
Time-aware Concept Drift Detection Using the
Earth Mover’s Distance

Tobias Brockhoff[0000-0002-6593-9444], Merih Seran Uysal[0000-0003-1115-6601],

Wil M.P. van der Aalst[0000-0002-0955-6940]

Process and Data Science Group (PADS)

Computer Sience 9, RWTH Aachen University, Aachen, Germany

{brockhoff, uysal, wvdaalst}@pads.rwth-aachen.de

Abstract—Modern business processes are embedded in a com-
plex environment and, thus, subjected to continuous changes.
While current approaches focus on the control flow only, addi-
tional perspectives, such as time, are neglected. In this paper, we
investigate a more general concept drift detection framework that
is based on the Earth Mover’s Distance. Our approach is flexible
in terms of incorporating additional perspectives thanks to the
capability of defining custom feature representations, as well
as expressive feature similarity measures. We demonstrate the
former by incorporating the time perspective using both a time-
binning-based trace descriptor and a suitable similarity measure
that considers time and control flow. We evaluate the resulting
sliding window detector on different types of control-flow and
time drifts, and holistic drifts involving multiple perspectives.

Index Terms—Process Mining, Concept Drift Detection, Earth
Mover’s Distance

I. INTRODUCTION

Due to changing conditions in business environments,

business processes are continuously evolving and are, thus,

seldomly in a steady state. Therefore, flexibility, supported

by efficient and holistic change detection and management

approaches, is an important competitive advantage and can

even be necessary to persist in a competitive environment.

A major challenge for detecting concept drift is its mul-

tifactorial causes and effects. For example, new regulations

change the control flow, the workload is adapted to changing

market demand/price, the organization of the individual work

changes over time, or new employees temporarily reduce the

performance of specific parts of the process. Hence, concept

drift detection methods that allow for different perspectives

onto the process are needed.

To this end, this paper proposes a drift detection method

based on the Earth Mover’s Distance (EMD) [1] which allows

us to incorporate different perspectives. Introduced in the

computer vision domain as a similarity measure matching

human perception well, EMD has recently gained interest in

the process mining community as a method for conformance

checking on stochastic languages [2]. Given two distributions

and a measure of pairwise feature similarity, EMD describes
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the minimum effort that is required to transform one distribu-

tion into the other. Its intuitive interpretation and flexibility

in terms of specifying a feature distribution and similarity

measure makes EMD a general comparison method that has

been applied in many different domains.

In contrast to most of the existing work which solely focuses

on control-flow level drifts by means of hypothesis tests on

control flow feature distributions, we propose to exploit the

flexibility of EMD to address other manifestations of drift.

For instance, from the resource perspective, the frequency

that a certain resource executes a sequence of activities might

change, while these activities are still handled by other re-

sources. Moreover, the control-flow level drift detection does

not consider time which is a major driver for key performance

indicators. For example, an increasing case arrival rate will

ultimately impact the sojourn times if the available resources

become overloaded. Furthermore, the service times of certain

activities, as a proxy for case complexity, can determine how

the case will be further handled and, therefore, impact the

general control flow. These use cases require methods that

extend the general control-flow perspective and also consider

time, resources or combinations of the former perspectives

yielding a broader or even holistic view on potential changes.

Using EMD we demonstrate how a time perspective can be

incorporated into concept drift detection, e.g., activity service

and sojourn times. To achieve this, we use both a time-aware

trace descriptor and a suitable similarity measure.

Our contributions are as follows: First, we introduce a

sliding window-based concept drift detection approach that

uses stochastic languages to represent the windows. Then,

we use EMD to compare two windows with each other and

detect a (possible) concept drift between them. Moreover, we

demonstrate how the basic detection approach can be modified

in order to incorporate time features.

The remainder of the paper is organized as follows: We

review the related work in Section II. Then, Section IV-A

introduces EMD for stochastic languages and Section IV-B

demonstrates how time can be incorporated into the detection

approach. After presenting the sliding windows method in

Section IV-C, we evaluate our approach in Section V. Finally,

we conclude our paper and give an outlook on future work in

Section VI.



II. RELATED WORK

Originally, the topic of concept drift originated from the

fields of data mining and machine learning where it describes a

change of a target concept [3], [4] dependent on a hidden con-

text. As summarized in [5], there are three major approaches

for detecting concept drift. Approaches based on sequential
analysis incrementally compute and maintain a test statistic

on distribution changes of the input data, e.g., whether the

probability ratio of certain subsequences changes [6]. Methods

based on statistical process control maintain a model of the

process and detect change points by monitoring prediction

quality metrics [7], [8]. Finally, window-based drift detectors
compare the empirical data distributions between two data

windows at different periods in time. In this context, differ-

ences between the distributions can be assessed directly by

statistical tests [9], assuming equal distributions as the null

hypothesis, or by significant changes of information theoretic

measures, e.g., Kullback-Leibler divergence [10].

In process mining, window-based concept drift detectors are

the most prominent type of detector. The first approach specif-

ically tailored to business processes was proposed in [11].

The authors apply two fixed-size sliding windows representing

traces by feature vectors proposing two global and two local

features, respectively. Differences between the feature vector

distributions are then assessed by a hypothesis test. Finally,

sliding the windows over the log yields a p-value plot that

can be used for visual concept drift detection. A more detailed

analysis of this approach can be found in [12]. Moreover, using

improved windowing techniques, this work was automatized

and extend in [13] to deal with gradual drift and multi-order

dynamics, i.e., multiple changes of different granularities. A

similar window-based approach representing traces by means

of a trace abstraction in terms of so-called runs was proposed

in [14]. Based on the classical α-relations [15], distributions

over trace abstractions are computed and compared using a

hypothesis test. The idea of using α-relations for drift detection

was also extended to drift detection and characterization in

event streams [16], [17]. The authors in [18] propose to

compute pair-wise intra-trace activity distances over a refer-

ence window where distance interval changes indicate change

points. A window-based approach that chooses a different

window representation based on convex polyhedra over the

Parikh vector [19] can be found in [20]. Finally, window

comparison using the canberra distance on the dependency

relations of the heuristic miner was proposed in [21].

In contrast to the window-based approaches, a sequen-
tial analysis based approach, that maintains statistics on

whether directly-follows and eventually-follows relations al-

ways, never, or sometimes hold within sequential sections of

the process, was introduced in [22]. Nevertheless, all these

approaches only consider the control flow level.

Clustering is another approach for detecting changes. The

authors in [23] propose to enhance the trace representation by

a time dimension by adding the start timestamp of the trace.

Although this explicitly incorporates time into the representa-

tion, time information of individual activities is not considered.

A more general framework for trace clustering based change

point detection is introduced in [24]. Traces within a chosen

window are clustered using the Markov Cluster algorithm

and the trace of the difference matrix between two cluster

matrices is proposed as a window similarity measure. The

downside of this approach is that control-flow features and

time information are not considered by the authors. Moreover,

cluster differences were only evaluated visually.

III. PRELIMIARIES

Before proposing our novel concept drift detection method,

this section introduces the basic concepts needed in Sec-

tion IV.

a) Event Log: Let ΣA denote a finite alphabet of activ-

ities and let ΣV be the set of (countable infinite) additional

activity descriptor values that define a view on the process,

e.g., ΣV = N for temporal information based on binning

(cf. Section IV-B). Each event can then be described by an

activity and its additional descriptor value yielding an alphabet

Σ = ΣA × ΣV . Given a descriptor e = (a, v) ∈ Σ, ea = a,

ev = v denote the corresponding activity and view value,

respectively. Subsequently, the set Σ∗ of all finite words over

Σ describes the possible trace variants of the process. For a

trace σ = (e1, e2, . . . , en) ∈ Σn, we denote the i-th element

by σi = ei and the subsequence (ei, . . . ej) by σ[i, j], i ≤ j.

Using the potentially extended alphabet, the input of our

method is an event log that is defined as follows:

Definition 1 (Event Log). Let Σ denote a (countable infinite)
alphabet. An event log is a finite multiset of traces E : Σ∗ →
N.

For example, E = [〈(a, 1), (b, 4)〉7, 〈(a, 4), (b, 2)〉3, 〈(b, 2),
(a, 4)〉1] is an event log containing 10 traces comprising an

additional integer descriptor.

b) Stochastic Language: Stochastic languages can be

used to represent collections of traces. In addition to the trace
variants that are present, a stochastic language also captures

the likelihood of a variant. Formally, it is defined as a function

that assigns a probability to each trace.

Definition 2. Given an alphabet Σ, f : Σ∗ → [0, 1] is a
stochastic language iff Σt∈Σ∗f(t) = 1.

Each multiset of traces, e.g., an event log, can be trans-

formed into a stochastic language by normalization. For

instance, the preceding example event log can be normal-

ized to [〈(a, 1), (b, 4)〉 6
10 , 〈(a, 4), (b, 2)〉 3

10 , 〈(b, 2), (a, 4))〉 1
10 ].

The support of a stochastic language f will be denoted by

Sf = {t ∈ Σ∗|f(t) > 0}. In the following, we will consider

finite stochastic languages, i.e., stochastic languages with

finite support.

IV. METHODS

In this section, we propose an approach for time-aware

concept drift detection. To this end, we first introduce the Earth
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Mover’s Distance (EMD) as a comparison method for proba-

bility distributions. Regarding the importance of incoporating

additional perspectives for holistic change point detection,

using the proposed method, we demonstrate how the detector

can naturally be extended to consider time. Finally, we briefly

describe the sliding window approach that was used to make

the method applicable for concept drift detection.

A. Concept Drift Detection based on EMD

The Earth Mover’s Distance (EMD) is a distance-based sim-

ilarity measure for the comparison of probability distributions.

Intuitively, it considers one distribution as piles of earth and

the other as a set of holes. Given a ground distance function

that describes the effort of moving earth from a certain pile

to a specific hole, EMD is the minimum-cost flow required to

move earth from hills to holes.

a) Trace Distance: Before formally defining EMD as a

distance measure for stochastic languages, we introduce the

notion of a trace distance [2]. A trace distance δ : Σ∗×Σ∗ →
[0, 1] describes the dissimilarity of any two given traces. It

is required to be symmetric and to satisfy the identity of

indiscernibles porperty [2]. Besides, it is desirable that δ
additionally satisfies the triangle inequality, i.e., ∀t, t′, t′′ ∈
Σ∗ : δ(t, t′) + δ(t′, t′′) ≤ δ(t, t′′), so that δ, and therefore

also EMD, become a metric. Nevertheless, as detailed in

Section IV-B, some trace distance candidates might only

empirically satisfy the triangle inequality for most inputs.

b) EMD for Stochastic Languages: Given a trace dis-

tance function, EMD as a measure for comparing stochastic

languages has been proposed in [2]. In general, EMD as a

similarity measure between probability distributions unites two

desirable properties. On the one hand, it is frequency-aware

in the sense that it considers the magnitude of discovered

differences. On the other hand, the notion of difference is

determined by the trace distance, and, thus, different distance

function can express different perceptions of similarity. In the

context of processes, we use this property to open different

perspectives on the process. Formally, in the context of finite

stochastic languages f, g, EMD between f and g can be

defined by the following linear program:

Definition 3 (Earth Mover’s Distance). Let f, g be finite
stochastic languages over the alphabet Σ and let δ be a trace
distance function. The Earth Mover’s Distance between f and
g is defined by:

EMD(f, g) = minimize
∑

t∈Sf

∑

u∈Sg

xtu · δ(t, u)

s.t. ∀t ∈ Sf :
∑

u∈Sg

xtu = f(t) (Source)

∀u ∈ Sg :
∑

t∈Sf

xtu = g(u) (Target)

∀t ∈ Sf ∀u ∈ Sg : xtu ≥ 0 (Non-negativity).
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Fig. 1: Optimal cost flow for EMD(f1, f2) for the stochastic

languages f1, f2. Edge inscriptions x∗tu/δ(t, u) show the opti-

mal flow x∗tu and the trace distance value δ(t, u) for all variants

t ∈ Sf1 , u ∈ Sf2 . Zero flow edges are depicted by dashed

lines. Even though we have Sf1 	= Sf2 , EMD(f1, f2) = 0.05
shows that the difference concerns infrequent behavior.

While the last constraints ensure non-negative flows, the

source constraints assert that the entire probability mass for

each trace of f is moved to traces in g. Likewise, the target

constraints limit the flows to g according to its probability

mass distribution. Furthermore, the objective function ensures

a minimal effort flow. Note that, as we consider finite stochas-

tic languages, the number of variables and constraints is finite,

and, thus, the linear program is well-defined. Moreover, the

linear program is feasible due to the equality of the total weight

of f and g as stochastic languages are inherently normalized.

Besides, normalization and a metric as trace distance would

make EMD on stochastic languages a metric too [1].

To detect control flow changes between two stochastic

languages, we can for example use the post-normalized Lev-

enshtein distance, where in a second step the computed

distance value is normalized by the maximum length of the

two considered sequences, as trace distance function. For in-

stance, consider the stochastic languages f1 = [〈a, b, d, f〉 50
100 ,

〈a, c, f〉 40
100 , 〈a, b, e, f〉 10

100 ], f2 = [〈a, b, d, f〉 50
100 , 〈a, c, f〉 35

100 ,
〈a, b, d, e, f〉 15

100 ] and f3 = [〈a, b, d, f〉 20
100 , 〈a, c, f〉 70

100 ,
〈a, b, e, f〉 10

100 ] where f1 represents the basic process behavior.

While in f2 an infrequent new variant where both d and e
can occur is introduced replacing another infrequent variant,

in f3 the most frequent variant changes from 〈a, b, d, f〉 to

〈a, c, f〉. Using the (post)normalized Levenshtein distance, we

obtain EMD(f1, f2) = 0.05 and EMD(f1, f3) = 0.15 which

well reflects the major behavior change in f3. The example

solution to the linear program for EMD(f1, f2) is depicted in

Figure 1. It shows that, on the one hand, the costs are caused

by transferring a probability mass of 0.1 between the two

infrequent variants 〈a, b, e, f〉 and 〈a, b, d, e, f〉, which have

a post-normalized trace distance of 0.2. On the other hand, a

slightly reduced likelihood of 〈a, c, f〉 in f2 causes additional

costs of 0.05 ·0.6 = 0.03. Using EMD for stochastic language

comparison enables us to focus on trace properties by means

of the trace distance function. Moreover, it also allows us to

consider the frequency of observed patterns.
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B. Time-Aware Concept Drift Detection

In this section, we propose to extend concept drift detection

by adding a time perspective, i.e., sojourn times or activity

service times. To this end, we exploit the flexibility of EMD

and introduce a time-aware ground distance. We first bin

the observed times and then apply a weighted Levenshtein

distance variant in order to obtain a control flow and time-

aware comparison method.

a) Binning: We apply time binning in order to abstract

similar time related behavior and to make the weighted

Levenshtein distance applicable. To this end, depending on

the chosen time perspective, first, we collect the observed

activity service or sojourn times. As time features might differ

significantly between different activities, we locally evaluate

the following two clustering approaches, i.e., we compute

the statistics per activity while taking the complete log into

account. Following the Pareto Principle that 80% of the

interesting behavior is caused by 20% of the cases, we propose

to determine the bins by a percentile-based clustering based on

the times observed for each individual activity. The bin edges

are thereby chosen according to a given list of percentiles.

Regarding multimodal time distributions we propose to use

the k-means++ [25] as a data-driven clustering approach. In

the 1-dimensional time setting its objective is theoretically

well-founded being equivalent to minimizing the within-class

variance [26]. A major advantage is that this approach can

deal with different cluster sizes among different activities. By

applying these binning techniques, we discretize time-related

information into k bins and obtain traces over an alphabet

ΣT = ΣA×{0, . . . , k−1} with the bin index as an additional

descriptor.

b) Time-Aware Trace Distance: Given two traces σ, σ′ ∈
Σ∗T over the binned alphabet with k bins, we propose to

use a variant of the weighted Levenshtein distance δl [27]

which splits the total operation costs into control-flow and

time costs, respectively. To this end, on the control-flow

level, we define binary costs cfr : ΣA × ΣA → R
≥0 for

renaming and unary costs cfid : ΣA → R
≥0 for insertion and

deletion. Likewise, on the time level, we use binary costs

ctmr : {0, . . . , k−1}×{0, . . . , k−1} → R
≥0, for matching and

renaming activities considering different time bins and unary

costs ctid : {0, . . . , k−1} → R
≥0 for insertion and deletion. The

resulting trace distance can then be defined by the following

recursive relation:

δl (σ[1,i],σ
′[1,j])=

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δl (σ[1,i−1],σ′[1,j−1])+ctmr((σi)v,(σ
′
j)v) if(σi)a=(σ′

j)a

δl (σ[1,i−1],σ′[1,j−1])+

cfr ((σi)a,(σ
′
j)a)+ctmr((σi)v,(σ

′
j)v)

(Rename)

δl (σ[1,i],σ
′[1,j−1])+cf

id
((σ′

j)a)+ctid((σ
′
j)v) (Insert)

δl (σ[1,i−1],σ′[1,j])+cf
id
((σi)a)+ctid((σi)v) (Delete) .

(1)

Regarding a concrete instantiation of the cost functions, we

need to ensure that it respects the inter-dependencies between

the edit operations to preserve the intuitive interpretability of

the distance value which is stated in the following axiom.

Axiom 1 (Levenshtein-based Trace Distance Interpretability).
Levenshtein-based trace distances that consider time informa-
tion should fulfill the following properties:

1. Renaming is preferable over deletion and insertion
2. Matching events under a large time difference is less

expensive than
(a) deletion followed by insertion
(b) renaming events with different activity labels but the

same time information.

Moreover, since we will use δl in a sliding-window frame-

work, we want δl to be symmetric so that traces from the left

and right window are treated equally. For example, consider

three subsequent windows each containing just a single trace

variant, namely σ1, σ2 and σ3, such that the first and third

window are equal, i.e., σ1 = σ3. Intuitively, differences and,

hence, potential drift points between the first and the second,

or between the second and the third window should be scored

equally, i.e., δl(σ, σ
′) = δl(σ

′, σ′′). Therefore, we use the

same function for the insertion and deletion cost to make δl
symmetric.

Considering the interpretation axioms, let a, a′ ∈ ΣA, a 	=
a′, t, t′ ∈ {0, . . . , k − 1}. We use fixed control-flow penalties

for renaming, insertion, and deletion, i.e., cfr (a, a
′) = fr =

1 = fid = cfid(a), costs linear in the bin distance for matching

and renaming w.r.t. time, i.e., ctm(t, t′) = ctr(t, t
′) = |t − t′|,

and cost linear in the bin index for insertion and deletion, i.e.,

ctid(t) = t. Even though time bins of disjoint activities are

not necessarily comparable w.r.t. absolute time, this choice

naturally enforces Axiom 1.2(b). For example, consider the

costs and traces fr = 2, fid = 2, σ = 〈(a, 1), (b, 4)〉,
σ′ = 〈(a, 4), (b, 2)〉 and σ′′ = 〈(b, 2), (a, 4)〉. If renaming

can only be applied to different activity labels, is not per se

expensive and does not respect time differences, we obtain

3 + 2 = δl(σ, σ
′) ≥ δl(σ, σ

′′) = 2 + 2 although renaming

is required twice in the latter case. This contradicts the

intuitive perception of similarity. Likewise, for high renaming

costs, that are independent of the time difference, renaming

operations would dominate EMD, therefore, rendering it less

sensitive to time behavior changes. In addition to a general

operation penalty, we also consider the time bin for insertion

and deletion operations enforcing Axiom 1.2(a).

In order to account for different trace lengths, we post-

normalize the distance by the maximum trace lengths, i.e.,

δ̄l(σ, σ
′) = δl (σ,σ

′)
max(|σ|,|σ′|) , σ, σ

′ ∈ Σ∗. Even though δl is a

metric, normalization might violate the triangle inequality

for Levenshtein based edit distances [28]. Accordingly, δ̄l is

not necessarily a metric. Nevertheless, the triangle inequality

and thus metric properties emprically hold for most of the

descriptors considered in our evaluation.

C. Sliding Window

In order to detect concept drift in an event log, we em-

bed our approach into a sliding window framework. Let

(t1, t2, . . . , tn) ∈ (Σ∗)n denote an ordering of the traces
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ti−4 ti−3 ti−2 ti−1 ti ti+1 ti+2 ti+3 ti+4 ti+5 ti+6
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i,2 W r

i,2
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i,4 W r

i,4

W l
i+2,2 W r

i+2,2

W l
i+2,4 W r

i+2,4

Fig. 2: Multi-scale sliding window. At each scale, viz. window

size 2 and 4, we maintain a left and right window. After

comparison, both windows are shifted by a stride size of 2.

by the timestamp of the first event. As depicted in Fig-

ure 2, given an index i, W l
i,w = (ti−w+1, ti−w, . . . , ti) and

W r
i,w = (ti+1, ti+2, . . . , tw) denote the left and right window,

respectively. We compute the corresponding trace descriptors

for each window pair W l
i,w and W r

i,w and transform the

resulting representations into stochastic languages f l
i and f l

r

by normalization. Afterwards, we compare f l
i and f l

r using

EMD yielding the dissimilarity score EMD(f l
i , f

r
i ). Finally,

the windows are shifted by a user-defined stride size. Increas-

ing the stride size, thereby trades localization accuracy for

efficiency. We plot the final EMD values to detect process

changes. Similar to the work in [29], we use different-sized

windows in order to show and validate drift on multiple scales.

V. EVALUATION

In this section, we demonstrate the capability of the pro-

posed method to detect control-flow drifts, time drifts, and

control-flow drifts which can only be detected by a holistic

approach. To this end, we created multiple artificial event logs

from variants of the model used in [11]. Figure 3 depicts

the adapted model, which models the process of handling

health insurance claims, in BPMN notation. Arriving claims

are registered and classified into low and high claims. Be-

sides, a questionnaire is sent to the claimant which might be

answered. Each claim undergoes several checks which either

lead to rejection or eventually to acceptance. In contrast to the

original model, our model adapts the efficient reject-if-check-
is-unsuccessful pattern for low and high claims. Furthermore,

our model introduces refunding activities before the claimant is

notified. After checking, every claimant receives a documented

notification and can be called additionally. Finally, the case is

archived while some cases are also controlled in more detail. In

order to assign the tasks to resources, we maintain a resource

pool and randomly choose free resource therefrom. Following

natural behavior, we sample exponentially distributed inter-

case arrival times while the service times of human executed

activities are normal distributed.

A. Implementation

We implemented the methods presented in Section IV as a

plugin in ProM. The plugin allows to specify multiple sliding

windows of different window and stride sizes. Moreover, it

supports the Levenshtein distance and the weighted Leven-

shtein distance for time-binning based trace descriptors, that

we proposed in Section IV-B, as trace distance functions.

Regarding the time perspective, the user can choose between

service and sojourn time-aware concept drift detection. In this

case, the time bins are computed according to user-defined

percentiles for the percentile-based bin edge computation or a

given number of clusters for the data-driven approach using k-

means. In order to efficiently compute EMD, we implemented

an Exterior Point Simplex method described in [30], [31],

which is tailored to the underlying optimal-cost-flow problem.

B. Control-Flow Drift

In order to demonstrate the ability of our approach to

detect control-flow drifts, we apply it to the log used in [11].

The log contains different types of control-flow drift with a

change every 1200 traces. Figure 4a shows the output of our

plugin for different window sizes using EMD with Levenshtein

distance for window comparison. The bottom panel shows a

heatmap of EMD values w.r.t. the indices of the traces, ordered

by the timestamp of the first event, and the window sizes.

Given that different window sizes capture changes of different

frequencies, this spectrum-inspired visualization can help to

localize changes in the time and frequency domain. The upper

panel shows a lineplot of the EMD values for an interactively

selectable window size.

First, as depicted by the dotted lines, we note that all

model changes can be detected, although the inherently high-

dimensional trace descriptor requires large windows sizes to

capture the process behavior. As can be seen for window

size 200, the significantly higher variance indicates that the

sample size is insufficient to fully represent the underlying

distribution. In this case, larger windows are needed to verify

potential drift points. Moreover, it can be seen that EMD

naturally describes the extend to which the process is affected

by the change. To this end, consider the highlighted EMD

value difference between the second and third peak. While the

pre-change model for the second peak contains an or-relation

between ’By Phone’, ’E-Mail’, and ’Post’, as well as the

option to skip everything, the change removes the latter option.

The low EMD values thereby indicate that relatively few cases

are affected, i.e., the notification has been skipped for these

cases. In contrast, the third peak results from introducing an

exclusive choice between the former activities. Considerably

larger EMD values show that many cases are affected, i.e.,

before the change claimants were often notified via multiple

channels.

Although the currently implemented window descriptor

based on stochastic languages, which consider entire traces,

can be effectively high-dimensional, an advantage is that we

can detect long-term dependencies. In order to show this, we

introduce a controlling activity scrutinizing a limited subset

of the recently archived cases. Initially, given two low and

high claim cases, the probability that the high claim case

is selected for additional controlling is 40%. After 2000

cases this probability changes to 20%, following the idea

that high claim cases have been handled more carefully, and

therefore less controlling is required. This introduces a long-

term dependency between the initial check claim sequence
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Fig. 3: The adapted insurance claim model from [11] showing a process for handling low and high insurance claims. Dashed

lines show the activities that are affected by the filtering applied in the time-induced control flow drift scenario.

(a) Different control-flow drifts (stride size 2). (b) Long-term dependency drift (stride size 2).

Fig. 4: Drift detection on the control-flow level using the Levenshtein distance. It shows the spectrum over window sizes 200,

400, 600, 800 and selectively EMD for window size 600.

and the controlling activity which is further extended by

the introduction of the refunding activities (cf. Figure 3).

As depicted in Figure 4b, the drift can be detected which

would not be possible using local statistics, e.g., a window

around each activity if the window size is too small [11].

Intuitively, such drift scenarios are relevant for activities whose

number of occurrences is limited by the resource availability

and, therefore, drifts do not necessarily affect the follows

frequencies of directly preceding activities.

C. Time Drift

In order to assess the capability to detect time drift, we

inject changes of the case arrival rate. Using an initial base

inter-arrival time of 45 minutes, we created a log with sudden

arrival rate drifts to 60, 45, 30, 45, 25, and 45 minutes every

2000 traces, respectively. In order to exclude the possibility

of inter-arrival-time-induced control-flow drifts, we filter the

questionnaire-related activities. Due to the increased sojourn

times, more questionnaires are received back which causes a

control-flow drift.

Regarding the parameter setting of fid and fr, preceding

experiments showed that fid = fr = 1 works well. In general,

we could see that the output of our method is not very sensitive

to this setting for reasonably small values. Furthermore, we

apply the data-driven bin computation using k-means, which

generally performed well, with k = 3. This follows the

intuition to have a bin for slow, moderate, and fast behavior.

As depicted by the dotted blue lines in Figure 5a, according

to our method an increasing inter-arrival time does not signif-

icantly affect the sojourn times. During periods of baseline

arrival rate, the resources are sufficient to handle each case

immediately. Therefore, reducing the arrival rate does not

affect the immediate reaction, and hence the sojourn times

do not change. In contrast, decreasing the inter-arrival times

increases the sojourn times and a drift is detected. The peaks

corresponding to the onsets of arrival rate drifts are highlighted

by dotted black lines. In addition to the ground truth arrival

rate changes, we observe two additional peaks, depicted by the

densely dotted lines, which might be attributed to the variance

of the arrival rate and activity service times. Moreover, larger

EMD values for shorter inter-arrival times show that EMD is

a measure for the impact of the drift. Regarding our definition

of the time-aware trace distance function δl , this experiment

shows that incorporating the time bins into the costs for

insertion and removal causes a shift of the baseline costs, as

indicated by the dashed red line, so that the EMD values are

generally larger during periods of faster case arrival. Given two

traces for which the optimal distance according to δl requires

deletion and insertion, a low arrival rate and, therefore, low

sojourn times and bin indices yield a comparatively smaller

distance value than a high arrival rate and consequently higher

bin indices due to higher costs for insertion and deletion.

Hence, the costs arising from imperfectly matching windows

are generally higher. Since the baseline shifts accumulate,
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we can, to some extend, also observe ongoing gradual drifts

towards increasing sojourn times during the periods of arrival

rate change.

D. Time-induced Control Flow Drift

Finally, we investigate a drift scenario that requires a holistic

approach combining the time and control perspective. To

this end, we distinguish between low claims with an easy

medical history and those with a difficult history. In the

model, this difference reflects in the service time of ’Low

Medical History Check’ with an increased service time for

more difficult cases. The service times for each group are

modeled by normal distributions where the probability of a

low claim being difficult is 20%. The service times sampled

from the resulting Gaussian mixture model are depicted in

Figure 6. Assuming that the resources for calling claimants are

limited and therefore only a fixed percentage of the claimants

can be called, we introduce a drift by changing the individual

probabilities for notification by phone for easy and difficult

cases. While initially the probability is 50% for both degrees

of difficulty, after the drift, that is introduced after 2500 cases,

difficult cases are certainly called and easy cases only with a

probability of approximately 40%. Note that in order to detect

this drift, time has to be considered since the general control-

flow on the activity level is not affected.

Detecting the aforementioned concept drift requires us to

focus on the low claim check activities and the subsequent

notification as there is only a small impact on the complete

process. Therefore, we filter the generated log, containing 5000

traces, for low claim cases by only considering claims that

experience the ’Low Insurance Check’. Note that cases that

are rejected in this step are still considered, which slightly

broadens the focus. Furthermore, we only focus on checking

and notification related activities depicted by dotted lines in

Figure 3. As before, we apply data-driven bin computation

with k = 3. Figure 5b shows the output for the filtered log. The

dotted line indicates a drift that occurs after half of the traces,

which fits the time of the actual drift. The magnitude of EMD

change also gives evidence that this drift only slightly affects

the process, i.e., only a few claims are concerned. Moreover,

the high variance and large EMD values that can be seen in

the multi-scale plot in Figure 5b indicate a high variability

of the binning-based descriptor. Therefore large sample sizes,

i.e., large windows, are required to approximate the underlying

distribution to obtain clearer peaks, as indicated by the black

circle. Besides, it can be noted that it suffices to categorize

service times into three bins to detect the drift, even though

the underlying service time distribution is bi-modal.

Consequently, the presented experimental results show that

our method is able to detect drifts that require a holistic

consideration of time and control flow.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an EMD-based concept drift

detection approach that allows for different perspectives on the

process thanks to the flexibility of EMD regarding the choice

of the representation and the distance measure. Furthermore,

we demonstrated how a time perspective that enables service

and sojourn-time aware drift detection can be implemented in

this framework. The experimental evaluation showed that var-

ious types of control-flow, as well as time-dependent control-

flow drifts can successfully be detected. However, the ability of

the currently used trace descriptor to holistically detect drift in

long-term dependencies is traded for the requirement of large

windows sizes and possible additional preprocessing.

For future work, given our first results on holistic drift detec-

tion, we intend to perform a more comprehensive evaluation,

in particular on real-world data, as well as to develop meth-

ods that allow to systematically find a proper preprocessing

without requiring domain knowledge. Considering the trace

descriptors, e.g., lower-dimensional descriptors and descriptors

that incorporate additional perspectives are possible future

directions to investigate. Moreover, descriptors and trace dis-

tances that are more robust to concurrency can be investigated.

Furthermore, since binning the time information can result in

information loss, trace distance functions that do not rely on

binning need to be investigated. However, first and foremost,

extensions that provide drift diagnostics, i.e., methods that

reveal the actual changes of the process, are crucial to make the

detected drifts actionable. For example, consider the additional

peaks in Figure 5a. Currently, we can only diagnose that either

control flow and sojourn times are affected or by considering

only the control flow perspective conclude that only the control

flow is affected. Nevertheless, in neither case we can clearly

pinpoint the effect. In this context, we want to exploit the

optimal values of the flow variables in the EMD-defining

linear program. By construction, these values determine the

EMD value and, therefore, describe the differences between

the stochastic languages. Finally, the application to event

streams can be investigated, which, in addition to dealing with

potentially changing time information granularity, requires to

adapt the trace descriptor and/or distance, e.g. by allowing

partial matches, to handle incomplete traces.
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