
Conformance Checking Approximation using Subset
Selection and Edit Distance

Mohammadreza Fani Sani1, Sebastiaan J. van Zelst1,2, and Wil M.P. van der Aalst1,2

1Process and Data Science Chair, RWTH Aachen University, Aachen, Germany
2Fraunhofer FIT, Birlinghoven Castle, Sankt Augustin, Germany

{fanisani,s.j.v.zelst,wvdaalst}@pads.rwth-aachen.de

Summary. Conformance checking techniques let us find out to what degree a
process model and real execution data correspond to each other. In recent years,
alignments have proven extremely useful in calculating conformance statistics.
Most techniques to compute alignments provide an exact solution. However, in
many applications, it is enough to have an approximation of the conformance
value. Specifically, for large event data, the computation time for alignments is
considerably long using current techniques which makes them inapplicable in re-
ality. Also, it is no longer feasible to use standard hardware for complex process
models. This paper, proposes new approximation techniques to compute approx-
imated conformance checking values close to exact solution values in less time.
These methods also provide upper and lower bounds for the approximated align-
ment value. Our experiments on real event data show that it is possible to improve
the performance of conformance checking by using the proposed methods com-
pared to using the state-of-the-art alignment approximation technique. Results
show that in most of the cases, we provide tight bounds, accurate approximated
alignment values, and similar deviation statistics.

Key words: Process Mining · Conformance Checking Approximation ·
Alignment· Subset Selection · Edit Distance · Simulation·

1 Introduction

One of the main branches of process mining is conformance checking, aiming at in-
vestigating conformity of a discovered/designed process model w.r.t, real process ex-
ecutions [1]. This branch of techniques is beneficial to detect deviations and to mea-
sure how accurate a discovered model is. In particular, the techniques in this branch
are able to check conformance based on process modeling formalisms that allow for
describing concurrency, i.e., the possibility to specify order-independent execution of
activities. Early conformance checking techniques, e.g., “token-based replay” [2], often
lead to ambiguous and/or unpredictable results. Hence, alignments [3] were developed
with the specific goal to explain and quantify deviations in a non-ambiguous manner.
Alignments have rapidly turned into the de facto standard conformance checking tech-
nique [4]. Moreover, alignments serve as a basis for techniques that link event data to
process models, e.g., they support performance analysis, decision mining [5], business
process model repair [6] and prediction techniques. However, computing alignments is
time consuming on real large event data, which makes it unusable in reality.
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In many applications, we need to compute alignment values several times, e.g., if
we want to have a suitable process model for an event log, we need to discover many
process models using various process discovery algorithms with different settings, and,
measure how each process model fits with the event log using alignment techniques.
As normal alignment methods require considerable time for large event data, analyz-
ing many candidate process models is impractical. Consequently, by decreasing the
alignment computation time, we can consider more candidate models in a limited time.
Moreover, in several cases, we do not need to have accurate alignment values, i.e., it is
sufficient to have a quick approximated value or a close lower/upper bound for it.

In this paper, we propose several conformance checking approximation methods
that provide approximated alignment values plus lower and upper bounds for the actual
alignment value. The underlying core idea, is to consider just a subset of the process
model behavior, instead of its all behavior. The methods additionally return problematic
activities, based on their deviation rates. Using these methods, users are able to adjust
the amount of process model behaviors considered in the approximation, which affects
the computation time and the accuracy of alignment values and their bounds.

We implemented the methods in two open-source process mining tools and applied
them on several large real event data and compared them with the state-of-the-art align-
ment approximation method. The results show that using some of proposed methods,
we are able to approximate alignment values faster and at the same time the approxi-
mated values are very close to actual alignment values.

The remainder of this paper is structured as follows. In Section 2, we discuss related
work. Section 3 defines preliminary notation. We explain the main method in Section 4
and evaluate it in Section 5. Section 6 concludes the paper.

2 Related Work

Several process mining techniques exists, ranging from process discovery to prediction.
We limit related work to the field of conformance checking and sampling techniques in
the process mining domain. We refer to [1] for an overview of process mining.

In [7], the authors review the conformance checking techniques in process mining
domain. In [8] different methods for conformance checking and its applications are
covered. Early work in conformance checking uses token-based replay [2]. The tech-
niques replay a trace of executed events in a Petri net and add missing tokens if tran-
sitions are not able to fire. After replay, a conformance statistic is computed based on
missing and remaining tokens. Alignments were introduced in [9] and have rapidly de-
veloped into the standard conformance checking technique. In [10, 11], decomposition
techniques are proposed for alignment computation. Moreover, [12] proposes a decom-
position method to find an approximation of the alignment in a faster time. Applying
decomposition techniques improves computation time, i.e., the techniques successfully
use the divide-and-conquer paradigm, however, these techniques are primarily benefi-
cial when there are too many unique activities in the process [13]. Recently, general
approximation schemes for alignments, i.e., computation of near-optimal alignments,
have been proposed [14]. Finally, the authors in [4] propose to incrementally compute
prefix-alignments, i.e., enabling real-time conformance checking for event data streams.
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Fig. 1: An example Petri net and an
event log in a multiset view.
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Fig. 2: Overview of the proposed ap-
proach. It uses MB ⊆ φv(SN) to ap-
proximate alignment costs.

A limited amount of work considers the use of sampling in process mining. In [15],
the authors proposed a sampling approach based on Parikh vectors of traces to detect
the behavior in the event log. In [16], the authors recommend a trace-based sampling
method to decrease the discovery time and memory footprint. In [17], a trace-based
sampling method, specifically for the Heuristic miner [18], is proposed. In these sam-
pling methods, we have no control on the size of the final sampled event data, and,
depending on the defined behavioral abstraction, the methods may select almost all the
process instances. Finally, all these sampling methods are unbiased and lead to non-
deterministic results. In [19], we analyzed random and biased sampling methods with
which we are able to adjust the size of the sampled data for process discovery.

Some research focuses on alignment value approximation. [20] proposes sampling
the event log and applying conformance checking on the sampled data. The method
increases the sample size until the approximated value is accurate enough. However, the
method does not guarantee the accuracy of the approximation, e.g., by providing bounds
for it. In Section 5, we show that if there is lot of unique behavior in the event log,
using this method, the approximation time exceeds the computation time for finding the
alignment value. The authors of [21] propose a conformance approximation method that
applies relaxation labeling methods on a partial order representation of a process model.
Similar to the previous method, it does not provide any guarantee for the approximated
value. Furthermore, it needs to preprocess the process model each time. In this paper,
we propose multiple alignment approximation methods that increase the conformance
checking performance. The methods also provide bounds for alignment values and a
deviation ratio of problematic activities.

3 Preliminaries

In this section, we briefly introduce basic process mining and, specifically, conformance
checking terminology and notations that ease the readability of this paper.1

Given a set X , a multiset B over X is a function B : X → N≥0 that allows certain
elements of X appear multiple times. B = {e ∈ X | B(e) > 0} is the set of elements
present in the multiset. The set of all multisets over a set X is written as B(X).

1 For some concepts, e.g., labeled Petri net and System net please use the definitions in [10]
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Given a system net SN , φf (SN ) is the set of all complete firing sequences of SN
and φv(SN ) is the set of all possible visible traces, i.e., complete firing sequences start-
ing its initial marking and ending in its final marking projected onto the set of observable
activities (not silent transitions, e.g., t3 in Fig. 1). To measure how a trace aligns to a
process model, we need to define the notation of moves. A move is a pair (x, t) where
the first element refers to the log and the second element refers to the corresponding
transition in the model.

Definition 1 (Legal Moves). Let L ∈ B(A∗) be an event log, where A is the set of
activities and let T be the set of transitions in the model. Moreover, let l be a function
that returns the label of each transition.ALM = {(x, (x, t)) | x ∈ A ∧ t ∈ T ∧ l(t) =
x} ∪ {(�, (x, t)) | t ∈ T ∧ l(t) = x} ∪ {(x,�) | x ∈ A} is the set of legal moves.

For example, (a, t1) means that both log and model make an “a move” and the move in
the model is caused by the occurrence of transition t1 (as the label of t1 is a). Note that
� indicates ”no move” in log/model trace. Now, we define Alignment as follows [10].

Definition 2 (Alignment). Let σL ∈ L be a log trace and σM ∈ φf (SN) a complete
firing sequence of a system net SN . An alignment of σL and σM is a sequence of pairs
γ ∈ A∗LM such that the projection on the first element (ignoring�) yields σL and the
projection on the second element (ignoring� and transition labels) yields σM .

An alignment is a sequence of legal moves such that after removing all � symbols,
the top row corresponds to a trace in the event log and the bottom row corresponds to
a complete firing sequence in φf (SN). The middle row corresponds to a visible path
when ignoring the τ steps, i.e., corresponding to silent transitions (e.g., t3 in Fig. 1).
For silent transitions, there is no corresponding recorded event in the log. The following
alignments relate to σL = 〈a, c, b, d, e〉 and the Petri net in Fig. 1.

γ1 =

a � c b d e

a τ � b � e
t1 t3 t2 t6

γ2 =
a c b d e

a c b � e
t1 t4 t2 t6

By considering the label of visible transitions of an alignment, we find the corre-
sponding model trace, e.g., the model trace of γ1 is 〈a, b, e〉. To quantify the costs of
misalignments we introduce a move cost function δ. Synchronous moves, i.e., moves
that are similar in the trace and the model, have no costs, i.e., for all x ∈ A,
δ((x, (x, t))=0. Moves in model only have no costs if the transition is invisible, i.e.,
δ(�, t) = 0 if l(t)=τ .

Definition 3 (Cost of Alignment). Cost function δ ∈ ALM → R ≥ 0 assigns costs to
legal moves. The cost of an alignment γ ∈ A∗LM is δ(γ) = Σ(x,y)∈γδ(x, y).

In this paper, we use a standard cost function δS that assigns unit costs: δS(�
, t) = δS(x,�) = 1 if l(t) 6= τ . In the above example alignments, δS(γ1) = 2 and
δS(γ2) = 1. Given a log trace and a system net, we may have many alignments. To
select the most appropriate one, we select an alignment with the lowest total costs.

Definition 4 (Optimal Alignment). Let L ∈ B(A∗) be an event log and let SN be a
system net with φv(SN) 6= ∅.
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– For σL ∈ L, ΓσL,SN = {γ ∈ A∗LM |∃σM∈φf (SN) is an alignment of σL and σM}.
– An alignment γ ∈ ΓσL,SN is optimal for trace σL ∈ L and system net SN if for any

alignment γ′ ∈ ΓσL,SN : δ(γ′) ≥ δ(γ).
– γSN ∈ A∗ → A∗LM is a mapping that assigns any log trace σL to an optimal

alignment, i.e., γSN (σL) ∈ ΓσL,SN and γSN (σL) is an optimal alignment.
– λSN ∈ A∗ → A∗ is a mapping that assigns any log trace σL to visible activities of

the model trace of the optimal alignment.

In the running example, γSN (〈a, c, b, d, e〉)=γ2 (γ2 is optimal), and
λ(〈a, c, b, d, e〉)=〈a, c, b, e〉 is the corresponding model trace for the optimal alignment.

We can compute the distance of two traces (or two sequences) faster using the
adapted version of Levenshtein distance [22]. Suppose that σ, σ′ ∈ A∗, Edit Distance
function 4(σ, σ′)→N returns the minimum number of edits that are needed to trans-
form σ to σ′. As edit operations, we allow deletion/insertion of an activity (or a transi-
tion label) in a trace, e.g., 4(〈a, c, f, e〉, 〈a, f, c, a〉)=4, corresponds to two deletions
and two insertions. This measure is symmetric, i.e.,4(σ, σ′) = 4(σ′, σ). It is possible
to use the4 function instead of the standard cost function. Thus,4 and δS return same
distance values. The 4 function is expendable from unit cost (i.e., δS) to another cost
by giving different weights to insertion and deletion of different activities.

In [23], it is explained that the Levenshtein metric before normalization satisfies
the triangle inequality. In other words, 4(σ, σ′) ≤ 4(σ, σ′′) +4(σ′′, σ′). Moreover,
suppose that S is a set of sequences, Φ(σL, S) = min

σM∈S
4(σL, σM ) returns the distance

of the most similar sequence in S for σL.
Let φv(SN) is a set of all visible firing sequences in SN , and γSN (σ) is an optimal

alignment for sequence σ. It is possible to use Φ(σ, φv(SN)) instead of δS(γSN (σ))
2. Using the edit distance function, we are able to find which activities are required to
be deleted or inserted. So, not only the cost of alignment; but, the deviated parts of the
process model (except invisible transitions) are also detectable using this function.

It is possible to convert misalignment costs into the fitness value using Equation 1.
It normalizes the cost of optimal alignment by one deletion for each activity in the
trace and one insertion for each visible transition in the shortest path of model (SPM).
The fitness between an event log L and a system net SN (i.e., Fitness(L, SN)) is a
weighted average of traces’ fitness.

fitness(σL, SN) = 1−
δ(γSN (σ))

|σL|+ min
σM∈φf

(|σM |)
(1)

4 Approximating Alignments using Subset of Model Behavior

As computational complexity of computing alignment is exponential in the number of
states and the number of transitions, it is impractical for larger petri nets and event
logs [24]. Considering that the most time consuming part in the conformance checking
procedure is finding an optimal alignment for each σL ∈ L and the system net SN leads
us to propose an approximation approach that requires fewer alignment computations.
The overview of the proposed approach is presented in Fig. 2. We suggest to useMB ⊆
2 Because of the page limit, we do not provide the proof of this statement here.
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φv(SN) instead of the whole φv(SN) and apply the edit distance function instead of
δS . In the following lemma, we show that using this approach, we have an upper bound
for the cost of alignment (i.e., a lower bound for the fitness value).

Lemma 1 (Alignment Cost Upper Bound). Let σL ∈ A∗ is a log trace, and σM ∈
φv(SN) is a visible firing sequence of SN. We have δS(γSN (σL)) ≤ 4(σL, σM ) where
γSN (σL) is the optimal alignment.

Proof: We shown that4(σL, σM ) = δS(γ), so we have4(σL, σM ) ≥ δS(γSN (σL)).
Therefore, if δS(γSN (σL)) > 4(σL, σM ), γSN (σL) is not an optimal alignment. Con-
sequently, if we use any MB ⊆ φv(SN), Φ(σL,MB) returns an upper bound for the
cost of optimal alignment.

Here, we explain the main components of our proposed approach, i.e., constructing
a subset of model behavior (MB) and computing the approximation.

4.1 Constructing Model Behavior (MB)

As explained, we propose to use MB i.e., a subset of visible model traces to have an
approximated alignment. An important question is how to constructMB . In this regard,
we propose two approaches, i.e., simulation and candidate selection.

1) Simulation: The subset of model traces can be constructed by simulating the
process model. In this regard, having a system net and the initial and final markings,
we simulate some complete firing sequences. Note that we keep only the visible firing
sequences in MB . It is possible to replay the Petri net randomly or by using more
advanced methods, e.g., stochastic petri net simulation techniques. This approach is
fast; but, we are not able to guarantee that by increasing the size of MB we will obtain
the perfect alignment (or fitness) value, because the model traces are able to be infinite.
Another potential problem of this method is that the generated subset may be far from
traces in the event log that leads to have an inaccurate approximation.

2) Candidate Selection: The second method to construct MB is computing the op-
timal alignments of selected traces in the event log and finding the corresponding model
traces for these alignments. In this regard, we first select some traces (i.e., candidates)
from the event log L and put them in LC . Then for each σL ∈ LC we find the opti-
mal alignment and insert λSN (σL) to MB . Thereafter, for other traces σ′L ∈ L′C (i.e.,
L′C = L− LC), we will use MB and compute Φ(σ′L,MB).

As the triangle inequality property holds for the edit distance function, it is better to
insert λSN (σL) inMB instead of considering σL. To make it more clear, let σL be a log
trace, SN is a system net, and σM = λSN (σL) is the corresponding visible model trace
for an optimal alignment of σL and SN . According to the triangle inequality property,
for any trace σ ∈ L, we have 4(σ, σM ) ≤ 4(σ, σL) + 4(σL, σM ). So, the cost of
transforming σL to σM is less than the cost of transforming it to σL and then to σM .
As Φ(σL,MB) returns the minimum cost of the most similar sequence in MB to σL,
putting directly the alignments of traces MB causes to have a smaller upper bound for
alignment cost. Moreover, it is possible to have λSN (γSN (σ1)) = λSN (γSN (σ2)) for
σ1 6= σ2. Therefore, by inserting λSN (σ1) instead of σ1 in MB , we will have MB with
fewer members that increases the performance of the approximation.
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Table 1: Result of using the proposed approximation method for the event log that is
given in Fig. 1, using MB = {〈a, b, e〉, 〈a, b, c, e〉}.

Trace δS(γSN ) Φ(σ,MB) Actual Fitness LBoundFitness UBoundFitness AppxFitness Freq
〈a, b, c, e〉 0 0 1 1 1 1 10
〈a, e〉 1 1 0.8 0.8 0.8 0.8 4
〈a, c, b, d, e〉 1 2 0.875 0.75 1 0.875 3
〈a, b, e〉 0 0 1 1 1 1 2
〈c, e〉 2 2 0.5 0.5 0.8 0.65 1
L ∼ ∼ 0.916 0.898 0.95 0.924 ∼

To select the candidate traces in LC , we propose three different methods. We can
select these traces randomly or based on their frequency in the event log (i.e, L(σL)).
The third possible method is to apply a clustering algorithm on the event log and put the
traces inK different clusters based on their control flow information. We then select one
trace, i.e., medoid for each cluster that represents all cluster’s members. It is expected
that by using this approach, the detected bounds will be more accurate.

4.2 Computing Alignment Approximation

After constructing MB , we use it for all traces in the L′C . Note that for the simulation
method, LC = ∅ and L′C = L. Moreover, for the candidate selection method, we
use the alignment values that already computed by in constructing MB . To compute
the lower bound for the fitness value, we compute the fitness value of all of the σ ∈
L′C using Φ(σ,MB). Afterwards, based on the weighted average of this fitness and
alignments that are computed in the previous part, the lower bound for the fitness value
is computed.

For the upper bound of fitness value, we compare the length of each trace in L′C
with the shortest path in the model (i.e., SPM ). To find SPM , we compute the cost of
the optimal alignment for an empty trace (i.e., 〈〉) and the system net. In the example
that is given in Fig. 1, SPM = 3. If the length of a trace is shorter than the SPM, we
know that it needs at least SPM − σL insertions to transform to one of model traces in
φv(SN). Otherwise, we consider at least 0 edit operation for that trace. Because, it is
possible that there is a model trace s.t. σM ∈ φv(SN) and σM /∈ MB and it perfectly
fits to the log trace. After computing the upper bound values for all traces in L′C , based
on the weighted average of them and the computed fitness values of traces in LC , we
compute the upper bound value for fitness.

To compute the approximation values, for each trace in σ ∈ L′C , we compute the
Φ(σ,MB) and compare it to the average fitness value of LC . If the fitness value of
the new trace is higher than Fitness(LC , SN), we consider Φ(σ,MB) as the approx-
imated fitness value; otherwise, Fitness(LC , SN) will be considered for the approx-
imation. Similar to the bounds, we use the weighted averages of fitness values of LC
and L′C to compute the approximated fitness value of whole event log. Note that for the
simulation method that LC = ∅, the approximated fitness value for each trace (and for
the whole event log) is equal to the lower bound.

Finally, the proposed method returns the number of asynchronous (i.e., deletions
and insertions) and synchronous moves for each activity in the event log. This informa-
tion helps the data analyst to find out the source of deviations.
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In Table 1, the computed bounds and the approximated fitness value for each trace
and the overall event log of Fig. 1 is given based on MB = {〈a, b, e〉, 〈a, b, c, e〉}. This
MB is possible to be gained by computing the alignment of the two most frequent traces
in the event log or by simulation. Moreover, LBoundFitness, UBoundFitness and Ap-
pxFitness show the lower bound, the upper bound and the approximation of the fitness
value respectively. The approximated fitness will be 0.924 that its accuracy equals to
0.008. The proposed bounds are 0.95 and 0.898. Furthermore, the method returns the
number of insertion and deletions that are 1 insertion for a, 5 insertion for b, 3 deletions
for c, 3 deletions for d, and nothing for e.

By increasing |MB |, we expect to have more accurate approximations and bounds.
But, increasing the |MB | for the candidate selection approach increases the number of
required alignments computations and consequently increases the computation time.

5 Evaluation

In this section, we aim to explore the accuracy and the performance of our methods.
We first explain the implementation, and, subsequently, we explain the experimental
setting. Finally, the experimental results and some discussions will be provided.

5.1 Implementation

To apply the proposed conformance approximation method, we implemented the Con-
formance Approximation plug-in in the ProM [25] framework3. It takes an event log
and a Petri net as inputs and returns the conformance approximation, its bounds, and
the deviation rates of different activities. In this implementation, we let the user adjusts
the size of MB and the method to select and insert model traces in it (i.e., simulation
and alignment of selected candidates). If the user decides to use alignments for creating
model behavior, she can select candidates based on their frequency, random, or using
the clustering algorithm. For finding the distance of a log trace and a model trace, we
used the edit distance function, which is an adapted version of the Levenshtein dis-
tance [22]. To cluster traces, we implement the K-Medoids algorithm that returns one
trace as a candidate for each cluster [26] based on their edit distance.

To apply the methods on various event logs with different parameters, we ported the
developed plug-in to RapidProM, i.e., an extension of RapidMiner and combines
scientific work-flows with a several process mining algorithms [27].

5.2 Experimental Setup

We applied the proposed methods on eight different real event logs. Some information
about these event logs is given in Table 2. Here, uniqueness refers to V ariant#

Trace# .
For process discovery, we used the Inductive Miner [34] with infrequent thresholds

equal to 0.3, 0.5, and 0.7. We applied conformance approximation methods with differ-
ent settings. In this regard, an approximation parameter is used with values equal to 1,
2, 3, 5, 10, 15, 20, 25, and 30. This value for the Simulation method is the number of
3
svn.win.tue.nl/repos/prom/Packages/LogFiltering

svn.win.tue.nl/repos/prom/Packages/LogFiltering
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Table 2: Statistics regarding the real event logs that are used in the experiment.
Event Log Activities# Traces# Variants# DF# Uniqueness
BPIC-2012 [28] 23 13087 4336 138 0.33
BPIC-2018-Department [29] 6 29297 349 19 0.01
BPIC-2018-Inspection [29] 15 5485 3190 67 0.58
BPIC-2018-Reference [29] 6 43802 515 15 0.01
BPIC-2019 [30] 42 251734 11973 498 0.05
Hospital-Billing [31] 18 100000 1020 143 0.01
Road [32] 11 150370 231 70 ∼ 0
Sepsis [33] 16 1050 846 115 0.81

simulated traces times |L|, and for the candidate selection methods (i.e., clustering, fre-
quency, and random), it shows the relative number of selected candidates, i.e., |LC ||L| . We
also compared our proposed method with the statistical sampling method [20]. The ap-
proximation parameter for this method determines the size and the accuracy of sampling
and we consider ε = δ = approximation parameter × 0.001. We did not consider [12]
in the experiments, as it does not improve the performance of normal computation of
alignment [35] for event logs which have few unique activities using the default setting.
Even for some event logs with lots of unique activities in [12], the performance im-
provement of our methods is higher. Because of the page limit, we do not show results
of this experiment here.

In all experiments and for all methods, we used eight threads of CPU. Moreover,
each experiment was repeated four times, since the conformance checking time is not
deterministic, and the average values are shown.

To evaluate how the conformance approximation is able to improve the performance
of the conformance checking process, we used the PI = Normal Conformance Time

Approximated Conformance Time . In
this formula, a higher PI value means conformance is computed in less time. As all
our proposed methods need a preprocessing phase (e.g., for clustering the traces), we
compute the PI with and without the preprocessing phase.

The accuracy of the approximation, i.e., the difference between approximated con-
formance value and the actual fitness value shows how close is the approximated fit-
ness to the actual fitness value that is computed by Accuracy = |AccF itness −
AppxFitness|. Also, we measure the distance of the provided upper and lower bounds.
The bound width of an approximation is computed byBoundWidth = UBFitness−
LBFitness. Tighter bound widthes means that we have more accurate bounds.

5.3 Experimental Result and Discussion

In Fig. 3, we show how different approximation methods improve the performance of
conformance checking. For most of the cases, the improvement is higher for the simu-
lation method. It is because, the most time consuming part in conformance checking is
computing the optimal alignment. As in the simulation method, there is no need to do
any alignment computation, it is faster than any other method. For some event logs, the
statistical sampling method [20] is not able to provide the approximation faster than
the normal conformance checking (i.e., PI < 1). It happens because, this method is
not able to benefit from the parallel computing of alignment and after each alignment
computation it needs to check if it needs to do more alignment or not. For the statisti-
cal method, decreasing approximation parameter leads to more precise approximations;
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Fig. 3: Performance improvement with consideration of preprocessing time.

Fig. 4: Performance improvement without consideration of preprocessing time.

however, it causes to have less PI value. Among the candidate selection methods, using
the frequency method usually leads to a higher PI value.

For some event logs, e.g., Road, none of the method has a high PI value. It happens
because in Fig. 3, we consider the preprocessing time. The preprocessing time corre-
sponds to choosing the candidate traces and simulating the process model behaviors that
needs to be done once per each event log or process model. For the candidate selection
methods, this phase is independent of process models and for doing that we do not need
to consider any process model. For the simulation method, this phase is independent of
the given event log. Thus, we are able to do the preprocessing step before conformance
approximation. If we use some event log standards such as MXML and Parquet, we do
not need to preprocess the event log for the frequency and random method because we
know the number of variants and their frequency beforehand.
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Table 3: The average accuracy of approximation for conformance values when we use
different approximation methods. Here we used different Inductive miner thresholds.

In Fig. 4, we show the performance improvement without considering the prepro-
cessing time. As the statistical sampling method does not have preprocessing phase,
it is not shown in this figure. It is shown that there is a linear decrement in improve-
ment of the candidate selection methods by increasing the approximation parameter.
It is expectable, as increasing in this parameter for candidate selection methods means
more optimal alignment computations that requires more time. For example, by consid-
ering 5 for this parameter, means that we need to compute 5% of all optimal alignments
of the normal conformance checking. Therefore, it is expected that the approximated
conformance value will be computed in 20 times faster than using normal alignment.

After analyzing the performance improvement capabilities of the proposed methods,
in Table 3, we compare the accuracy of their approximations. In this regard, the average
accuracy values of the approximated conformance values are shown in this table. The
lower value means a higher accuracy or in other words, the approximated fitness value
is closer to the actual fitness value. In this table, Fitness shows the actual fitness value
when the normal conformance checking method is used. We used different values for
the approximation parameter as explained in Section 5.2. The results show that for most
of the event logs the accuracy of the simulation method is not good enough. However,
for BPIC-2018-Reference and BPIC-2018-Department, that have simpler process mod-
els, using this method, we generated almost all the model behavior (i.e., MB = φv)
and obtain perfect accuracy. Results show that if we use the statistical, and frequency
methods, we usually obtain accuracy value below 0.01 which is acceptable for many
applications. Among the above methods, results of the statistical sampling method are
more stable and accurate. However, the accuracy of candidate selection methods is usu-
ally improved by using a higher approximation parameter.
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Fig. 5: The average of bound width using different approximation methods.

In the next experiment, we aim to evaluate the provided bounds for the approxima-
tion. Fig. 5 shows how increasing the value of the approximation parameter increases
the accuracy of the provided lower and upper bounds. As the statistical method does not
provide any bounds, we do not consider it in this experiment. The simulation method is
not able to provide tight bound widths for most of the event logs. For most of the event
logs, the frequency method results in tighter bounds. However, for event logs like Sep-
sis which there is no high frequent trace-variant, the clustering method provides more
accurate bounds. If there are high frequent variants in the event log, it is recommended
to use the frequency approximation method. Note that, for all methods, by increasing
the value of approximation parameter, we decrease the bound width.

Considering both Fig. 4 and Fig. 5, we observe that there is a trade-off between the
performance and the accuracy of the approximation methods. By increasing the number
of visible traces in MB , we need more time to approximate the fitness value; but, we
will provide more accurate bounds. In the case that we set the approximation parameter
to 100, the bound width will be zero; however, there will not any improvement in per-
formance of the conformance checking. By adjusting the approximation parameter, the
end user is able to specify the performance improvement.

Fig. 5 shows that for some event logs like Sepsis and BPIC-2018-Inspection, none
of the approximation methods are able to provide tight bounds. That happens because
in these event logs not only do we have lots of unique traces; but, also these traces are
not close to each other. In Table 4, we show the average of edit distance of the most
similar trace in the event logs that equals to Averageσ∈LΦ(σ, L− σ). If the traces
in an event log are similar to each other, we are able to provide tight bounds by the
approximation methods. This characteristic of the event log can be analyzed without
any process model before the approximation. Therefore, it is expected to use more
traces in MB when the traces are not similar. Using this preprocessing step, user is
able to adjust the approximation parameter easier.
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Table 4: The average similarity of traces in different event logs.

BPIC-2012 Department Inspection References BPIC-2019 Hospital Road Sepsis
3.686 1.224 3.269 1.481 5.108 1.745 1.113 3.956

Table 5: Comparison of deviation ratio of the six most problematic activities using
normal alignment (Real) and the frequency based approximation method (Appx).

BPIC-2012 Department Inspection References BPIC-2019 Hospital Road Sepsis

Appx Real Appx Real Appx Real Appx Real Appx Real Appx Real Appx Real Appx Real

Activity 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.96 1.00 1.00

Activity 2 1.00 1.00 0.53 0.53 1.00 1.00 1.00 0.50 1.00 1.00 1.00 0.95 1.00 0.96 1.00 1.00

Activity 3 1.00 0.94 0.37 0.37 1.00 1.00 0.31 0.28 1.00 0.98 0.96 0.95 1.00 0.83 0.59 0.48

Activity 4 0.64 0.45 0.06 0.06 1.00 0.85 0.00 0.00 1.00 0.91 1.00 0.88 1.00 0.82 0.43 0.32

Activity 5 0.16 0.01 0.00 0.00 0.58 0.40 0.00 0.00 0.13 0.11 0.83 0.82 1.00 0.72 0.20 0.25

Activity 6 0.67 0.00 1.00 0.00 0.29 0.16 0.01 0.00 0.13 0.11 0.82 0.82 0.10 0.10 0.27 0.22

Finally, we analyze the accuracy of the provided information about deviations. We
first analyze the normal alignments of event logs and process models. Thereafter, for
each alignment, we determine the six most problematic activities based on their devia-
tion ratio that is computed based on the following formula.

DeviationRatio =
AsynchronousMoves

AsynchronousMoves + SynchronousMoves
(2)

Afterwards, we compare the deviation ratio of these problematic activities with the
case that the approximation method was used. The result of this experiment is given in
Table 5. Here, we used the frequency selection method with an approximation parameter
equal to 10. We did not compare the result with the statistical method as the goal of this
method is either the fitness value or the number of asynchronous moves; but, could not
return both of them at the same time4. Results show that using the frequency method,
we find the problematic activities that have high deviation rates.

Considering all the experiments, we conclude that using frequency of traces for se-
lecting candidates is more practical. Moreover, the candidate selection methods give
more flexibility to users to trade off between the performance and the accuracy of ap-
proximations compared to the statistical method that sometimes could not improve the
performance and has nondeterministic results. In addition, the proposed methods pro-
vide bounds for the approximated alignment value and deviation rates for activities that
is useful for many diagnostic applications. Finally, the proposed methods are able to
use parallel computation and benefit from adjusted computational resources.

6 Conclusion

In this paper, we proposed approximation methods for conformance value including
providing upper and lower bounds. Instead of computing the accurate alignment be-
tween the process model and all the traces available in the event log, we propose to
4 Approximating deviations is required much more time using the statistical method.
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just consider a subset of possible behavior in the process model and use it for approxi-
mating the conformance value using the edit distance function. We can find this subset
by computing the optimal alignments of some candidate traces in the event log or by
simulating the process model. To evaluate our proposed methods, we developed them
in ProM framework and also imported them to RapidProM and applied them on several
real event logs. Results show that these methods decrease the conformance checking
time and at the same time find approximated values close to the actual alignment value.
We found that the simulation method is suitable to be used when the given process
model is simple. We also show that using the frequency method is more applicable to
select the candidate traces and have accurate results. Results also indicate that although
the statistical method [20] is able to approximate accurately, it takes more time and for
some event logs, it is slower than the normal conformance checking.

As future work, we aim to find out what the best subset selection method is due to
the available time and event data. Also, it is possible to provide an incremental approx-
imation tool that increases the MB during the time and let the end user decide when the
accuracy is enough. Here, we did not use the probabilities for the simulation method, we
think that by using the distribution in the event log, we enhance the simulation method.
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