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Abstract

The core of many workflow processes in banks, insurance companies, governmental departments, and administrations of
multinationals is formed by a set of tasks that are used to classify cases into two groups: accepted and rejected. Each of these

Ž .tasks has two possible outcomes: OK or NOK i.e., Not OK . If for a specific case all tasks result in OK, the case is
accepted, otherwise it is rejected. In this paper, we concentrate on the order in which these tasks need to be executed to yield
an ‘optimal’ process with respect to the utilization of resources and flow time. Both sequential and parallel routing are
considered. The effect of combining tasks is also investigated. A step-wise approach consisting of 11 concrete re-engineering
rules is given. The approach is supported by a simulation toolbox ExSpectrKO. q 2001 Elsevier Science B.V. All rights
reserved.
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1.Introduction

Today’s successful corporations consider the busi-
ness processes to be the crown jewels of the organi-
zation and are constantly challenged to improve the
performance and efficiency of these processes. There
are several reasons for the increased interest in busi-
ness processes. First of all, management philosophies

Ž .such as Business Process Re-engineering BPR and
Ž .Continuous Process Improvement CPI stimulated

organizations to become more aware of their busi-
ness processes. Secondly, today’s organizations need
to deliver a broad range of products and services. As
a result, the number of processes inside organizations
has increased. Consider, for example, mortgage loans.
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A decade ago, there were just a few types of mort-
gages, at the moment numerous types are available.
Not only the number of products and services has
increased, also the lifetime of products and services
has decreased in the last three decades. As a result,
today’s business processes are also subject to fre-
quent changes. Moreover, the complexity of these
processes increased considerably. Finally, today there
are generic tools such as Workflow Management
Ž . Ž .WFM and Enterprise Resource Planning ERP
systems, which allow for the definition, execution,
registration, and control of workflow processes.
These tools have triggered many organizations to
rethink their business processes.

The increased interest in business processes, in
particular the re-engineering of workflow processes,
has uncovered the Achilles’ heel of business process
management: the lack of concrete quantitative guide-
lines for the design of processes in the service

0167-9236r01r$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.
Ž .PII: S0167-9236 00 00136-6



( )W.M.P. Õan der AalstrDecision Support Systems 30 2001 451–468452

Žindustry i.e., banks, insurance companies, and ad-
.ministrations . Existing approaches are either not

applicable by end-users or focus on qualitative as-
w xpects. Queuing theory 26 , in particular the analysis

w xof queuing networks 16,18 , provides many results
Ž .and has been applied in the domain of flexible

w x w xmanufacturing systems 12 , computer networks 10 ,
w xand telecommunication systems 35 . However, the

results described in literature are only applicable to
specific situations, require advanced tools, and do
not provide concrete guidelines for re-engineering.
Nevertheless, it is clear that queuing theory could
provide a firm theoretical basis for re-engineering
efforts. Simulation is a very flexible technique. Mod-
ern simulation packages allow for both the visualiza-
tion and performance analysis of a given process
w x6,22 . Unfortunately, it takes a lot of time to build a
simulation model, accurate interpretation of simula-
tion results requires statistical knowledge, and simu-
lation only supports ‘what–if analysis’, i.e., it does

wnot suggest improvements. Literature on BPR 1,15,
x w x20,21,24,29,30,32 and WFM 19,23,25,27,28,37 fo-

cuses on the organizational and technical aspects
rather than formulating quantitative rules for re-en-
gineering. For example, the 36 ‘process improve-
ment rules’ provided by Poyssick and Hannaford in

w xRef. 32 are of a qualitative nature and do not give
any concrete support for the design of the control of

w xa given business process. The paper by Buzacott 11
is one of the few papers targeting at quantitative
redesign rules for business processes.

In this paper, we focus on the re-engineering of
knock-out processes. For this type of process, we try
to bridge the gap between queuing theory and simu-
lation on the one hand and qualitative approaches on
the other hand. A knock-out process is a workflow

w xprocess with a specific structure 4 . As any work-
flow, a knock-out process is case-based, i.e., every
piece of work is executed for a specific case. Exam-
ples of cases are a mortgage, an insurance claim, a
tax declaration, an order, or a request for informa-
tion. Cases are often generated by an external cus-
tomer. However, it is also possible that a case is
generated by another department within the same

Ž .organization internal customer . The goal of a
knock-out process is to decide whether the case
should be accepted or rejected. To make this deci-
sion, a number of tasks need to be executed. Each

Žtask has two possible results: OK or NOK i.e., not
.OK . If for a specific case a task results in NOK, the

case is rejected immediately. Only if all tasks have a
positive result, the case is accepted. Many workflow
processes have parts, which can be considered to be
knock-out processes. Handling an insurance claim, a
request for a loan, a job application, and the review-
ing of paper for publication in a journal are typical
examples of processes with a knock-out structure.
This paper provides a set of rules for the redesign of
knock-out processes. The rules are easy to apply and
do not require advanced tool support. However, the
rules are heuristics and do not give decisive answers
to all questions. Therefore, the approach presented in
this paper is supported by the simulation toolbox
ExSpectrKO specifically developed for the analysis
of knock-out processes. The toolbox is implemented
using the Petri-net-based simulation package ExSpect
w x8,9 .

The paper is organized a follows. First, a formal
definition of a so-called knock-out problem and the
associated class of knock-out processes are given.
Then, using a three-step approach, issues such as the
ordering of tasks, the combining of tasks, and the
parallel execution of tasks are addressed. Finally, the
toolbox ExSpectrKO is described. To illustrate the
approach, the process of handling a request for a
mortgage is used throughout the paper.

2. Knock-out processes

A knock-out problem is a business situation where
for each case a pre-specified set of tasks needs to be
executed. As indicated in the introduction, the pro-
cessing of a task stops immediately if in one of the
tasks a reason for rejection is detected. Only cases
that successfully pass all tasks are accepted. A
knock-out problem consists of an arrival process
Ž .i.e., new cases , a set of tasks, a set of resource
classes, and a set of precedence constraints. The
arrival process is specified by the arrival rate, i.e.,
the average number of new cases that arrives each
time unit. In this paper, we assume a Poisson arrival

w xprocess 16,26 . Tasks are mapped onto resource
classes, i.e., a task requires a resource of a specific
resource class. Per resource class, the number of
available resources is given. In a typical organization
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with knock-out processes, e.g., a bank, an insurance
company, or a public administration, the resources
are mainly human. However, because the approach is
not restricted to these organizations, we prefer the
term resource. To facilitate the allocation of work
items to resources, resources are grouped into classes.
A work item is a concrete piece of work, i.e., a task
which needs to be executed for a specific case. A
resource class is a group of resources with similar
characteristics. There may be many resources in the
same class, but a resource may only be a member of
one resource class. If a resource class is based on the

Ž .capabilities i.e., functional requirements of its
members it is called a role. If the classification is
based on the structure of the organization, such a

Žresource class is called an organizational unit e.g.,
.team, branch or department . A work item, which is

being executed by a specific resource, is called an
actiÕity.

Each task has an average processing time, a fail-
ure probability, a reject probability, and a set-up time
ratio. At some points in this paper, the service time
distribution of tasks is assumed to be negative expo-
nential. However, for most of the results we do not
need this assumption. The failure probability speci-
fies the likelihood that a task has to be redone
because of some human or technical error. The
set-up time ratio is the average percentage of time
that is spent on preparations like reading the case
data. The reject probability is the percentage of cases
that do not pass the task successfully. If the task has
a reject probability of 0.22, then for 22% of the cases
the outcome of this task is NOK and in 78% the
result is OK. Throughout this paper, we assume that
the reject probability of a task is independent of its
location in the process, i.e., reject probabilities are
mutually independent. In general, tasks cannot be
executed in an arbitrary way. Some tasks need re-
sults produced by other tasks. Therefore, constraints
with respect to the ordering of tasks are specified in
the so-called precedence relation. In principle there
are three ways to execute tasks: tasks can be exe-
cuted sequentially, tasks can be combined into com-
posite tasks, and tasks can be executed in parallel. If
tasks are combined into a composite task, only one
set-up is needed. Clearly, the set-up time reduction
can improve performance. However, the whole com-
posite task needs to be executed before the decision,

OK or NOK, can be made. Moreover, a failure
results in a rollback of the whole composite task.
Parallel routing can reduce the flow time because
multiple resources can work on a case at the same
time. However, just as with composite tasks, all
parallel flows need to be executed before the deci-
sion, OK or NOK, can be made. Only after synchro-
nization, it can be decided whether the case requires
further processing or not. This is a reasonable as-
sumption since generally it is not possible to with-
draw a case from one parallel branch if a reason for
rejection was detected in another parallel branch. It
may also take some time to synchronize parallel
flows. Therefore, we specify a fixed synchronization
time. The data associated to a knock-out problem can
be formulated by an 11-tuple capturing all aspects
discussed.

Ž .Definition 1 KOPROB . A knock-out problem KO-
ŽPROB is an 11-tuple T, R, ra, pt, fp, rp, sr, nr, st,

.ar, pr , where:

v T, the set of tasks,
v R, the set of resource classes,
v ra:T™R, the resource assignment function,
v

qptgT™R , the processing time of each task,
v w xfpgT™ 0,1 , the failure probability of each

task,
v w xrpgT™ 0,1 , the reject probability of each

task,
v w xsrgT™ 0,1 , the set-up time ratio of each

task,
v nrgR™N, the number of resources for each

task,
v

qstgR , the synchronization time,
v

qargR , the arriÕal rate,
v pr:T=T, the precedence relation.

Consider the following knock-out problem. Before a
bank lends money on mortgage for buying a house.
The bank executes five tasks to check out the poten-

Ž .tial mortgagee and the house s he is planning to
buy:

Ž .A Check salary of mortgagee: is the income
sufficient to pay off the debt in a reasonable
period?
Ž .B Check current debts: does the mortgagee have
serious debts?
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Table 1
Data for the knock-out problem

task ra pt fp rp sr

A X 35 0.05 0.10 0.30
B X 30 0.05 0.15 0.30
C Y 20 0.10 0.20 0.10
D Y 15 0.10 0.15 0.10
E Z 20 0.05 0.20 0.10

Ž .C Check mortgage history: does the mortgagee
have a history of non-payment?
Ž .D Check collateral: is the value of the real estate
as indicated by the mortgagee?
Ž .E Check insurance: is there a reason why the
mortgagee will not be able to get a life insurance?

If result of any of these checks is NOK, the request
is rejected. Only if all checks are positive, the mort-
gage is accepted. Clearly, the process is a knock-out
process. There are five tasks. For convenience, we
call them A, B, C, D, and E. Tasks A and B are

Ž .executed by financial experts resource class X .
Tasks C and D are executed by employees of the

Ž .mortgage department resource class Y . Task E is
Ž .executed by insurance experts resource class Z .

The resource classes X, Y, and Z contain, respec-
tively, six, four, and three employees allocated to
this knock-out process. There are only two prece-
dence relations: both task D and task E need the

�Ž . Ž .4result of task C, i.e., prs C, D , C, E . Each day
Ž . y1 Ž .8 h , 40 new requests arrive, i.e., 5 h ars5 .
The time needed to synchronize the result of multi-

Ž .ple tasks is just 6 min sts0.1 . The remaining
information about the knock-out problem is given in
Table 1.
Note that the probability that a case is accepted is

Ž Ž ..Ł 1y rp t . Therefore, only 42% of the re-t g T

quests for a mortgage are accepted and 58% are
rejected. Also, note that a knock-out problem just
specifies information about the environment, the re-
sources, and the tasks. It does not specify the pro-
cess, i.e., the routing of cases. For the specification
of a knock-out process, we need to define the routing
of a case.

Ž .Definition 2 KOPROC . Given a KOPROB with a
Ž .set of tasks, a knock-out process KOPROC is a

term of the language defined by the following gram-
mar, where PROC is the start symbol, every task
appears exactly once, and the precedence relation is
satisfied:

<w xPROC::sSPROC PPROC
<SPROC::sTASK TASK.PROC
<PPROC::sPROC PROC,PPROC
<Ž .TASK::sATASK CTASK

<CTASK::sATASK ATASK,CTASK
< < <ATASK::s t t . . . t1 2 n

The grammar given in Definition 2 uses the standard
Ž w x.EBNF Extended Backus Naur Form, cf. Ref. 38

notation where a vertical bar indicates a choice, i.e.,
an expression of type PROC is either a expression of
type SPROC or an expression of type PPROC en-
closed by brackets. An expression of type PPROC is
a list of expressions of type PROC separated by
commas, etc. The brackets are used to denote paral-
lel composition. The parenthesis’s are used to form
composite tasks. The dots are used to denote sequen-
tial composition. Consider for example the knock-out
process shown in Fig. 1. This process corresponds to
the knock-out problem described earlier and can be

w Ž .xrepresented by the term A. B, C,D .E. First task A
is executed. Then in parallel task B and the com-
bined task CD are executed. Finally, task E is exe-
cuted. This process is consistent with the knock-out
problem formulated earlier because all tasks appear
once and the two precedence constraints are not

Fig. 1. A knock-out process.
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Ž .violated C is executed before D and E . Other
examples of knock-out processes, which are consis-
tent with the knock-out problem formulated earlier,

Ž .are: A.B.C.D.E a purely sequential process ,
w x ŽC. A,B,D,E first task C, then all remaining tasks in

. Ž . Ž .parallel , A,B,C,D,E one huge combined task ,
w Ž .xand C.E. D, B,A .

Knock-out processes can be supported by any of the
available workflow management systems equipped

Žwith the basic routing primitives e.g., OR-split,
w x.OR-join, AND-split, and AND-join 28 . To illus-

trate this we have realized the knock-out process
w xshown in using Staffware. Staffware 36 is one of

the leading workflow management systems with more
than 550,000 user worldwide. Fig. 2 shows the

w Ž .xknock-out process A. B, C,D .E in the design tool
of Staffware.
We make the following assumptions with respect to
the order in which work items are handled and the

way the work items are distributed over the re-
sources:

v If the execution of a task fails, the resource is
not released, i.e., a new run of the task is
executed by the same resource without any de-
lay.

v Work items are executed in first-come-first-
Ž .served FCFS order per resource class, i.e., per

resource class there is one central queue of work
items which may correspond to multiple tasks
Ž y1Ž ..ra r .

v There are no limitations with respect to the
amount of work-in-progress, i.e., there is infi-
nite buffer capacity in-between tasks.

v If tasks are combined into a composite task, the
composite task is executed in one long run by
one resource which is not released until all
subtasks are completed.

w Ž .xFig. 2. Knock-out process A. B, C,D .E modeled with the Staffware Graphical Workflow Definer.
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For any KOPROC it is possible to calculate the
probability that a specific task t is executed. We will

Ž .use ep t to denote this probability. The actual pro-
Ž .cessing time of a task is given by apt t . If t is

combined and is not the first subtask of the compos-
Ž . Ž .Ž Ž ..ite task, then apt t spt t 1ysr t , otherwise

Ž . Ž .apt t spt t . The utilization of a resource class is
given by:

ep t apt tŽ . Ž .
ar Ý

1y fp tŽ .y1Ž .tgra r
ut r sŽ .

nr rŽ .
This measure is an extension of the standard measure
for utilization in a queuing network with Markovian

w xrouting 16,18 . Consider the knock-out process
Ž . Ž . Ž .shown in Fig. 1: ep A s1.00, ep B s0.90, ep C

Ž . Ž .s0.90, ep D s0.90, and ep E s0.52. The utiliza-
tion of the three resource classes is as follows:
Ž . Ž . Ž .ut X s0.90, ut Y s0.69, and ut Z s0.30. A pro-

cess is called non-stable or infeasible if the amount
of work arriving each time unit exceeds the capacity
of one of the resource classes.

ŽŽ ..Definition 3 stability . A KOPROC is stable if
and only if for all resource classes rgR, the utiliza-

Ž Ž . .tion is less than 100% ut r -1 .

The process shown in Fig. 1 is stable because the
utilization of each of three resource classes is less
than 1. However, an intriguing question is whether it
is possible to improve the process with respect to
resource utilization and flow times. In the remainder
of this paper, we will supply some heuristics and
tools to answer this question. We will concentrate on
the following three key performance indicators:

v Resource utilization: the average percentage of
Ž .time resources are occupied occupation rate .

v Maximal throughput: the maximum number of
Ž .cases the process can handle on average per

Ž .time unit capacity .
v Flow time: the average time needed to process a

Žcase processing time, includes both waiting and
.service time .

If the resource utilization of a resource class is 0.8,
then, on average, resources are idle 20% of the time.
The maximal throughput of a workflow process is
determined by the capacity of the most restricting

bottleneck. A process with a maximal throughput of
20 can handle, on average, up to 20 new cases per
time unit. If more than 20 new cases arrive each time
unit, the process will be overloaded and unable to
process all requests. The flow time is the average
time the workflow process takes to completely pro-
cess a case, i.e., it is based on the time that passes
from the time of arrival of a new case to the time of
its completion.
In this paper we focus on the steady-state behaÕior
of workflow processes having a knock-out structure,
i.e., we assume a steady flow of new cases and a
fixed number of resources. However, for operational
support the steady-state behavior is of secondary

Žimportance. For concrete operational decisions e.g.,
.accept new cases or not the current state and the

w xtransient behavior are of prime importance. In 33
we coined the term short-time simulation for the
situation where the simulation is based on opera-

Žtional control data e.g., work-in-progress and ex-
pected arrival patterns of new cases based on histori-

.cal data and analysis is limited to a given time
Ž .horizon e.g., one month . In fact, we have estab-

lished a run-time connection between the workflow
w xmanagement system COSA 14 and our simulation

w xtool ExSpect 9 to allow for this type of simulation.
Since today’s business processes are subject to fre-
quent changes, it is important to have a direct link
between the run-time system and the decision sup-

w xport system. The interested reader is referred to 33
for more information. However, to goal of this paper
is to identify re-engineering rules. Since we are
primarily interested in rules of thumb rather than
complex rules for operational control, the focus on
the steady-state behavior is justified.

The remainder of this paper is organized as fol-
lows. First, we consider the ordering of tasks for a
knock-out problem without considering the combina-
tion of tasks and parallel processing. Subsequently,
we focus on the guidelines for combining tasks into
composite tasks. Then we consider the pros and cons
associated to putting subsequent tasks in parallel.
The resulting propositions and heuristics are consoli-
dated into a three-step approach to handle knock-out
problems. This approach is based on a number of
simplifying assumptions. Therefore, we also present
the simulation toolbox ExSpectrKO.
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3. Swapping tasks

Many knock-out processes are characterized by
the fact that the degree of freedom with respect to
the order in which tasks can be executed is quite
high. Most tasks correspond to checks which can be
executed in any order. A task is selective if the reject
probability is high. A task is expensive if the average
processing time is high. Clearly, it is wise to start
with selective tasks that are not expensive and post-
pone the expensive tasks which are not selective as
long as possible. This rule of thumb is outlined in the
following proposition.

Proposition 1. Tasks sharing the same resource
class should be ordered in descending order using

[ ( )( ( ))] ( ( ))the ratio rp t 1y fp t r pt t to obtain an opti-
mal process with respect to resource utilization and
maximal throughput.

Proof. Consider two subsequent tasks t and t . The1 2

average workload generated by these two tasks for a
wŽ Ž .. Ž Ž ..xcase waiting for task t is pt t r 1y fp t q1 1 1

wŽ Ž ..Ž Ž .. Ž Ž ..x1y rp t pt t r 1y fp t . By reversing both1 2 2

tasks the average workload corresponding to the
wŽ Ž .. Ž Ž ..x wŽtwo tasks is pt t r 1 y fp t q 1 y rp2 2

Ž ..Ž Ž .. Ž Ž ..x wŽ Ž .. Žt pt t r 1y fp t . Hence, if pt t r 1y2 1 1 2
Ž ..x wŽ Ž ..Ž Ž .. Ž Ž ..xfp t q 1 y rp t pt t r 1 y fp t is2 2 1 1

wŽ Ž .. Ž Ž ..x wŽsmaller than pt t r 1 y fp t q 1 y rp1 1
Ž ..Ž Ž .. Ž Ž ..xt pt t r 1y fp t , then swapping results in a1 2 2

lower resource utilization. By solving this inequality
we obtain the ratio. I

It should be noted that the results presented in this
section only hold for knock-out processes where
there is no parallelism and no tasks are combined
into composite tasks. Nevertheless, we will use the

Žknock-out process shown in Fig. 1 which contains
.both parallelism and a composite task to illustrate

some of the results. The issues of composition and
parallelism are addressed in subsequent sections.

Proposition 1 also has an alternative interpreta-
tion. If is interpreted as the processing costs instead
of the processing time, then Proposition 1 shows
how the tasks should be ordered to minimize the
average costs. Note that such calculation only makes
sense if the costs are truly variable or the savings can
be redirected to other processes.

Task A and task B in the knock-out process
shown in Fig. 1 are both executed by a resource of
the resource class X. Applying Proposition 1 shows
that resource utilization and maximal throughput will
improve if task A and task B are swapped. Task C
and task D are both executed by resources of class
Y. In the remainder of this section we ignore the fact
that there is a precedence constraint which states that
task C needs to be executed before task D and focus
on the desired ordering of these two tasks. Since the
ratio mentioned in Proposition 1 is equal to 0.54 for
both tasks C and D, it is not clear what the best order
is. Therefore, we explore the effect of changing the
ordering of tasks on the average flow time.

Proposition 2. Tasks sharing the same resource
class and haÕing identical exponential serÕice times
( )including failures should be ordered using the re-

( )ject probability in descending order to obtain an
optimal process with respect to resource utilization,
maximal throughput, and flow time.

Proof. In this paper we assume a Poisson arrival
Ž .process and a FCFS first-come–first-served queu-

ing discipline. Also, note that in this section we do
not consider composition and parallelism. Therefore,
the workflow process can be described by a product

w xform queuing network 16,18 if the routing is
Markovian, the service times are exponential, and
the average service time is the same for every class
of clients, i.e., the queuing network corresponds to

Žthe first class of BCMP networks first described by
w x.Baskett et al. 10 . For this class of BCMP networks

the service discipline at each station is FCFS and the
service time distributions must be identical and ex-

Žponential for all classes of clients cf. page 250 in
w x w x.Ref. 10 or Chapter 4 of Ref. 18 . Please note that

the term AclientB is the standard term used to denote
customers or objects flowing through the network.
These clients correspond to cases. The mapping of
the workflow process onto such a BCMP network is
as follows. All tasks sharing the same resources are
mapped onto one FCFS station. If multiple tasks are
mapped onto one station, then several classes of
clients are used to allow for a Markovian routing.
After the first service, the case switches from one
client class to another. Within one class the routing
is Markovian, but a case can be transferred from one
class to another after executing a specific task. This
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way it is possible to enable different successor tasks
for tasks mapped onto the same FCFS station. Note
that it is essential that the average processing time is
the same for all tasks mapped onto the same station.
If this is not the case, the resulting network does not
have a product form solution. Under the assumptions
given it is easy to calculate the average flow time.
Since both the resource utilization and the average
time spent on each case are minimized by starting
with the task with the highest reject probability, it is
straightforward to show that the average flow time is
also minimized.I

If all tasks are about the same size, the ordering
given in Proposition 1 is also optimal with respect to
the flow time. However, if the sizes of the tasks
differ considerably and the resource utilization is
low, it is better to use the following heuristic. In this
paper, the term ‘heuristic’ is used for statements that
do not hold for every knock-out problem. For each
of the heuristics presented in this paper, we need
additional assumptions to give a formal proof of
their correctness. Nevertheless, they can be used as
rules of thumb for the re-engineering for knock-out
processes.

Heuristic 1. Tasks sharing the same resource class
should be ordered in descending order using the

( ) { [ ( ) ( ( ))]}ratio rp t r Cq pt t r 1y fp t to obtain an
optimal process with flow times, where the resulting
resource utilization is acceptable and C is a suitably
chosen constant. C should be of the same order of
magnitude as the aÕerage waiting time per task.

It is easy to see that Proposition 2 is a special case
wŽ Ž .. Ž Ž ..xof this heuristic: If the ratio pt t r 1y fp t is

the same for all tasks sharing a resource class, then
the tasks should be ordered using the reject probabil-
ity. Note that in this particular case the ordering is
independent of the constant C.

To understand the effect of having smaller and
larger tasks sharing the same resources, consider the
following example. There are two tasks: T1 and T2.
Task T1 costs two time units and rejects 25% of the
cases. Task T2 costs four time units but rejects 50%.
According to the ratio in Proposition 1, the order in
which T1 and T2 are executed does not have any

Žeffect on the resource utilization both alternatives

.require an average total processing time of five . Let
us assume that the waiting time for each task does
not change when the order is reversed. In general
this is not true, but, since the utilization does not
change, the waiting time will not change dramati-
cally. If the average waiting time is W, the average
flow time in the situation where task T1 is executed

Ž .before T2 is Wq2q3r4 Wq4 . If the order of
T1 and T2 is reversed the average flow time is

Ž .Wq4q1r2 Wq2 . Hence, the average flow time
of the second alternative is time units less. The
explanation of this phenomenon is simple. By taking
the large but highly selective tasks first, the average
number of times a case has to queue is reduced.
Based on this observation the constant C is added to
the ratio in Heuristic 1. Note that this heuristic
should be applied carefully, because changing the
order of the tasks will have some effect on the
waiting times!

If we apply Heuristic 1 to the example shown in
Fig. 1, it is clear that task C should be executed

Žbefore task D if we consider flow times although in
.both cases the ratio in Proposition 1 is 0.54 . In this

case, any value for the constant C will lead to the
same conclusion. However, in general, the constant
should be chosen close to the expected waiting time.
This waiting time can be estimated based on histori-
cal or empirical data or a simple approximation
based on some analytical model, e.g., the average

w xqueuing time in an MrMr1 queue 26 with the
same utilization rate and average processing time.
These models can be found in any textbook on

w xqueueing theory, e.g., Chapter 1 of Ref. 18 . Please
note that the knock-out process shown in Fig. 1 does
not have a product-form solution because of the
synchronization before executing task E. Therefore,
the conditions mentioned in Proposition 2 are not
satisfied if all tasks have identical exponential ser-
vice times.

In Proposition 1, Proposition 2, and Heuristic 1
we considered tasks sharing the same resource class.
If tasks use different resource classes, the ratio in
Proposition 1 can still be used to minimize the
overall utilization. However, the overall resource
utilization is of less importance. For example, no
resource class should have a utilization of more than
100%. A minimal overall resource utilization may
lead to an unbalanced situation with serious bottle-
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necks. Therefore, it is important to focus on the
effect of utilization on the average flow time. Sup-

Ž .pose that for each task the waiting time wt t is
Ž . Ž Ž . Ž ..given by the following formula: wt t s ut r pt t r

Ž Ž .Ž Ž ...1yut r 1y fp t . This formula corresponds to
the average waiting time for an MrMr1 queue
w x18,26 extended with rework as a result of failures.
Note that if the utilization is close to 100%, the
average waiting time tends to be long. Based on this
assumption we formulate the following heuristic.

Heuristic 2. To obtain an optimal process with
respect to flow time, tasks in a sequential knock-out
process should be ordered in such a way that the

[following ratio is minimized Ý 1 r 1 yr g R
( )] [ ( ) ( )] [ ( )]y 1ur r Ý ep t pt t r 1y fp t .t g r a (r)

Heuristic 2 gives exact answers if each resource
class is a singleton, serves a single task, and service
times are negative exponentially distributed. Under
these circumstances, the workflow process corre-

w xsponds to product form queuing network 16 . To be
Žmore precise: a BCMP network of class 1 cf. Ref.

w x .10 , page 250 . In a way similar to the Proof of
Proposition 2, it can be shown that the flow time is
minimized under these assumptions. Note that local
rules such as Proposition 1 and Heuristic 1 do not
apply to the situation with multiple resource classes.
Swapping two tasks, which correspond to different
resource classes, will not only affect the waiting
times of all tasks corresponding to both resource
classes; it will also affect the utilization rates of all
resource classes executing one or more tasks in-be-
tween.

If we abstract from the two precedence constraints
Ž .C before D and C before E , there are 120 possible
sequential processes that fit the problem description
given earlier. Using the ExSpect toolbox described in
the second part of this paper, we calculated the ratio
mentioned in Heuristic 2 for all of the processes. It
turns out that the process E.C.D.B.A has the smallest

Ž .ratio 3.09 . The process with the highest ratio is
Ž .A.B.C.D.E 12.93 . Both schedules are stable. How-

ever, process E.C.D.B.A violates the precedence
constraint that task C has to be executed before task
E. There are 40 sequential processes satisfying the
precedence relation, pr. Of these 40 knock-out pro-
cesses, the process C.E.D.B.A has the smallest ratio

Ž .3.31 . In this process the workload is more balanced
Ž Ž . Ž . Ž . .ut X s0.51, ut Y s0.65, and ut Z s0.46 than

Ž Ž . Ž .in the process A.B.C.D.E ut X s0.90, ut Y s
Ž . .0.56, and ut Z s0.30 .

It is possible to combine both heuristics, i.e.,
extend the ratio in Heuristic 2 with a factor for the
number of times a case has to queue. The extended
ratio is:

1 ep t pt tŽ . Ž .
Ý Ýž /1yut r 1y fp tŽ . Ž .y1rgR Ž .tgra r

q C ep tŽ .Ýž /
rgR

The constant C should be of the same order of
magnitude as the average waiting time per task.

4. Combining tasks

In the previous section we assumed tasks to be
atomic, i.e., there were no composite tasks. In this
section, we investigate the effect of combining tasks.
Consider two tasks which are mapped onto the same
resource class. If the two tasks are combined into
one composite task, they are executed by one re-
source without interruption. This way no setup is
needed for the second subtask. Clearly, set-up time
reduction can have a positive effect. However, there
are two factors which may have a negative effect on
the performance. First of all, if the composite task
fails, both subtasks need to be executed even if the
error occurred in the second subtask. Secondly, both
subtasks are executed even if the first subtask indi-
cates that the case will be rejected. The processing
time of a composite task joining tasks t and t is1 2
Ž . Ž Ž .. Ž .pt t q 1ysr t pt t and the failure probability1 2 2

Ž . Ž . Ž . Ž .of the composite task is fp t q fp t y fp t fp t .1 2 1 2

It is reasonable to assume that both tasks are exe-
cuted because both subtasks are intertwined and only
at the end it is possible to make some kind of
decision. Since tasks are considered to be atomic, we
also assume that a failure in one of the two parts
leads to a new execution of the whole task. This is
the assumption we also made for normal tasks: The
execution of a task leads to success of the whole task
Ž . Žcommit work or a failure of the whole task abort

.and rollback . This kind of failure semantics is com-
mon in workflow management systems. Typically,
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the so-called ACID properties need to be preserved,
i.e., tasks should be Atomic, Consistent, Isolated,

w xand Durable 4 .
Therefore we make the same assumption for com-

posite tasks. The trade-off between the positive and
negative effects of combining tasks is outlined in the
following proposition.

Proposition 3. Two subsequent tasks and sharing the
same resource class should be combined if and only

( ) ( ) ( ) ( ) ( )( ( ) ( )if pt t sr t )pt t fp t qpt t fp t qrp t y2 2 1 2 2 1 1
( ) ( ))fp t rp t in order to obtain an optimal process1 1

with respect to resource utilization and maximal
throughput.

Proof. Consider two subsequent tasks t and t .1 2

The average workload generated by these two tasks
w Ž . w Ž .xfor a case waiting for task t is pt t r 1y fp t1 1 1

wŽ Ž ..Ž Ž ..x Ž Ž ..q 1y rp t pt t r 1y fp t . By combining1 2 2
w Ž . Žboth tasks this workload equals pt t q 1 y1

Ž .. Ž .x wŽ Ž ..Ž Ž .xsr t pt t r 1y fp t 1y fp t . By compar-2 2 1 2

ing both workloads we obtain the inequality which
shows on the left-hand side the benefits of combin-

Ž . Ž .ing tasks pt t sr t , i.e., the setup time reduction,2 2
Ž . Ž . Ž .Ž Ž .and on the right-hand side pt t fp t qpt t fp t1 2 2 1

Ž Ž . Ž . Ž ..q rp t y fp t rp t , the costs of extra work in1 1 1

case of a failure. I

It should be noted that the results presented in this
section only hold for knock-out processes where
there is no parallelism. Nevertheless, we can apply
the result to the knock-out process shown in Fig. 1
Ž .which contains parallelism . If we apply Proposition
3 to this process, it becomes clear that it was not a
wise choice to combine task C and task D. The time
saved by the setup reduction cannot compensate for
the time lost by doing extra work in case of a failure.
However, assuming that task B is executed before
task A, Proposition 3 points out that it might be a
good idea to combine task B and task A. By combin-
ing task B and task A, the resulting resource utiliza-
tion is 96% of the original utilization. The following
ratio gives the resource utilization in the combined

Ž .situation one composite task relative to the original
Ž .situation two tasks :

Ž . Ž . Ž .pt t qpt t 1ysr tŽ .1 2 2

Ž . Ž . Ž . Ž . Ž .pt t 1y fp t qpt t 1y fp t 1y rp tŽ . Ž .Ž .1 2 2 1 1

This ratio can be obtained by simply dividing the
two workloads mentioned in the proof of Proposition
3.

The effect of combining tasks on the flow time is
less clear. However, the following proposition shows
the effect of the flow time given specific circum-
stances.

Proposition 4. Consider two subsequent tasks and
sharing a resource class containing one resource

(and haÕing identical exponential serÕice times in-
)cluding failures . The tasks should be combined if
( ) ( ) ( ) ( ) ( )( ( )and only if pt t sr t )pt t fp t qpt t fp t2 2 1 2 2 1

( ) ( ) ( ))qrp t -fp t rp t in order to obtain an optimal1 1 1

process with respect to resource utilization, maximal
throughput, and flow time.

Proof. In Proposition 3, it was already shown that
resource utilization is minimized and throughput is
maximized by applying the criterion. In the Proof of
Proposition 2, we showed that a workflow process
can be described by a product form queuing network
w x16,18 if the routing is Markovian, the service times
are exponential, and the average service time is the
same for every class of client, i.e., the queuing
network corresponds to the first class of BCMP

w xnetworks 10 . Note that, in this section, we assume
w Žthat there is no parallelism. ut s ar 2 ysplit

Ž .. Ž .x Ž Ž ..rp t pt t r 1y fp t is the resource utilization1 1 1
Žif both tasks are executed sequentially. Note that

Ž . w Ž .xwe use the assumption that pt t r 1y fp t s1
Ž . w Ž .xpt t r 1y fp t , i.e., both tasks have identical2 2

.average service times including failures. ut scomb
w Ž Ž . Ž Ž .. Ž ..x wŽ Ž .. Žar pt t q 1ysr t pt t r 1y fp t 1y fp1 2 2 1
Ž ..xt is the resource utilization if both tasks are2

combined. The average flow time if both tasks are
�w Ž .xw Ž . Žexecuted sequentially is 1r 1yut pt t r 1ysplit 1

Ž . . x 4 � Ž Ž . . w Ž . xwŽ Ž ..fp t q 1y rp t 1r 1yut pt t r1 1 split 2
Ž Ž ..x4 Ž Ž ..1y fp t sut r ar 1yut . The average2 split split

w Žflow time if both tasks are combined is 1r 1
. x �Ž Ž . Ž Ž .. Ž .. wŽ Ž ..yut pt t q 1ysr t pt t r 1y fp tsplit 1 2 2 1

Ž Ž ..x4 w Ž .x1 y fp t s ut r ar 1 y ut . Since2 comb comb
� w Ž .x4 � w Ž .x4ut r ar 1yut - ut r ar 1yut ifcomb comb split split

and only if ut -ut , we conclude that combin-comb split
Žing only makes sense with respect to the average

.flow time if the resource utilization decreases.
Therefore, tasks should be combined if and only if
Ž . Ž . Ž . Ž . Ž .Ž Ž .. Ž .pt t sr t )pt t fp t qpt t fp t q rp t y2 2 1 2 2 1 1
Ž . Ž ..fp t rp t .1 1 I
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The crux of the proposition is the fact that the
choice between one composite tasks and two sepa-
rate tasks corresponds to the choice between one
visit to an MrMr1 queue and two visits to an
MrMr1 queue with about half the processing time.
Note that it is vital that the average processing times
of both tasks are identical. Otherwise there is no
product form solution and it is not possible to apply
the simple calculations. For this specific situation,
the utilization rate of the resource is decisive. The
higher the utilization rate, the longer the flow time.
The effect of multiple resources on the trade-off
between one composite task and multiple separate
tasks is limited, because at any moment in time there
is just one resource working on a specific case.

Heuristic 3. If there are multiple resources per class
but the tasks haÕe about the same size, the rule used
in Propositions 3 and 4 can be applied to obtain a
minimal aÕerage flow time.

Since task A and task B are of about the same
size, it is wise to combine them in one composite
task BA. If the condition mentioned in Heuristic 3 is
not satisfied, the effect of combining tasks can have
a more positive result than indicated by Proposition
4.

Heuristic 4. If there is a releÕant difference in size
of the two tasks in Proposition 4, the rule should be
applied carefully to obtain a minimal aÕerage flow
time. In this case, splitting a composite task can haÕe
a negatiÕe effect on the aÕerage flow time eÕen
though the resulting utilization rate decreases.

Ž .Consider the following rather extreme situation.
A task of 99 min and a task of 1 min are combined
into one composite task of 101 min, i.e., the set-up
time reduction does not compensate the negative

Ž .effects mentioned earlier 101)99q1 . Clearly,
the utilization rate of the resources involved in-
creases. However, cases just have to queue once
instead of twice. Note that cases are executed in
FCFS order. If the effect of the increased utilization
rate on the waiting time is limited, then the waiting
time is almost divided by two by combining the
tasks.

5. Putting tasks in parallel

The parallel execution of tasks may reduce the
flow time considerably. Consider for example the

Ž .construction of a building e.g., building a house ;
only by doing things in parallel it is possible to build
a house in a couple of weeks. Today’s organizations
are forced to minimize the flow time to reduce
inventory or to improve the responsiveness to the
customer. In fact, there are business processes where
the average flow time is less than sum of all process-
ing times. The latter cannot be achieved by just
adding resources, it forces the organization to put
tasks in parallel. Consider two parallel flows with
flow times of respectively 3 weeks and 4 weeks. The
total flow time will be 4 weeks. If the two flows are
executed sequentially, the flow time will be 7 weeks.

ŽIf there is no conditional routing i.e., a fixed set of
.tasks needs to be executed , the flow time is mini-

mized by putting as much tasks in parallel as possi-
ble without violating the precedence constraints.
However, for knock-out processes it is more diffi-
cult. If two tasks are executed in parallel and one of
the tasks returns NOK, the other task will be exe-
cuted anyway and only after synchronization the
case is rejected, i.e., processing completion is de-
layed until the moment of synchronization. This has
a negative effect on the resource utilization and as a
result can have a negative effect on the flow time.

Proposition 5. Putting two subsequent tasks t and1

t in parallel increases the resource utilization and2

reduces the maximal throughput.

Proof. Consider two subsequent tasks t and t . The1 2

average workload generated by these two tasks for a
� Ž . w Ž .x4 Žcase waiting for task t is pt t r 1y fp t q 11 1 1

Ž ..w Ž . Ž Ž .xy rp t pt t r 1y fp t . By putting both tasks1 2 2
� Ž . win parallel the average workload equals pt t r 1y1

Ž .x4 � Ž . w Ž .x4fp t q pt t r 1y fp t , i.e., for any positive1 2 2
Ž .value of rp t the workload increases. I1

In Proposition 5 it is assumed that both tasks have
a positive rejection ratio. Therefore, it is easy to see
that the amount of work is increased by putting tasks

Ž .in parallel rejected cases still consume capacity .
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The following ratio shows the increase in resource
utilization after putting both tasks in parallel:

Ž . Ž . Ž .pt t 1y fp t rp tŽ .2 1 1

Ž . Ž . Ž . Ž . Ž .pt t 1y fp t qpt t 1y fp t 1y rp tŽ . Ž .Ž .1 2 2 1 1

This ratio can be obtained by dividing the two
workloads mentioned in the Proof of Proposition 5
and subtracting 1. Note that the ratio considers the
increase in resource usage.

Suppose that there are two tasks with identical
processing times and failure rates, and the reject
probability of the first task is, then the increase in

Ž .resource utilization is xr 2yx .
The assumption that tasks in one parallel branch

are executed while a task in another parallel branch
already detected sufficient grounds for rejection is
based on today’s workflow management technology.
There are several problems that make it difficult to
stop all processing after a NOK is detected in one of
the parallel branches. First of all, most workflow
management systems do not have a mechanism for
removing work items. Second, even if the workflow
management system does have a mechanism for

Ž w x.removing work items e.g., Staffware 36 it will not
be able to stop a resource working on one of these
work items thus leading to all kinds of synchroniza-
tion problems. Moreover, if there are several parallel
branches, say n, each containing a considerable
number of tasks, say m, then there may be hundreds
of potential states mn thus making the withdrawal of
work items very complicated and error-prone. The
basic assumption used in today’s workflow manage-
ment systems is that parallel tasks are really indepen-
dent of each other. Therefore, it is difficult, if not
impossible, to model dependencies between parallel
flows other than a straightforward synchronization.

Although the resource utilization increases by
putting tasks in parallel, the organization may be
willing to add resources to improve flow times.
Therefore, it is interesting to investigate under what
conditions the flow times are reduced. The positive
effect of parallel routing is a more effective use of
resources, i.e., the increased flexibility allows for a
better deployment. In a sequential process, it is

Žpossible that one moment one resource executing
. Žtask T1 is overloaded and the other executing task

.T2 is waiting for work, and the next moment the
situation is reversed. In a parallel process this is not

possible because the order in which tasks T1 and T2
need to be executed is not fixed. However, if both
tasks need to be executed by resources of the same
resource class, then it is not possible that cases are
queuing for task T1 while there is sufficient free
capacity for processing T2. In the latter case, both in
the parallel process and in the sequential process,
resources can work as long as there are cases waiting
for either T1 or T2.

Heuristic 5. The positiÕe effect of two subsequent
tasks in parallel is limited if both tasks require
resources from the same resource class.

Therefore, it is not wise to put tasks which are
mapped onto one resource class in parallel. It will
only increase the utilization and therefore also the
average flow time. It is not possible to give general
guidelines for deciding whether tasks should be exe-
cuted in parallel or not. Parallel routing complicates
analytical models. Synchronization results in the
blocking of tasks, which complicates the formulation

w xof simple and elegant results 16 . Therefore, we
restrict ourselves to the rather weak statements in the
following heuristic. In fact, to analyze the effect of
parallel routing in more detail we advise to use the
simulation toolbox ExSpectrKO.

Heuristic 6. Putting subsequent tasks in parallel can
only haÕe a considerable positiÕe effect if the follow-
ing conditions are satisfied:

v Resources from different classes execute the
tasks.

v The flow times of the parallel subprocesses are
of the same order of magnitude.

v The reject probabilities are rather small.
v There is no oÕerloading of any resource class as

a result of putting tasks in parallel, i.e., the
resulting utilization rates are acceptable.

v The time needed to synchronize is limited.

If the flow times of parallel processes are unbal-
anced, there is little to gain by executing tasks in
parallel. Consider two parallel flows with flow times
of respectively one day and four weeks. The total
flow time will be about 4 weeks. However, if the
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two flows are executed sequentially the total flow
Ž .time will also be about 4 weeks worst case . In fact,

if the flow of one day is highly selective, the average
flow time will be reduced considerably if this one-day
flow is executed first. If tasks are highly selective, it
is always better to execute them sequentially. Clearly,
parallel routing should only be considered if the
organization can handle the extra work and the effort
to synchronize flows is limited.

6. An approach to re-engineer knock-out pro-
cesses

In the previous three sections we have seen three
Ž .types of rules: 1 rules for ordering tasks in a
Ž .knock-out process, 2 rules for combining and split-

Ž .ting tasks, and 3 rules for making knock-out pro-
cesses more or less parallel. These steps can be
executed in any order. However, for re-engineering
knock-out processes we propose the following ap-
proach:

1. Determine the ordering of tasks according to
Propositions 1 and 2, and Heuristics 1 and 2.

2. Combine tasks according to Propositions 3 and
4, and Heuristics 3 and 4.

3. Determine, using Proposition 5, and Heuristics
5 and 6, whether it makes sense to handle tasks
in parallel.

Let us apply the approach to the example shown
in Fig. 1. First, we determine the order of tasks.
According to Proposition 1, task B has to be exe-
cuted before A. According to Heuristic 1, C should
be executed before D. Heuristic 2, taking into ac-
count the precedence constraints, shows that the
optimal ordering of tasks is C.E.D.B.A. Process
C.E.D.B.A is the sequential process with the smallest

Ž .ratio 3.31 . Then, we investigate the usefulness of
composite tasks. In principle it is only possible to
combine tasks C and D and tasks B and A. There are
two reasons for not combining tasks C and D. First
of all, task E needs to be executed between tasks C
and D according to the ordering of tasks established
in step 1. However, we may change the order if there
is a lot to gain by joining these tasks. This is not the
case, because there is a second reason for not com-

bining tasks C and D. The time saved by the setup
reduction cannot compensate the time lost by doing
extra work in case of a failure. However, it is wise to
combine task B and task A. By combining task B
and task A, the resulting resource utilization de-
creases 4% compared to the situation where both
tasks are not combined. Step 2 of our approach

Ž .suggests that C.E.D. B,A is good starting point for
Ž .investigating the effect of parallel routing step 3 .

Since task C has to be executed before tasks E and
Ž .D, only the flows E, D and B.A can be executed in

w Ž .x w Ž .xparallel, e.g., C. E,D, B,A , C.E. D, B,A ,
w Ž .x Ž . w xC.D. E, B,A , or C. B,A . E,D are good candidates.

Ž .However, task E is selective 20% is rejected and
the utilization of resource class Z is limited even if E
is executed directly after task C. Therefore, we con-
clude that it is not wise to put E in parallel with

Ž Ž ..other two flows i.e., D and B.A . The only candi-
dates for parallel execution that remain are D and
Ž .B.A . All conditions stated in Heuristic 6 are satis-
fied. Therefore, it may be a good idea to put D and
Ž .B.A in parallel. In Section 7 we will use the
simulation toolbox ExSpectrKO to investigate this
in more detail. For the moment, we conclude that the

w Ž .x‘optimal knock-out process’ is either C.E. D, B,A
Ž .or C.E.D. B,A . Fig. 2 shows the knock-out process

w Ž .xC.E. D, B,A .

7. ExSpectrrrrrKO: a toolbox for analyzing knock-
out processes

To support the approach presented in this paper,
we have developed the simulation toolbox ExSpectr
KO. This toolbox has been developed using ExSpect

w x6.2 8,9 . Before we present the functionality of the
toolbox and apply it to the example, we briefly
discuss the background of ExSpect and its applica-
tions in the domain of workflow management.

The author of this paper has been involved in the
development of ExSpect for the last 10 years. Mem-
bers of the department of Mathematics and Comput-
ing Science of Eindhoven University of Technology
Ž .including the author have constructed the first ver-
sions of the software package ExSpect. In 1995 the
development of ExSpect moved to the Dutch consul-

Ž .tancy firm Bakkenist 150 consultants where it is
used as the standard modeling and analysis tool.
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ExSpect is based on high-level Petri nets, offers a
complete functional programming language, and sup-
ports complex simulation studies. Several authors
have indicated that Petri nets constitute a good for-

w xmal basis for workflow management 2–5,17 . In
fact the leading BPR, ERP, and WFM tools on the
Dutch workflow market are based on Petri nets.
Because of this common basis it is possible to
exchange workflow process definitions. Workflow

Žprocesses modeled with the BPR tool Protos Pallas
w x. ŽAthena, 31 , the WFM system COSA COSA Solu-

w x. ŽtionsrLey, 14 , and the ERP system Baan Baan
w x.Company, 7 can be exported to ExSpect. This way

it is possible to simulate the workflow processes
specified in any of these tools. During the simulation
of a workflow process with ExSpect, the workflow is

Žanimated and key performance indicators e.g., aver-
.age flow time and utilization rate are measured. The

fact that these tools are based on Petri nets also
allows for advanced verification techniques. The tool

Ž .Woflan Eindhoven University of Technology can
be used to verify the correctness of workflow pro-
cess definitions using state-of-the-art analysis tech-

w xniques 2 . A detailed discussion of these tools is
outside the scope of this paper. However, the link
between the toolbox described in this paper and
commercially leading tools illustrates the applicabil-
ity of our approach. In fact, workflow designers
using Protos, COSA or BaanrDEM can directly
benefit from the results presented in this paper.

ExSpectrKO consists of two parts. First of all,
Ž .there is a module ko sort.ex to generate an optimal–

ordering of tasks using Heuristic 2. The ratio’s men-
tioned in this paper were calculated with this mod-

Ž .ule. Secondly, there is a second module ko sim.ex–
which consists of building blocks for the simulation
of knock-out processes. Fig. 3 shows a screenshot of
ExSpectrKO. ExSpectrKO provides both animation
and performance measures. The animation shows
tasks as squares with one input arc and two output

Ž .arcs OK and NOK . AND-splits and AND-joins are
represented by a sand timer. Also special building
blocks for the arrival process, the resource manager,
and measurement systems have been added. Figure 4
shows a selected part of the simulation dashboard. In
total eleven measurements are reported, ranging from
average flow times to average resource utilization.
The simulation is divided into subruns and confi-

Fig. 3. An alternative knock-out process.

dence intervals for the key performance indicators
are generated automatically. For each subrun there
are approximately 10,000 new arrivals and the aver-
age number of cases in the workflow is typically in
the range 150–170 cases. Therefore, it is safe to
assume that the subruns are mutually independent
Žthis has been checked using the Von Neumann

.ratio and the individual subrun results are assumed
Ž .to be normally distributed Law of large numbers .

Based on these assumptions we calculate 90%-confi-
dence intervals for flow times using the Student’s
t-distribution.

If we apply ExSpectrKO to the process
w Ž .x Ž .A, B, C,D .E i.e., the process shown in Fig. 1 , the

following results are reported. Average flow time is
more than 3 h. For a simulation run where 100,000
cases are processed the 90% confidence interval for

w xthe average flow time is 3.05,3.50 , and the utiliza-
tion rates of X, Y and Z are respectively 0.91
Žw x .0.90,0.92 , 90% confidence interval , 0.79
Žw x. Žw x.0.78,0.80 , and 0.31 0.30,0.32 . It takes about 10
min to simulate a run of 100,000 cases on a Pentium
200 Mhz computer.

w Ž .x ŽFor the process C.E. D, B,A i.e., the process
.shown in Fig. 2 , ExSpectrKO reports the following

Žresults. Average flow time is 1.59 h 100,000 cases,
w x .1.57,1.61 , 90% confidence interval and the utiliza-
tion rates of X, Y and Z are respectively 0.54
Žw x .0.53,0.55 , 90% confidence interval , 0.69
Žw x. Žw x.0.68,0.70 , and 0.47 0.46,0.48 .

If we apply the ExSpectrKO to the process
Ž .C.E.D. B,A , the following results are reported. Av-

Ž w xerage flow time is 1.64 h 100,000 cases, 1.63,1.65 ,
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Fig. 4. A screenshot of ExSpectrKO.

.90% confidence interval and the utilization rates of
Žw xX, Y and Z are respectively 0.47 0.46,0.48 , 90%

. Žw x.confidence interval , 0.69 0.68,0.70 , and 0.47
Žw x.0.46,0.48 .

Based on these simulation results we conclude
that both alternatives found by applying the step-wise
approach presented in this paper improve the perfor-
mance indeed. The average flow time is only half of
the original situation and the workload is more bal-
anced over the three resource classes. The step-wise
approach could not answer the question whether

w Ž .xalternative C.E. D, B,A is better than alternative
Ž .C.E.D. B,A or vice-versa. Fortunately, we can use

ExSpectrKO to make a more detailed analysis. As
w Ž .xthe simulation results show, C.E. D, B,A leads to

Ž .significantly smaller flow times than C.E.D. B,A ,
Ž . Žbecause D and B,A are executed in parallel Fig.

.5 . However, the utilization rate of the resource class

X increases about 6%. If we increase the arrival rate
sufficiently, then one would expect alternative

Ž .C.E.D. B,A to have a smaller average flow time
w Ž .xthan alternative CE D, B,A because of the increas-

ing utilization. If we increase the arrival rate by
10%, then the average flow time for the process

w Ž .x Ž w xC.E. D, B,A is 1.73 h 110,000 cases, 1.69,1.76 ,
.90% confidence interval and the average flow time

Ž . Žfor the process C.E.D. B,A is 1.77 h 110,000 cases,
w x .1.74,1.81 , 90% confidence interval , i.e., the first
alternative still seems to be slightly better. If we
increase the arrival rate by 25%, then the average

w Ž .xflow time for the process C.E. D, B,A is 2.17 h
Ž w x .125,000 cases, 2.11,2.24 , 90% confidence interval
and the average flow time for the process

Ž . Ž w xC.E.D. B,A is 2.18 h 125,000 cases, 2.13,2.23 ,
.90% confidence interval , i.e., both alternatives seem

to be comparable. The fact that a considerable in-



( )W.M.P. Õan der AalstrDecision Support Systems 30 2001 451–468466

Fig. 5. Screenshot of the dashboard showing some of the results for the process shown in Fig. 3.

crease in arrivals does not lead to superiority of
Ž . w Ž .xalternative C.E.D. B,A over C.E. D, B,A can be

explained by the observation that resource class Y is
the bottleneck and that the utilization rate of Y is the
same for both alternatives. Note that some of the
confidence interval overlap. By using longer simula-
tion runs the length of these intervals can be reduced.
However, the goal of this section was to illustrate the
method and not to provide a detailed analysis of the
example.

8. Conclusion

In this paper we investigated the class of knock-out
processes. Knock-out processes are a particular type
of workflow processes where the goal is to accept or

reject cases by executing a specified set of tasks.
These processes are called knock-out processes be-
cause if one tasks indicates that a case should be
rejected, processing is stopped and the task is re-
jected immediately. For this particular class of pro-
cesses we have given easy-to-apply rules for re-en-
gineering. These rules are used to determine the
ordering of tasks, to indicate useful combinations of
tasks, and to find out which tasks should be executed
in parallel. To support the approach, the simulation
toolbox ExSpectrKO has been developed.

One might argue that only few processes encoun-
tered in practice have exactly the knock-out structure
described in this paper. Consider for example the
reviewing process of a paper for this journal: A
reviewer can choose from five possible recommenda-

Žtions ranging from unconditional acceptance to re-
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. Ž .jection rather than two OK or NOK and not every
negative review automatically leads to a rejection.
Nevertheless, the re-engineering rules can be applied
to selected parts of the reviewing process and the
rules can be extended to incorporate more complex
routing structures. Many processes encountered in
practice contain routing patterns similar to the ones
investigated in this paper. Workflow processes often
contain subprocesses generating a decision based on
a number of checks, e.g., handling insurance claims,
processing job applications, and evaluating applica-
tions for building permits.

One should think of the reengineering rules as
rules of thumb that can be used to generate attractive
alternative designs. For a more detailed analysis of

w xdifferent designs one should resort to simulation 34
w xor standard queuing network analysis 16,18 . The

toolbox ExSpectrKO is tailored towards the simula-
tion of knock-out processes. However, ExSpect also
allows for the analysis of arbitrary workflow pro-
cesses using the more general, but less supportive,

w xtoolbox described in Ref. 13 . Moreover, it is possi-
ble to automatically download and analyze workflow
designs from several commercial workflow products

w x w x w xincluding COSA 14 and Protos 31 . See Ref. 9
for more details or to download a demo version of
the ExSpect software.
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