
Improving the Performance of Process Discovery
Algorithms by Instance Selection?

Mohammadreza Fani Sani1, Sebastiaan J. van Zelst1,2, and Wil van der Aalst1,2

1 Process and Data Science Chair, RWTH Aachen University, Aachen, Germany
{fanisani, s.j.v.zelst, wvdaalst}@pads.rwth-aachen.de

2 Fraunhofer FIT, Birlinghoven Castle, Sankt Augustin, Germany

Abstract. Process discovery algorithms automatically discover process models based
on event data that is captured during the execution of business processes. These
algorithms tend to use all of the event data to discover a process model. When
dealing with large event logs, it is no longer feasible using standard hardware in
limited time. A straightforward approach to overcome this problem is to down-size
the event data by means of sampling. However, little research has been conducted
on selecting the right sample, given the available time and characteristics of event
data. This paper evaluates various subset selection methods and evaluates their per-
formance on real event data. The proposed methods have been implemented in both
the ProM and the RapidProM platforms. Our experiments show that it is possible to
considerably speed up discovery using instance selection strategies. Furthermore,
results show that applying biased selection of the process instances compared to
random sampling will result in simpler process models with higher quality.

Keywords: Process Mining, Process Discovery, Subset Selection, Event Log Pre-
processing, Performance Enhancement.

1. Introduction

Process Mining bridges the gap between traditional data mining and business process
management analysis[1]. The main subfields of process mining are 1) process discovery,
i.e., finding a descriptive model of the underlying process, 2) conformance checking, i.e,
monitoring and inspecting whether the execution of the process in reality conforms to the
corresponding designed (or discovered) reference process model, and 3) enhancement,
i.e, the improvement of a process model, based on the related event data [1]. With process
discovery, we aim to discover a process model that accurately describes the underlying
process captured within the event data, also referred to as event logs, readily available in
most modern information systems. In conformance checking, we aim to assess to what de-
gree a given process model (possibly the result of a process discovery algorithm) and event
data conform to one another. Finally, process enhancement aims at improving the view on
a process by improving or enhancing the corresponding model using related event data,
e.g., by projecting bottleneck information directly onto a (given) process model. There
are also other dimensions like prediction[39, 38] and business process automation [24].

? This article is the extension of a conference paper entitled ”The Impact of Event Log Subset Selection on the
Performance of Process Discovery Algorithms” that was initially published in 23rd European Conference on
Advances in Databases and Information Systems 2019 Workshops proceedings (Springer CCIS 1064) [41].

928 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Currently, the main research focus of process discovery is on quality issues of the
discovered process models; however, at the same time, the ever-increasing size of the
data handled in process mining leads to performance issues when applying the existing
process discovery algorithms [2]. Most process discovery algorithms first build an internal
abstraction of data, based on the whole event log and then apply a possible filtering step is
applied. However, this attitude causes efficiency in real process mining projects with large
event data. Some process discovery algorithms are infeasible in big data settings, where
the event data are too large to process. Additionally, some process mining tools enforce
constraints on the size of event data, e.g., the number of events. Also, in many cases, we
do not require the whole event log, and an approximation of the process model is able to
be discovered by applying just a small fraction of the event data.

In real life, process discovery is often of an exploratory nature which means some-
times we need to apply different process discovery algorithms with several parameters to
generate different process models and select the most suitable process model. When the
discovery algorithms are used repeatedly, such an exploratory approach makes sense only
if performance is reasonable. Thus, even a small improvement in performance may ac-
cumulate to a significant performance increase when applied several times. Furthermore,
many process discovery algorithms are designed to also generalize the behavior that is
observed in the event data. In other words, the result of process discovery algorithms
contains more behavior compared to the inputted event log. Therefore, it may still be pos-
sible to discover the underlying process using a subset of event data. In addition, many
of process discovery algorithms aim to depict as much as possible behavior in event logs.
However, for real event logs, because of the presence of noisy and uncertain behavior,
applying these algorithms resulted in inaccurate and incomprehensible, complex process
models that are even accurate behavior undetectable in them [18, 36].

To deal with the complexity of process models, in some research, such as [42, 31, 51],
clustering methods have been applied to get several sub-models according to clustered
sub-logs. For example, [30] and [10] use data attributes and conformance artifacts for this
purpose. Using this approach, the quality of the sub-models is better than a single process
model discovered on the complete event log. However, getting several process models
may be a barrier for decision-makers who need a single overview of each process.

This research studies the effectiveness of applying biased sampling on event data prior
to invoking process discovery algorithms, instead of using all the available event data.
In this regard, we present and investigate different biased sampling strategies and an-
alyze their ability to improve process discovery algorithm scalability. Furthermore, the
techniques presented allow us to select a user-specified fraction of inclusion of the to-
tal available event data. Using the ProM-based [48] extension of RapidMiner [3], i.e.,
RapidProM, we study the usefulness of these sampling approaches, using real event
logs. The experimental results show that applying biased sampling techniques reduces
the required discovery time for all discovery algorithms. Moreover, for some event logs,
by sampling, we also improve the quality of discovered process models due to implicit
filtering.

This paper extends the work [41]. Here, we explain the instance selection strategies in
more detail. The proposed approaches are also applied on many real event logs with state-
of-the-art process discovery algorithms, i.e., the Alpha Miner, the Inductive Miner, the
Split Miner, and the ILP Miner. We propose to select some process instances of an event

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 929

log based on variants or traces and apply process discovery algorithms on the sampled
data. Moreover, in this paper, we used more metrics to evaluate the quality and complexity
of discovered process models.

The remainder of this paper is structured as follows. In Section2, we discuss related
work. Section 3 defines preliminary notation. We present different biased instance selec-
tion strategies in Section 4. The experimental evaluation and corresponding results are
given in Section 5. Finally, Section 6 concludes the paper and presents some directions
for future work.

2. Related Work

Many discovery algorithms, e.g., the Alpha Miner [5], the ILP Miner [53], and the ba-
sic Inductive Miner [28] were designed to first build an internal data structure, e.g., the
directly follows graph, based on the whole available event data. Subsequently, these algo-
rithms discover a process model directly from this data structure. Other process discovery
algorithms, e.g., the Split Miner [7], the Flexible Heuristic Miner [52], the Fuzzy Miner
[25], the extended versions of the Inductive Miner[29], and the ILP Miner [54] were de-
signed to be able to filter infrequent or noisy behavior within their internal data structure,
prior to discovering a process model. The performance of all these algorithms depends on
the number of process instances and the unique number of activities. For some of them,
e.g., ILP Miner[53], the number of unique process instances also influences the required
time to discover a process model.

Recently, preprocessing of event data has gained attention. In [44, 6], techniques are
proposed to increase the quality of discovered process models by cleansing the event data.
Some other aim to increase/keep the privacy of users by preprocessing an event log before-
hand [40]. Also, in [18], [19], [20] and [21] we have shown that by removing/modifying
outlier behavior in event logs, process discovery algorithms are able to discover process
models with higher quality. Furthermore, [55] proposes a filtering approach to detect and
remove infrequent behavior for event streams. Moreover, [33] uses data attributes to filter
out noisy behavior. In [17] an interactive filtering toolkit is provided that let user chooses
different filtering methods in combination with several process discovery algorithms. Fil-
tering techniques effectively reduce the size of the event data used by process discovery
algorithms. But, to do so, these filtering techniques have non-linear time complexity that
does not scale in the context of big data. Meanwhile, sometimes the required time for
applying these filtering algorithms is longer than the process discovery time. Also, these
techniques have no accurate control over the size of the sampled event log.

Filtering techniques focus on removing infrequent behavior from event data; however,
sampling methods aim to reduce the number of process instances and increase the perfor-
mance of other procedures. Some sampling approaches have been proposed in the process
mining field. [26] studies some behavior qualities for sampled event logs. In [22], the au-
thors show that by selecting a few unique process instances of event data, it is possible to
approximate the conformance value in a shorter time. In [12], the authors proposed a sam-
pling approach based on the Parikh vector of traces to detect the behavior in the event log.
However, we are not able to use this sampling technique for the process discovery pur-
pose, because, the Parikh vector does not store the sequences of activities that are critical
for discovering process models. In [8], the authors recommend a random trace-based sam-

930 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

p1

p2

p3

p6

p5

p4

Fig. 1. An example process model with Petri net notation.

pling method to decrease the discovery time and memory footprint. This method assumes
that process instances have different behavior if they have different sets of directly follows
relations. However, using a unique set of directly follows relations may lead to different
types of process behavior. Furthermore, [9] recommends a trace-based sampling method
specifically for the Heuristic miner[52]. Both these sampling methods are unable to con-
trol the size of the final sampled event data. Also, they depend on the defined behavioral
abstraction that may lead to the selection of almost all the process instances. Moreover,
all these mentioned sampling methods use random trace-based sampling with a replace-
ment that may lead to pick and analyze a unique process instance several times. Finally,
as these methods are unbiased, we have non-deterministic results after each sampling. In
this paper, we will offer and analyze random and biased instance selection methods which
the size of the sampled event data is adjustable.

3. Preliminaries

In this section, we briefly introduce basic process mining terminology and notations that
ease the readability of the paper. There are different notations to depict a process model.
In this paper, we used the Petri net [35] notation. Petri net is a directed bipartite graph that
can be defined as follows.

Definition 1 (Petri net). A Petri net is a graph that could be presented as triple (T,P,A)
that T is a finite set of transitions, P is a finite set of places and A is a set of arcs that
connect places to transitions and transitions to places. A ⊆ (T × P) ∪ (P × T).

An example process model with Petri net notation is presented in Figure 1. In this figure,
T = {a, b, c, d, e}, P = {p1, . . . , p6}, and A = {(p1, a), (a, p2), . . . , (e, p6)}.

Given a setX , a multisetM overX is a functionM : X → N≥0, i.e. it allows certain
elements of X to appear multiple times. We write a multiset as M = [ek11 , e

k2
2 , ..., e

kn
n],

where for 1 ≤ i ≤ n we have M(ei) = ki with ki ∈ N>0. If ki = 1, we omit its
superscript, and if for some e ∈ X we have M(e) = 0, we omit it from the multiset
notation. Furthermore, M = [] denotes an empty multiset. M = {e ∈ X |M(e) > 0} is
the set of elements present in the multiset. The set of all possible multisets over a set X is
written asM(X).

Let X∗ denote the set of all possible sequences over a set X . A finite sequence σ
of length n over X is a function σ : {1, 2, ..., n} → X , alternatively written as σ =
〈x1, x2, ..., xn〉 where xi = σ(i) for 1 ≤ i ≤ n. The empty sequence is written as ε. The

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 931

Table 1. Fragment of a fictional event log (each line corresponds to an event).

Case-id Activity Resource Time-stamp
...
1 register request (a) Karl 2017-04-08:08.10
1 examine thoroughly (b) Ali 2017-04-08:09.17
2 register request (a) Karl 2017-04-08:10.14
1 check resources (c) William 2017-04-08:10.23
1 check ticket (d) William 2017-04-08:10.53
2 check resources (b) Ali 2017-04-08:11.13
1 Send to manager(e) Majid 2017-04-08:13.09
1 accept request (f) Fatima 2017-04-08:16.05
1 mail decision(h) Anna 2017-04-08:16.18
...

concatenation of sequences σ and σ′ is written as σ ·σ′. Function hd : X∗×N≥0 9 X∗,
returns the “head” of a sequence, i.e., given a sequence σ ∈ X∗ and k ≤ |σ|, hd(σ, k) =
〈x1, x2, .., xk〉, i.e., the sequence of the first k elements of σ. In case k = 0 we have
hd(σ, 0) = ε. Symmetrically, tl : X∗ × N≥0 9 X∗ returns the “tail” of a sequence
and is defined as tl(σ, k) = 〈xn−k+1, xn−k+2, ..., xn〉, i.e., the sequence of the last k
elements of σ, with, again, tl(σ, 0) = ε. Sequence σ′ is a subsequence of sequence σ,
which we denote as σ′ ∈ σ, if and only if σ1, σ2 ∈ X∗ such that σ = σ1 · σ′ · σ2. Let
σ, σ′ ∈ X∗. We define the frequency of occurrence of σ′ in σ by freq : X∗×X∗ → N≥0

where freq(σ′, σ) = |{1 ≤ i ≤ |σ| | σ′1 = σi, ..., σ
′
|σ′| = σi+|σ′|}|. For example,

freq(〈b〉, 〈a, b, b, c, d, e, f, h〉) = 2 and freq(〈b, d〉, 〈a, b, d, c, e, g〉) = 1, etc.
Event logs describe sequences of executed business process activities, typically in the

context of some cases (or process instances), e.g., a customer or an order-id. The execution
of an activity in the context of a case is referred to as an event. A sequence of events for a
specific case is also referred to as a trace. Thus, it is possible that multiple traces describe
the same sequence of activities, yet, since events are unique, each trace itself contains
different events. An example event log is presented in Table 1.

Consider the events related to Case-id value 1. Karl registers a request, after which
Ali examines it thoroughly. William checks the ticket and checks resources. Ava sends the
request to the manager and Fatima accepts the request. Finally, Anna emails the decision
to the client. The example trace is written as 〈a, b, c, d, e, f, h〉 (using short-hand activ-
ity names). In the context of this paper, we formally define event logs as a multiset of
sequences of activities.

Definition 2 (Event Log). Let A be a set of activities. An event log is a multiset of se-
quences over A, i.e. L ∈M(A∗).

For example,L1 = [〈a, b, c, e, g〉6, 〈a, c, b, e, g〉4, 〈a, b, c, e, f〉3, 〈a, c, b, e, f〉2, 〈a, d, e, f〉,
〈a, d, e, g〉, 〈a, b〉, 〈b, d, c, f〉〈a, b, c, e, e, f〉] is an event log with 20 traces. Observe that
each σ ∈ L describes a trace-variant whereas L(σ) describes how many traces of the
form σ are presented within the event log. Therefore, in the above event log, there are 9
trace-variants and L1(〈a, c, b, e, g〉) = 4.

932 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Sampling could be done with/without replacement. In sampling with replacement, it is
possible to select the sampled objects more than one time. However, in this work, we use
sampling without replacement. In other words, it is not possible to put a process instance
more than once in the sampled event log. In the following, we define formally sampled
event logs.

Definition 3 (Sampled Event Log). We define SL as a trace-based sampled event log of
an event log L, if for each σ ∈ SL, SL(σ) ≤ L(σ). In the same way, SL is a variant-based
sampled event log of L if for all σ ∈ SL, SL(σ) = 1.

In a variant-based sampled event log, the frequency of each selected process instances
is equal to 1, however, in a trace-based event log, it is possible to have more than one
traces of a unique process instance. In other words, a variant-based sampled event log is a
subset of trace-variants in L. For example, L2 = [〈a, b, c, e, g〉, 〈a, c, b, e, g〉, 〈b, c, e, f〉]
is a variant-based sampled event log of L1.

We could define different types of behavior in an event log. One possible behavior
in an event log is the directly follows relation between activities that can be defined as
follows.

Definition 4 (Directly Follows Relation). Let a and b ∈ A be two activities and σ =
〈σ1, .., σn〉 is a trace in the event log. A directly follows relation from a to b exists in trace
σ, if there is i ∈ {1, .., n− 1} such that σi = a and σi+1 = b and we denote it by a >σ b.

For example, in σ = 〈a, b, c, e, g〉, we have c >σ e, but d 6>σ a.
An alternative behavior which has negative affects the results of process discovery

algorithms is the occurrence of a low probable sub-pattern, i.e., a sequence of activities,
between pairs of frequent surrounding behavior, which we refer to it as behavioral con-
texts [20].

Definition 5 (Behavioral Context). A behavioral context c is a pair of sequences of ac-
tivities, i.e., c ∈ A∗ × A∗. Furthermore, we define the set of behavioral contexts present
in L, i.e., βL ∈ P(A∗ ×A∗), as:

βL = {(σl, σr) ∈ A∗ ×A∗ | ∃σ ∈ L, σ′ ∈ A∗ (σl · σ′ · σr ∈ σ)} (1)

For example, in trace σ = 〈a, b, c, e, g〉, 〈a, b〉 and 〈e〉 are two subsequences that surround
〈c〉, hence, the pair (〈a, b〉, 〈e〉) is a behavioral context.

We inspect the probability of contextual sub-patterns, i.e., the behavior that is sur-
rounded by frequent behavioral contexts. For this purpose, we simply compute the em-
pirical conditional probability of a behavioral sequence, being surrounded by a certain
context.

Definition 6 (Conditional Contextual Probability). Let σs, σl, σr ∈ A∗ be three sequences
of activities and let L ∈ M(A∗) be an event log. We define the conditional contex-
tual probability of σs, w.r.t., σl and σr in L, i.e., representing the sample based esti-
mate of the conditional probability of σs being surrounded by σl and σr in L. Function
γL : A∗×A∗×A∗→[0, 1], is based on:

γL(σs, σl, σr) =

∑
σ∈L

(
|σσl·σs·σr

|
)

∑
σ∈L

(∑
σ′∈A∗

|σ′σl·σ′·σr
|
) (2)

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 933

...

〈 …, a, b, b, ...〉 m2

〈 …, a, b, c, ...〉 m1

〈 …, c, b, c, ...〉
mn

〈 …, a, c, b, ...〉 m3

Event Log

...

〈 …, a, b, c, ...〉

〈 …, a, c, b, ...〉

Sampled Event Log

...

〈 …, a, b, c, ...〉

〈 …, c, b, c, ...〉

Sampled Event Log

1

n1

1

ni

Variant-based Sampling

Fig. 2. Schematic overview of instance selection (sampling) methods. We select variants or traces
based on different criteria. In variant-based sampling, each variant in a sampled event log represents
all the traces with this behavior in the original event log.

We alternatively write PL(σs | σl, σr) to represent γL(σs, σl, σr).

For example, to compute PL1(〈c〉 | 〈a, b〉, 〈e〉), we need to compute in how many traces,
subsequence 〈a, b, c, e〉 is occurred and divide it to the number of traces that contain the
pair (〈a, b〉, 〈e〉) as a behavioral context that is 10

10 = 1. Based on these probabilities, we
are able to detect unstructured behavior in a trace.

4. Sampling Event Data using Instance Selection

In this section, we present different biased instance selection strategies to sampling event
logs and consequently increase the discovery procedure’s performance. We are able to
sample different behavioral elements of an event log, e.g., events, directly follow relations,
traces, and variants. By sampling events, it is possible to choose events from different
parts of a process instance that is harmful to the process discovery purpose. Sampling
directly follows relations is useful for some process discovery algorithms like the Alpha
Miner. For example, choosing the most frequent directly follows relations. But, we need to
modify these algorithms to accept a set of directly follows relations instead of an event log
as an input. However, it may result in process models with some unconnected components.
Also, such data structures are not applicable to all process discovery algorithms. Thus,
here we just consider trace and variant-based sampling. Therefore, here we just focus
on sampling methods that take an event log as an input and return a subset of traces or
variants. In other words, the sampling methods select some variants/traces in the input
event logs.

The schematic of the instance selection methods is illustrated in Figure 2. In variant-
based sampling, the frequency of each sample is 1. In other words, we select only one pro-
cess instance for each selected variant. However, in trace-based sampling, the frequency
of each unique sample is 1 ≤ ni ≤ mi.

934 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

For many process discovery algorithms such as the ILP Miner, the family of Alpha
miners and the Inductive Miner, it is enough to have unique variants to discover a corre-
sponding process model. The frequency of variants is mostly just used for post-processing
algorithms like filtering. Therefore, here we mainly focus on variant-based sampling, but,
all these methods can easily be extended to trace-based sampling methods. We also just
used control-flow related information that is available in all event logs, and this is consis-
tent with the way.

We are able to consider three dimensions for a sampled event log. The first one is the
number of process instances that are placed in the sampled event log, i.e., |SL|. In the
worst case, it is the same as the original event log, i.e., no reduction in size. We can set
the size of sampled event logs (i.e., the sample ratio) as follows.

c =

{ |SL|
|L| Variant-based sampling
|SL|
|L| Trace-based sampling

(3)

Note that, in the above equation, 0 < c ≤ 1 and denotes that how many percentages
of traces (or variants in variant-based sampling) are selected in the sampled event log.

Another dimension is the completeness of the sampled event log. If a sample event log
contains few relations of the original event log, process discovery algorithms are not able
to discover an appropriate process model from the sampled event log. However, it is not
required that sampled event logs include all the behavior in the original event log, because
many process discovery algorithms are able to generalize the seen behavior. Finally, the
last dimension is the sampling time as a preprocessing phase. It is better to sample an
event log in a shorter time.

It is possible to sample process instances or variants of an event log randomly or
selecting them based on a bias. In the following, we will explain both of these methods.

4.1. Random Sampling

The first method is to randomly sample c×|L| traces in the event log without replacement
and return these traces (i.e., trace sampling) or just unique trace-variants among them (i.e.,
variant sampling). The time complexity of this method is O(k) where k is the number of
sampled traces. Therefore, this method is fast because there is no need to traverse the
original event log. In this way, we have no control over the number of selected variants.
In other words, it is possible that many of the sampled traces have similar behavior and
we return just a few unique variants.

Another approach is to first find all the unique variants in an event log, after that,
randomly select c × |L| variants from them. The time complexity of traversing an event
log isO(n× l) where n = |L| is the number of traces, and l is the average length of traces
in the event log. This approach is a bit slower, but it is able to return more behaviors
compared to the previous approach.

4.2. Instance Selection Strategies

In general, traversing an event log is not a very time-consuming phase, and this gives
us a motivation that instead of randomly sampling the variants, we are able to use more

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 935

advanced strategies (biases) to select variants in the event log. Note that although in XES
standard [48], we need to traverse an event log to find the variants, in many other structures
variants with some of their properties are stored as meta-data [16].

In biased sampling methods, we first traverse the event log to find unique trace-
variants in it, then rank them based on different strategies. Afterward, we return the top
c × |L| variants with the highest rank in the sampled event log. For the trace-based sam-
pling methods, we return all process instances that correspond to each trace-variant (with
considering the c value). We are able to use different ranking strategies for selecting the
trace-variants that will be discussed in follows.

Frequency-based Sampling
The first ranking strategy is sampling variants based on their frequencies. This sampling
method gives more priority to a trace-variant that has a higher occurrence frequency in the
event log. Thus, we sort the variants based on their frequencies or L(σ) and return the top
c × |L| of variants as a sampled event log. For example, for L1 if we want to select only
one variant based on their frequencies, 〈a, b, c, e, g〉 will be selected. The time complexity
of this strategy is O(n×l + r) where n×l corresponds to traversing the event log and r
represents the required time that for ranking variants σ∈L̄.

The advantage of this strategy is that we are able to have a minimum replay fitness
of the future process model that will be discovered based on the sampled event log. Note
that, in the random sampling strategy, the probability of choosing a more frequent variant
is also higher. However, in some event logs, there are lots of variants with very low fre-
quencies. Sometimes, the majority of process instances have a unique trace-variant. Thus,
differentiating between them will be challenging. Therefore, a drawback of this strategy
is that the sampled event log may not contain many behaviors in the original event log.
The trace-based version of this instance selection bias is existed in many process mining
tools. They used this selection bias to reduce the complexity of the resulted process model
and show the main stream behavior of the process model.

Length-based Sampling
We are able to select process instances or trace-variants based on their length, i.e., the
number of activities in the trace or |σ|. If we want to keep more behaviors in our sampled
event log, we need to select longer traces first. However, if we are interested in retaining
the main-stream behaviors of the event log, it is usually better to choose shorter variants.
For the running example, we will chose 〈a, b, c, e, e, f〉 and 〈a, b〉 first if we use longer
and shorter strategies respectively.

Selection based on the longer strategy, we are able to leave out incomplete traces,
that improves the quality of resulted process models. However, if there are self-loops
and other loops in the event log, there is a high probability to consider many infrequent
variants with the same behavior for process discovery algorithms. For example, if we use
directly follows information, it does not matter if trace σ has a >σ a one time or more.
On the other hand, with selection based on shorter strategy, if there are incomplete traces
in an event log, we probably will have them in the sampled event log. Similar to the
frequency-based strategy, the time complexity of this approach is O(n×l + r).

936 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Similarity-based Selection
If we aim to sample variants that contain general behavior of the whole event log, we need
to use the similarity-based sampling methods. In this approach, we first find the general
behaviors of the event log. We are able to use different behavior, however, the simplest and
the most critical behavior for process discovery is the directly follows relation. Therefore,
we compute the occurrence probability of each directly follows relation Bi = (a, b) (that
a, b∈A) according to the following formula.

Prob(Bi) =
|{σ∈L : a >σ b}|

|L|
(4)

Therefore, we compute the probability of observing each directly follows relation Bi
in a variant. If Prob(Bi) is high (i.e., be higher than a defined threshold 0 ≥ TP ≥ 1),
we expect that sampled variants also should contain it. Thus, any variant contains such
a high probable behavior (that here is a directly follows relations), will give a +1 to its
rank. Otherwise, if a variant does not contain a probable behavior, we decrease its rank
by −1. For example, (e, f) is a high probable relation with Prob(e, f) = 5

9 . Note that by
using a higher TP value, we will have fewer high probable and low probable relations;
therefore, many variants will have similar ranks.

Contrariwise, if a variant contains a low probable behavior (i.e., ProbBi
≤ 1 − TP),

we decrease its rank by −1. In other words, we are searching for variants that have much
high probable behaviors and have less low probable behaviors. For example, Prob(e, e) =
1
9 is a low probable relation. Note that, it is possible that some behaviors be neither high
probable nor low probable that we do nothing for such behaviors. Afterward, we sort
the variants based on their ranks and return the c × |L| ones with the highest rank. For
example, 〈a, d, e, f〉 is the first variant that will be chosen using this strategy for log L1.

The main advantage of this method is that it helps process discovery algorithms to
depict the main-stream behavior of the original event log in the process model. However,
it needs more time to compute a similarity score of all variants. Especially, if we use more
advanced behavioral structures such as eventually follow relations, this computation will
be a limitation for this ranking strategy. Another disadvantage of this strategy is that the
length of variants affects the final rank. It is possible that two variants have a similar set
of directly follows relations, but based on the frequency of these directly follows, they
will have different ranks. The time complexity of this strategy is O(n×l + d + r) where
d corresponds to finding probabilities of directly follows relations and in the worst case,
its complexity is O(|A|2×L̄).

Structured-based Sampling
In this sampling method, we consider the presence of unstructured behavior (i.e., based on
Definition 6) in each variant. In this regard, we first compute the occurrence probability
of each sub-pattern among its specific contextual context (i.e., PL(σs, σl, σr)). If this
probability is below a given threshold, i.e., 0 ≥ TS ≥ 1, we call it an odd structure.
We expect that unstructured subsequences are the most problematic behavior in event
logs that make discovered process models inaccurate and complex [20]. Thus, for each
unstructured behavior in a trace-variant, we give a penalty to it and decrease its rank by
−1. For example, PL1(〈d〉|〈b〉, 〈c〉) is very low and 〈b, d, c, f〉 will give a penalty for it.

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 937

Consequently, a variant with higher odd structures receives more penalties, and it is not
appealing to be placed in the sampled event log.

By choosing a high TS value, most of behaviors will be considered as odd structures.
In contrast, a very low TS will result in few unstructured behaviors that leads to have many
variants with the same rank. Note that, by increasing the length of behavioral context, we
will detect more important nonstructural behaviors. Similarly, by decreasing the TS value,
the detected behavioral patterns will be more problematic.

Similar to similarity-based selection strategy, in this strategy, the length of variants
will affects their rank. Using this strategy, we select the most well-structured trace-variants
in the event log, that is expected to have process models with high precision value. How-
ever, it is possible to select trace-variants that not frequent in the input event log. The
time complexity of this strategy is O(n×l + c + r) where c corresponds to conditional
contextual probabilities and in the worst case, its complexity is O(|A|m×L̄) where m is
the maximum length of considered contextual behavior and the substring. Therefore, this
strategy is potentially the slowest strategy for instance selection.

Hybrid Methods
In a hybrid strategy, we are able to combine two or three of other sampling strategies.
In this way, we expect to have benefits of different methods. Here, we combine the
frequency-based and similarity-based methods. In this regard, when we compute the prob-
ability of each directly follows relation, the frequency of it in the whole event log will be
used according to the following formula.

Prob(a, b) =
Σσ∈L̄a>b

(L(σ))

|L|
(5)

In the above equation, L̄a>b = {σ∈L̄ : a >σ b}. Note that, other combinations are
also possible.

Different ranking strategies require different sampling time and result in different sam-
pled event logs according to their completeness. In the next section, we will analyze how
these selection strategies affect the performance and quality of process discovery algo-
rithms on real event logs.

5. Evaluation

In this section, by doing experiments, we aim to answer the following research questions:

– Q1) Are the proposed instance selection strategies able to improve the performance
of process discovery?

– Q2) What are the effects of instance selection on the quality of discovered process
models?

In this regard, we first explain the implementation details of the proposed method.
Afterward, the experimental settings for the experiments will be discussed, and finally,
the results will be explained.

938 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Table 2. Some information of real event logs that are used in the experiment.

Event Log Activities# Traces# Variants# Directly Follows Relations#
BPIC−2012 [45] 23 13087 4336 138
BPIC−2013 [49] 4 7554 1511 11
BPIC−2017−All [46] 26 31509 1593 178
BPIC−2017−Offer [46] 8 42995 169 14
BPIC−2018−Control [15] 7 43808 59 12
BPIC−2018−Inspection [15] 15 5485 3190 67
BPIC−2018−Reference [15] 6 43802 515 15
BPIC−2019 [47] 44 251734 11973 538
Hospital [32] 18 100000 1020 143
Road [14] 11 150370 231 70
Sepsis [33] 16 1050 846 115

5.1. Implementation

To apply the proposed instance selection strategies, we implemented the Sample Variant
plug-in in ProM framework3. ProM is an academic platform with several plug-ins that
cover wide domains of process mining areas [4]. In this implementation, we used static
thresholds for both similarity and structure-based ranking strategies. For similarity-based
selection, we just considered the directly follows relation as explained in the previous sec-
tion. Using this plug-in, the end-user is able to specify her desired percentage of sampling
variants/traces and the instance selection strategy. It takes an event log as an input and
returns the top fraction of its variants/traces. A screen-shot of the settings of the instance
selection plug-in in ProM is presented in Figure 3. By adjusting these settings, users will
be able to have different sampled event logs.

In this implementation, we used TP=0.8 and TS=0.2. Moreover, for behavioral con-
texts’ subsequences, we consider the maximum length equals to 2.

Furthermore, to apply our proposed method on various event logs and use different
process discovery algorithms with their different parameters, we ported the Sample Vari-
ant plug-in to RapidProM [3] which extends RapidMiner with process analysis capa-
bilities. In our experiments, we also used the statistical sampling method that is presented
in [8]; however, as we consider only work-flow information, its relaxation parameter is
ignored.

5.2. Experimental Setup

For analyzing the effect of sampling, we applied the proposed method on several real event
logs. Some information about these event logs is given in Table 2. We added artificial start
and end activities to the whole process instances of all event logs. For process discovery,
we used the Alpha Miner [5], the Inductive Miner (IM) [28], the Inductive Miner with
its infrequent behavior filtering mechanism (IMi) [29], the ILP Miner [43], and the Split
Miner [7]. For computing the quality of discovered process models, the original event
logs were used.

3 Sample Variant plug-in in: svn.win.tue.nl/repos/prom/Packages/LogFiltering.

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 939

Fig. 3. A screen-shot of the implemented instance selection plug-in in ProM platform. It receives an
event log and return a sample event log based on the adjusted settings.

We sampled event logs with different variant and trace-based instance selection strate-
gies, and cwith different values that are [1, 2, 3, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100] which
c presents how many percentages of traces or variants of the event log is selected to be
placed in the sampled event log. Therefore, if we use the trace-based sampling policy with
c = 100, the sampled event log equates to the original event log. As sampling time and
discovery time are nondeterministic, each experiment was repeated four times.

5.3. Experimental Result

Here, we show how experimental results address the mentioned research questions.

Performance Analysis
To measure the improvement in the performance, we consider both the discovery time

and sampling time of event logs using the following formulas:

DiscoveryT imeImprovement =
DiscoveryT imeWholeLog

DiscoveryT imeSampledLog
(6)

TotalT imeImprovement =
DiscoveryT imeWholeLog

DiscoveryT imeSampledLog + SamplingT ime
(7)

In discovery time improvement, we measure how discovering a process model is faster
on a sampled event log compared to the original event log. However, in total time im-
provement, the sampling time is also considered. Therefore, it measures how sampling
an event log and discovering a process model of it, is faster compared to discover a pro-
cess model from the original event log. An improvement value shows how many times a
process model will be discovered faster by using the sampled event log.

940 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Table 3. Process discovery performance improvement for different process discovery algorithms
using variant and trace-based instance selection methods when c = 10.

Discovery
Algorithm

Normal
Discovery Discovery Improvement Discovery

Algorithm
Normal
Discovery Discovery ImprovementEvent Log

Time (ms) Statistical Traces Variants Time (ms) Statistical Traces Variants
BPIC-2012 154 4 7 50 3,571 4 7 18
BPIC-2013 94 6 8 17 890 9 11 48
BPIC-2017-All 1,349 7 9 38 70,652 11 27 50
BPIC-2017-Offer 303 38 14 758 2,108 44 14 727
BPIC-2018-Control 234 585 9 41 1,707 43 9 557
BPIC-2018-Inspection 252 2 10 45 4,522 2 16 39
BPIC-2018-Reference 186 24 9 61 1,511 28 7 184
BPIC-2019 1,817 14 6 25 62,021 16 10 42
Hospital 687 14 8 224 17,366 35 29 1,192
Road 660 42 6 1,650 6,988 68 11 12,332

A
lpha

M
iner

Sepsis 20 1 7 51
Inductive

M
iner(IM

i)
317 1 51 48

BPIC-2012 2,4875 4 6 9 903 3 5 8
BPIC-2013 1,108 4 4 7 537 6 8 25
BPIC-2017-All 1,088,584 30 14 41 11,479 9 13 31
BPIC-2017-Offer 2,279 7 6 12 1,599 25 9 147
BPIC-2018-Control 2,511 11 6 19 1,964 36 8 353
BPIC-2018-Inspection 7,746 1 6 5 1,755 2 7 17
BPIC-2018-Reference 2,390 9 5 14 1735 27 7 294
BPIC-2019 95,697 5 3 7 19,520 15 10 41
Hospital 10,995 5 7 8 3,388 13 8 64
Road 6,144 10 5 10 3601 46 8 171

IL
P

M
iner

Sepsis 7,464 1 5 4

SplitM
iner

180 1 4 3

Table 3 and Figure 4 show the improvement when we sample event logs. The y-axis
in these figures represents the average performance improvements using a logarithmic
scale. Values below 1 show that there is no improvement in performance. Here, we con-
sider c = 10 and all instance selection strategies. Statistical corresponds to the sam-
pling method that is proposed in [8] (with its default setting). It is clear that by reduc-
ing the size of an event log, the required process discovery time is reduced. Therefore,
the DiscoveryT imeImprovement for variant-based selection strategies is significantly
higher than the trace-based policy. Note that all process discovery algorithms traverse the
event log at least once that requires O(n×l). Therefore, n = |SL| for variant-based sam-
pled event log is usually extremely lower than the trace-based one. For some event logs, a
process discovery algorithm is more than 1000 times faster on the sampled event log using
variant-based sampling compared to using the whole event logs. However, for event logs
such as Sepsis, where most of the traces have unique control-follow related behavior in
the original event log, trace-based sampling methods are faster. We see that the Statistical
method is not able to improve the total discovery time of Sepsis event log for any process
discovery algorithm. As it is shown in Table 2, almost all of trace-variants in this event
log are unique that cause this sampling method selects almost all the traces in the event
log. For the Alpha miner, we usually do not have improvement. This process discovery
algorithm is simple, and its main time-consuming task is to find out the directly follows
relations in the event log. However, for advanced process discovery algorithms, e.g., the
Inductive Miner, the total improvement is very high. Comparing these two figures, we find
that the sampling time for the statistical sampling method is much faster than our tech-
niques, but the discovery time of sampled event logs is less using the proposed instance
selection strategies.

Improving the Performance of Process Discovery Algorithms by Instance Selection�� 941

Fig. 4. Total time improvement for discovering process using sampling methods.

Figure 5 shows improvements in the performance of process discovery algorithms
when we select some instances of event logs. Here, for instance selection strategies, we
used the sampling threshold (i.e., c) equals to 0.1 and the variant-based policy. It shows
that the improvement is usually lower when the statistical sampling method even it does
not need to traverse the input event log. As it is mentioned before, for Sepsis event log, this
method has no improvement. Among instance selection methods, Longer strategy usu-
ally results in lower improvement. The computation time of process discovery algorithms
depends on different parameters e.g., the number of activities (i.e., |A|), the number of
variants (i.e., |L̄|) and sometimes the prefix-closure of the given event log. Using instance
selection strategies, we are able to reduce all the above parameters and consequently de-
crease the required time for process discovery.

The sampling time of different methods is depicted in Figure 64. As we expected,
except for the Sepsis event log, the statistical sampling method is much faster than instance

4 We do not show the results for all event logs.

942 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Fig. 5. Discovery time improvement for discovering process using instance selection.

Improving the Performance of Process Discovery Algorithms by Instance Selection�� 943

Fig. 6. Sampling time of different instance selection strategies.

selection strategies as it does not need to traverse the event log. Among the instance
selection strategies, the structure-based is the slowest one as it needs to consider more
complex behavioral structures. Frequency and length based strategies are required almost
the same time to sampled event logs. As it is mentioned, in case that we use MXML or any
other structure that contains meta-data of variants, the sampling time for these strategies
will be much less.

As event filtering algorithms are able to reduce the variability of event logs, we are
able to compare them with the instance selection methods. In this regard, we filter event
logs using Anomaly Free Automaton (AFA) [13] and Matrix Filter (MF) [18] using their
default settings. For sampling, we used the variant-based sampling using c = 10 and the
similarity based strategy. Here, for process discovery, we used the IMi algorithm with its
default setting. The results of this experiment is shown in Table 4. We could not have the
filtered event log for BPIC-2018-Inspection using the AFA method. Results show that the
preprocessing time for the instance selection method is less than other filtering methods.
For most of the event logs, process discovery on the preprocessed event log using the
proposed approach is faster mostly because it returns the variant-based sampled event
logs. The discovery time for some filtered event logs is significantly low that is because
of removing lots of behavior during filtering.

We aim to analyze what is the origin of the performance improvement. The improve-
ment in performance of process discovery algorithms may be driven by reducing (1) the
number of activities, (2) the number of traces, or (3) the amount of unique behavior (e.g.,
DF relations or variants). By event log instance selection, it is possible that some of the
infrequent activities are not placed in the sampled event log. Moreover, by sampling we
reduce the size of event logs (i.e., |SL| ≤ |L|), specifically when we apply the variant-
based strategies. Finally, it is also possible that we reduce the number of unique behavior
in the event log.

Figure 7 shows the process discovery time of sampled event logs with different in-
stance selection thresholds when we apply the ILP miner. Here, to focus on the reason for
improvements, we used variant-based strategies. When we used the sampling size equals
to 100, we will have all the behaviors of the original event log in the sampled event log;

944 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Fig. 7. The average of discovery time of the ILP miner for different instance selection methods with
different sampling size (i.e., c).

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 945

Table 4. Comparing the instance selection and filtering methods based on the required time of them
for preprocessing and process discovery.

Preprocessing Time Discovery time Total Discovery Time
Event Log AFA MF Sampling AFA MF Sampling AFA MF Sampling
BPIC-2012 26,705 593 749 379 19978 140 27084 20571 889
BPIC-2013 3246 312 187 435 749 16 3681 1061 203
BPIC-2017-All 57927 3188 5212 2 1034 859 57929 4222 6071
BPIC-2018-Inspection ∼ 1192 649 ∼ 4 170 ∼ 1196 819
BPIC-2019 804913 6663 4403 7115 312 219 812028 6975 4622
Hospital 27442 2122 828 2014 19767 15 29456 21889 843
Road 13229 2763 937 3418 4478 1 16647 7241 938
Sepsis 12028 62 47 2 4384 1 12030 4446 48

however, the number of traces in the sampled event log is significantly lower than the orig-
inal event log. The greatest improvement is usually gained when we use the similarity or
shorter strategies for this process discovery algorithm. Results show that for many event
logs, by increasing the percentage of selected variants, how will reduce the improvement.
Therefore, for many event logs, the main reason for the improvement in performance of
the process discovery is gained by reducing the number of variants. However, in Road and
Hospital event logs that there are high-frequent variants, reducing the number of traces
has a higher impact on the performance of the process discovery algorithms.

As it is explained, the amount of behavior in the event log also has an important role
in the performance of process discovery algorithms. The remaining percentage of DF re-
lations in the sampled event logs for different instance selection strategies are given in
Figure 8 when we increased the size of the selected percentage of variants (i.e., c). To
compute the remained DF relations, we divide the number of existing relations in the
sampled event log to all DF relations in the original event log. We see that for most of the
event logs, the similar and structure-based selection strategies keep fewer DF relations.
However, according to their ranking methods, they keep the most common DF relations
among the original event log. Moreover, it is shown that for many event logs, with select-
ing only 50% of the variants, we are able to keep more than 80% of the DF relations in the
sampled event log when the frequency or shorter strategies are used. Unlike our expecta-
tions, by using the shorter strategy for selecting variants, we will have high percentages
of Df relations in the sampled event log. It happens because using this strategy, lots of
infrequent trace-variants that may be incomplete, are also selected to be kept in sample
event logs.

Note that there is no such control like the c value for the statistical sampling method
and it aims to keep as much as DF relations in sampled event logs. However, for most
of process discovery algorithms variants are more important compared to only DF re-
lations. Even the basic Inductive miner that uses DF relations may result in different
process models for event logs that have identical sets of DF relations. For example,
L2 = [〈a, b, c〉, 〈a, c, b〉] and L3 = [〈a, c, b, c〉, 〈a, b〉] have the same sets of DF relations;
however, their process models are different. Figure 9 indicates that the average percentage
of the remaining variants in sampled event logs using the statistical sampling method [8].

946 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Fig. 8. Remained percentage of DF relations in the sampled event logs using instance selection
strategies with different sampling size.

Improving the Performance of Process Discovery Algorithms by Instance Selection�� 947

Fig. 9. Average of remained variants and directly follows relations in sampled event logs using the
statistical sampling method [8].

It shows this method is able to keep a few percentages of variants of an event log (using
the default setting).

According to these experiments, we find that using instance selection improves the
performance of process discovery algorithms, specifically if we apply the variant-based
policy. Moreover, we show that instance selection strategies that only uses the variant
meta-data, e.g., frequency or length-based methods are faster than other ones. The in-
stance selection strategies improve the performance of process discovery algorithms by
reducing the number of process instances, variants and behaviors in sampled event logs.
Note that, many times we consider sampling as a preprocessing phase, and we apply
different process mining algorithms, e.g., process discovery several times on the prepro-
cessed event log. As explained in Section 2, there are some preprocessing algorithms
that by removing traces with outlier behaviors will reduce the size of the event log. To
compare the performance of instance selection strategies with other related preprocessing
algorithms, in Figure 10, we examined the average of preprocessing time of three trace
filtering methods and instance selection methods. For some event log, we are not able to
have the preprocessed event logs. For this experiment, we filter event logs with four dif-
ferent filtering settings and iterate the experiments for four times. The result shows that
the instance selection method preprocessed the event logs much faster. Note that, in these
filtering methods, we do not have accurate control over the size of the preprocessed event
logs.

Quality Analysis
There are some research has been done on measuring the quality of business process

models [34, 23, 37]. Here, to analyze the quality of process models that are discovered
on sampled event logs, we use fitness and precision metrics. Fitness measures how much
behavior in the event log is also described by the process model. Thus, a fitness value
equal to 1, indicates that all behavior of the event log is described by the process model.
Precision measures how much of behavior, that is described by the process model, is also

948 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Fig. 10. The average of preprocessing time when we used instance selection strategies and three
state-of-the-arts trace filtering methods [13, 18, 19].

presented in the event log. A low precision value means that the process model allows for
much behavior compared to the given event log. There is a trade-off between these mea-
sures [50], sometimes, putting aside a small amount of behavior causes a slight decrease
in the fitness value, whereas the precision value increases significantly. Therefore, we use
the F-Measure metric that combines both of them with the same weight according to the
following formula[11]:

F-Measure =
2× Precision × Fitness

Precision + Fitness
. (8)

We did not consider the results of the Alpha miner algorithm as it may discover un-
sound process models, and consequently, it is not possible to compute the fitness value
of them. Figure 11 compares the quality of best process models that are discovered
with/without the instance selection method. We used sampled event logs just for discov-
ery purpose, and the original event logs were used for computing F-Measure values. For
the cases that the instance selection methods were used, we applied the sampled size in
[1, 2, 3, 5, 10], and the average of F-Measure values is shown. For the statistical sam-
pling method, we iterate the experiment four times, and again the average of F-Measure
values are considered. For the IMi method, we used nine different filtering thresholds,
but for other discovery methods, just the default setting was used. According to results
that are presented in Figure 11, for the ILP, we always have an improvement when we
use the instance selection method as a preprocessing step. However, the Split miner can
usually discover process models with higher quality via the original event logs or using
the statistical sampling method. Moreover, the statistical sampling method that randomly
selects process instances results in process models with similar quality according to the
F-Measure compared to original event logs. Note that instance selection strategies usually
improve the quality when the size of the event log is considerable, e.g., BPIC-2017-All
and BPIC-2019. In cases that the instance selection method could not improve the quality
of process models, its quality is not much worse than using original event logs.

In Figure 12, the maximum F-Measure value of each instance selection strategy is
shown using the previous setting. It is shown that for some event logs that there are

Improving the Performance of Process Discovery Algorithms by Instance Selection�� 949

Fig. 11. Comparing the average F-Measure values of discovered process models with different sub-
set selection methods.

high-frequent trace-variants, e.g., Road the frequency strategy outperforms other meth-
ods. Among ranking strategies, the longer strategy results in worse process models for
most of the event logs.

For some event logs like BPIC-2017-All, the similarity-based selection strategy is the
best choice for all of the process discovery algorithms. For the Hospital event log, the
structure strategy usually results in process models with the highest F-Measure. Note that
here, we show the maximum value of F-Measure, when we used different size of sampled
event logs. Finding the best size and selection strategy is a challenging task, but as shown
in this figure, we usually expect to have higher quality compared the original event log
(i.e., ”NO Preprocessing”).

To understand a process model, the simplicity of it plays an important role. To measure
the simplicity of a process model, we consider three metrics that measure the complexity
of it. Size of process models is a combination of the number of transitions, places and arcs
that connected them. Note that we used the Petri net notation for process models [35].
Another metric is the Cardoso metric [27] that measures the complexity of a process
model by its complex structures, i.e., And, Or, and Xor components. Containing more
complex structures requires much times to understanding behaviors, and consequently, it
increases the complexity of the process model. There is also another metric called Struc-
turedness that measures how different structural components in a Petri net is wrapped to
each other [27]. It is expected that a Petri net with having more wrapped components is
more difficult and requires much time to be understand. For all of these three measures, a
lower value means less complexity and consequently a simpler process model.

In Table 5, we compared the complexity of process models when different prepro-
cessing methods are applied. Here we used the same setting as explained in the previous
experiment. For both the statistical and instance selection methods, we present the aver-

950 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Fig. 12. The maximum F-Measure of discovered process models using different instance selection
strategies.

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 951

Table 5. The average complexity metrics values of discovered process models using different pro-
cess discovery algorithms. The size is representing the number of arcs, places, and transitions. The
null values correspond to unsound process models.

age values. In this table, size represents the number of elements in the discovered Petri
net as |A| × |P | × |T |. Results show that using instance selection methods we will de-
crease the size of elements in discovered process models. Moreover, according to Cardoso
values, the number of the complex component will be reduced when we use both prepro-
cessing methods. However, using the instance selection method, the decrement is higher.
In this table, there are some null values in the Structuredness field that indicate the cor-
responding process models are unsound. Therefore, as it is expected, the Alpha miner
is not able to guarantee the soundness of discovered process models. Results illustrate
that using instance selection strategies, for most of the cases, we are able to decrease the
structuredness value or have simpler structures. In general, the reduction in complexity
of discovered process models is higher for the Split miner that discovers more complex
process models.

The average Cardoso values of different instance selection strategies are presented
in Figure 13. It is shown that for most of the cases, all the instance selection strategies
are having lower Cardoso values compared to the statistical sampling method. Among
the instance selection methods, there is no method that dominantly outperforms others,
however, the shorter strategy performs better than others. Except for the Alpha miner, the
longer strategy usually results in process models with higher Cardoso value.

6. Conclusion

In this paper, we proposed some instance selection strategies to increase the performance
of process discovery algorithms. We recommend applying process discovery algorithms
on sampled event logs instead of whole event logs when dealing with large data sets. We

952 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Fig. 13. The average Cardoso values of discovered process models using different preprocessing
methods.

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 953

implemented different instance selection strategies in the ProM platform and also ported
them into RapidProM.

To evaluate the proposed method, we applied it to several real publicly available event
logs with different state-of-the-art process discovery algorithms. Experimental results
show that by instance selection strategies, we are able to decrease the required time used
by the process discovery algorithms. We found that instance selection strategies mostly
increase the performance of process discovery by reducing the amount of behavior and the
number of traces. Therefore, by using the sampled event logs, we are able to discover an
acceptable approximation of the final process model in a shorter time. Using the sampled
event log also results in having simpler process models according to complexity metrics.
Moreover, the experiments indicate that for some event logs, instances selection strategies
improve the quality of discovered process models according to the F-Measure metric for
most of process discovery algorithms. The performance and F-Measure improvements
for split miner are less than other process discovery algorithms. However, the instance
selection strategies improve the complexity of this algorithm more than other methods.
We found that the frequency, similarity and structured-based selection strategies result in
process models with higher quality.

As future work, we aim to find out for different event logs and process discovery algo-
rithms, which sampling strategy returns the best process model in less time. It is valuable
to analyze the monotonicity of instance selection strategies and if possible guarantee spe-
cific requirements such as fitness or F-measure with the minimums size of the sampled
event data.

Acknowledgments. We thank the Alexander von Humboldt (AvH) Stiftung for supporting our re-
search.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition. Springer
Berlin Heidelberg (2016)

2. van der Aalst, W.M.P., et all: Process mining manifesto. In: Business Process Management
BPM Workshops, Clermont-Ferrand, France. pp. 169–194 (2011)

3. van der Aalst, W.M.P., Bolt, A., van Zelst, S.: RapidProM: Mine Your Processes and Not Just
Your Data. CoRR abs/1703.03740 (2017)

4. van der Aalst, W.M.P., van Dongen, B., Günther, C.W., Rozinat, A., Verbeek, E., Weijters, T.:
ProM: The Process Mining Toolkit. BPM (Demos) 489(31) (2009)

5. van der Aalst, W.M., Weijters, T., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004),
https://doi.org/10.1109/TKDE.2004.47

6. Andrews, R., Suriadi, S., Ouyang, C., Poppe, E.: Towards event log querying for
data quality - let’s start with detecting log imperfections 11229, 116–134 (2018),
https://doi.org/10.1007/978-3-030-02610-3 7

7. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Split miner: automated
discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst.
59(2), 251–284 (2019), https://doi.org/10.1007/s10115-018-1214-x

8. Bauer, M., Senderovich, A., Gal, A., Grunske, L., Weidlich, M.: How much event data is
enough? A statistical framework for process discovery. In: Krogstie, J., Reijers, H.A. (eds.)
Advanced Information Systems Engineering - 30th International Conference, CAiSE 2018,

954 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

Tallinn, Estonia, June 11-15, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10816, pp. 239–256. Springer (2018), https://doi.org/10.1007/978-3-319-91563-0 15

9. Berti, A.: Statistical sampling in process mining discovery. In: The 9th International Conference
on Information, Process, and Knowledge Management. pp. 41–43 (2017)

10. Boltenhagen, M., Chatain, T., Carmona, J.: Generalized alignment-based trace clustering of
process behavior. In: Donatelli, S., Haar, S. (eds.) Application and Theory of Petri Nets and
Concurrency - 40th International Conference, PETRI NETS 2019, Aachen, Germany, June 23-
28, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11522, pp. 237–257. Springer
(2019), https://doi.org/10.1007/978-3-030-21571-2 14

11. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: Meersman, R., Panetto, H., Dillon, T.S.,
Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F.
(eds.) On the Move to Meaningful Internet Systems: OTM 2012, Confederated International
Conferences: CoopIS, DOA-SVI, and ODBASE 2012, Rome, Italy, September 10-14, 2012.
Proceedings, Part I. Lecture Notes in Computer Science, vol. 7565, pp. 305–322. Springer
(2012), https://doi.org/10.1007/978-3-642-33606-5 19

12. Carmona, J., Cortadella, J.: Process mining meets abstract interpretation. In: Balcázar, J.L.,
Bonchi, F., Gionis, A., Sebag, M. (eds.) Machine Learning and Knowledge Discovery in
Databases, European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24,
2010, Proceedings, Part I. Lecture Notes in Computer Science, vol. 6321, pp. 184–199.
Springer (2010), https://doi.org/10.1007/978-3-642-15880-3 18

13. Conforti, R., Rosa, M.L., ter Hofstede, A.H.M.: Filtering out infrequent behavior from
business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314 (2017),
https://doi.org/10.1109/TKDE.2016.2614680

14. De Leoni, M., Mannhardt, F.: Road traffic fine management process (2015),
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

15. van Dongen, B., Borchert, F.: BPIC 2018. Eindhoven University of Technology (2018),
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972

16. van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data 160 (2005),
http://ceur-ws.org/Vol-160/paper11.pdf

17. Fani Sani, M., Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Filtering toolkit: Interactively
filter event logs to improve the quality of discovered models 2420, 134–138 (2019), http://ceur-
ws.org/Vol-2420/paperDT4.pdf

18. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Improving process discovery results by fil-
tering outliers using conditional behavioural probabilities. In: Teniente, E., Weidlich, M. (eds.)
Business Process Management Workshops - BPM 2017 International Workshops, Barcelona,
Spain, September 10-11, 2017, Revised Papers. Lecture Notes in Business Information Process-
ing, vol. 308, pp. 216–229. Springer (2017), https://doi.org/10.1007/978-3-319-74030-0 16

19. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Applying sequence mining for outlier de-
tection in process mining. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman,
D., Meersman, R. (eds.) On the Move to Meaningful Internet Systems. OTM 2018 Confer-
ences - Confederated International Conferences: CoopIS, C&TC, and ODBASE 2018, Val-
letta, Malta, October 22-26, 2018, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 11230, pp. 98–116. Springer (2018), https://doi.org/10.1007/978-3-030-02671-4 6

20. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Repairing outlier behaviour in event logs.
In: Abramowicz, W., Paschke, A. (eds.) Business Information Systems - 21st International Con-
ference, BIS 2018, Berlin, Germany, July 18-20, 2018, Proceedings. Lecture Notes in Business
Information Processing, vol. 320, pp. 115–131. Springer (2018), https://doi.org/10.1007/978-
3-319-93931-5 9

21. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Repairing outlier behaviour in event logs
using contextual behaviour. vol. 14, pp. 5:1–5:24 (2018), https://doi.org/10.18417/emisa.14.5

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 955

22. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Conformance checking approximation
using subset selection and edit distance. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant,
V. (eds.) Advanced Information Systems Engineering - 32nd International Conference, CAiSE
2020, Grenoble, France, June 8-12, 2020, Proceedings. Lecture Notes in Computer Science,
vol. 12127, pp. 234–251. Springer (2020), https://doi.org/10.1007/978-3-030-49435-3 15

23. Fernández-Cerero, D., Varela-Vaca, Á.J., Fernández-Montes, A., López, M.T.G., Alvárez-
Bermejo, J.A.: Measuring data-centre workflows complexity through process mining: the
google cluster case. J. Supercomput. 76(4), 2449–2478 (2020), https://doi.org/10.1007/s11227-
019-02996-2

24. Gao, J., van Zelst, S.J., Lu, X., van der Aalst, W.M.P.: Automated robotic process automation:
A self-learning approach. In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A.,
Meersman, R. (eds.) On the Move to Meaningful Internet Systems: OTM 2019 Conferences
- Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes, Greece,
October 21-25, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11877, pp. 95–
112. Springer (2019), https://doi.org/10.1007/978-3-030-33246-4 6

25. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining - adaptive process simplification based on
multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) Business Process
Management, 5th International Conference, BPM 2007, Brisbane, Australia, September 24-
28, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4714, pp. 328–343. Springer
(2007), https://doi.org/10.1007/978-3-540-75183-0 24

26. Knols, B., van der Werf, J.M.E.M.: Measuring the behavioral quality of log sampling. In: In-
ternational Conference on Process Mining, ICPM 2019, Aachen, Germany, June 24-26, 2019.
pp. 97–104. IEEE (2019), https://doi.org/10.1109/ICPM.2019.00024

27. Lassen, K.B., van der Aalst, W.M.P.: Complexity metrics for workflow nets. Inf. Softw. Tech-
nol. 51(3), 610–626 (2009), https://doi.org/10.1016/j.infsof.2008.08.005

28. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs - A constructive approach. In: Colom, J.M., Desel, J. (eds.) Applica-
tion and Theory of Petri Nets and Concurrency - 34th International Conference, PETRI NETS
2013, Milan, Italy, June 24-28, 2013. Proceedings, Lecture Notes in Computer Science, vol.
7927, pp. 311–329. Springer (2013), https://doi.org/10.1007/978-3-642-38697-8 17

29. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed,
P. (eds.) Business Process Management Workshops - BPM 2013 International Workshops, Bei-
jing, China, August 26, 2013, Revised Papers, Lecture Notes in Business Information Process-
ing, vol. 171, pp. 66–78. Springer (2013), https://doi.org/10.1007/978-3-319-06257-0 6

30. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for corre-
lating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257
(2016), https://doi.org/10.1016/j.is.2015.07.003

31. Luengo, D., Sepúlveda, M.: Applying clustering in process mining to find different versions
of a business process that changes over time. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.)
Business Process Management Workshops - BPM 2011 International Workshops, Clermont-
Ferrand, France, August 29, 2011, Revised Selected Papers, Part I. Lecture Notes in Business
Information Processing, vol. 99, pp. 153–158. Springer (2011), https://doi.org/10.1007/978-3-
642-28108-2 15

32. Mannhardt, F.: Hospital billing-event log. Eindhoven University of Technology. Dataset pp.
326–347 (2017)

33. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven process discov-
ery - revealing conditional infrequent behavior from event logs. In: Dubois, E., Pohl, K. (eds.)
Advanced Information Systems Engineering - 29th International Conference, CAiSE 2017, Es-
sen, Germany, June 12-16, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10253,
pp. 545–560. Springer (2017), https://doi.org/10.1007/978-3-319-59536-8 34

956 Mohammadreza Fani Sani, Sebastiaan J. van Zelst1,, and Wil van der Aalst1,2

34. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Predic-
tion, and Guidelines for Correctness, Lecture Notes in Business Information Processing, vol. 6.
Springer (2008), https://doi.org/10.1007/978-3-540-89224-3

35. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4),
541–580 (1989)

36. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Discovering process models from uncertain
event data. In: Francescomarino, C.D., Dijkman, R.M., Zdun, U. (eds.) Business Process Man-
agement Workshops - BPM 2019 International Workshops, Vienna, Austria, September 1-6,
2019, Revised Selected Papers. Lecture Notes in Business Information Processing, vol. 362,
pp. 238–249. Springer (2019), https://doi.org/10.1007/978-3-030-37453-2 20

37. Pérez-Castillo, R., Fernández-Ropero, M., Piattini, M.: Business process model refactor-
ing applying IBUPROFEN. an industrial evaluation. J. Syst. Softw. 147, 86–103 (2019),
https://doi.org/10.1016/j.jss.2018.10.012

38. Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Scenario-based prediction of business
processes using system dynamics. In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna,
C.A., Meersman, R. (eds.) On the Move to Meaningful Internet Systems: OTM 2019 Con-
ferences - Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes,
Greece, October 21-25, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11877,
pp. 422–439. Springer (2019), https://doi.org/10.1007/978-3-030-33246-4 27

39. Qafari, M.S., van der Aalst, W.M.P.: Fairness-aware process mining. In: Panetto, H., Debruyne,
C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R. (eds.) On the Move to Meaningful
Internet Systems: OTM 2019 Conferences - Confederated International Conferences: CoopIS,
ODBASE, C&TC 2019, Rhodes, Greece, October 21-25, 2019, Proceedings. Lecture Notes in
Computer Science, vol. 11877, pp. 182–192. Springer (2019), https://doi.org/10.1007/978-3-
030-33246-4 11

40. Rafiei, M., van der Aalst, W.M.P.: Mining roles from event logs while preserving pri-
vacy. In: Business Process Management Workshops - BPM 2019 International Work-
shops, Vienna, Austria, September 1-6, 2019, Revised Selected Papers. pp. 676–689 (2019),
https://doi.org/10.1007/978-3-030-37453-2 54

41. Sani, M.F., van Zelst, S.J., van der Aalst, W.M.P.: The impact of event log subset selection
on the performance of process discovery algorithms. In: Welzer, T., Eder, J., Podgorelec, V.,
Wrembel, R., Ivanovic, M., Gamper, J., Morzy, M., Tzouramanis, T., Darmont, J., Latific, A.K.
(eds.) New Trends in Databases and Information Systems, ADBIS 2019 Short Papers, Work-
shops BBIGAP, QAUCA, SemBDM, SIMPDA, M2P, MADEISD, and Doctoral Consortium,
Bled, Slovenia, September 8-11, 2019, Proceedings. Communications in Computer and Infor-
mation Science, vol. 1064, pp. 391–404. Springer (2019), https://doi.org/10.1007/978-3-030-
30278-8 39

42. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In:
Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management Workshops, BPM
2008 International Workshops, Milano, Italy, September 1-4, 2008. Revised Papers. Lec-
ture Notes in Business Information Processing, vol. 17, pp. 109–120. Springer (2008),
https://doi.org/10.1007/978-3-642-00328-8 11

43. van Zelst, S., van Dongen, B., van der Aalst, W.M.P., Verbeek, H.M.W.: Discov-
ering Workflow Nets Using Integer Linear Programming. Computing (Nov 2017),
https://doi.org/10.1007/s00607-017-0582-5

44. Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfection patterns
for process mining: Towards a systematic approach to cleaning event logs. Inf. Syst. 64, 132–
150 (2017), https://doi.org/10.1016/j.is.2016.07.011

45. van Dongen, B.F.: BPIC 2012. Eindhoven University of Technology (2012),
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

46. van Dongen, B.F.: BPIC 2017. Eindhoven University of Technology (2017),
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

Improving the Performance of Process Discovery Algorithms by Instance Selection?? 957

47. van Dongen, B.F.: BPIC 2019. Eindhoven University of Technology (2019),
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1

48. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Xes, xesame, and
prom 6. In: Soffer, P., Proper, E. (eds.) Information Systems Evolution - CAiSE Forum 2010,
Hammamet, Tunisia, June 7-9, 2010, Selected Extended Papers. Lecture Notes in Business
Information Processing, vol. 72, pp. 60–75. Springer (2010), https://doi.org/10.1007/978-3-
642-17722-4 5

49. Ward Steeman: BPIC 2013. Eindhoven University of Technology (2013),
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07

50. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A robust f-measure for evaluat-
ing discovered process models. In: Proceedings of the IEEE Symposium on Computational
Intelligence and Data Mining, CIDM 2011, part of the IEEE Symposium Series on Com-
putational Intelligence 2011, April 11-15, 2011, Paris, France. pp. 148–155. IEEE (2011),
https://doi.org/10.1109/CIDM.2011.5949428

51. Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace clustering
for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–2720 (2013),
https://doi.org/10.1109/TKDE.2013.64

52. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Proceedings of the
IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2011, part of the
IEEE Symposium Series on Computational Intelligence 2011, April 11-15, 2011, Paris, France.
pp. 310–317. IEEE (2011), https://doi.org/10.1109/CIDM.2011.5949453

53. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process
discovery using integer linear programming. Fundam. Inform. 94(3-4), 387–412 (2009),
https://doi.org/10.3233/FI-2009-136

54. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Avoiding over-fitting in ilp-based
process discovery. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) Business Process
Management - 13th International Conference, BPM 2015, Innsbruck, Austria, August 31 -
September 3, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9253, pp. 163–171.
Springer (2015), https://doi.org/10.1007/978-3-319-23063-4 10

55. van Zelst, S.J., Fani Sani, M., Ostovar, A., Conforti, R., Rosa, M.L.: Detection and removal
of infrequent behavior from event streams of business processes. Inf. Syst. 90, 101451 (2020),
https://doi.org/10.1016/j.is.2019.101451

