.1. (Functions Applied to Sets, Sequences, and Multisets)
Let f ∈ X → Y , Z ∈ P(X), σ ∈ X∗, and b ∈ B(X). f(Z) = {f(x) | x ∈ Z}, f(σ) =
〈f(σ1), f(σ2), . . . , f(σ|σ|)〉, f(b) = [f(x) | x ∈ b], i.e., the multiset where element f(x) appears∑

y∈b|f(x)=f(y) b(y) times. If f is a partial function, i.e., f ∈ X 6→ Y , we drop the elements not in
dom(f).

Hence, functions can be applied to sets, sequences, and multisets. For example, consider the function
f with dom(f) = {a, b} and f(a) = x and f(b) = y. f({a, b, c, d}) = {x, y}, f(〈a, b, c, d, b, a〉)
= 〈x, y, y, x〉, and f([a2, b2, c, d]) = [x2, y2]. Functions can also be applied to nested structures like
multisets of sequences, e.g., f([〈a, b, c, d, b, a〉2, 〈c, b, a〉3]) = [〈x, y, y, x〉2, 〈y, x〉3].

2.2. Automata

We use automata to describe behavior and use accepting automata when we are interested in the traces
that lead from the initial state to the final state (see figures 1 and 2 for two example automata).

6 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

Definition 2.2. (Automaton)
An automaton is formally represented by the four-tuple AM = (S,A, δ, s0). S is a non-empty set
of states, A is a non-empty alphabet (also referred to as actions or activities), δ ⊆ S × A × S
is the transition relation, and s0 ∈ S is the initial state. An accepting automaton is a five-tuple
AM = (S,A, δ, s0, sF) adding a final state sF . An (accepting) automaton is deterministic if for any
{(s1, a, s2), (s1, a, s3)} ⊆ δ: s2 = s3. An (accepting) automaton is finite if S is finite.

In the remainder, we will refer to A as the universe of activities and A ⊆ A as a concrete set
of activities. Note that in the context of automata, terms like label and action are more common.
However, since we relate process models to event logs, we use the term activity.

Definition 2.3. (Enabling, Path, and Reachability)
Let AM be an (accepting) automaton with states S, alphabetA, and transition relation δ ⊆ S×A×S.
Activity a ∈ A is enabled in state s ∈ S, denoted as (AM , s)[a〉, if there exists a state s′ ∈ S such
that (s, a, s′) ∈ δ. en(AM , s) = {a ∈ A | (AM , s)[a〉} is the set of enabled activities in s.

s
(ρ,σ)−−−→AM s′ with s, s′ ∈ S, ρ ∈ S∗, and σ ∈ A∗ denotes that there is an n ≥ 0 such that

|ρ| = |σ| + 1 = n + 1 such that ρ1 = s, ρn+1 = s′, and for all 1 ≤ i ≤ n: (si, ai, si+1) ∈ δ.

When AM is clear from the context, we simply write s
(ρ,σ)−−−→ s′. (ρ, σ) is called a path leading

from state s to state s′. (AM , s)[σ〉(AM , s′) if any only if there is a ρ such that s
(ρ,σ)−−−→AM s′.

R(AM , s) = {s′ ∈ S | ∃(ρ,σ) s
(ρ,σ)−−−→AM s′} is the set of all states reachable from state s.

s0

s1 s2

sF

AM3

s0

s1

sF

AM4

s0

s1 s2

sF

AM5

Figure 3. Three accepting automata AM 3, AM 4, and AM 5 (the initial state is s0 and the final state is sF).

Figure 3 shows three accepting automata. en(AM 3, s0)) = en(AM 4, s0)) = en(AM 5, s0)) =
{a, b, c}. R(AM 3, s0) = R(AM 5, s0) = {s0, s1, s2, sF }. R(AM 4, s0) = {s0, s1, sF }.

In this paper, we assume that automata only contain reachable states, i.e., S = R(AM , s0). How-
ever, we sometimes need a stronger property: soundness.

Definition 2.4. (Sound Accepting Automaton)
Let AM = (S,A, δ, s0, sF) be an accepting automaton. AM is sound if each state s ∈ S is reachable
(i.e., S = R(AM , s0)), each activity a ∈ A can occur (i.e., there exists s ∈ R(AM , s0) such that
a ∈ en(AM , s)), the final state is reachable from any reachable state (i.e., for any s ∈ R(AM , s0):
sF ∈ R(AM , s)), and the final state is dead (i.e., en(AM , sF) = ∅).

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 7

The three automata in Figure 3 are sound. In the remainder, we focus on sound accepting automata.
A non-sound automaton can be made sound by removing states and activities not on a path from s0 to
sF and adding a “stop” activity.

Definition 2.5. (Complete Paths)
Let AM = (S,A, δ, s0, sF) be an accepting automaton. (ρ, σ) ∈ S∗ × A∗ is a complete path if

s0
(ρ,σ)−−−→AM sF . Φ(AM) = {(ρ, σ) ∈ S∗ ×A∗ | s0

(ρ,σ)−−−→AM sF } is the set of all complete paths.

Complete paths start in the initial state s0 and end in the final state sF . Consider AM 3, AM 4, and
AM 5 in Figure 3. Φ(AM 3) = {(〈s0, s1, sF 〉, 〈a, b〉), (〈s0, s2, sF 〉, 〈b, a〉), (〈s0, sF 〉, 〈c〉)}. Φ(AM 4)
and Φ(AM 5) are infinite due to the loops involving activity c. Some examples of complete paths:
(〈s0, s1, sF 〉, 〈a, a〉) ∈ Φ(AM 4), (〈s0, s0, s1, s1, sF 〉, 〈c, a, c, a〉) ∈ Φ(AM 4), and (〈s0, s2, s2, s2, sF 〉,
〈b, c, c, b〉) ∈ Φ(AM 5). A set or multiset of complete paths is transition-complete if all transitions
(s, a, s′) ∈ δ occur at least once.

Definition 2.6. (Transition-Complete)
Let AM = (S,A, δ, s0, sF) be an accepting automaton and X ⊆ Φ(AM) a set of complete paths.
X is transition-complete if δ = {(s, a, s′) | ∃(ρ,σ)∈X ∃1≤i≤|σ| (s, a, s′) = (ρi, σi, ρi+1)}. Multiset
X ∈ B(Φ(AM)) is transition-complete if the corresponding set {σ ∈ X} is transition-complete.

X = {(〈s0, s0, s1, s1, sF 〉, 〈c, a, c, a〉), (〈s0, s1, sF 〉, 〈b, b〉)} ⊆ Φ(AM 4) is transition-complete for
AM 4. Y = {(〈s0, s1, sF 〉, 〈a, b〉), (〈s0, sF 〉, 〈c〉)} ⊆ Φ(AM 3) is not transition-complete for AM 3

since (s0, b, s2) and (s2, a, sF) are not covered.
Later we will use the following two standard equivalence notions (isomorphic and bisimilar).

Definition 2.7. (Isomorphic and Bisimilar)
Let AM 1 = (S1, A1, δ1, s10, s

1
F) and AM 2 = (S2, A2, δ2, s20, s

2
F) be two accepting automata. AM 1

and AM 2 are isomorphic if there is a bijective mapping h ∈ S1 → S2 such that h(s10) = s20,
h(s1F) = s2F and (s, a, s′) ∈ δ1 if and only if (h(s), a, h(s′)) ∈ δ2. AM 1 and AM 2 are bisimilar if
there is a relationR ⊆ S1×S2 such that (1) (s10, s

2
0) ∈ R, (2) (s1F , s

2
F) ∈ R, (3) for any (s1, a, s

′
1) ∈ δ1

and s2 ∈ S2 such that (s1, s2) ∈ R, there is an s′2 ∈ S2 such that (s′1, s
′
2) ∈ R and (s2, a, s

′
2) ∈ δ2,

and (4) for any (s2, a, s
′
2) ∈ δ2 and s1 ∈ S1 such that (s1, s2) ∈ R, there is an s′1 ∈ S1 such that

(s′1, s
′
2) ∈ R and (s1, a, s

′
1) ∈ δ1.

When two accepting automata are isomorphic, they are also bisimilar. The reverse does not hold, e.g.,
AM 4 and AM 5 in Figure 3 are bisimilar but not isomorphic.

2.3. Petri nets

Next to automata, we use Petri nets and introduce a few basic concepts and standard notations.

Definition 2.8. (Petri Net)
A Petri net is a tuple N = (P, T, F) with P the non-empty set of places, T the non-empty set of
transitions such that P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P) the flow relation such that the graph
(P ∪ T, F) is connected.

8 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

Definition 2.9. (Marking)
Let N = (P, T, F) be a Petri net. A marking M is a multiset of places, i.e., M ∈ B(P). (N,M) is a
marked net.

For a subset of places X ⊆ P : M�X= [p ∈M | p ∈ X] is the marking projected on this subset.
A Petri net N = (P, T, F) defines a directed graph with nodes P ∪ T and edges F . For any

x ∈ P ∪ T , •x = {y | (y, x) ∈ F} denotes the set of input nodes and x• = {y | (x, y) ∈ F} denotes
the set of output nodes. The notation can be generalized to sets: •X = {y | ∃x∈X (y, x) ∈ F} and
X• = {y | ∃x∈X (x, y) ∈ F} for any X ⊆ P ∪ T . We add the net N as superscript when confusion

is possible:
N• . A path in a Petri net N = (P, T, F) is a sequence of nodes ρ = 〈x1, x2, . . . , xn〉 such

that (xi, xi+1) ∈ F for 1 ≤ i < n. Hence, •xi = xi−1 for 1 < i ≤ n and xi• = xi+1 for 1 ≤ i < n.
ρ is an elementary path if xi 6= xj for 1 ≤ i < j ≤ n.

A transition t ∈ T is enabled in marking M of net N , denoted as (N,M)[t〉, if each of its input
places •t contains at least one token. en(N,M) = {t ∈ T | (N,M)[t〉} is the set of enabled
transitions.

An enabled transition t may fire, i.e., one token is removed from each of the input places •t and
one token is produced for each of the output places t•. Formally: M ′ = (M \ •t)] t• is the marking
resulting from firing enabled transition t in marking M of Petri net N . (N,M)[t〉(N,M ′) denotes
that t is enabled in M and firing t results in marking M ′.

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. (N,M)[σ〉(N,M ′) denotes that
there is a set of markings M1,M2, . . . ,Mn+1 (n ≥ 0) such that M1 = M , Mn+1 = M ′, and
(N,Mi)[ti〉(N,Mi+1) for 1 ≤ i ≤ n. A marking M ′ is reachable from M if there exists a firing
sequence σ such that (N,M)[σ〉(N,M ′). R(N,M) = {M ′ ∈ B(P) | ∃σ∈T ∗ (N,M)[σ〉(N,M ′)} is
the set of all reachable markings.

Figure 1 shows a marked Petri net having 6 places and 5 transitions. Transitions t2 and t3 are en-
abled in markingM = [p2, p3]. R(N, [p1]) = {[p1], [p2, p3], [p3, p4], [p2, p5], [p4, p5], [p6]}. The fir-
ing sequence 〈t1, t2, t3, t4〉 leads from marking [p1] to marking [p2, p3], i.e., (N, [p1])[〈t1, t2, t3, t4〉〉
(N, [p2, p3]).

2.4. Accepting and/or labeled Petri nets

The counterpart of an accepting automaton is an accepting Petri net having a predefined final marking.

Definition 2.10. (Accepting Petri Net)
An accepting Petri net AN = (N,M,MF) is a Petri net N = (P, T, F) with an initial mark-
ing M ∈ B(P) and a final marking MF ∈ B(P). AN accepts σ = 〈a1, a2, . . . , an〉 ∈ T ∗ if
(AN ,M)[σ〉(AN ,MF).

Figures 1 and 2 show two accepting Petri nets AN 1 and AN 2. The tokens indicate the initial
markings ([p1] in both models). The places involved in the final marking have a double border, i.e.,
[p6] is the final marking of AN 1 and [p7] is the final marking of AN 2.

When analyzing accepting Petri nets we often “short-circuit” the model to make it cyclic, i.e.,
when reaching the final marking the net can return to the initial state. Figure 4 shows how accepting
Petri net AN 3 is short-circuited resulting in AN 3 which includes transition t∗.

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 9

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

t8

t*

t0

p9

p0

p10

Figure 4. The Petri net without transition t∗ is an accepting Petri net AN 3 = (N3, [p0], [p10]) with initial
marking [p0] and final marking [p10]. The short-circuited net AN 3 = (N3, [p0]) adds transition t∗ to make the
net cyclic.

Definition 2.11. (Short-Circuited Net)
Let AN = (N,M,MF) be an accepting Petri net. The corresponding short-circuited marked Petri net
is AN = (N,M) with N = (P, T ∪ {t∗}, F ∪ ({t∗}× {p ∈M})∪ ({p ∈MF }× {t∗}) and t∗ 6∈ T .

In a similar way, we can short-circuit the two accepting Petri nets AN 1 and AN 2 in figures 1
and 2 and obtain AN 1 and AN 2. In these examples, the initial and final markings have only one
token. However, the definition allows for any initial and final marking. Hence, this extends the notion
of short-circuiting used in the context of workflow nets [29, 30]. Just like for workflow nets and
accepting automata, we define a soundness notion for accepting Petri nets.

Definition 2.12. (Sound Accepting Petri net)
Let AN = (N,M,MF) be an accepting Petri net. AN is sound if (1) for each t ∈ T , there exists a
M ′ ∈ R(N,M) such that t ∈ en(N,M ′), (2) for all M ′ ∈ R(N,M), MF ∈ R(N,M ′), (3) for all
M ′ ∈ R(N,M), M ′ 6> MF , (4) for all p ∈ P , M(p) ≤ 1 and MF (p) ≤ 1, and (5) for all p ∈ MF ,
p• = ∅.

The first requirement states that there should be no dead transitions. The second requirement ensures
that it is always possible to reach the final marking. The third requirement ensures that there are
no markings “dominating” MF . The fourth requirement states that the initial and final markings are
“safe” (at most one token in a place), The fifth requirement states that places in the final marking have
no output arcs (to ensure that the final marking is dead). The three accepting Petri nets AN 1, AN 2,
and AN 3 shown thus far, are all sound.

Transitions can be labeled. Figures 1 and 2 already showed transition labels {a, b, . . .} next to the
transition identifiers {t1, t2, . . .}. For example, l(t1) = a, l(t2) = b, etc.

Definition 2.13. (Labeling function)
Let N = (P, T, F) be a Petri net and A a set of activities. Labeling function l ∈ T → A is a mapping

10 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

relating each transition to an activity. Nl is the corresponding labeled Petri net. AN l is a labeled
accepting Petri net.

Note that labeling function l does not need to be injective, i.e., there can be multiple transitions mapped
onto the same activity. Using Definition 2.1, we can apply function l to sets, multisets, and sequences
of transitions. For X = {t1, t2, . . . , tn}, l(X) = {l(t1), l(t2), . . . , l(tn)}. For σ = 〈t1, t2, . . . , tn〉,
l(σ) = 〈l(t1), l(t2), . . . , l(tn)〉. We extend this also to sets and multisets of sequences. For Y ⊆ T ∗,
l(Y) = {l(σ) | σ ∈ Y }. For Z ∈ B(T ∗), l(Z) = [l(σ) | σ ∈ Z]. This provides a general way to
convert transition names into activity names in different contexts, e.g., en(Nl,M) = en l(N,M) =
l(en(N,M)).

Figures 1 and 2 already illustrated that accepting Petri nets can be transformed into accepting
automata. The corresponds to the standard notion of a reachability graph.

Definition 2.14. (Mapping Petri Nets onto Automata)
A marked Petri net (N,M) defines an automaton aut(N,M) = (S,A, δ, s0) with S = R(N,M),
A = T , δ = {(s, a, s′) ∈ S × A × S | (N, s)[a〉(N, s′)}, and s0 = M . A accepting Petri net
(N,M,MF) defines an accepting automaton aut(N,M,MF) = (S,A, δ, s0, sF) with additionally
sF = MF . If there is a labeling function l ∈ T → A, then aut(Nl,M) = aut l(N,M) = (S,A, δ, s0)
with S = R(N,M), A = l(T), δ = {(s, l(t), s′) ∈ S × A × S | (N, s)[t〉(N, s′)}, and s0 = M .
aut(Nl,M,MF) = aut l(N,M,MF) = (S,A, δ, s0, sF) adds sF .

The accepting Petri nets in figures 1 and 2 are sound. Therefore, the corresponding automata depicted
are also sound. It is easy to verify that this is always the case.

Observation 2.15. Let (N,M) marked Petri net and aut(N,M) the corresponding accepting au-
tomaton. If (N,M) is sound (Definition 2.12), then aut(N,M) is sound (Definition 2.4).

The concept of lucency defined later is related to the notion of a blocking marking. To explain this
notion we need to introduce the notion of a cluster and free-choice nets.

The cluster of node x, denoted [x]c is the smallest set such that (1) x ∈ [x]c, (2) if p ∈ [x]c ∩ P ,
then p• ⊆ [x]c, and (3) if t ∈ [x]c ∩T , then •t ⊆ [x]c. [N]c = {[x]c | x ∈ P ∪T} is the set of clusters
of N .

N = (P, T, F) is a free-choice net if for any for any t1, t2 ∈ T : •t1 = •t2 or •t1 ∩ •t2 = ∅.
Free-choice nets are probably the best studied subclass of Petri nets [10, 9, 8, 11, 12].

In a blocking marking, the transitions in a particular cluster are enabled while all transitions outside
the cluster are disabled. Formally, a blocking marking for cluster C is a marking MB ∈ R(N,M)
such that en(N,MB) = T (C), i.e., all transitions in the cluster are enabled, but no other transitions.

In [31] Genrich and Thiagarajan showed that unique blocking markings exist for all clusters in
live and safe marked graphs. This was generalized by Gaujal, Haar, and Mairesse in [14] where they
showed that blocking markings exist and are unique in live and bounded free-choice nets. Note that in
a free-choice net all transitions in the cluster are enabled simultaneously (or all are disabled). There is
one unique marking in which precisely one cluster is enabled. Moreover, one can reach this marking
without firing transitions from the cluster that needs to become enabled. A simplified proof was given
in [15] and another proof sketch can be found in [8].

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 11

3. Lucent process models

This paper focuses on process models whose states are uniquely identified based on the activities they
enable. Hence, there cannot be two different states enabling the same set of activities. Such process
models are called lucent.

Definition 3.1. (Lucent Automata)
Let AM = (S,A, δ, s0) be an automaton. AM is lucent if and only if for any s1, s2 ∈ R(AM , s0):
en(AM , s1) = en(AM , s2) implies s1 = s2.

Automaton AM 1 in Figure 1 is lucent. Automaton AM 2 in Figure 2 is not lucent because en(AM 2,
s1) = en(AM 2, s2) = {c}. Automaton AM 3 in Figure 3 is lucent, but the other two automata AM 4

and AM 5 are not (there are multiple states enabling a, b, and c).

Theorem 3.2. (Bisimilar Lucent Automata are Isomorphic)
Let AM 1 = (S1, A1, δ1, s10) and AM 2 = (S2, A2, δ2, s20) be two bisimilar sound lucent accepting
automata. AM 1 and AM 2 are isomorphic.

Proof:
Assume there is a relation R ⊆ S1 × S2 such that (1) (s10, s

2
0) ∈ R, (2) (s1F , s

2
F) ∈ R, (3) for any

(s1, a, s
′
1) ∈ δ1 and s2 ∈ S2 such that (s1, s2) ∈ R, there is an s′2 ∈ S2 such that (s′1, s

′
2) ∈ R

and (s2, a, s
′
2) ∈ δ2, and (4) for any (s2, a, s

′
2) ∈ δ2 and s1 ∈ S1 such that (s1, s2) ∈ R, there is an

s′1 ∈ S1 such that (s′1, s
′
2) ∈ R and (s1, a, s

′
1) ∈ δ1. It suffices to show that R is bijective.

Note that due to bismilarity, for any (s1, s2) ∈ R: {a | ∃s′1 (s1, a, s
′
1) ∈ δ1} = {a | ∃s′2 (s2, a, s

′
2) ∈

δ2}. Hence, (s1, s2) ∈ R implies en(AM 1, s1) = en(AM 2, s2). If (s1, s2) ∈ R and (s1, s3) ∈ R,
then en(AM 1, s1) = en(AM 2, s2) = en(AM 2, s3). Hence, s2 = s3 due to lucency. If (s1, s2) ∈ R
and (s3, s2) ∈ R, then en(AM 1, s1) = en(AM 1, s3) = en(AM 2, s2) and s1 = s3 due to lucency.
Hence, R is functional and injective. Due to soundness all states are reachable and it is easy to see
that R is also total and surjective, thus proving that AM 1 and AM 2 are isomorphic. ut

Lucency is a general property and can also be formulated in the context of (labeled) Petri nets. Given
a marked Petri net we would like to know whether each reachable marking has a unique “footprint” in
terms of the transitions it enables. If this is the case, then the Petri net is lucent.

Definition 3.3. (Lucent Petri Nets)
Let (N,M) be a marked Petri net. (N,M) is lucent if and only if for any M1,M2 ∈ R(N,M):
en(N,M1) = en(N,M2) implies M1 = M2. Given a labeling function l ∈ T → A, labeled Petri
net (Nl,M) is lucent if and only if for any M1,M2 ∈ R(N,M): en l(N,M1) = en l(N,M2) implies
M1 = M2.

Petri net (N1, [p1]) in Figure 1 is lucent. Petri net (N2, [p1]) in Figure 2 is not lucent (two enabling
just c). Both (N3, [p0]) (without t∗) and (N3, [p0]) (the short-circuited net with t∗) in Figure 4 are
lucent.

Every marked Petri net (labeled or not) defines a corresponding automaton (Definition 2.14). From
the definitions, we can derive that a Petri net is lucent if and only if its corresponding automaton is
lucent.

12 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

Observation 3.4. The unlabeled marked Petri net (N,M) is lucent if and only if aut(N,M) is lucent.
The labeled marked Petri net (Nl,M) is lucent if and only if aut(Nl,M) is lucent.

It is not easy to characterize the class of lucent Petri nets. However, it is easy to show that un-
bounded Petri nets or Petri net with non-unique blocking markings are not lucent.

Lemma 3.5. Let (N,M) be a lucent unlabeled marked Petri net. (N,M) is bounded and each cluster
has at most one blocking marking.

Proof:
Assume that (N,M) is both lucent and unbounded. We will show that this leads to a contradiction.
Since (N,M) is unbounded, we can find markings M1 and M2 and sequences σ0 and σ such that
(N,M)[σ0〉(N,M1)[σ〉(N,M2) and M2 is strictly larger than M1. This implies that we can repeat-
edly execute σ getting increasingly larger markings: (N,M2)[σ〉(N,M3)[σ〉(N,M4)[σ〉(N,M5)
At some stage, say at Mk, the set of places that is marked stabilizes. However, the number of
tokens in some places continues to increase in Mk+1, Mk+2, etc. Hence, we find markings that
enable the same set of transitions but that are not the same. For example, Mk+1 6= Mk+2 and
en(N,Mk+1) = en(N,Mk+2). Hence, the net cannot be lucent.

Take any cluster C and assume that (N,M) has two different reachable blocking markings M1

and M2. This means that en(N,M1) = en(N,M2) = C ∩ T . Hence, (N,M) could not be lucent,
yielding again a contradiction. ut

Lemma 3.5 shows that unbounded Petri nets cannot be lucent. Moreover, it is easy to construct non-
free-choice Petri nets that are not lucent. See, for example, Figure 2 where the token in p5 or p6 is
invisible when t3 is enabled. Another example is shown in Figure 5.

t1

t2

t3

t4

p1

p2

p4p3

p5

Figure 5. A non-free-choice Petri net that is not lucent. Cluster {p1, t1} has two reachable blocking markings
M1 = [p1, p3] and M2 = [p1, p4]. Also cluster {p5, t4} has two reachable blocking markings M3 = [p3, p5]
and M4 = [p4, p5]. Note that markings M1 and M2 and markings M3 and M4 enable the same sets of transi-
tions.

The examples in the introduction suggest that lucency depends on the Petri net being free-choice.
However, this is not the case. It is easy to construct a non-free-choice Petri net that is lucent (e.g., add
unique self-loop transitions to make places visible). There are also free-choice Petri nets that are not
lucent. When multiple transitions have the same label, different markings may enable the same set
of activities. However, even when the Petri net is free-choice and unlabeled (i.e., the transitions are
distinguishable), it may still no be lucent. Figure 6 shows such a non-lucent free-choice net.

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 13

t2

t6

p1

t5

t3

t8t7

p2

p8

p3 p6

p5

p4 p7

t1 t4

Figure 6. A live and safe free-choice net that is not lucent because reachable markings [p3, p7, p8] and
[p3, p5, p7] both enable t1 and t4.

t1

p1

t2

p2

p3

t3

p4

p5

t4

p6

Figure 7. A live and safe marked graph that is not perpetual. Note that the net is a marked graph (all places have
one input and one output arc). The model is not lucent since there are two reachable markingsM1 = [p1, p3, p6]
and M2 = [p1, p4, p6] that both enable t1 and t4.

Hence, just requiring that the Petri net is free-choice is not enough. Figure 7 even shows a marked
graph (i.e., all places have one input and one output arc) that is not lucent.

In [1] it was shown that perpetual marked free-choice nets are lucent. These nets are live, bounded,
and have a regeneration cluster, i.e., the initial marking is a home marking and marks a single cluster.
The Petri net in Figure 7 does not have such a regeneration cluster.

4. Translucent event logs

Intuitively, it seems that lucent process models are more easy to discover. When the process has many
states that are different, but that enable the same set of activities, then it is not easy to learn these
“hidden” states. However, even when the underlying process model is lucent, traditional event logs do
not reveal this. If we remove the “enabled” column in Table 1, we cannot know that c can be followed
by d (this never happens in E1). However, when looking at events e5 and e6 and taking the “enabled”
column into account, we know that activity c in case 1 could have been followed by activity d.

In this paper, we consider event logs that also reveal the enabled set of activities and connect this
to the notion of lucency. Event logs where every event lists the set of enabled activities is called a
translucent event log. This section introduces such logs. Later, we will provide a discovery algorithm
and relate translucency of event logs to lucency of process models. However, we first define classical
event logs and introduce some notations.

14 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

Definition 4.1. (Event Log)
C is the universe of case identifiers, A is the universe of activity names, and T is the universe of
timestamps. An event log is a non-empty set of events E such that for any e ∈ E: πcase(e) ∈ C,
πact(e) ∈ A, πtime(e) ∈ T . There could be additional optional attributes, e.g., πx(e) is the x attribute
of e (e.g., cost, resource, etc.). For simplicity, we assume that events in E are totally ordered such that
e1 < e2 implies πtime(e1) ≤ πtime(e2).

Tables 1 and 2 show two event logs. For example, in Table 1, πcase(e1) = 1, πact(e1) = a, and
πtime(e1) = 09:22.

Definition 4.2. (Notation)
Let E be an event log.
• πcase(E) = {πcase(e) | e ∈ E} ⊆ C and πact(E) = {πact(e) | e ∈ E} ⊆ A.
• For c ∈ πcase(E), σE,c = 〈e1, e2, . . . , en〉 such that {e1, e2, . . . , en} = {e ∈ E | πcase(e) = c}

and e1 < e2 < . . . < en. σE,ci = ei is the i-th event of case c in E and |c| = n is number of
events related to c.
• E = {e ∈ E | ∃c∈πcase(E) e = σE,c|c| } is the set of end events.

• Function nextE ∈ (E \ E) → E gives the next event in the same case (not defined for end
events). Hence, nextE(σE,ci) = σE,ci+1 for c ∈ πcase(E) and 1 ≤ i < |c|.

• πx(σE,c) = 〈πx(e1), πx(e2), . . . , πx(en)〉 projects σE,c = 〈e1, e2, . . . , en〉 onto the correspond-
ing attribute for a given case c, e.g., πact(σE,c) is the sequence of activities executed for c.
• LEact = [πact(σ

E,c) | c ∈ πcase(E)] ∈ B(πact(E)) is the simple event log of E.

Let E1 = {e1, e2, . . . , e15} be the event log shown in Table 1 (ignoring the “enabled” column).
πcase(E1) = {1, 2, 3}, πact(E1) = {a, b, c, d, e}, and E1 = {e6, e14, e15}. σE1,1 = 〈e1, e2, e5, e6〉.
nextE1(e1) = e2, nextE1(e2) = e5, etc. LE1

act = [〈a, b, c, e〉, 〈a, c, b, d, b, c, e〉, 〈a, c, b, e〉].
A translucent event log also provides an additional attribute πen(e) indicating the set of enabled

activities when event e occurred. Many information systems provide such information implicitly when
providing users with a set of possible actions. In a Workflow Management (WFM) or Business Process
Management (BPM) system such information is directly available (the so-called “worklists” are based
on this). We also anticipate that πen(e) can be predicted based on historic information. For now, we
simply assume this information to be present. We realize that this is a strong assumption, but we will
show that having this information simplifies discovery dramatically.

Definition 4.3. (Translucent Event Log)
A translucent event log is an event log E such that for any e ∈ E: πen(e) ⊆ A such that πact(e) ∈
πen(e). The additional attribute πen(e) denotes the set of enabled activities when e occurred. A
translucent event log E is rooted if and only if there is an AEinit ⊆ A such that for all c ∈ πcase(E):
πen(σE,c1) = AEinit , i.e., all cases start with the same set of enabled activities. A translucent event log
E is complete if for any e1 ∈ E and a ∈ πen(e1) there exists e2 ∈ E with πen(e1) = πen(e2) and
a = πact(e2).

In Table 1 also πen(e) is given for all e ∈ E1 = {e1, e2, . . . , e15}, e.g., πen(e2) = {b, c} (see the
“enabled” column). The event logs in Tables 1 and 2 are both rooted and complete.

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 15

If a translucent event log is not rooted, it can be turned into a rooted translucent event log by
adding an additional start event to each case. For each case c, add an event ec0 such that πcase(ec0) = c,
πen(ec0) = {I}, πact(ec0) =I, and πtime(ec0) = πtime(σ

E,c
1). As a result: AEinit = {I}. In the

remainder, we assume that all translucent event logs are rooted.
One could go one step further and define the notion of “super-translucent event logs” that directly

define the state in which the event occurs. Note that for event logs generated from lucent process
models, translucent event logs are “super-translucent” because the set of enabled activities identifies a
unique state. However, in real-life applications, one cannot inspect the internal state. However, many
systems expose the set of enabled activities (e.g., the worklist in a workflow management system or
the user interface of an interactive tool).

5. Discovering lucent process models from translucent event logs

We now provide a discovery algorithm for translucent event logs. It exploits the additional enabling
information provided. After introducing the technique, we discuss its properties.

5.1. Basic discovery algorithm

If we assume that the process model is lucent and the event log is translucent, process discovery
becomes trivial. The state in which an event e occurs is determined by πen(e). This immediately
yields a process discovery algorithm that transforms a rooted translucent event log into an accepting
automaton.

Definition 5.1. (Discovery Algorithm)
Let E be a rooted translucent event log. disc(E) = (S,A, δ, s0, sF) is an accepting automaton such
that: S = {πen(e) | e ∈ E} ∪ {∅}, A = {πact(e) | e ∈ E}, s0 = AEinit , sF = ∅, δ = {(s1, a, s2) ∈
S×A×S | ∃e∈E\E s1 = πen(e) ∧ a = πact(e) ∧ s2 = πen(nextE(e))} ∪ {(s, a, ∅) ∈ S×A×S |
∃e∈E s = πen(e) ∧ a = πact(e)}.

The discovery algorithm adds a final state ∅ to the set of states. All other states are linked to the sets of
enabled activities of events. The last event of each case corresponds to a transition (s, a, ∅) ∈ δ where
a is the activity and s is the set of enabled activities of this event. The log needs to be rooted to pick
the initial state.

The algorithm is easy to implement. It is even possible to use the existing ”Mine Transition Sys-
tem” plug-in provided in ProM (based on [17]) with the proper configuration and some preprocessing.
Figure 8 shows four accepting automata generated by ProM: automata (a) and (c) were obtained using
our simple discovery algorithm (Definition 5.1). Automaton (a), based on event log E1 in Table 1, is
identical to AM 1 in Figure 1. Automaton (c), based on event log E2 in Table 2, differs from AM 2

in Figure 2 because AM 2 is not lucent. In the discovered automaton the states s1 and s2 in AM 2 are
merged, because both enable the same set of activities {c}. We also tried to apply the ”Mine Tran-
sition System” plug-in without using πen(e) (i.e., assuming that E1 and E2 are conventional event
logs). Automata (b) and (d) show the results using a horizon of 1 (i.e., the state is determined by the
last activity). The two accepting automata are able to reproduce the E1 and E2, but are very different

16 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

from AM 1 and AM 2. Note that automaton (b) does not allow for the traces like 〈a, b, c, d, b, c, e〉
(possible in the original model), but allows for traces like 〈a, b, d, b, d, b, d, e〉 (not possible in the orig-
inal model). Other configurations of the ”Mine Transition System” plug-in (see [17] for the different
abstractions possible) result in similar problems.

(a) (c) (d)(b)

Figure 8. Four accepting automata created using ProM: automaton (a) was obtained by applying our discovery
algorithm to the event log E1 in Table 1, automaton (b) was obtained by applying the ”Mine Transition System”
plug-in to the same event log without using the set of enabled activities, automaton (c) was obtained by applying
our discovery algorithm to the event log E2 in Table 2, and automaton (d) was obtained without exploiting the
set of enabled activities. The initial and final states are highlighted for clarity.

These examples demonstrate that the enabling information in translucent event logs is highly valu-
able. When the underlying process is lucent, simple algorithms can already provide powerful correct-
ness guarantees. Since the event log can always be replayed on the models created using Definition 5.1,
we can easily add frequency and performance information.

Definition 5.2. (Annotated Discovered Automaton)
Let E be a rooted translucent event log and disc(E) = (S,A, δ, s0, sF) the discovered automaton.
(disc(E),FS ,FA) is an annotated discovered automaton adding two collections of functions FS ⊆
S → R and FS ⊆ (S×A×S)→ R with {sfreq , stsum, stavg} ⊆ FS and {afreq , atsum, atavg} ⊆
FA such that:
• sfreq(s) = |{e ∈ E | s = πen(e)}| if s ∈ S \ {∅} and sfreq(∅) = |πcase(E)|.
• afreq((s1, a, s2)) = |events((s1, a, s2))| with events((s1, a, s2)) = {e ∈ E \ E | s1 =
πen(e) ∧ a = πact(e) ∧ s2 = πen(nextE(e))} ∪ {e ∈ E | s1 = πen(e) ∧ a =
πact(e) ∧ s2 = ∅}, for (s1, a, s2) ∈ δ.

• time(e) = πtime(nextE(e))− πtime(e) if e ∈ E \ E and time(e) = 0 if e ∈ E.
• stsum(s) =

∑
(s1,a,s2)∈δ|s1=s

∑
e∈events((s1,a,s2)) time(e), for s ∈ S.

• atsum((s1, a, s2)) =
∑

e∈events((s1,a,s2)) time(e), for (s1, a, s2) ∈ δ.
• stavg(s) = stsum(s)/sfreq(s), for s ∈ S.
• atavg((s1, a, s2)) = atsum((s1, a, s2))/afreq((s1, a, s2)), for (s1, a, s2) ∈ δ.

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 17

As Definition 5.2 shows, we can compute frequencies and durations for both states and transitions.
sfreq(s) is the number of times a state s was visited and afreq((s1, a, s2)) is the number of times
activity a occurred in state s1 leading to s2. stavg(s) is the average time spent in state s and
atavg((s1, a, s2)) is the average time to transition from s1 to s2 by performing a. We can use existing
plug-ins provided in ProM to show such replay results. For example, Figure 9 shows the ”Analyze
Transition System” plug-in providing detailed statistics for states and transitions using the model our
discovery algorithm produced for the event log in Table 1.

(c)

(a)

(b)

Figure 9. The accepting automaton can be used for subsequent analysis in ProM, e.g., (a) coloring states and
transitions based on sojourn times (stavg(s))) and delays (atavg((s1, a, s2))), (b) providing detailed replay
statistics, and (c) converting the accepting automaton into an accepting Petri net using state-based regions [17,
27, 22].

5.2. Properties

The discovery algorithm described in Definition 5.1 provides several guarantees. For example, the
process model can reproduce the event log used to learn it.

Theorem 5.3. (Discovered Model Can Reproduce Event Log)
Let E be a rooted translucent event log and disc(E) the corresponding accepting automaton. disc(E)
can reproduce the event log, i.e., {σ ∈ LEact} ⊆ {σ | (ρ, σ) ∈ Φ(disc(E))}.

Proof:
Let σ ∈ LEact and σ′ = σE,c = 〈e1, e2, . . . , en〉 be a corresponding sequence of events such that
σ = πen(σ′) (there is at least one such case c). Let ρ = πen(σ′)·〈∅〉. (ρ, σ) provides the corresponding
path in the automaton starting in s0 and ending in sF . Hence, (ρ, σ) ∈ Φ(disc(E)). ut

The outgoing arcs of state s in the discovered automaton have activity labels from s (s ⊆ A and is
only empty when it is the final state). In case of a complete log, there is at least one arc for each a ∈ s.

18 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

Lemma 5.4. Let E be a rooted translucent event log and disc(E) = (S,A, δ, s0, sF) the correspond-
ing accepting automaton. For any s ∈ S: en(disc(E), s) = {πact(e) | e ∈ E ∧ πen(e) = s} ⊆ s.
Moreover, if E is complete, then en(disc(E), s) = s for all s ∈ S.

Proof:
Clearly, en(disc(E), ∅) = ∅, because of the way δ is constructed (∅ has only ingoing arcs). Hence,
both statements hold if s = ∅. Assume that s 6= ∅, then there is a non-empty set of events Es = {e ∈
E | πen(e) = s} responsible for the outgoing arcs {πact(e) | e ∈ Es} ⊆ s. If E is complete, all arcs
are present. ut

If the log is complete, then the discovered model is lucent and sound.

Theorem 5.5. (Discovered Model Is Lucent and Sound When Log Is Complete)
For any rooted complete translucent event log E, disc(E) is a lucent and sound accepting automaton.

Proof:
By construction AM = disc(E) = (S,A, δ, s0, sF) is an accepting automaton.

Since E is complete, s = en(AM , s) for any s ∈ S (see Lemma 5.4). Hence, for any s1, s2 ∈ S:
en(AM , s1) = en(AM , s2) implies s1 = s2, i.e., disc(E) is a lucent.

Next, we prove soundness. For each state s ∈ S\{∅} there is an event e ∈ E such that s = πen(e).
Consider the corresponding trace c to which e belongs. This trace defines a path starting in s0, visiting
s and ending in ∅. Similarly, a path can be constructed for each activity a ∈ A. Hence, (1) all states
are reachable, (2) all activities can occur, and (3) it is always possible to reach the final state, and (4)
the final state is dead (∅ has only incoming transitions). ut

The matching notion will be used to relate complete paths of the model to cases in the event log.

Definition 5.6. (Matching)
Let AM = (S,A, δ, s0, sF) be an accepting automaton, X ∈ B(Φ(AM)) a multiset of complete
paths, andE a translucent event log. E weakly matchesX , notationE ≈w X , if there exists a mapping
h ∈ S → P(A), such that [(h(ρ), σ) | (ρ, σ) ∈ X] = [(πen(σE,c) · 〈∅〉, πact(σE,c)) | c ∈ πcase(E)].
For a given h, we write E ≈hw X . E strongly matches X , notation E ≈ X , if E ≈hw X with
h(s) = en(AM , s) for s ∈ S.

We are able to rediscover a sound lucent accepting automaton based on a translucent event log that
“covers” all transitions in the automaton (i.e., there exists a transition-complete multiset of complete
paths strongly-matching the event log).

Theorem 5.7. (Rediscovery of a Sound Lucent Accepting Automaton)
Let AM be a sound lucent accepting automaton and E a translucent event log such that there exists a
strongly-matching transition-complete multiset of complete paths. AM and disc(E) are isomorphic.

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 19

Proof:
Let X be the required strongly-matching transition-complete multiset of complete paths, i.e., X ∈
B(Φ(AM)), X is transition-complete, and E ≈ X . AM = (S,A, δ, s0, sF) is the sound lucent
accepting automaton that needs to be rediscovered using E. Rename the states in S such that s ∈
S is mapped onto s′ = en(AM , s). The resulting automaton is AM ′ = (S′, A′, δ′, s′0, s

′
F) with

S′ = {en(AM , s) | s ∈ S}, A′ = A, δ′ = {(en(AM , s1), a, en(AM , s2)) | (s1, a, s2) ∈ δ},
s′0 = en(AM , s0), s′F = en(AM , s0) = ∅. Since AM is lucent, AM and AM ′ are isomorphic (both
are identical modulo the renaming of states), because there are no two states enabling the same set of
activities (the mapping s′ = en(AM , s) is a bijection). LetX ′ be the same asX modulo the renaming
of states. Let disc(E) = (S′′, A′′, δ′′, s′′0, s

′′
F).

E is complete becauseE ≈ X ′ andX ′ is a transition-complete multiset of complete paths. Hence,
according to Lemma 5.4, en(disc(E), s) = s for all s ∈ S′′. It is easy to see that S′′ = S′, A′′ = A′,
δ′′ = δ′, s′′0 = s′0, and s′′F = s′F . Therefore, disc(E) = AM ′ and thus isomorphic with AM . ut

Consider the sound lucent accepting automaton AM 1 in Figure 1 and the translucent event log E1

in Table 1. X = [(〈s0, s1, s2, s4, sF 〉, 〈a, b, c, e〉), (〈s0, s1, s3, s4, s1, s2, s4, sF 〉, 〈a, c, b, d, b, c, e〉),
(〈s0, s1, s3, s4, sF 〉, 〈a, c, b, e〉)] is a strongly-matching transition-complete multiset of complete paths.
Hence, AM 1 and disc(E1) are guaranteed to be isomorphic. Figure 1 (showing AM 1) and Figure 8(a)
(showing disc(E1)) illustrate that this is indeed the case.

Theorem 5.7 shows that any event log that covers all the transitions in the unknown lucent model
can be used to rediscover the model (up to isomorphism). Moreover, if the model is not lucent and
only a weakly matching event log is used as input, we still find a model covering all behavior in the
original model.

Theorem 5.8. (Reproducing the Behavior of a Non-Lucent Automaton)
Let AM be a sound (possibly non-lucent) accepting automaton andE a translucent event log such that
there exists a weakly-matching transition-complete multiset of complete paths. disc(E) is guaranteed
to be lucent and sound accepting automaton able to reproduce the behavior of AM , i.e., {σ | (ρ, σ) ∈
Φ(AM)} ⊆ {σ | (ρ, σ) ∈ Φ(disc(E))}.

Proof:
Compared to Theorem 5.7 there are two differences: AM may not be lucent and the event log only
needs to be weakly-matching. Let X be the corresponding weakly-matching transition-complete
multiset of complete paths, i.e., X ∈ B(Φ(AM)), X is transition-complete, and E ≈w X . Let
h ∈ S → P(A) be the corresponding mapping, i.e., E ≈hw X . Moreover, AM = (S,A, δ, s0, sF)
and disc(E) = (S′, A′, δ′, s′0, s

′
F).

First, we prove that {σ | (ρ, σ) ∈ Φ(AM)} ⊆ {σ | (ρ, σ) ∈ Φ(disc(E))} by showing that for any
(ρ, σ) ∈ Φ(AM), (h(ρ), σ) ∈ Φ(disc(E)). This follows from s′0 = h(s0) (all complete paths start in
s0 and correspond to initial events having πen(e) = h(s0)), s′F = h(sF) = ∅ (all complete paths end
in a state mapped onto ∅ due to E ≈hw X), and for any (s1, a, s2) ∈ δ, also (h(s1), a, h(s2)) ∈ δ′ (X
is transition-complete and E ≈hw X).

20 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

Remains to prove that disc(E) is a lucent and sound. E is rooted because AM has one initial
state s0 that is mapped onto s′0 = h(s0). Hence, all cases start with an event having πen(e) = s′0.
E is complete because X is transition-complete, E ≈hw X , and states can only be merged (not split).
Therefore, we can apply Theorem 5.5 showing that disc(E) is a lucent and sound. ut

Consider the sound non-lucent accepting automaton AM 2 in Fig. 2 and the translucent event logE2 in
Table 2. X =[(〈s0, s1, s3, s5, sF 〉, 〈a, c, d, g〉), (〈s0, s2, s4, s5, s0, s1, s3, s5, sF 〉, 〈b, c, e, f, a, c, d, g〉),
(〈s0, s2, s4, s5, sF 〉, 〈b, c, e, g〉)] is a transition-complete multiset of complete paths. E2 ≈hw X for
h(s0) = {a, b}, h(s1) = {c}, h(s2) = {c}, h(s3) = {d}, h(s4) = {e}, h(s5) = {f, g}, and
h(sF) = ∅. Therefore, disc(E2) should be able to reproduce the behavior of AM 2. The discovered
model disc(E2) in Figure8(c) shows that this is indeed the case.

Let us now consider the scenario where πen(e) is not recorded correctly, i.e., the logging mecha-
nism changes the set of enabled activities into a different set. We call such event logs inexact translu-
cent event logs.

Definition 5.9. (Inexact Translucent Event Logs)
A translucent event log E is inexact when the πen(e) does not reflect the real set of enabled activities.
For any e ∈ E: πen(e) ⊆ A is the reported set of enabled activities and πreal(e) ⊆ A is the real
set of enabled activities. Both include the activity that occurred, i.e., πact(e) ∈ πen(e) ∩ πreal(e)
for any e ∈ E. Ereal is the translucent event log where πen(e) is replaced by the value πreal(e).
Inexact translucent event log E is called stable if there is a function fuzz ∈ P(A)→ P(A) such that
πen(e) = fuzz (πreal(e)) for any e ∈ E. Inexact translucent event log E is weakly-stable if there is
a function fuzz ∈ (P(A) × A) → P(A) such that πen(e) = fuzz (πreal(e), πact(e)) for any e ∈ E.
Inexact translucent event log E overshoots if πreal(e) ⊆ πen(e) for all e ∈ E. Inexact translucent
event log E undershoots if πen(e) ⊆ πreal(e) for all e ∈ E.

When an inexact translucent event log is unstable (i.e., πen(e) may have a random value unrelated
to the actual state of the system), then the additional enabling information is useless. However, the
knowledge that the event log is (weakly) stable, overshooting, or undershooting, may be exploited
during discovery.

It is interesting to consider different types of weakly-stable inexact translucent event logs charac-
terized by a function fuzz ∈ (P(A) × A) → P(A). For example, fuzz (s, a) = {a} (state is fully
determined by the next activity, i.e., undershooting) and fuzz (s, a) = A (resulting in a “flower model”
allowing for any behavior involving the activities A, i.e., overshooting). It is possible to formulate
additional properties depending on the type of inexactness (undershooting, overshooting, etc.) and the
level of completeness. Since this is beyond the scope of this paper, we only provide the following
corollary and show that in general weak stability is not enough.

Corollary 5.10. (Handling Inexact Stable Translucent Event Logs)
Let AM be a sound accepting automaton and E an inexact stable translucent event log such that
for Ereal there exists a weakly-matching transition-complete multiset of complete paths. disc(E) is
guaranteed to be a lucent and sound accepting automaton able to reproduce the behavior of AM .

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 21

Proof:
We need to show that {σ | (ρ, σ) ∈ Φ(AM)} ⊆ {σ | (ρ, σ) ∈ Φ(disc(E))}. LetX be the correspond-
ing weakly-matching transition-complete multiset of complete paths for Ereal . Let h ∈ S → P(A) be
such that Ereal ≈hw X . Since E is stable, there is a function fuzz such that πen(e) = fuzz (πreal(e))
for any e ∈ E. We can compose h and fuzz into a function g such that g(s) = fuzz (h(s)). It is easy
to verify that E ≈gw X . Hence, we can apply Theorem 5.8. ut

Corollary 5.10 does not hold for weakly-stable logs due to the fact that fuzz may be diverging, i.e.,
there may be a state s and activities a and b such that fuzz (s, a) 6= fuzz (s, b). Consider, for example
AM 1 in Figure 1 and E1 in Table 1, in conjunction with the function fuzz (s, x) = {x}. The resulting
discovered model does not allow activity c to followed by activity d. This problem can only be
addressed by using a stronger completeness notation than transition-completeness (e.g., completeness
with respect to two subsequent transitions).

6. Discovering Petri nets

The basic algorithm described in Definition 5.1 produces an accepting automaton and not an accepting
Petri net. However, whenever activities do not happen in a fixed other, automata tend to be too complex
or underfitting. Therefore, we discuss the need for discovering Petri nets (either directly or indirectly).

6.1. Concurrency matters

Consider the event log shown in Figure 10(a). The event log contains information about 1000 cases
and each case has 5 events. Figure 10(b) shows the so-called directly follows graph produced by Disco,
i.e., the process mining tool from Fluxicon (www.fluxicon.com). Figure 10(c) shows the same model
discovered by Celonis (www.celonis.com). The directly follows graphs produced by these and many
other commercial systems can be very misleading. The state of the process is determined by the last
activity. As a result, concurrent activities automatically result in loops. Note that in the event log each
activity occurs precisely once for each case. However, the directly follows graphs in Figure 10 do no
capture this and allow for behaviors very different from what was discovered.

Process discovery techniques that discover Petri nets from event logs will discover concurrency
and do not introduce loops. Figure 11(a) shows the model that will be discovered by techniques like
the inductive mining approaches [20, 21], the α-algorithm [18], and the ILP miner [23]. Clearly, such
models are desirable.

Although the Petri net in Figure 11(a) can be discovered using classical event logs, let us assume
that we have a translucent log. E = [〈s, pcg, cg, g, v〉402, 〈s, cpg, pg, g, v〉314, 〈s, pgc, gc, c, v〉250,
〈s, cgp, gp, p, v〉20, 〈s, gpc, pc, c, v〉10, 〈s, gcp, cp, p, v〉4] describes the translucent event log using the
shorthand notation introduced in Section 1.2. Figure 11(b) shows the automaton AM = disc(E)
using the discovery algorithm from Definition 5.1. Clearly, the discovered automaton captures the
process correctly. However, since it shows all interleavings explicitly, the model is not as compact and
less readable.

As mentioned, the Petri net in Figure 11(a) could have been discovered from a non-translucent
event log. However, as shown before the additional enabling information can be exploited.

22 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

(a) event log with 1000 cases and 5000 events

(b) process model discovered by Disco (c) process model discovered by Celonis

(d) process model discovered by ProM

402 traces

40 .20% o f the log
send reques t pay ticke t con firm rece ip t ge t ticke t v is it conce rt

314 traces

31 .40% o f the log
send request con firm rece ip t pay ticke t ge t ticke t v is it conce rt

250 traces

25 .00% o f the log
send reques t pay ticke t ge t ticke t con firm rece ip t v is it conce rt

20 traces

2 .00% o f the log
send reques t con firm rece ip t ge t ticke t pay ticke t v is it conce rt

10 traces

1 .00% o f the log
send reques t ge t ticke t pay ticke t con firm rece ip t v is it conce rt

4 traces

0 .40% o f the log
send reques t ge t ticke t con firm rece ip t pay ticke t v is it conce rt

Figure 10. An event log and the models discovered by Disco, Celonis, and ProM.

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 23

p1

s

p2

p

g

c

p4

v

p5

p7

p8t1

t4

t2

t5 s pcgp3 p6t3 pg

pc

cg

p

c

g

v

(a) Petri net discovered from event log (b) automaton discovered from event log

Figure 11. Process models discovered from the event log E = [〈s, pcg, cg, g, v〉402, 〈s, cpg, pg, g, v〉314,
〈s, pgc, gc, c, v〉250, 〈s, cgp, gp, p, v〉20, 〈s, gpc, pc, c, v〉10, 〈s, gcp, cp, p, v〉4].

6.2. Indirect techniques

A straightforward approach to obtain a Petri net from the automaton AM = disc(E) discovered using
Definition 5.1 is to use region theory [32]. State-based regions were introduced by Ehrenfeucht and
Rozenberg in 1989 [26] and generalized by Cortadella et al. [27] and Badouel, Bernardinello, and
Darondeau [32]. In [17] it was shown how an event log can be converted into different automata using
a range of abstractions (Step 1) and how these automata can be converted into Petri nets to uncover
concurrency (Step 2). The work presented in this paper can be used to refine the two-step approach
in [17].

As demonstrated in [28, 27], after some preprocessing, any automaton can be converted into a
labeled Petri net that is bisimilar. This may require label splitting when the automaton does not satisfy
the basic synthesis conditions [28, 27]. Figure 9 already showed the conversion of the automaton
discovered using Definition 5.1 into a bisimilar Petri net using ProM.

s pcg pg

pc

cg

p

c

g

v

s pcg pg

pc

cg

p

c

g

v s pcg pg

pc

cg

p

c

g

v

Figure 12. The six minimal regions discovered from the automaton in Figure 11(b). These regions correspond
to the places of the Petri net in Figure 11(a).

Figure 12 shows the regions in the automaton discovered for the translucent log E = [〈s, pcg, cg,
g, v〉402, 〈s, cpg, pg, g, v〉314, 〈s, pgc, gc, c, v〉250, 〈s, cgp, gp, p, v〉20, 〈s, gpc, pc, c, v〉10, 〈s, gcp, cp,
p, v〉4].

24 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

Recall that Theorem 3.2 showed that any two bisimilar sound lucent accepting automata are iso-
morphic. This makes lucency an interesting property in the context of net synthesis (e.g., its relation
to state separation and forward closure).

6.3. Direct techniques

Next to the indirect techniques using the discovery algorithm from Definition 5.1, we also envision
a range of new discovery techniques directly using translucent event logs to uncover concurrency. It
is fairly straightforward to improve existing discovery algorithms using the additional enabling in-
formation in translucent event logs. To illustrate this consider the α-algorithm [18] which is based
on learning relations such as a → b (causality), a || b (concurrency), and a#b (choice). In [18] the
algorithm was shown to be correct for a subclass of lucent Petri nets. In [1] it was shown that all perpet-
ual marked free-choice nets are lucent. The class of nets for which the α-algorithm was proven to be
correct (Theorem 4.10 in [18]) is actually subclass of perpetual marked free-choice nets. Using the en-
abling information attached to events it is possible to improve the quality of the relations (a→ b, a || b,
and a#b) and add new ones. Consider, for example, the event log [〈a, bc, c, de〉, 〈a, bc, b, de, bc, c, de〉,
〈a, bc, b, de〉] using the shorthand notation used in Section 1.2. Although cwas never directly followed
by d the pattern 〈. . . c, de . . .〉 shows that this is possible. The pattern 〈. . . bc, c . . .〉 shows that c was
not disabled by doing b, i.e., both are concurrent. The α-algorithm cannot distinguish between concur-
rency and the alternation of two activities a and b (e.g., loops of length 2). However, by using enabling
information we can distinguish between a→ b→ a and a || b. These simple examples show how the
α-algorithm can exploit translucency.

Another opportunity to employ enabling information is provided by the inductive mining ap-
proaches [20, 21]. These recursively partition the set of activities and logs based on finding so-called
“cuts” in directly-follows graphs. Using enabling information one can find better cuts, even when the
event log is incomplete. Also, discovery techniques using language-based regions can be easily ex-
tended to exploit translucency [19, 23]. For example, in the ILP miner [23] one can add an additional
inequality per activity in the enabling set of an event. This will help to avoid overfitting models (a
common problem when applying regions).

In case the event log is not translucent, the assumption of lucency still provides a new angle on
process discovery, putting more emphasis on finding states. To illustrate this consider a conventional
event log where each event in the event log is characterized by e = (σpref , a, σpost) where σpref is the
prefix (activities that happened before e), a is the activity executed, and σpost is the postfix (activities
that happened after e). The result of applying a process discovery algorithm can be seen as a function
state() which maps any event e onto a state state(e), i.e., the state in which e occurred (see [24, 17]
for explanations). Hence, events e1 and e2 satisfying state(e1) = state(e2) occurred in the same
state and can be viewed as “equivalent”. This way discovery is reduced to finding an equivalence
relation on the set of events in the log. Given such an equivalence relation one can use a variant of
the discovery algorithm described in Definition 5.1. Viewing process discovery as “finding an equiv-
alence relation on events” provides an original angle on this challenging and highly relevant learning
task.

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 25

7. Conclusion and implications

Lucency of process models and translucency of event logs were introduced as two new notions related
to explicit “enabling information”. In a lucent process model, there cannot be two states enabling
the same set of activities. In a translucent event log, each event carries information about the set of
activities enabled when it occurred. This paper explored these notions and related them.

We provided a novel discovery algorithm for translucent event logs. Using the additional enabling
information, our algorithm can easily outperform traditional algorithms, especially when models are
large and event logs are incomplete (i.e., only a small fraction of the set of possible traces is observed).
However, the main point is not to present a particular algorithm. Instead, we want to stress the value
of additional enabling information. In many information systems, the system’s interface reveals the
set of possible activities. Consider, for example, the worklists provided by WFM/BPM systems or the
buttons on a user interface. Hence, it is not unrealistic to obtain translucent event logs. Even when
event logs are semi-translucent (i.e., the reported set of enabled activities is too large or too small),
the information may be valuable. Moreover, a range of heuristics is possible to enhance enabling
information and add it to events.

The discovery algorithm for translucent event logs can also be extended with frequency-based
filtering (this is fairly straightforward, cf. Definition 5.2). As described in Section 6, we also envision
a range of discovery techniques based on existing approaches while exploiting translucency.

As demonstrated, lucency and translucency strengthen each other. Given a rooted complete translu-
cent event log, our discovery algorithm returns a lucent process model able to reproduce the event log
(Theorem 5.3 and Theorem 5.5). It is also relatively easy to rediscover lucent process models using
translucent event logs (Theorem 5.7). Moreover, the ability to link the enabling of activities to states
(i.e., lucency) is also useful when dealing with conventional event logs. Process mining studies the
more general relationship between modeled behavior and observed behavior [16]. Having process
models where multiple states enable the same set of activities complicates most of the process mining
tasks. For example, Petri nets where different transitions have the same activity label are notoriously
difficult to reconstruct based on event data. In general, the search space can be reduced considerably
by assuming lucent process models. Hence, these novel insights may lead to new process mining
algorithms or help to prove the correctness and/or guarantees of existing algorithms.

Acknowledgements

We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.

References
[1] van der Aalst W. Markings in Perpetual Free-Choice Nets Are Fully Characterized by Their Enabled

Transitions. In: Khomenko V, Roux O (eds.), Applications and Theory of Petri Nets 2018, volume 10877
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2018 pp. 315–336. doi:10.1007/978-3-
319-91268-4 16.

[2] van der Aalst W, Stahl C. Modeling Business Processes: A Petri Net Oriented Approach. MIT Press,
Cambridge, MA, 2011. URL https://www.jstor.org/stable/j.ctt5vjqff.

26 W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs

[3] Murata T. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 1989. 77(4):541–
580. doi:10.1109/5.24143.

[4] Reisig W. Petri Nets: Modeling Techniques, Analysis, Methods, Case Studies. Springer-Verlag, Berlin,
2013. doi:10.1007/978-3-642-33278-4.

[5] Reisig W, Rozenberg G (eds.). Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1998. doi:10.1007/3-540-65306-6.

[6] Reisig W, Rozenberg G (eds.). Lectures on Petri Nets II: Applications, volume 1492 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1998. doi:10.1007/3-540-65307-4.

[7] Best E. Structure Theory of Petri Nets: the Free Choice Hiatus. In: Brauer W, Reisig W, Rozenberg G
(eds.), Advances in Petri Nets 1986 Part I: Petri Nets, central models and their properties, volume 254 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1987 pp. 168–206. doi:10.1007/978-3-540-
47919-2 8.

[8] Best E, Wimmel H. Structure Theory of Petri Nets. In: Jensen K, van der Aalst W, Balbo G, Koutny
M, Wolf K (eds.), Transactions on Petri Nets and Other Models of Concurrency (ToPNoC VII), volume
7480 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2013 pp. 162–224. doi:10.1007/978-
3-642-38143-0 5.

[9] Desel J, Esparza J. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, UK, 1995. ISBN:0-521-46519-2.

[10] Best E, Desel J, Esparza J. Traps Characterize Home States in Free-Choice Systems. Theoretical Computer
Science, 1992. 101:161–176. doi:10.1016/0304-3975(92)90048-K.

[11] Esparza J. Reachability in Live and Safe Free-Choice Petri Nets is NP-Complete. Theoretical Computer
Science, 1998. 198(1-2):211–224. URL https://doi.org/10.1016/S0304-3975(97)00235-1.

[12] Thiagarajan P, Voss K. A fresh look at free choice nets. Information and Control, 1984. 61(2):85–113.
URL https://doi.org/10.1016/S0019-9958(84)80052-2.

[13] Wehler J. Free-Choice Petri Nets without Frozen Tokens, and Bipolar Synchronization Systems. Funda-
menta Informaticae, 2010. 98(2-3):283–320. doi:10.3233/FI-2010-228.

[14] Gaujal B, Haar S, Mairesse J. Blocking a Transition in a Free Choice Net and What it Tells About its
Throughput. Journal of Computer and System Science, 2003. 66(3):515–548. URL https://doi.org/

10.1016/S0022-0000(03)00039-4.

[15] Wehler J. Simplified Proof of the Blocking Theorem for Free-Choice Petri Nets. Journal of Computer and
System Science, 2010. 76(7):532–537. URL https://doi.org/10.1016/j.jcss.2009.10.001.

[16] van der Aalst W. Process Mining: Data Science in Action. Springer-Verlag, Berlin, 2016. doi:10.1007/978-
3-662-49851-4.

[17] van der Aalst W, Rubin V, Verbeek H, van Dongen B, Kindler E, Günther C. Process Mining: A Two-
Step Approach to Balance Between Underfitting and Overfitting. Software and Systems Modeling, 2010.
9(1):87–111. doi:10.1007/s10270-008-0106-z.

[18] van der Aalst W, Weijters A, Maruster L. Workflow Mining: Discovering Process Models from Event
Logs. IEEE Transactions on Knowledge and Data Engineering, 2004. 16(9):1128–1142. doi:10.1109/
TKDE.2004.47.

W.M.P. van der Aalst / Lucent Process Models and Translucent Event Logs 27

[19] Bergenthum R, Desel J, Lorenz R, Mauser S. Process Mining Based on Regions of Languages. In:
Alonso G, Dadam P, Rosemann M (eds.), International Conference on Business Process Management
(BPM 2007), volume 4714 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2007 pp. 375–
383. doi:10.1007/978-3-540-75183-0 27.

[20] Leemans S, Fahland D, van der Aalst W. Discovering Block-Structured Process Models from Event
Logs Containing Infrequent Behaviour. In: Lohmann N, Song M, Wohed P (eds.), Business Process
Management Workshops, International Workshop on Business Process Intelligence (BPI 2013), volume
171 of Lecture Notes in Business Information Processing. Springer-Verlag, Berlin, 2014 pp. 66–78.
doi:10.1007/978-3-319-06257-0 6.

[21] Leemans S, Fahland D, van der Aalst W. Scalable Process Discovery and Conformance Checking. Soft-
ware and Systems Modeling, 2018. 17(2):599–631. doi:10.1007/s10270-016-0545-x.

[22] Solé M, Carmona J. Process Mining from a Basis of State Regions. In: Applications and Theory of Petri
Nets (Petri Nets 2010), volume 6128 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2010
pp. 226–245. doi:10.1007/978-3-642-13675-7 14.

[23] van der Werf J, van Dongen B, Hurkens C, Serebrenik A. Process Discovery using Integer Linear Pro-
gramming. Fundamenta Informaticae, 2010. 94:387–412. doi:10.3233/FI-2009-136.

[24] van der Aalst W, Adriansyah A, van Dongen B. Replaying History on Process Models for Conformance
Checking and Performance Analysis. WIREs Data Mining and Knowledge Discovery, 2012. 2(2):182–
192. URL https://doi.org/10.1002/widm.1045.

[25] Carmona J, van Dongen B, Solti A, Weidlich M. Conformance Checking: Relating Processes and Models.
Springer-Verlag, Berlin, 2018. doi:10.1007/978-3-319-99414-7.

[26] Ehrenfeucht A, Rozenberg G. Partial (Set) 2-Structures - Part 1 and Part 2. Acta Informatica, 1989.
27(4):315–368.

[27] Cortadella J, Kishinevsky M, Lavagno L, Yakovlev A. Deriving Petri Nets from Finite Transition Systems.
IEEE Transactions on Computers, 1998. 47(8):859–882. doi:10.1109/12.707587.

[28] Carmona J. The Label Splitting Problem. In: Jensen K, van der Aalst W, Marsan MA, Franceschinis
G, Kleijn J, Kristensen L (eds.), Transactions on Petri Nets and Other Models of Concurrency (ToP-
NoC VI), volume 7400 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2012 pp. 1–23.
doi:10.1007/978-3-642-35179-2 1.

[29] van der Aalst W. The Application of Petri Nets to Workflow Management. The Journal of Circuits,
Systems and Computers, 1998. 8(1):21–66. URL https://doi.org/10.1142/S0218126698000043.

[30] van der Aalst W, van Hee K, ter Hofstede A, Sidorova N, Verbeek H, Voorhoeve M, Wynn M. Sound-
ness of Workflow Nets: Classification, Decidability, and Analysis. Formal Aspects of Computing, 2011.
23(3):333–363. doi:10.1007/s00165-010-0161-4.

[31] Genrich HJ, Thiagarajan PS. A Theory of Bipolar Synchronization Schemes. Theoretical Computer
Science, 1984. 30(3):241–318. URL https://doi.org/10.1016/0304-3975(84)90137-3¿

[32] Badouel E, Bernardinello L, Darondeau P. Petri Net Synthesis. Texts in Theoretical Computer Science.
An EATCS Series. Springer-Verlag, Berlin, 2015. doi:10.1007/978-3-662-47967-4.

