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Abstract. Process mining aims to provide insights into the actual pro-
cesses based on event data. These data are widely available and often
contain private information about individuals. On the one hand, know-
ing which individuals (known as resources) performed specific activities
can be used for resource behavior analyses like role mining and is in-
dispensable for bottleneck analysis. On the other hand, event data with
resource information are highly sensitive. Process mining should reveal
insights in the form of annotated models, but should not reveal sensitive
information about individuals. In this paper, we show that the prob-
lem cannot be solved by näıve approaches like encrypting data, and an
anonymized person can still be identified based on a few well-chosen
events. We, therefore, introduce a decomposition method and a collec-
tion of techniques that preserve the privacy of the individuals, yet, at
the same time, roles can be discovered and used for further bottleneck
analyses without revealing sensitive information about individuals. To
evaluate our approach, we have implemented an interactive environment
and applied our approach to several real-life and artificial event logs.

Keywords: Responsible process mining · Privacy preserving · Social
network discovery · Role mining · Process mining

1 Introduction

In recent years, process mining has emerged as a field which bridges the gap
between data science and process science [1]. Event logs are used by process
mining algorithms to extract and analyze the real processes. An event log is a
collection of events and such information is widely available in current infor-
mation systems [3]. Each event is described by its attributes and some of them
may refer to individuals, i.e., human actors. The resource attribute may refer to
the person performing the corresponding activities [1]. Organizational process
mining is a sub-discipline of process mining focusing on resource behavior using
the resource attributes of events. This form of process mining can be used to
extract the roles in a process or organization [4]. A simple example is when two
resources perform the same set of activities, the same role can be assigned to
them. Moreover, resource information is essential for bottleneck analysis and for
finding the root causes of performance degradation.
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Event data contain highly sensitive information and when the individuals’
data are included, privacy issues become more challenging. As discussed in [9],
event data may lead to privacy breaches. In addition, data protection regula-
tions like the European General Data Protection Regulation (GDPR) impose
many challenges and concerns regarding processing of personal data. In this pa-
per, we show that preserving privacy in process mining cannot be provided by
näıve approaches like encryption/anonymization and presence of some implicit
information together with background knowledge can be exploited to deduce
sensitive data even from minimized encrypted data.

We present a privacy-aware approach to discover roles from event logs. A
decomposition method along with some techniques are introduced to protect
the private information of the individuals in event data against frequency-based
attacks in this specific context. The discovered roles can be replaced by the
resources and utilized for bottleneck analyses while personal identifiers do not
need to be processed anymore. We evaluate our approach w.r.t the typical trade-
off between privacy guarantees and loss of accuracy. To this end, the approach
is evaluated on multiple real-life and synthetic event logs.

The rest of the paper is organized as follows. Section 2 outlines related work.
In Section 3, the main concepts are briefly described. In Section 4, the problem
is explored in detail. We explain our approach in Section 5. In Section 6, the
implementation and evaluation are described, and Section 7 concludes the paper.

2 Related Work

During the last decade, confidentiality and privacy-preserving challenges have
received increasing attention. In data science, many privacy algorithms have been
presented which cover topics ranging from privacy quantification to downgrading
the results [5]. These algorithms aim to provide privacy guarantees by different
methods, e.g., k-anonymity, l-diversity, and t-closeness [8] are series of algorithms
having been presented with the initial idea that each individual should not be
distinguished from at least k − 1 other individuals.

Recently, there have been lots of breakthroughs in process mining ranging
from process discovery and conformance checking to performance analysis. How-
ever, the research field confidentiality and privacy has received rather little atten-
tion, although the Process Mining Manifesto [3] also points out the importance
of privacy. Responsible Process Mining (RPM) [2] is the sub-discipline focusing
on possible negative side-effects of applying process mining. RPM addresses con-
cerns related to Fairness, Accuracy, Confidentiality, and Transparency (FACT).
In [9], the aim is to provide an overview of privacy challenges in process mining
in human-centered industrial environments. A method for securing event logs
to conduct process discovery by Alpha algorithm has been proposed by [11]. In
[6], a possible approach toward a solution, allowing the outsourcing of process
mining while ensuring the confidentiality of dataset and processes, has been pre-
sented. In [7], the aim is to apply k-anonymity and t-closeness on event data
while the assumed background knowledge is a prefix of the sequence of activi-
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ties. In [10], a framework has been introduced, which provides a generic scheme
for confidentiality in process mining. In this paper, for the first time, we focus
on the organizational perspective of event data.

3 Preliminaries: Process Mining and Role Mining

In this section, we define basic concepts regarding process mining and discovering
social networks from event logs which in turn are used for role mining.

3.1 Process Mining

An event log is a collection of traces, each represented by a sequence of events.
For a given set A. A∗ is the set of all finite sequences over A, and B(A∗) is the
set of all multisets over the set A∗. A finite sequence over A of length n is a
mapping σ ∈ {1, ..., n} → A, represented by a string, i.e., σ = 〈a1, a2, ..., an〉
where σi = ai for any 1 ≤ i ≤ n. |σ| denotes the length of the sequence. Also,
set(σ) = {a | a ∈ σ}, e.g., set(〈a, b, c, c, b〉) = {a, b, c}, and multiset(σ) = [a |
a ∈ σ], e.g., multiset(〈a, b, c, c, b〉) = [a, b2, c2].

Definition 1 (Event). An event is a tuple e = (a, r, c, t, d1, ..., dm), where
a ∈ A is the activity associated with the event, r ∈ R is the resource, who is
performing the activity, c ∈ C is the case id, t ∈ T is the event timestamp, and
d1,...,dm is a list of additional attributes values, where for any 1 ≤ i ≤ m, di ∈ Di
(domain of attributes). We call ξ = A × R × C × T × D1 × ... × Dm the event
universe. An event log is a subset of ξ where each event can appear only once,
and events are uniquely identifiable by their attributes.

Definition 2 (Simple Event Log). A simple event log EL ∈ B((R × A)∗)
is a multiset of traces. A trace σ ∈ EL is a sequence of events σ =
〈(r1, a1), (r2, a2), ..., (rn, an)〉 where each event is represented by a resource ri
and activity ai. Also, set(EL) = {set(σ) | σ ∈ EL}, and multiset(EL) =
[multiset(σ) | σ ∈ EL].

Definition 3 (Activities and Resources of Event Log). Let EL ∈ B((R×
A)∗) be an event log, act(EL) = {a ∈ A | ∃σ∈EL∃r∈R(r, a) ∈ σ} is the set of
activities in the event log, and res(EL) = {r ∈ R | ∃σ∈EL∃a∈A(r, a) ∈ σ} is the
set of resources in the event log.

Table 1 shows an event log, where Case ID, Timestamp, Activity, Resource,
and Cost are the attributes. Each row represents an event, e.g., the first row
shows that activity “Register” was done by resource “Frank” at time “01-01-
2018:08.00” for case “1” with cost “1000”. In the remainder, we will refer to the
activities and the resources of Table 1 with their abbreviations.

Definition 4 (Frequencies). Let EL ∈ B((R × A)∗) be an event log. The
frequency of an activity a is #a(EL) =

∑
σ∈EL|[(r, a′) ∈ σ | a′ = a]|, the set of

the activity frequencies is frq(EL) = {(a,#a(EL)) | a ∈ act(EL)}. #most(EL)
is the highest frequency, #least(EL) is the lowest frequency, #median(EL) is the
median of frequencies, and #sum(EL) is the sum of frequencies.
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Table 1: Sample event log (each row represents an event).
Case ID Timestamp Activity Resource Cost

1 01-01-2018:08.00 Register (R) Frank (F) 1000
2 01-01-2018:10.00 Register (R) Frank (F) 1000
3 01-01-2018:12.10 Register (R) Joey (J) 1000
3 01-01-2018:13.00 Verify-Documents (V) Monica (M) 50
1 01-01-2018:13.55 Verify-Documents (V) Paolo (P) 50
1 01-01-2018:14.57 Check-Vacancies (C) Frank (F) 100
2 01-01-2018:15.20 Check-Vacancies (C) Paolo (P) 100
4 01-01-2018:15.22 Register (R) Joey (J) 1000
2 01-01-2018:16.00 Verify-Documents (V) Frank (F) 50
2 01-01-2018:16.10 Decision (D) Alex (A) 500
5 01-01-2018:16.30 Register (R) Joey (J) 1000
4 01-01-2018:16.55 Check-Vacancies (C) Monica (M) 100
1 01-01-2018:17.57 Decision (D) Alex (A) 500
3 01-01-2018:18.20 Check-Vacancies (C) Joey (J) 50
3 01-01-2018:19.00 Decision (D) Alex (A) 500
4 01-01-2018:19.20 Verify-Documents (V) Joey (J) 50
5 01-01-2018:20.00 Special-Case (S) Katy (K) 800
5 01-01-2018:20.10 Decision (D) Katy (K) 500
4 01-01-2018:20.55 Decision (D) Alex (A) 500

In the following, we define the sensitive frequencies on the basis of the box
plot of the frequencies in such a way that not only the outliers but also all the
other unusual frequencies are classified as sensitive. The activities having the
sensitive frequencies are more likely to be identified by an adversary.

Definition 5 (Bounds of Frequencies). Let EL ∈ B((R × A)∗) be an
event log. We define upper(EL) = 〈#a(EL) | #a(EL) > upper quartile〉
and lower(EL) = 〈#a(EL) | #a(EL) < lower quarile〉 as the bounds of
frequencies on the basis of the box plot of the frequencies such that for any
1 ≤ i ≤ |upper(EL)|−1, upperi(EL) ≥ upperi+1(EL), and for any 1 ≤ i ≤
|lower(EL)|−1, loweri(EL) ≤ loweri+1(EL).

Definition 6 (Gaps). Let EL ∈ B((R×A)∗) be an event log. For each bound
of the frequencies, gapbound(EL) = [|boundi(EL) − boundi+1(EL)| | 1 ≤ i ≤
|bound(EL)|−1], and mean(gapbound(EL)) is the mean of the gaps.

Definition 7 (Sensitive Frequencies). Let EL ∈ B((R × A)∗) be an
event log. For each bound of the frequencies, sstvbound(EL) = [boundi(EL) |
∀1≤i≤|bound(EL)|−1|boundi(EL) − boundi+1(EL)|≤ mean(gapbound(EL))]. If
|sstvbound(EL)|= |bound(EL)|−1, sstvbound(EL) = ∅, i.e., there is no gap
greater than the mean of the gaps. Also, act(sstvbound(EL)) = {a ∈ act(EL) |
#a(EL) ∈ sstvbound(EL)}.

3.2 Role Mining

When discovering a process model from an event log, the focus is on the process
activities and their dependencies. When deriving roles and other organizational
entities, the focus is on the relation between individuals based on their activities.
The metrics based on joint activities, used for discovering roles and organization
structures, consider each individual as a vector of activity frequencies performed
by the individual and use a similarity measure to calculate the similarity be-
tween two vectors. A social network is constructed between individuals such
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that if the similarity is greater than a minimum threshold (Θ), the correspond-
ing individuals are connected with an undirected edge. The individuals in the
same connected part are supposed to play the same role [4].

Consider Table 1 and let us assume that the order of the activities in each
vector is D, V, C, R, S. Then, Paolo’s vector is P = (0, 1, 1, 0, 0), and Monica’s
vector is M = (0, 1, 1, 0, 0). Therefore, the similarity between these vectors is 1.
In this paper, we use a Resource-Activity Matrix (RAM), which is defined as
follows, as a basis for extracting the vectors and deriving roles.

Definition 8 (Resource-Activity Matrix (RAM)). Let EL ∈ B((R×A)∗)
be an event log, a ∈ act(EL), and r ∈ res(EL): RAMEL(r, a) =

∑
σ∈EL|[x ∈ σ |

x = (r, a)]|, and RAMEL(r) = (RAMEL(r, a1), RAMEL(r, a2), ..., RAMEL(r, an)
), where n is the number of unique activities.

Table 2 shows the RAM derived from Table 1. Given the RAM , the joint-
activities social network can be obtained as follows.

Definition 9 (Joint-Activities Social Network (JSN)). Let EL ∈ B((R×
A)∗) be an event log, RAMEL be a resource-activity matrix resulting from the
EL, and sim(r1, r2) be a similarity relation based on the vectors RAMEL(r1)
and RAMEL(r2), JSNEL = (res(EL), E) is the joint-activities social network,
where E = {(r1, r2) ∈ res(EL) × res(EL) | sim(r1, r2) > Θ} is the set of
undirected edges between resources, and Θ is the threshold of similarities.

Note that various similarity measures are applicable, e.g., Euclidean, Jaccard,
Pearson, etc. Figure 1 shows the network and roles having been obtained by
applying threshold 0.1 when using Pearson as the similarity measure.

4 The Problem (Attack Analysis)

Here, we discuss the general problem of confidentiality/privacy in process mining,
then we focus on the specific problem and the attack model w.r.t. this research.

Table 2: The RAM from Table 1
D V C R S

Frank 0 1 1 2 0
Joey 0 1 1 3 0
Alex 4 0 0 0 0
Katy 1 0 0 0 1
Paolo 0 1 1 0 0
Monica 0 1 1 0 0

Fig. 1: The network resulting from Table 2 for
Pearson similarity 0.1
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4.1 General Problem

Consider Table 3 as an entirely encrypted event log with information about
surgeries. The standard attributes (Case ID, Activity, Resource, and Timestamp)
are included. Process mining techniques need to preserve differences. Hence, Case
ID, Activity, and Resource are encrypted based on a deterministic encryption
method.1 Numerical data (i.e., Timestamp) are encrypted using a homomorphic
encryption method so that the basic mathematical computations can be applied.
Although the fully encrypted event log seems secure, it is not.

One can find the most or the least frequent activities and given background
knowledge, the encrypted values can be simply replaced with the real values. In
addition, the position of activities can also be used to infer sensitive information,
e.g., when an activity is always the first/last activity, given domain knowledge the
real activity can be deduced. These kinds of attacks are considered as frequency-
based. Note that the corresponding performers are most likely identifiable, after
inferring the actual activity names.

Table 3: An encrypted event log.

Case ID Activity Resource Timestamp
rt!@45 kl56ˆ* lo09(kl 3125
rt!@45 bn,.ˆq lo09(kl 3256
)@!1yt kl56ˆ* lo09(kl 4879
)@!1yt bvS(op /.,ldf 5214
)@!1yt jhg!676 nb][,b] 6231
erˆ7* kl56ˆ* lo09(kl 6534
erˆ7* 2ws34S v,[]df 7230

In addition to the above-mentioned at-
tacks, other attributes are also exploitable
to identify the actual activities and re-
sources. For example, when timestamp is
encrypted by a deterministic homomorphic
encryption method, then the duration be-
tween two events is derivable. Based on back-
ground knowledge, one can infer that the
longest/shortest duration belongs to specific
events. When there are more attributes, it is
more likely that one can combine these to in-
fer other attributes.

These examples clarify that given domain knowledge, data leakage is possible
even from a basic event log which is totally encrypted. Moreover, if the mining
techniques are applied to encrypted event logs, the results are also encrypted,
and data analyst is not able to interpret them without decryption [10].

4.2 Attack Analysis

Now, let us focus on our specific context where the aim is to extract roles without
revealing who performed what? As described in Section 3, roles can be derived
from a simple event log, and the activity is considered as the sensitive attribute
in this setting. Therefore, activities get hashed, and we define H(A) as universe
of hashed activities (H(X) = {H(x) | x ∈ X}).2

We assume the frequencies of activities as background knowledge (bk) which
can be formalized as bk ∈ PNE(Ufrq) × PNE(H(A)) → P(A), where Ufrq =
H(A) × N is the universe of the hashed activity frequencies, and PNE(X) is
the set of all non-empty sets over the set X. Therefore, the actual activities

1
A deterministic cryptosystem produces the same ciphertext for a given plaintext and key.

2
H is a one-way hash function, here we use SHA-256.
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can be revealed based on the assumed background knowledge. For example, in
the event log Table 1, the least frequent activity is “Special-Case” which can be
revealed based on background knowledge regarding the frequencies. We consider
this information disclosure as activity disclosure (kind of attribute disclosure).
Note that resources are usually not the unique identifiers in event logs. Never-
theless, they could get encrypted or hashed. Here, our focus is on activities, and
the challenge is to eliminate the frequency of activities, while they are necessary
to measure the similarity of resources and deriving roles. Our approach also im-
proves privacy when background knowledge is about traces, e.g., length of traces
and the position of activities in traces.

5 Approach

The idea is to decompose activities into other activities such that the frequency
and position of activities get perturbed. However, at the same time, the simi-
larities between resources should remain as similar as possible. To this end, we
need to determine the number of substitutions for each activity, and the way
of distributing the frequency of the main activity among its substitutions. We
consider D(H(A)) as the universe of hashed activities after the decomposition,
and the sanitized event logs are obtained as follows.

Definition 10 (Sanitized Event Logs (EL′′t , EL
′′
ms, and EL′′s)). Let EL′ ∈

B((R×H(A))∗) be an event log where activity names are hashed, and Decom ∈
H(A)→ D(H(A)) be a decomposition method. EL′′t ∈ B((R×D(H(A)))∗) is a
trace-based sanitized event log. A multiset-based sanitized event log is EL′′ms =
multiset(EL′′t ), and a set-based sanitized event log is EL′′s = set(EL′).

EL′′s is used when the similarity measure is binary (Jaccard, hamming, etc.).
In this case, the frequencies could be simply ignored, since these measures do
not consider the absolute frequency but only whether it is 0 or not. EL′′ms is
employed when traces are not needed to be reconstructed from the sanitized
event log. In this case, the sanitized event log entirely preserves privacy of the
individuals against attribute disclosure when background knowledge is trace-
based. Moreover, it is clear that resource-activity matrices and the corresponding
joint-activities social networks can be simply derived from the sanitized event
logs. In the remainder, we use EL′ for the event log where activity names are
hashed and EL′′ for the sanitized event logs made by applying the decomposition
method, i.e., EL′′t and EL′′ms.

5.1 Decomposition Method

The Number of Substitutions for each activity a (NSa) should be specified in
such a way that the activities having the sensitive frequencies are not certainly
identifiable anymore. In the following, we introduce some techniques.

– Fixed-value: A fixed value is considered as the number of substitutions for
each activity such that for any a ∈ act(EL′), NSa = n where n ∈ N>1.
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– Selective: By this technique only the sensitive frequencies are targeted to get
perturbed. Hence, only some of the activities having the sensitive frequen-
cies are decomposed. Here, we allocate the substitutions such that for any
a ∈ act(EL′): NSa = d#a(EL′)/#median(EL′)e if #a(EL′) = #most(EL

′),
and for any a ∈ act(EL′): NSa = d#a(EL′)/#least(EL′)e if #a(EL′) ∈
sstvlower(EL

′) \ #least(EL
′). Note that we aim to perturb the bounds of

frequencies with the minimum number of activities after the decomposition.
– Frequency-based: The substitutions are allocated based on the relative fre-

quencies of the main activities. Here, we allocate the substitutions in such a
way that for any a ∈ act(EL′), NSa = d#a(EL′)/#sum(EL′)× 100e.

After specifying the number of substitutions for activity a, we make a sub-
stitution set Suba = {sa1, sa2, ..., saNSa} such that for any a1, a2 ∈ act(EL′):
Suba1 ∩ Suba2 = ∅ if a1 6= a2.3 Note that Decom(act(EL′)) = {sa ∈ D(H(A)) |
∃a∈act(EL′)sa ∈ Suba}. To preserve the main feature of the vectors, we dis-
tribute the frequency of the main activity uniformly among its substitutions. To
this end, while going through the event log, for each resource, the ith occurrence
of the activity a ∈ act(EL′) is replaced by the sai ∈ Suba, and when i > NSa, i
is reset to 1 (round-robin manner). Thereby, we guarantee that if the frequency
of performing an activity by a resource is greater than or equal to the other
resources, the frequency of performing the corresponding substitutions will also
be greater or equal to the others.4

5.2 Privacy Analysis

To analyze the privacy, we measure the disclosure risk of the original event log,
and the sanitized event logs. Two factors are considered to measure the disclosure
risk including; the number of activities having the sensitive frequencies, and the
presence of the actual activities having the sensitive frequencies. The presence
for each bound of the frequencies before applying the decomposition method is
prsbound(EL) = 1 if sstvbound(EL) 6= ∅. Otherwise, prsbound(EL) = 0. For the
sanitized event logs the presence is obtained as follows.

prsbound(EL
′′

) =
|act(sstvbound(EL′′)) ∩ {sa ∈ Decom(act(EL′)) | #a(EL′) ∈ sstvbound(EL′)}|

|{sa ∈ Decom(act(EL′)) | #a(EL′) ∈ sstvbound(EL′)}|

Also for each bound of the frequencies, PRbound(EL) =1/|act(sstvbound(EL))| is the
raw probability of activity disclosure based on the number of activities having
the sensitive frequencies, and DRbound(EL) =prsbound(EL)/|act(sstvbound(EL))| is the
disclosure risk. The whole disclosure risk w.r.t the assumed background knowl-
edge is measured as follows.

DR(EL) =
α× prsupper(EL)

|act(sstvupper(EL))|
+

(1− α)× prslower(EL)

|act(sstvlower(EL))|

If prsbound(EL) = 0 or |act(sstvupper(EL))|= 0, DRbound(EL) = 0. Also, α
is utilized to set the importance of each bound of the frequencies.

3
Note that the substitution sets should not be revealed.

4
We consider a dummy resource in case there is an activity without resource.
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Table 4: Similarity between JSN and JSN ′′ for the fixed-value technique
Threshold Dataset

NS = 2 NS = 4 NS = 8 NS = 16
CN UC CN UC CN UC CN UC

Θ = 0.1
BPIC 2012 1.0 1.0 1.0 1.0 0.99 1.0 0.99 1.0
BPIC 2017 1.0 1.0 1.0 1.0 0.99 1.0 0.98 1.0

Θ = 0.2
BPIC 2012 1.0 1.0 0.99 1.0 0.98 1.0 0.95 1.0
BPIC 2017 1.0 1.0 1.0 1.0 0.99 1.0 0.97 1.0

Θ = 0.3
BPIC 2012 1.0 1.0 0.98 1.0 0.95 1.0 0.90 1.0
BPIC 2017 1.0 1.0 1.0 1.0 0.97 1.0 0.95 1.0

Θ = 0.4
BPIC 2012 1.0 1.0 0.97 1.0 0.92 1.0 0.88 1.0
BPIC 2017 1.0 1.0 0.99 1.0 0.97 1.0 0.93 1.0

Θ = 0.5
BPIC 2012 1.0 1.0 0.94 1.0 0.91 1.0 0.87 1.0
BPIC 2017 1.0 1.0 0.99 1.0 0.96 1.0 0.93 1.0

Θ = 0.6
BPIC 2012 1.0 1.0 0.94 1.0 0.90 1.0 0.85 1.0
BPIC 2017 1.0 1.0 0.98 1.0 0.95 1.0 0.94 1.0

Θ = 0.7
BPIC 2012 1.0 1.0 0.95 1.0 0.91 1.0 0.87 1.0
BPIC 2017 1.0 1.0 0.99 1.0 0.97 1.0 0.96 1.0

Θ = 0.8
BPIC 2012 1.0 1.0 0.96 1.0 0.95 1.0 0.93 1.0
BPIC 2017 1.0 1.0 0.99 1.0 0.98 1.0 0.93 1.0

Θ = 0.9
BPIC 2012 1.0 1.0 0.99 1.0 0.96 1.0 0.95 1.0
BPIC 2017 1.0 1.0 0.99 1.0 0.96 1.0 0.92 1.0

Average
BPIC 2012 1.0 1.0 0.96 1.0 0.94 1.0 0.91 1.0
BPIC 2017 1.0 1.0 0.99 1.0 0.97 1.0 0.94 1.0

Total Average
BPIC 2012 1.0 0.98 0.97 0.955
BPIC 2017 1.0 0.995 0.985 0.97

6 Evaluation

To evaluate our approach, we show the effect on the accuracy and privacy for
two real life event logs (BPIC 2012 and 2017). To this end, we have implemented
an interactive environment in Python. Figure 1 shows an output of our tool.5

6.1 Accuracy

To examine the accuracy of our approach, we measure the similarity of joint
-activities social networks from the original event log (JSN) and the sanitized
event log (JSN ′′). To this end, we compare the similarity of their connected
(CN) and unconnected (UC) parts. Note that JSN = (res(EL), E), JSN ′′ =
(res(EL′′), E′′), and res(EL) = res(EL′′). Here, we use Pearson as the measure
of similarity between vectors, which is one of the best measures according to [4].

CN =
|E ∩ E′′|
|E|

UC =
|(res(EL)× res(EL)\E) ∩ (res(EL)× res(EL)\E′′)|

|res(EL)× res(EL)\E|
Table 4 shows the similarities when the fixed-value technique is used to iden-

tify the number of substitutions. As can be seen, the networks are almost the
same and the accuracy is acceptable. When the number of substitutions in-
creases, the average of similarities decreases, showing the typical trade-off be-
tween accuracy and privacy. Moreover, the networks in the unconnected parts
are identical, i.e., if two resources are not connected in the JSN , there are not
connected in the JSN ′′ as well.

Figure 2 shows the similarities w.r.t. various thresholds when using the se-
lective or frequency-based technique. As can be seen, on average the selective
technique leads to more accurate results. However, in the unconnected parts the
frequency-based technique has better results. Note that BPIC 2017 is larger than
BPIC 2012 in terms of both resources and activities (Table 5).

5
https://github.com/m4jidRafiei/privacyAware-roleMining
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(a) Selective technique for BPIC 2012 (b) Selective technique for BPIC 2017

(c) Frequency-based technique for BPIC 2012 (d) Frequency-based technique for BPIC 2017

Fig. 2: The similarities between JSN and JSN ′′ when using the selective or
frequency-based technique to identify the number of substitutions.

6.2 Privacy

To evaluate the effect on privacy, we calculate the disclosure risk on the original
event logs and the sanitized event logs after applying the decomposition method
with different techniques. Table 6 and Table 7 show the parameters regarding
the disclosure risk for BPIC 2012 and 2017 respectively. As can be seen, when
the fixed-value technique is used, DR is lower for the larger values as the num-
ber of substitutions in both event logs. Moreover, since the relative frequency
of the least frequent activities is very low, the frequency-based technique does
not affect the lower bound of sensitive frequencies. This weakness can be miti-
gated by combining this technique with the fixed-value such that the number of
substitutions would be the relative frequency plus a fixed value.

To compare the introduced techniques, we consider the minimal disclosure
risk which can be supplied by all the techniques as the basis of comparison and
evaluate the accuracy and complexity provided by the different techniques for
the same disclosure risk. The accuracy is the average similarity between the

Table 5: Statistics regarding frequencies in BPIC 2012 and BPIC 2017
BPIC 2012 BPIC 2017

No. resources 69 145

No. unique activities 24 26

No. activities 262200 1202267

|upper(EL))| 5 5

Frequency of the most frequent activities (#most(EL)) 54850 209496

Relative frequency for any a: #a(EL) ∈ #most(EL) 0.20 0.17

|lower(EL))| 4 6

Frequency of the least frequent activities (#least(EL)) 12 22

Relative frequency for any a: #a(EL) ∈ #least(EL) 4 × 10−5 1 × 10−5
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Table 6: The DRs before and after applying the method on BPIC 2012
PRupper PRlower prsupper prslower DR(α = 0.5)

BPIC 2012 0.5 0 1 0 0.25

Fixed-value NS=2 0.25 0 1 0 0.12

Fixed-value NS=4 0.25 0 0.5 0 0.06

Fixed-value NS=8 0.12 0 0.5 0 0.03

Fixed-value NS=16 0.06 0 0.5 0 0.01

Selective 1 0 0.09 0 0.04

Frequency-based 0.5 0 0.04 0 0.01

Table 7: The DRs before and after applying the method on BPIC 2017
PRupper PRlower prsupper prslower DR(α = 0.5)

BPIC 2017 0.25 0.5 1 1 0.37

Fixed-value NS=2 0.5 0.25 0.25 1 0.18

Fixed-value NS=4 0.25 0.12 0.25 1 0.09

Fixed-value NS=8 0.12 0.07 0.25 1 0.05

Fixed-value NS=16 0.06 0.04 0.25 1 0.03

Selective 1 0.2 0.09 0.41 0.08

Frequency-based 0.33 0.5 0.04 1 0.25

networks, and the complexity is considered as the number of unique activities.
Note that for the fixed-value technique, we inspect the event log which has the
minimum NS providing the basis disclosure risk. Table 8 and Table 9 show the
results of this experiment for BPIC 2012 and 2017 respectively. As one can see,
in both event logs, the fixed-value technique provides more accurate results and
the selective technique imposes less complexity.

All the above-mentioned explanations and our experiments demonstrate that
the decomposition method provides accurate and highly flexible protection for
mining roles from event logs, e.g., the decomposition method with the frequency-
based technique can be used when the upper bound of frequencies is more sen-
sitive and the accuracy of the unconnected parts is more important.

Table 8: Comparison of techniques in
BPIC 2012

DR
(α = 0.5)

Accuracy Complexity

Fixed value
NS=8

0.04 0.97 188

Selective 0.04 0.9 87

Frequency-
based

0.04 0.75 108

Table 9: Comparison of techniques in
BPIC 2017

DR
(α = 0.5)

Accuracy Complexity

Fixed value
NS=2

0.25 1 52

Selective 0.25 0.93 43

Frequency-
based

0.25 0.87 113

7 Conclusions

In this paper, for the first time, we focused on privacy issues in the organizational
perspective of process mining. We proposed an approach for discovering joint-
activities social networks and mining roles w.r.t. privacy. We introduced the
decomposition method along with a collection of techniques by which the private
information about the individuals would be protected against frequency-based
attacks. The discovered roles can be replaced with individuals in the event data
for further performance and bottleneck analyses.
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The approach was evaluated on BPIC 2012 and 2017, and the effects on ac-
curacy and privacy were demonstrated. To evaluate the accuracy, we measured
the similarity between the connected and unconnected parts of two networks
separately while different thresholds were considered. Moreover, we introduced
three different techniques to identify the number of substitutions in the decom-
position method, and we showed their effect on the accuracy and privacy, when
the frequencies of activities are assumed as background knowledge. In the future,
other techniques or combination of the introduced ones could be explored with
respect to the characteristics of the event logs.
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