
Detecting System-Level Behavior Leading To
Dynamic Bottlenecks

Zahra Toosinezhad∗, Dirk Fahland∗, Özge Köroǧlu∗, Wil M.P. van der Aalst†∗
∗Eindhoven University of Technology, Eindhoven, The Netherlands, email: z.toosinezhad@tue.nl, d.fahland@tue.nl

†RWTH Aachen, Department of Computer Science, Aachen, Germany, wvdaalst@pads.rwth-aachen.de

Abstract—Dynamic bottlenecks occur when some cases in
a particular part of the process are temporarily delayed. In
performance-optimized systems such as production systems,
warehouse automation systems, and baggage handling systems,
such bottlenecks are rare, bounded in time and location, but
costly when they occur and propagate through the system. Detect-
ing and understanding the situations that cause such bottlenecks
is crucial for mitigating and preventing processing delays. Clas-
sical process mining techniques that analyze performance along
individual cases cannot detect these phenomena and their causes.
We show that undesired system-level behavior can be detected
when identifying temporal event patterns across different cases in
the same process step. Conceptualizing these patterns as system-
level events allows us to correlate them into cascades of system-
level behavior using spatio-temporal conditions. We discover
classes of frequent patterns in these cascades that describe
behaviors that precede bottlenecks. Applied on event data of a
major European airport, our approach could fully automatically
detect cascades of undesired system-level behavior leading to
dynamic bottlenecks. Each detected cascade was verified as a
correct causal explanation for a dynamic bottleneck due to the
physical system layout and its processing.

Index Terms—Process mining, Performance analysis, Dynamic
bottlenecks, Event aggregation, Event correlation

I. INTRODUCTION

A primary objective of applying process mining is detecting

and understanding process performance problems to prevent

unnecessary delays or bottlenecks through process redesign

or early detection and mitigation. Bottlenecks are observed

when cases or items are processed too slow, leading to an

accumulation of unprocessed work. Bottlenecks are caused

by the unavailability of a worker or machine or when work

volume exceeds work capacity, resulting in growing queues

and longer waiting times [1]. The most common approach for

identifying bottlenecks from event logs is to calculate for each

case or item the time difference between any two subsequent

process steps [2]. Aggregating these time differences over all

cases reveals which process steps take longer than average,

indicating a “static” bottleneck observed for the majority of

the cases due to structural capacity problems.

A. Dynamic Bottlenecks

Performance-optimized processes in production systems,

warehouse automation systems, and Baggage Handling Sys-

tems (BHS) already established sufficient processing capacity

to avoid static bottlenecks, often through a lean design pro-

cess [3]. Here, bottlenecks only arise dynamically when the

process operates outside its standard operating conditions, such

L1 L2 L3 L4 L5 L66 5 4

3

2 1

L1 L2 L3 L4 L5 L65 3 4 26 17

7

blockage
+2mins delay

high load
3mins later

high load

Fig. 1: Formation of a dynamic bottleneck.

as work volume temporarily exceeding expected capacity or

processing capacity temporarily falling below intended levels.

Fig. 1 illustrates an example from a BHS. We observe a higher

load of cases (bags) 4, 5, 6 between L1 and L2 that can still

be processed normally with additional cases 3 and 7 about to

enter. This high load propagates forward via conveyor belts

to L2, L3, L4. Between L4 and L5 cases 2, 4, 3, 5 saturate

the physical system capacity. Processing at L4 is temporarily

slowed down by stopping the conveyor belt from L3 to L4,

and cases 6, 7 are blocked for 2 minutes.

Such dynamic bottlenecks are rare, bounded in time and

location, but costly when they occur. In the BHS example,

a delay of 2 minutes could mean bags 6, 7 might miss

a scheduled flight. Bottlenecks may propagate through the

system similar to a traffic jam: processing at L3 in Fig. 1

may slow down as well, causing further bottlenecks before

L3. Understanding under which circumstances dynamic bot-

tlenecks emerge and propagate (and how far) would enable

process redesign or the development of suitable early-warning

prediction models enabling human or automated intervention.

B. Research Problem

In this paper, we consider the research problem of (1)
detecting dynamic bottlenecks and (2) detecting the process
behavior which frequently precedes dynamic bottlenecks from
basic process event logs. The process behavior leading to

a bottleneck cannot be described in terms of a single case

or group of cases: {4, 5, 6} between L1 and L2 form the

initial high-load situation, but {2, 3, 4, 5} between L4 and

L5 form the later high-load situation causing the blocking of

{6, 7} before L4. If the bottleneck propagates further towards

L2, completely different cases will be affected. As a result

case-oriented process mining techniques are unable to detect
dynamic bottlenecks and how they form and propagate.

17

C. Approach

We argue that solving the above problems requires studying

“system-level” behavior which can only be observed indirectly

from case-level events (of different cases) that have a specific

characteristic in a specific part of the process, e.g., events

related to bags {4, 5, 6} between L1 and L2 forming a “high-

load” dynamic. From this angle, the following three sub-

problems arise which we propose to solve as follows.

(1) Automatically detect “outlier” system-level behaviors
that are different from normal operations and bounded in
location and in time, i.e., the specific process steps and
time interval where the process operated outside its regular
parameters. Formally, given an event log L of case-level

events E characterized by activity, time, and case identifier,

identify all sub-sets s1, ..., sN ⊆ E of events of L whose

characteristics significantly deviate from other sets of events,

e.g., higher load and dynamic bottlenecks. The subsets si may

overlap if they represent different overlapping characteristics.

In this paper, we conceptualize the problem in a general way

and propose to aggregate each set si into a system-level event
for further analysis; we provide efficient techniques to detect

time-bounded high-load situations and dynamic bottlenecks in

performance-optimized systems such as a BHS.

(2) Automatically identify those system-level events which
are meaningfully correlated to each other and can be con-
sidered as a cascade of causally related system-level events.
This necessitates the inclusion of domain-knowledge. In this

paper, we conceptualize the problem in terms of temporal and

spatial distance properties between system-level events. We

then identify correlated events by querying for system-level

events with low temporal and spatial distance, i.e., dynamics

in adjacent process steps that overlap in time. We show that

the correlated, viz. queried, system-level events describe a

partially-ordered system-level behavior that we call a cascade.

(3) Automatically identify frequent patterns of correlated
system-level events in system-level cascades that result in
dynamic bottlenecks. We show that applying existing sub-

graph mining algorithms can efficiently detect such frequent

patterns in cascades.

D. Results

We applied the above techniques of system-level event

detection, querying, and grouping into system-level cascades,

and frequent pattern detection on the complete baggage-level

event data of 7 days of a BHS of a major European airport.

We identified 1029 instances of dynamic bottlenecks and

123187 instances of other outlier behaviors. We identified four

basic types of frequent patterns that precede these bottlenecks;

all identified patterns were confirmed as correctly describing

cause-effect behavior for forming dynamic bottlenecks.

In the following, we discuss related work in Sect. II. We

then introduce an event model that considers events at different

levels of abstraction in Sect. III to structure our research

problem. We discuss how to detect system-level events in

Sect. IV, how to detect cascades of correlated system-level

events in Sect. V, and how to find patterns in cascades in

Sect. VI. We report on our results on synthetic and real-life

event logs in Sect. VII and discuss our findings and future

work in Sect. VIII.

II. RELATED WORK

The primary approach for performance outlier analysis in
process mining is to aggregate time differences between any

two process steps and identify outlier values [2]. However,

these techniques can only identify static bottlenecks affecting

all (or most) cases. Event interval analysis [4] allows analyzing

durations between any two process steps on a more fine-

grained level based on event and case attributes, but cannot

capture patterns involving multiple cases. The visual analytics

technique of the Performance Spectrum reveals time-bounded

performance patterns [5] over multiple process steps. These

performance patterns can be understood as emergent system-

level behavior formed by a group of cases in a specific

time-window, such as batching [6]. We contribute techniques

to detect performance patterns of multiple cases (system-

level events) with a negative impact on performance, esp.

bottlenecks, and how they propagate in time and to other

process steps (as system-level dynamic).

Behavioral outlier analysis techniques in process mining
identify infrequent event sequences [7] or infrequent event

contexts [8] in a case of correlated events. The problem of this

paper is to identify frequent patterns over emergent system-

level events that are initially uncorrelated.

Techniques for finding sequential patterns in spatio-temporal

event data [9] are inapplicable due to the distributed nature

of processes. Process event correlation techniques either use

case-level attributes to correlate events [10] or a process model

describing the expected behavior [11]. This information is not

available for emergent system-level events. By abstracting a

process as a sequence of queues and visualizing the queue

parameters over time, Staged Process Flows [12] allow visu-

ally analyzing how performance problems propagate through

a process and affect multiple cases. This technique however

assumes a sequential process and outlier behavior is not

captured as a data feature for further analysis.

Queueing concepts are also used to discover congestion

graphs [13] which model workload and resource availability

over time in a Markov state for improved remaining time

prediction. The congestion graph model is local to one process

step and does not consider how performance problems may

propagate. Our work aims at detecting, for instance, situations

of high workload and resource unavailability and how they

propagate to other process steps, thus providing a large de-

scription of performance dynamics.

Outside process mining, studies in distributed system failure
analysis [14], [15] revealed the importance of analyzing cor-

relations of outlier behavior and failures to increase resilience

and performance in IT systems [16] and in IoT environments

[17]. No existing work studies cascades of correlated failures

for frequent patterns. Various works address finding outliers

and their causal relations in traffic data streams. Outliers are

identified through temporal properties in a specific spatial area

18

system-level event (blockage)

segment-
level event system-level event (high load)

case-level event

time

L3

L4

L5

e1
5 6 7 81 34 92

5 6 7 81 34 92

5341 876 92

h4

h5

s2

e2

e3

Fig. 2: Case, segment, and system-level events.

[18]–[20]. Outliers of a single type are correlated by building

trees based on spatial and temporal properties of outliers [18]

or by training a deep neural network which also allows short-

term prediction [19]. Spatio-temporal correlations between

different outliers can be learned through an attention network

[20]. However, these works do not distinguish different types

of outlier behavior. These techniques cannot visualize and

explain longer cascades of multiple outlier events over time

and their frequencies.

III. EVENT DEFINITIONS ON DIFFERENT LEVELS

To precisely formulate the three research questions of

Sect. I, we introduce a conceptual event model having 3 levels.

Case-level events records updates to a case as usual; segment-
level events capture behavioral properties of pairs of directly

related events; system-level events describe sets of consecutive

segment-level events with specific properties. Figure 2 illus-

trates all 3 event notions for the behavior described in Fig. 1.

We assume our input events to be records of actions that

happened to a specific case or object at a specific point in

time, i.e., the standard event notion in process mining. We

call a relation < ⊆ E × E an acyclic order iff its transitive

closure <∗ is irreflexive, i.e., < has no (self-)cycle.

Definition 1 (Case-level event log). A case-level event log

Lc = (Ec,#c, <c) is a set Ec of events; #c defines attributes
such as case id #c

id(e), activity #c
act(e), and time #c

time(e)
for each e ∈ Ec; events are ordered by an acyclic order wrt.
case id and time <c ⊆ {(e1, e2) ∈ Ec × Ec | #c

id(e1) =
#c

id(e2) ∧#c
time(e1) ≤ #c

id(e2)}.
Note that <c orders only events in the same case and

according to time, but <c can be stricter than a partial order. In

the following, we assume that <c describes “directly causally

precedes” which can be derived using binary token flows [21],

transitive reduction of a partial order [8], or may simply hold

in the data, e.g., a bag moving on a physical conveyor belt.

In Fig. 2, each square shows a case-level event, each diagonal

line between two case-level events shows <c. Tab. I shows

a part of a case-level event log for our running example of

Fig. 1 (not visualized in Fig. 2); e15 <c e18 and e18 <c e22
but e15 �<c e22.

The set of activities in Lc is Σ = {#c
act(e) | e ∈ Ec}. We

call a pair (a, b) ∈ Σ×Σ a segment of the process describing

the passage from activity a to the next activity b [5]. Two

TABLE I: Case-level events of running example

id act time
.
e10 1 L4 10:21:30
e11 1 L5 10:21:50
e12 2 L4 10:23:10
e13 2 L5 10:23:30
e14 4 L4 10:23:25
e15 5 L3 10:23:40
e16 4 L5 10:23:45
e17 3 L4 10:23:40
e18 5 L4 10:23:55
.

.
e19 3 L5 10:24:00
e20 6 L3 10:23:55
e21 7 L3 10:24:30
e22 5 L5 10:24:05
e23 6 L4 10:26:00
e24 8 L3 10:24:40
e25 7 L4 10:26:15
e26 6 L5 10:26:20
e27 8 L4 10:26:20

case-level events e1 <c e2 with #c
act(e1) = a,#c

act(e2) = b
describe that the cases or objects #c

id(e1) and #c
id(e2) passed

through segment (a, b). We capture this behavioral observation

as an aggregate event, called a segment-level event as shown

in Fig. 2. The segment-level events are fully defined by the

case-level event log Lc as follows.

Definition 2 (Segment-level log). Let Lc = (Ec,#c, <c) be a
case-level event log. A segment-level log Ls = (Es,#s, <s)
of Lc has events Es = <c (the causally related events of Lc)
where each segment-level event s = (e1, e2) ∈ Es has case
id #s

id(s) = #c
id(e1) = #c

id(e2), source and target activity
#s

src(s) = #c
act(e1), #

s
tgt(s) = #c

act(e2), start and end time
#s

start(s) = #c
time(e1), #s

end(s) = #c
time(e2). Events are

acyclically ordered wrt. segment and time by <s ⊆ {(s1, s2) ∈
Es × Es | #s

src(s1) = #s
src(s2) ∧ #s

tgt(s1) = #s
tgt(s2) ∧

(#s
start(s1) < #s

start(s2) ∨#s
end(s1) < #s

end(s2))}.
Each diagonal line between two case-level events in Fig. 2

is a segment-level event. Table II shows the segment-level

event log for the case-level events in Tab. I; for instance

s75 = (e15, e18) and s77 = (e18, e22). Each segment-level

event defines a spatio-temporal interval from #s
src(s) to

#s
tgt(s) during time [#s

start(s);#
s
end(s)].

In contrast to case-level events, <s orders the segment-level

events of cases per segment, e.g., in Tab. II s75 <s s78 (for

cases 5 and 6 in (L3, L4)). Def. 2 requires that the order

<s is consistent with at least start or end time. Though, <s

can be stricter than the temporal order (as in Def. 1). In the

following, we assume s1 <s s2 iff s1 directly starts before s2,

i.e., their start events are neighbors on the time-axis of their

start activity in Fig. 2. We write Es(a, b) for events s ∈ Es

with #s
src(s) = a and #s

tgt(s) = b in segment (a, b).
Fig. 2 shows how a set of consecutive segment-level events

may form a behavior that we can recognize as a pattern at

the system level. For instance, the segment-level events of

cases 2, 3, 4, 5 in (L4, L5) have a shorter arrival rate than other

segment-level events causing a short interval of high-load. The

segment-level events of cases 6, 7, 8 in (L3, L4) have a longer

duration causing a dynamic bottleneck.

To be able to reason about how the high-load interval relates

to the bottleneck, we aggregate a set of consecutive segment-

level events into a system-level event.

19

TABLE II: Segment-level event log

id src tgt start end

s72 1 L4 L5 10:21:30 10:21:50
s73 2 L4 L5 10:23:10 10:23:30
s74 4 L4 L5 10:23:25 10:23:45
s75 5 L3 L4 10:23:40 10:23:55
s76 3 L4 L5 10:23:40 10:24:00
s77 5 L4 L5 10:23:55 10:24:05
s78 6 L3 L4 10:23:55 10:26:00
s79 7 L3 L4 10:24:30 10:26:15
s80 8 L3 L4 10:24:40 10:26:20
s81 6 L4 L5 10:26:00 10:26:20

Definition 3 (System-level event log). Let Ls be a segment-
level event log. A system-level event log Lh = (Eh,#h, <h

) (over Ls) defines a set of system-level events Eh

where for each h ∈ Eh, #h
type(h) is the event type,

#h
src(h) and #h

tgt(h) are source and target, #h
sev(h) ⊆

Es(#h
src(h),#

h
tgt(h)) are segment-level events from Ls,

#h
start(h) = mins∈#h

sev(h)
#s

start(s) is the start time and
#h

end(h) = maxs∈#h
sev(h)

#s
end(s) is the end time. Event

h ∈ Eh is closed iff for any two segment-level events s1, s2 ∈
#h

sev(h) any event x ∈ Es(#h
src(h),#

h
tgt(h)), s1 <s x <s s2

is also in h, i.e., x ∈ #h
sev(h). The order <h of system-level

events is acyclic and must respect time: <h ⊆ {(h1, h2) ∈
Eh×Eh | #s

start(s1) < #s
start(s2)∨#s

end(s1) < #s
end(s2)}.

Figure 2 indicates two closed system-level events h4 and

h5, i.e., two closed sets of consecutive segment-level events.

In a real BHS, the higher load in (L4, L5) may cause the

conveyor belt (L3, L4) to stop.

In contrast to Def. 2, Def. 3 allows two design decisions.

(1) Which sets of segment-level events shall be aggregated into
a system-level event? (2) Which system-level events might be
causally related and hence should be ordered by <h? These

design decisions correspond to our research questions (1) and

(2) which we answer in Sect. IV and V-B, respectively. There

we will call sets of system-level events connected by <h a

cascade of system-level behavior. We then show in Sect. VI

that we can answer research question (3) be searching for

frequent patterns in Lh = (Eh,#h, <h) along <h.

IV. DETECTING SYSTEM-LEVEL EVENTS

We consider how to detect “outlier” system-level events

Eh of interest to build a system-level event log Lh =
(Eh,#h, <h) from a normal case-level event log Lc, i.e.,

research question (1). We already obtained the segment-level

event log Ls = (Es,#s, <s) of Lc as described in Sect. III

and shown in Tab. II. We are interested in detecting closed
system-level events h, i.e., sets of consecutive segment-level

events, that together show a “different” behavioral character-

istic than other events in the segment, as shown in Fig. 2.

Detecting such differences requires a separate detection

method for each type of behavioral characteristic. Thus, solv-

ing this problem requires the analyst to define a set of system-

level event detection methods D = {detect1, ..., detectk}

Blockage

time

src

tgt

#start(h)

#end(h)

Fig. 3: Segment-level events forming a system-level blockage.

where each detection method detect i(E
s,#s, <s) = Eh

i

returns a set of system-level events of a specific type ac-

cording to Def. 3. The set of system-level events is then

Eh =
⋃

detecti∈D detect i(E
s,#s, <s).

In the following, we define two specific system-level event

detection methods to detect dynamic bottlenecks (Sect. IV-A)

and high-load situations (Sect. IV-B) for the domain of mate-

rial handling systems (MHS).

A. Detecting Dynamic Bottlenecks as Blockages

A dynamic bottleneck emerges when one or more cases take

significantly higher times to flow from activity a to activity b
than the baseline duration for segment (a, b). If t̃ is the baseline

duration for cases traversing (a, b), then we can observe a

significant delay as a segment-level event s ∈ Es(a, b) where

the time-duration Δt(s) = #s
end(s)−#s

start(s) is significantly

higher Δt(s)� t̃ than the baseline.

In highly optimized systems such as MHS, the median

duration in a segment does form the intended baseline, i.e., t̃
is the median of Δt(Es) = {Δt(s) | s ∈ Es}. Any segment-

level event s where Δt(s) is an outlier wrt. Δt(Es) in a

statistical sense would show a significant delay. We analyzed

and compared 4 univariate outlier detection methods and iden-

tified the modified z-score as the most reliable technique. [22,

Ch. 5.2]

The modified z-score relates a concrete deviation (Δt(s)−t̃)
of a segment-level event s to the median absolute deviation

MAD = medians∈Es(|Δt(s)− t̃|) of all events:

M(s) = (0.6745 · (Δt(s)− t̃))/MAD (1)

The factor 0.6745 allows approximating a standard normal

distribution. If Ms is higher than a threshold kdelay , the

Δt(s) is an outlier wrt. Δt(Es) and we consider the case

#s
id(s) to suffer a significant delay, i.e., delay(s) = true iff

Ms > kdelay . For the domain of material handling systems,

we confirmed normality of the data and identified kdelay = 50
as reliable together with domain experts. [22, Ch. 5.2]

A dynamic bottleneck emerges when several consecutive

cases experience a delay. For example, in a MHS it may be that

multiple cases are stuck behind each other in the same queue

(red cases in Fig. 3) while other cases wait either before the

blocked queue or are routed around and only enter the queue

after the blockage ends (green cases at the end of Fig. 3).

We can formally describe a blockage as a set of consecutive

segment-level events s with delay(s) = true .

We detect all blockages in a segment (a, b) as follows.

Assuming all start time-stamps to be distinct, Es(a, b) =

20

time

High-load

src

tgt

#start(h)

#end(h)

Fig. 4: Segment-level events forming high-load at system-level

〈s1, . . . , sn〉 defines a sequence of segment-level events. Iter-

ating over 〈s1, . . . , sn〉 we find all subsequences 〈sv, . . . , sw〉
with delay(si) = true, v ≤ i ≤ w. Each such subsequence

defines a new system-level event h of #h
type(h) = blockage

over #h
sev(h) = {sv, . . . , sw} (see Def. 3).

Suppose that in our running example (L3, L4) has a median

duration of t̃ = 10secs and MAD = 1sec. Then for

kdelay = 50, segment-level events s78, s79, s80 of Tab. II have

delay(si) = true , e.g., M(s78) = 0.6745 · (125 − 10)/1 =
77.56 > kdelay , resulting in the blockage (BL) system-level

event h5 in Tab. III.

B. Detecting High-load

A process having to handle a significantly higher number

of cases in a process step may face performance problems.

We can quantify the workload in a segment during a time-

interval as the number of segment-level events crossing this

time interval. If this workload is significantly above a baseline

workload, then this time-interval describes a high-load outlier

situation as illustrated in Fig. 4.

To detect high-load events in segment (a, b), we bin all

segment-level events into bins of length kbin, i.e., bini =
{s ∈ Es(a, b) | #s

start(s) ∈ [i · kbin; (i + 1) · kbin)} with

load i = |bini|. We then use the IQR-method to classify bins

as outliers wrt. load. Let P 75
(a,b) be the 75th percentile of the

load i, i > 0. For a bin holds highload(bini) = true iff

load i > P 75
(a,b). As for blockages, we search for subsequences

〈binv, . . . , binw〉 with highload(bini) = true, v ≤ i ≤ w.

Each such subsequence defines a new system-level event h of

#h
type(h) = highload over #h

sev(h) = binv ∪ . . . ∪ binw (see

Def. 3).

Suppose that in our running example segment (L4, L5) for

kbin = 1min has P 50 = 2 and P 75 = 3, i.e., 75% of the

bins see at most 3 bags per minute. Then s73, s74, s76, s77 of

Tab. II fall into a bin with load = 4, resulting in the high-load

(HL) system-level event h4 in Tab. III.

V. DETECTING SYSTEM-LEVEL EVENT CASCADES

In Sect. IV, we detected system-level events Eh from a

given case-level event log Lc, for example the events in

Tab. III. In this section, we detect which system-level events

might be causally related, i.e., research question (2). We

first discuss how to identify whether two events in Eh are

correlated in Sect. V-A. Ordering correlated events by time

yields the relation <h of a system-level event log Lh =
(Eh,#h, <h) (see Sect. III). We then observe that a set of

events connected by <h forms a cascade of system-level

behavior; we formalize this in Sect. V-B.

TABLE III: Detected System-Level Events

type src tgt start end sev

h1 HL L1 L2 10:20 10:23 s65, . . . , s68
h2 HL L2 L3 10:21 10:23 s61, . . . , s64
h3 HL L3 L4 10:22 10:24 s69, . . . , s71
h4 HL L4 L5 10:23 10:24 s73, s74, s76, s77
h5 BL L3 L4 10:23 10:26 s78, s79, s80
h6 HL L5 L6 10:25 10:26 s82, . . . , s84

A. Correlating System-Level Events

In contrast to case-level events, the system-level events

Eh lack a unique case identifier that describes which events

belong to the same observable dynamic. Rather, we infer from

emergent system-level event properties whether two events

might be connected by a direct material cause that explains

why one event has an influence on another event. The example

in Fig. 2 illustrates this: h4 and h5 originate from segment-

level events of disjoint sets of cases, yet the high-load h4 in

segment (L4, L5) prevents cases on (L3, L4) from entering

(L4, L5) which causes the blockage h5 in (L3, L4). In the

following, we discuss which emergent properties we can use to

explain possible causal relations between system-level events.

Each system-level event h in our event model has two

emergent properties at the system-level: a spatial property (it

is located on segment (#h
src(h),#

h
tgt(h))) and a temporal

property (it happens in the interval [#h
start(h);#

h
end(h)]).

There can only be a direct material cause between two system-

level events if they are “sufficiently” close to each other in

space and time, i.e., events that are too far apart cannot be

related. For example, in Fig. 2, h4 and h5 are spatially close

(share activity L4) and temporally close (overlap in time).

We propose to use a spatial distance measure ds : Eh ×
Eh → Ds and a temporal distance measure dt : Eh ×
Eh → Dt to characterize the distance between two events

by ds(h1, h2) and dt(h1, h2). From domain-knowledge we

can derive which spatial and temporal distances together are

Close ⊆ Ds×Dt. Then two events h1, h2 ∈ Eh are correlated

when (ds(h1, h2), dt(h1, h2)) ∈ Close. Note that distance

does not have to be continuous.

• Measuring spatial distance: The spatial distance measure

ds could be based on the physical distance of the locations

of h1 and h2 or whether particular materials or infor-

mation is being exchanged. For the case of a MHS with

physical conveyor belts, we assume that two system-level

events are correlated more likely if they happen on neigh-

bouring conveyor belts. We define distance ds(h1, h2)
as “proximity” in terms of locations shared between

h1 and h2, i.e., ds(h1, h2) = |{#h
src(h1),#

h
tgt(h1)} ∩

{#h
src(h2),#

h
tgt(h2)}|. We consider h1 and h2 spatially

close if they are spatially connected, ds(h1, h2) > 0.

• Measuring temporal distance: The temporal distance mea-

sure dt could be based on time distance or the amount

of overlap between the intervals h1 and h2. For the

case of a MHS, we consider system-level events as

21

related if they overlap in time or contain each other in

terms of Allen Algebra. Formally, dt(h1, h2) is the Allen

relation [23] that holds for [#h
start(h1);#

h
end(h1)] and

[#h
start(h2);#

h
end(h2)]; specifically [t1; t

′
1] overlaps with

[t2; t
′
2] iff: t′2 − t′1 > 0 and t2 − t1 > 0; [t1; t

′
1] contains

[t2; t
′
2] iff: t′1 − t′2 > 0 and t2 − t1 > 0. We define that

h1 and h2 are close if dt(h1, h2) ∈ {overlaps, contains}.
Note that dt(h1, h2) defines that h1 and h2 are close only

if h1 starts before h2, i.e., dt(h1, h2) is directed.

Altogether, two events h1, h2 are correlated iff they are

spatially and temporally close, i.e., ds(h1, h2) > 0 and

dt(h1, h2) ∈ {overlaps, contains}. In Fig. 2, h4 and h5 are

correlated.

B. Cascades of Correlated Events

We now want to order the correlated system-level events

over time to study system-level behavior. Technically, we will

end up defining an acyclic order <h of a system-level event

log (Def. 3). We conceptualize this problem as a directed

graph G = (Eh, Fh) where each system-level event is a node

h ∈ Eh. There is a directed edge (h1, h2) ∈ Fh between any

two events that describes that h1 and h2 potentially occur in

the same dynamic(directed clique). From this graph, we retain

only those edges (h1, h2) where h1 and h2 are spatially and

temporally close as described in Sect. V-A.

In other words, we query the graph G for the sub-graph

of edges (h1, h2) where (ds(h1, h2), dt(h1, h2)) ∈ Close.

Each queried edge (h1, h2) states that h1 and h2 are corre-

lated by overlapping spatially and temporally and h1 starts

before h2. This satisfies our requirement for the acyclic

ordering relation <h of system-level event logs (Def. 3).

We thus can define <h = {(h1, h2) ∈ Eh × Eh |
(ds(h1, h2), dt(h1, h2)) ∈ Close}. The resulting system-level

event log Lh = (Eh,#h, <h) can be understood as directed

acyclic graph of correlated events. In general, the system-

level event log Lh = (Eh,#h, <h) is not connected when

interpreting <h as directed edges over nodes Eh.

Definition 4 (Cascade). A cascade is a connected component
in the system-level event log Lh = (Eh,#h, <h). The events
in a cascade are acyclically by local correlations that go
forward in time (along the correlation edges <h).

For instance, the conceptual graph for the system-level

events in Tab. III has nodes h1, . . . , h6 that are all connected

to each other. Querying this graph for correlated events returns

the edges (h1, h2), (h2, h3), (h3, h4), (h4, h5), (h4, h6) result-

ing in the system-level event log of Fig. 5 for the process in

Fig. 1. Together they describe that a high-load h1 in (L1, L2)
propagated forward to h4 in (L4, L5) from where it further

propagated in parallel: backwards as a blockage h5 in (L3, L4)
and forward as high-load h6 in (L5, L6).

VI. DETECTING FREQUENT PATTERNS IN CASCADES

Figure 6 shows some cascades of system-level events de-

tected on real-life data of a BHS. These cascades are complex

in structure and not all correlated outlier dynamics may be

L3:L4*HL L4:L5*HL

L3:L4*BL

L5:L6*HL

L2:L3*HLL1:L2*HL

Fig. 5: Cascade of the system-level events of Tab. III

systematic, that is, occur frequently or even describe cause-

effect relations. In the following, we discuss how to identify

frequently occurring patterns in the cascades of a system-level

event log Lh = (Eh,#h, <h), i.e., research question (3).

Given the graph-based nature of Lh, we propose to describe

these patterns as sub-graphs.

Definition 5 (Cascade pattern). A cascade pattern is a con-
nected labeled graph P = (Np,#p, F p); each node n ∈
Np describes a system-level event by type #p

type(n), and
source #p

src(n) and target #p
tgt(n) activity; each directed

edge (n1, n2) describes that n1 “causes” n2 in the sense
of Sect. III. A cascade pattern P occurs in a system-level
event log Lh iff P is an isomorphic sub-graph in Lh wrt.
#p

type(n),#
p
src(n),#

p
tgt(n), i.e., ignoring time-intervals of

events in Lh.

Finding all frequent cascade patterns becomes a frequent
sub-graph mining problem. Frequent sub-graph mining is a

data mining task of finding all sub-graphs that appear in at

least kmin graphs of a graph database. In our situation, Lh is

the graph database, each cascade is a graph in Lh, and the

frequent sub-graphs are the cascade patterns we are interested

in. Various sub-graph mining techniques are available; in our

evaluation we use TKG [24] which returns the top-k sub-

graphs wrt. their frequency (support) and has low running

times also on large problem instances.

VII. EVALUATION

We implemented and released the first version of our tech-

nique (https://github.com/processmining-in-logistics/cascades/

releases/tag/v1.0) and evaluated it on real-life event data of

a BHS of a major European airport to answer the following

questions. (1) Are there dynamic bottlenecks and do they occur

alone or are they correlated? (2) What is the structure and

frequency of cascades that precede dynamic bottlenecks? (3)

Are there frequent patterns in the cascades that are describing

cause-effect relations of a BHS?

(1) In the BHS, each bag is a case and events are recorded

when bags pass sensors on conveyors, the sensor location is

recorded as activity name. We applied our implementation

on an event log which contains 4,220,897 case-level events

of 152,518 bags over 7 days. Table IV provides statistics of

detected system-level events per day. We distinguish between

blockage and high-load events that were isolated (iso) and

correlated in a cascade (co): most of the outlier behaviors are

correlated. We also report the average delay due to blockages

and the maximum number of bags in a blockage (size):

the frequency and duration of blockages varies, but overall

hundreds of bags are blocked each day, an average 4 minutes

of delay may cause bags checked in late to miss their flight.

22

L155:L154*HL

L256:L155*HL

L253:L155*BL

L257:L155*HL

L258:L155*HL

L256:L155*BL

L249:L155*HL L259:L155*HLL155:L195*HLL252:L155*HL

L13:L9*BL

L171:L9*HL L26:L13*HL

L166:L9*HL

L31:L166*HL

L224:L166*HL

L20:L166*HL

L13:L166*HLL12:L166*HL
L34:L38*HL

L60:L34*HL

L261:L34*HL

L57:L38*BL

L57:L38*HL

L38:L303*HL

L60:L57*HL L60:L40*HL L60:L42*HL

L60:L364*HL L60:L199*HL L303:L128*HL

L365:L261*HL

L9:L17*HL

L13:L9*HL

L166:L9*HL

L13:L18*HL

L13:L9*BL

L168:L13*HL

L11:L13*HL

L169:L13*HL

L23:L13*HL

L13:L170*HL

L8:L13*HL

L13:L30*HL

L171:L13*HL

L13:L166*HL

L170:L171*HL L13:L33*HL

L171:L172*HL

L172:L14*HL

L32:L170*HL

L199:L198*HL

L34:L199*BL

L198:L200*HL

L198:L201*HL L248:L155*HL

L249:L155*HL

L155:L154*HL

L250:L155*HL

L251:L154*HL L252:L155*HLL253:L155*BL

L254:L251*BL

L251:L195*HL

L155:L195*HL

L255:L251*BL

Fig. 6: Detected cascades of system-level events.

TABLE IV: Detected system-level events and cascades

High-load Blockage # Cascades
Day iso co iso co delay size total block.

Mon 1073 15876 23 41 214s 4 586 23
Tue 924 16582 57 115 294s 13 785 40

Wed 920 15719 51 109 243s 9 869 47
Thu 1287 15871 30 71 454s 6 904 38
Fri 1390 18428 55 83 266s 6 1090 50
Sat 1069 16802 38 146 290s 6 1029 55

Sun 1183 16063 59 151 220s 12 991 56

(2) Table IV also reports the number of cascades found

in total and cascades with at least one blockage event: most

cascades contain no blockage but several cascades contain

multiple correlated blockage events. We detect more cascades

with and without blockages on Friday to Sunday which is in

line with higher flight traffic. Fig. 6 shows a few example

cascades: cascades greatly vary in size and complexity.

(3) We applied the frequent subgraph mining algorithm

TKG of SMPF [25] on the detected cascades with at least

one blockage. We detected 4591 frequent subgraphs; 500

subgraphs contained at least one blockage with a minimum

support of 3. We analyzed the structure of the frequent

subgraphs and identified the following 4 types, also shown

in Fig. 7.

1) Fig. 7a illustrates the first cascade pattern type. Next

to each system-level event h1 we visualize its segment

h1
h3h2

B:C

backward forward

h2
h3

h1

B:C C:DA:B

forward
forward

h1
h2

C:B

B:C C:DA:B

h2
h3

h1backward

backward

(a) Forward

(c) Parallel

(b) Backward

(d) Mixed
A:B A:B C:D

Fig. 7: Frequent types of cascade patterns.

TABLE V: Frequency of detected cascade patterns per type

Patterntype Frequency Minsupport Maxsupport

Forward 50 3 6
Backward 60 3 5

Parallel 68 3 6
Mixed 322 3 4

as a node #h
src(h1) : #

h
tgt(h1) connected via a dashed

edge. The red edge from one segment node to the next

indicates that the target activity of the first is the source

of the second activity (they form a sequence). We can

see that the causal order h1 <h h2 <h h3 follows the

direction of the segments, i.e., the cascade propagates

forward in the process.

2) Fig. 7b illustrates the second pattern where h1 <h

h2 <h h3 are ordered in opposite direction of the

segments, i.e., the cascade propagates backwards in the

process.

3) Fig. 7c illustrates the third pattern where the segments

are not sequentially ordered but diverge from the same

source or converge to the same target, i.e., the cascade

propagates in parallel.
4) Fig. 7d illustrates the fourth pattern where the cascade

propagates mixed through the process, i.e., forward,

backward, and parallel.

Table V shows how many patterns of each type were

found in the data and their minimum and maximum support.

The large number of mixed patterns suggests that dynamic

bottlenecks are most often preceded by complex dynamics.

Fig. 8 shows 3 detected mixed frequent subgraphs with at

least one blockage with the physical layout. Fig 8a shows

a simple subgraph detected close to the end of the process.

We indicate the average delay between start times of two

system-level events on the edge. High-load (h1) on segment

L13:L14 propagates forward (h2) and causes a blockage (h3)

after 143 secs at up-stream segment L16:L13. This pattern

is causally explained by the system: L13:L14 is overloaded

causing L16:L13 to stop forwarding bags. Subgraph 8b was

found in baggage screening and is similar to subgraph 8a

high-load (h2) on L3:L2 causes a blockage (h3) at upstream

segment L4:L3. Interestingly (h2) is preceded in this frequent

pattern by a parallel high-load (h1). The blockage (h3) is

explained causally by (h2) whereas the preceding high-load

(h1) is only frequently correlated to (h2) but both causally link

to (h4). Fig. 8c illustrates a bigger subgraph detected at the

end of the process. Here, high-loads (h1) and (h2) converge

via L6:L7 and L8:L7 to location L7, propagate backwards

as high-load (h3) to L9:L8. Location L8 is a split to three

different locations L7, L10, L11. The high-load propagates

downstream and causes a blockage (h5) on L8:L10. This

complex dynamic occurred repeatedly and the first high-load

occurred 194 secs before the blockage.

23

�������

�����	�

�����

�������

��
����

������� ��������������

(a)

�������

�����

�������

�������

����	�
���

�������

������

�����
�

�
�����

����

(b)

�������

����� �������

�������

�	���

�����
�

�������

����	

�������

	������

�������

�������

�	����

�	����

�������

�
������

������

(c)

Fig. 8: Examples of detected cascade patterns.

VIII. CONCLUSION

We presented and validated a new method to detect cascades

of system-level behavior which frequently precede dynamic

bottlenecks from regular event logs. We could detect dynamic

bottlenecks in a highly optimized BHS of a major European

airport. The bottlenecks occur in cascades of high-load situa-

tions that propagate through the system. We verified that all

propagation dynamics are causally explained by the underlying

system dynamics.

The current approach has several limitations. The identified

patterns occur relatively infrequently in the cascades and show

a large variety. All the patterns have low support which

requires further investigation. Analysis of longer time scales

is required to increase confidence in the findings. Currently,

we only consider high-load as an explanation for dynamic

bottlenecks. Other causes such as availability of workers and

equipment have to be included in future work. We only

detect dynamic bottlenecks but would like to predict those

bottlenecks, e.g., by splitting patterns in prediction rules

with antecedent and consequent. We only demonstrated the

applicability of our approach to BHS. The applicability to

other systems with strict queuing has to be confirmed while

generalization to business processes requires further research.

ACKNOWLEDGMENT

The research leading to these results has received funding

from Vanderlande in the project “Process Mining in Logistics”.

Özge Köroǧlu worked at Vanderlande Industries, Veghel, the

Netherlands for parts of this study. We thank Marwan Hassani

for his valuable input on formulating the research problem in

a clear manner.

REFERENCES

[1] R. W. Hall, “Queueing methods: For services and manufacturing,” 1991.

[2] F. Milani and F. M. Maggi, “A comparative evaluation of log-based
process performance analysis techniques,” in BIS 2018, vol. 320 of
LNBIP, pp. 371–383, Springer, 2018.

[3] T. L. Graafmans, O. Turetken, J. H. Poppelaars, and D. Fahland,
“Process mining for six sigma: a guideline and tool support,” BISE,
2020.

[4] S. Suriadi, C. Ouyang, W. M. P. van der Aalst, and A. H. M. ter Hofstede,
“Event interval analysis: Why do processes take time?,” Decis. Support
Syst., vol. 79, pp. 77–98, 2015.

[5] V. Denisov, D. Fahland, and W. M. P. van der Aalst, “Unbiased, fine-
grained description of processes performance from event data,” in BPM
2018, vol. 11080 of LNCS, pp. 139–157, Springer, 2018.

[6] E. L. Klijn and D. Fahland, “Performance mining for batch processing
using the performance spectrum,” in BPM 2019 Workshops, vol. 362 of
LNBIP, pp. 172–185, Springer, 2019.

[7] F. Folino, G. Greco, A. Guzzo, and L. Pontieri, “Mining usage scenarios
in business processes: Outlier-aware discovery and run-time prediction,”
Data Knowl. Eng., vol. 70, no. 12, pp. 1005–1029, 2011.

[8] X. Lu, D. Fahland, F. J. H. M. van den Biggelaar, and W. M. P. van der
Aalst, “Detecting deviating behaviors without models,” in BPM 2015
Workshops, vol. 256 of LNBIP, pp. 126–139, Springer, 2015.

[9] Y. Huang, L. Zhang, and P. Zhang, “A framework for mining sequential
patterns from spatio-temporal event data sets,” IEEE Trans. Knowl. Data
Eng., vol. 20, no. 4, pp. 433–448, 2008.

[10] H. Reguieg, B. Benatallah, H. R. M. Nezhad, and F. Toumani, “Event
correlation analytics: Scaling process mining using mapreduce-aware
event correlation discovery techniques,” IEEE Trans. Serv. Comput.,
vol. 8, no. 6, pp. 847–860, 2015.

[11] S. Pourmirza, R. M. Dijkman, and P. Grefen, “Correlation miner: Mining
business process models and event correlations without case identifiers,”
Int. J. Cooperative Inf. Syst., vol. 26, no. 2, pp. 1742002:1–1742002:32,
2017.

[12] H. Nguyen, M. Dumas, A. H. M. ter Hofstede, M. L. Rosa, and
F. M. Maggi, “Business process performance mining with staged process
flows,” in CAiSE 2016, vol. 9694 of LNCS, pp. 167–185, Springer, 2016.

[13] A. Senderovich, J. C. Beck, A. Gal, and M. Weidlich, “Congestion
graphs for automated time predictions,” in EAAI 2019, pp. 4854–4861,
AAAI Press, 2019.

[14] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan, “Subtleties in tolerat-
ing correlated failures in wide-area storage systems,” in NSDI 2006,
USENIX, 2006.

[15] M. Sedaghat, E. Wadbro, J. Wilkes, S. de Luna, O. Seleznjev, and
E. Elmroth, “Diehard: Reliable scheduling to survive correlated failures
in cloud data centers,” in CCGrid 2016, pp. 52–59, IEEE Computer
Society, 2016.

[16] D. Tang and R. K. Iyer, “Analysis and modeling of correlated failures
in multicomputer systems,” IEEE Trans. Computers, vol. 41, no. 5,
pp. 567–577, 1992.

[17] A. Perer and F. Wang, “Frequence: interactive mining and visualization
of temporal frequent event sequences,” in IUI 2014, pp. 153–162, ACM,
2014.

[18] W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xie, “Discovering spatio-
temporal causal interactions in traffic data streams,” in SIGKDD 2011,
pp. 1010–1018, ACM, 2011.

[19] Y. Wu and H. Tan, “Short-term traffic flow forecasting with spatial-
temporal correlation in a hybrid deep learning framework,” CoRR,
vol. abs/1612.01022, 2016.

[20] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
AAAI 2019, pp. 922–929, AAAI Press, 2019.

[21] W. M. P. van der Aalst, D. T. G. Unterberg, V. Denisov, and D. Fahland,
“Visualizing token flows using interactive performance spectra,” in
PETRI NETS 2020, vol. 12152 of LNCS, pp. 369–380, Springer, 2020.

[22] Özge Köroǧlu, “Outlier Detection in Event Logs of Material Handling
System,” Master’s thesis, Eindhoven University of Technology, 2019.

[23] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun.
ACM, vol. 26, no. 11, pp. 832–843, 1983.

[24] P. Fournier-Viger, C. Cheng, J. C. Lin, U. Yun, and R. U. Kiran, “TKG:
efficient mining of top-k frequent subgraphs,” in BDA 2019, vol. 11932
of Lecture Notes in Computer Science, pp. 209–226, Springer, 2019.

[25] P. Fournier-Viger, J. C. Lin, A. Gomariz, T. Gueniche, A. Soltani,
Z. Deng, and H. T. Lam, “The SPMF open-source data mining library
version 2,” in PKDD 2016, vol. 9853 of LNCS, pp. 36–40, Springer,
2016.

24

