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Abstract. Process mining is a scientific discipline that analyzes event
data, often collected in databases called event logs. Recently, uncertain
event logs have become of interest, which contain non-deterministic and
stochastic event attributes that may represent many possible real-life sce-
narios. In this paper, we present a method to reliably estimate the proba-
bility of each of such scenarios, allowing their analysis. Experiments show
that the probabilities calculated with our method closely match the true
chances of occurrence of specific outcomes, enabling more trustworthy
analyses on uncertain data.

Keywords: Process Mining · Uncertain Data · Partial Order.

1 Introduction

Process mining is a discipline that focuses on extracting insights about processes
in a data-driven manner. For instance, on the basis of the recorded information
on historical process executions, process mining allows to automatically extract
a model of the behavior of process instances, or to measure the compliance of
the process data with a prescribed normative model of the process. In process
mining, the central focus is on the event log, a collection of data that tracks past
process instances. Every activity performed in a process is recorded in the event
log, together with information such as the corresponding process case and the
timestamp of the activity, in a sequence of events called a trace.

Recently, research on novel forms of event data have garnered the attention
of the scientific community. Among these there are uncertain event logs, which
contain data affected by imprecision [8]. This data contains meta-information
describing the nature and entity of the uncertainty. Such meta-information can
be obtained from the inherent precision with which the data has been recorded
(e.g., timestamps only indicating the date have a possible “true value” range
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of 24 hours), from the precision of the tools involved in supporting the process
(e.g., the absolute error of sensors), or from the domain knowledge provided by
a process expert. An uncertain trace corresponds to multiple possible real-life
scenarios, each of which might have very diverse implications on features of cases
such as compliance to a model. It is then important to be able to assess the risk
of occurrence of specific outcomes of uncertain traces, which enables to estimate
the impact of such traces on indicators such as cost and conformance.

In this paper, we present a method to obtain a complete probability dis-
tribution over the possible instantiations of uncertain attributes in a trace. As
a possible example of application, we frame our results in the context of con-
formance checking, and show the impact of assessing probability estimates for
uncertain traces on insights about the compliance of an uncertain trace to a pro-
cess model. We validate our method with experiments based on a Monte Carlo
simulation, which shows that the probability estimates are reliable and reflect
the true chances of occurrence of a specific outcome.

The remainder of the paper is structured as follows. Section 2 examines
relevant related work. Section 3 illustrates a motivating running example for
our technique. Section 4 presents preliminary definitions of different types of
uncertainty in process mining. Section 5 illustrates a method for computing
probabilities of realizations for uncertain process traces. Section 6 validates our
method through experimental results. Finally, Section 7 concludes the paper.

2 Related Work

The analysis of uncertain data in process mining is a very recent research di-
rection. The specific formulation and definition of uncertain data utilized in
this paper has been introduced in 2019 [8], in the context of an analysis ap-
proach consisting in computing bounds for the conformance score of uncertain
traces through alignments [5]. Subsequently, that work has been extended with
an inductive mining approach for process discovery over uncertainty [9] and a
taxonomy of different types of uncertain data, with their characteristics [10].

Uncertain data, as formulated in our present and previous work, is closely
related to a considerably more studied data anomaly in process mining: partially
ordered event data. In fact, uncertain data as described here is a generalization of
partially ordered traces. Lu et al. [7] proposed a conformance checking approach
based on alignments to measure conformance of partially ordered traces. More
recently, Van der Aa et al. [1] illustrated a method for inferring a linear exten-
sion, i.e., a compliant total order, of events in partially ordered traces, based on
examples of correct orderings extracted from other traces in the log. Busany et
al. [4] estimated probabilities for partially ordered events in IoT event streams.

An associated topic, which draws from disciplines such as pattern and se-
quence mining and is antithetical to the analysis of partially ordered data, is the
inference of partial orders from fully sequential data as a way to model its behav-
ior. This goes under the name of episode mining, which can be performed with
many techniques both on batched data and with online streams of events [11,6,2].
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In this paper, we present a method to estimate the likelihood of any scenario
in an uncertain setting, which covers partially ordered traces as well as other
types of uncertainty illustrated in the taxonomy [10]. Furthermore, we will cover
both the non-deterministic case (strong uncertainty) and the probabilistic case
(weak uncertainty).

3 Running Example

In this section, we will provide a running example of uncertain process instance
related to a sample process. We will then apply our probability estimation
method to this uncertain trace, to illustrate its operation. The example we ana-
lyze here is a simplified generalization of a remote credit card fraud investigation
process. This process is visualized by the Petri net in Figure 1.

Firstly, the credit card owner alerts the credit card company of a possibly
fraudulent transaction. The customer may either notify the company by calling
their hotline (alert hotline) or arrange an urgent meeting with personnel of the
bank that issued the credit card (alert bank). In both scenarios, his credit is
frozen (freeze credit) to prevent further fraud. All information provided by the
customer about the transaction is summarized when filing the formal report (file
report). As a next step, the credit card company tries to contact the merchant
that charged the credit card. If this happens (contact merchant), the credit
card company clarifies whether there has been just a mistake (e.g., merchant
charging not delivering a product, or a billing mistake) on the merchant’s side.
In such cases, the customer gets a refund from merchant and the case is closed.
Another outcome might be the discovery of a friendly fraud, which is when a
cardholder makes a purchase and then disputes it as fraud even though it was
not. If contacting the merchant is impossible, a fraud investigation is initiated.
In this case, fraud investigators will usually start with the transaction data and
look for timestamps, geolocation, IP addresses, and other elements that can be
used to prove whether or not the cardholder was involved in the transaction.
The outcome might be either friendly fraud or true fraud. True fraud can also
happen when both the merchant and the cardholder are affected by the fraud.
In this case, the cardholder receives a refund from the credit institute (activity
refund credit institute) and the case is closed.

Note that for simplicity, we have used single letters to represent the activity
labels in the Petri net transitions. Some possible traces in this process are for
example: 〈h, c, r,m, u〉, 〈b, c, r,m, f〉, 〈h, c, r, i, f〉 and 〈b, c, r, i, t, v〉.

Suppose that the credit card company wants to perform conformance check-
ing to identify deviant process instances. However, some traces in the information
system of the company are affected by uncertainty, such as the one in Table 1.

Suppose that in the first half of October 2020, the company was implement-
ing a new system for automatic event data generation. During this time, the
event data regarding the credit card fraud investigation process often had to
be inserted manually by the employees. Such manual recordings were subject
to inaccuracies, leading to imprecise or missing data affecting the cases during
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Fig. 1: A Petri net model of the credit card fraud investigation process. This net allows for 10
possible traces.

Table 1: Example of an uncertain case from the credit card fraud investigation process.
Case ID Event ID Activity Timestamp Ind.

5167 e1 h (alert hotline) 05-10-2020 23:00
5167 e2 c (freeze credit) 06-10-2020

5167 e3 r (file report)
U(05-10-2020 20:00,
06-10-2020 10:00)

5167 e4 i (fraud investigation) 09-10-2020 10:00

5167 e5

{f : 0.3 (friendly fraud),

t : 0.7 (true fraud)} 14-10-2020 09:00
5167 e6 v (refund credit institute) 15-10-2020 10:00 ?

this period. The process instance from Table 1 is one of the affected instances.
Here, events e2, e3, e5, e6 are uncertain. The timestamp of event e2 is not precise
enough, so the possible timestamp lies between 06-10-2020 00:00 and 06-10-2020
23:59. Event e3 has happened some time between 20:00 on October 5th and
10:00 on October 6th. Event e5 has two possible activity labels: f with probabil-
ity 0.3 and t with probability 0.7. Refunding the customer (event e6) has been
recorded in the system, but the customer has not received the money yet, which
is why the event is indeterminate: this is indicated with a question mark (?) in
the rightmost column, and indicates an event that has been recorded, but for
which is unclear if it actually occurred in reality.

The credit card company is interested in understanding if and how the data in
this uncertain trace conforms with the normative process model, and the entity
of the actual compliance risk; they are specifically interested in knowing whether
a severely non-compliant scenario is highly likely. In the remainder of the paper,
we will describe a method able to estimate the probability of all possible outcome
scenarios.

4 Preliminaries

Let us now present some preliminary definitions regarding uncertain event data.

Definition 1 (Uncertain attributes). Let U be the universe of attribute do-
mains, and the set D ∈ U be an attribute domain. Any D ∈ U is a discrete
set or a totally ordered set. A strongly uncertain attribute of domain D is a
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subset dS ⊆ D if D is a discrete set, and it is a closed interval dS = [dmin, dmax]
with dmin ∈ D and dmax ∈ D otherwise. We denote with SD the set of all
such strongly uncertain attributes of domain D. A weakly uncertain attribute
fD of domain D is a function fD : D 6→ [0, 1] such that 0 <

∑
x∈D fD(x) ≤ 1

if D is finite, 0 <
∫∞
−∞ fD(x) dx ≤ 1 otherwise. We denote with WD the set of

all such weakly uncertain attributes of domain D. We collectively denote with
UD = SD ∪WD the set of uncertain attributes of domain D.

It is easy to see how a “certain” attribute x, with a value not affected by any
uncertainty, can be represented through the definitions in use here: if its domain
is discrete, it can be represented with the singleton {x}; otherwise, it can be
represented with the degenerate interval [x, x].

Definition 2 (Uncertain events). Let UI be the universe of event identifiers.
Let UC be the universe of case identifiers. Let A ∈ U be the discrete domain of
all the activity identifiers. Let T ∈ U be the totally ordered domain of all the
timestamp identifiers. Let O = {?} ∈ U, where the “?” symbol is a placeholder
denoting event indeterminacy. The universe of uncertain events is denoted with
E = UI × UC × UA × UT × UO.

The activity label, timestamp and indeterminacy attribute values of an un-
certain event are drawn from UA, UT and UO; in accordance with Definition 1,
each of these attributes can be strongly uncertain (set of possible values or inter-
val) or weakly uncertain (probability distribution). The indeterminacy domain
is defined on a single element “?”: thus, strongly uncertain indeterminacy may
be {?} (indeterminate event) or ∅ (no indeterminacy). In weakly uncertain in-
determinacy, the “?” element is associated to a probability value.

Definition 3 (Projection functions). For an uncertain event e = (i, c, a, t, o) ∈
E, we define the following projection functions: πa(e) = a, πt(e) = t, πo(e) = o.
We define πseta (e) = a if a is strongly uncertain, and πseta (e) = {x ∈ UA |
fA(x) > 0} with a = fA otherwise. If the timestamp t = [tmin, tmax] is strongly
uncertain, we define πtmin(e) = tmin and πtmax(e) = tmax. If the timestamp
t = fT is weakly uncertain, we define πtmin(e) = argminx(fT (x) > 0) and
πtmax(e) = argmaxx(fT (x) > 0).

Definition 4 (Uncertain traces and logs). τ ⊂ E is an uncertain trace if
all the event identifiers in τ are unique and all events in τ share the same case
identifier c ∈ UC . T denotes the universe of uncertain traces. L ⊂ T is an
uncertain log if all the event identifiers in L are unique.

Definition 5 (Realizations of uncertain traces). Let e, e′ ∈ E be two uncer-
tain events. ≺E is a strict partial order defined on the universe of strongly uncer-
tain events E as e ≺E e′ ⇔ πtmax(e) < πtmin(e′). Let τ ∈ T be an uncertain trace.
The sequence ρ = 〈e1, e2, . . . , en〉 ∈ E∗, with n ≤ |τ |, is an order-realization of τ
if there exists a total function f : {1, 2, . . . , n} → τ such that:

– for all 1 ≤ i < j ≤ n we have that ρ[j] ⊀E ρ[i],
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– for all e ∈ τ with πo(e) = ∅ there exists 1 ≤ i ≤ n such that f(i) = e.

We denote with RO(τ) the set of all such order-realizations of the trace τ .
Given an order-realization ρ = 〈e1, e2, . . . , en〉 ∈ RO(τ), the sequence σ ∈

UA∗ is a realization of ρ if σ ∈ {〈a1, a2, . . . , an〉 | ∀1≤i≤n ai ∈ πseta (i)}. We
denote with RA(ρ) ⊆ UA∗ the set of all such realizations of the order-realization
ρ. We denote with R(τ) ⊆ UA∗ the union of the realizations obtainable from
all the order-realizations of τ : R(τ) =

⋃
ρ∈RO(τ)RA(ρ). We will say that an

order-realization ρ ∈ RO(τ) enables a sequence σ ∈ UA∗ if σ ∈ RA(ρ).

Detailing an algorithm to generate all realizations of an uncertain trace is
beyond the scope of this paper. The literature illustrates a conformance checking
method over uncertain data which employs a behavior net, a Petri net able to
replay all and only the realizations of an uncertain trace [8]. Exhaustively explor-
ing all complete firing sequences of a behavior net, e.g., through its reachability
graph, provides all realizations of the corresponding uncertain trace.

Given the above formalization, we can now define more clearly the research
question that we are investigating in this paper. Given an uncertain trace τ ∈ T
and one of its realizations σ ∈ R(τ), our goal is to obtain a procedure to reliably
compute P (σ | τ) = “probability of σ given that we observe τ”. In other words,
provided that σ corresponds to a scenario (i.e., a realization) for the uncertain
trace τ , we are interested in calculating the probability that σ is the actual
scenario occurred in reality, which caused the recording of the uncertain trace
τ in the event log. In the next section, we will illustrate how to calculate such
probabilities of uncertain traces realizations.

5 Method

Before we show how we can obtain probability estimates for all realizations of
an uncertain trace, it is important to state an assumption: the information on
uncertainty related to a particular attribute in some event is independent of the
possible values of the same attribute present in other events, and it is indepen-
dent of the uncertainty information on other attributes of the same event. Note
that in the examples of uncertainty sources given in Section 1 (data coarseness
and sensor errors), this independence assumption often holds.

Additionally, we need to consider the fact that strongly uncertain attributes
do not come with known probability values: their description only specifies the
values that attributes might acquire, but not the likelihood of each possible
value. As a consequence, estimating probability for specific realizations in a
strongly uncertain environment is only possible with a-priori assumptions on how
probability distributes among the attribute value. At times, it might be possible
to assume the distribution in an informed way—for instance, on the basis of
features of the information system hosting the data, of the sensors recording
events and attributes, or other tools involved in the management of the process.

In case no indication is present, a reasonable assumption—which we will hold
for the remainder of the paper—is that any possible value of a strongly uncertain



Probability Estimation of Uncertain Process Trace Realizations 7

attribute is equally likely. Formally, with e = (i, c, a, t, o) ∈ E let τs : E → E be a
function such that τs(e) = (i, c, a′, t′, o′), where a′ = {(x, 1

|πseta (e)| ) | x ∈ π
set
a (e)}

if a ∈ SA and a′ = a otherwise; t′ = U(πtmin(e), πtmax(e)) if t ∈ ST and t′ = t
otherwise; o′ = 0.5 if o = {?} and o′ = o otherwise.

First, observe that the probability P (σ | τ) that an activity sequence σ ∈ UA∗
is indeed a realization of the trace τ ∈ T , and thus σ ∈ R(τ), increases with
the number of order-realizations enabling it. Furthermore, for each such order-
realizations, one can construct a probability function PO(ρ | τ) reflecting the
likelihood of the sequence ρ itself given the trace τ , and a probability function
PA(σ | ρ) reflecting the likelihood that the realization corresponding to ρ is
indeed σ. The value of PO(ρ | τ) is affected by the uncertainty information in
timestamps and indeterminate events, while the value of PA(σ | ρ) is aggregated
from the uncertainty information in the activity labels.

Given a realization σ of an uncertain process instance and the set of its
enablers, its probability is computed as following:

P (σ | τ) =
∑
ρ∈E∗

PO(ρ | τ) · PA(σ | ρ)

Note that, if ρ does not enable σ, PA(σ | ρ) = 0. For any uncertain trace
τ ∈ T , it holds that

∑
σ∈R(τ) P (σ | τ) = 1, since both PO(·) and PA(·) are each

constructed to be (independent) probability distributions.
We will now compute PA(σ | ρ) using the information on the activity labels

uncertainty. Let us write feA as a shorthand for πa(e). If there is uncertainty in
activities, then for each event e ∈ ρ and activity label a ∈ πseta (e), the probability
that e executes a is given by feA(a). Thus, for every ρ = 〈e1, ..., en〉 ∈ RO(τ) and
σ = 〈a1, ..., an〉 ∈ RO(τ), the value PA can be aggregated from these distribu-
tions in the following way:

PA(σ | ρ) =

n∏
i=1

f
i
A(ai)

Through the value of PA, we can assess the likelihood that any given order-
realization executes a particular realization. The next step is to estimate the
probability of each order-realization ρ from the set RO(τ). The probability of
observing ρ needs to be aggregated from the probability that the correspond-
ing set of events appears in the given particular order, which is determined by
the timestamp intervals and, if applicable, the distributions over them; and the
probability that the order-realization contains the corresponding specific set of
events, which is determined by the uncertainty information on the indeterminacy.
Multiplying the two values obtained above to yield a probability estimate for the
order-realization reflects our independence assumption. Let us firstly focus on
uncertainty on timestamps, which causes the events to be partially ordered.

We will write feT (t) as a shorthand for πt(e)(t). For every event e, the value
of feT (t) yields the probability that event e happened on timestamp t. This
value is always 0 for all t < πtmin(e) and t > πtmax(e) (see πtmin and πtmax in
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Definition 3). Given the continuous domain of timestamps, PO(·) is assessed by
using integrals. For a trace τ ∈ T and an order-realization ρ = 〈e1, ..., en〉 ∈
RO(τ), let ai = πtmin(i) and bi = πtmax(i) for all 1 ≤ i ≤ n. Then, we define:

I(ρ) =

∫ min{b1,...,bn}

a1

f
e1
T (x1)

∫ min{b2,...,bn}

max{a2,x1}
f
e2
T (x2) · · ·

∫ min{bi,...,bn}

max{ai,xi−1}
f
i
T (xi) · · ·

∫ bn

max{an,xn−1}
f
en
T (xn) dxn . . . dx1

=

∫ min{b1,...,bn}

a1

∫ min{b2,...,bn}

max{a2,x1}
· · ·

∫ min{bi,...,bn}

max{ai,xi−1}
· · ·

∫ bn

max{an,xn−1}

n∏
i=1

f
i
T (xi) dxn . . . dx1

This chain of integrals allows us to compute the probability of a specific order
among all the events in an uncertain trace. Now, to compute the probability of
each realization from Re accounting for indeterminate events, we combine both
the probability of the events having appeared in a particular order and the
probability that the sequence contains exactly those events. For simplicity, we
will use a function that acquires the value 1 if an event is not indeterminate. Let
us define feO : O → [0, 1] such that feO(?) = πo(e)(?) if πo(e) 6= ∅ and feO(?) = 1
otherwise. More precisely, given τ ∈ T and ρ ∈ RO(τ), we compute:

PO(ρ | τ) = I(ρ) ·
∏
e∈τ
e∈ρ

(1− feO(?)) ·
∏
e∈τ
e6∈ρ

f
e
O(?)

We now have at our disposal all the necessary tools to compute a probability
distribution over the trace realizations of any uncertain process instance in any
possible uncertainty scenario. Let us then apply this method to compute the
probabilities of all realizations of the trace τ in Table 1, and to analyze its
conformance to the process in Figure 1.

Each order-realization of τ enables two realizations, because event e5 has
two possible activity labels. Since for events e ∈ τ \ {e5}, we have feA equal to
1 for their corresponding unique activity label, the probability that an order-
realization ρ ∈ RO(τ) has some realization σ ∈ RA(ρ) only depends on whether
the trace σ contains activity f or t. Thus, for traces σ1′ , σ2′ , σ3′ , σ4′ , σ5′ , σ6′

and their unique enabling sequences, we always have PA(σi
′ | sie) = fe5A (f) =

0.3, where i ∈ {1, . . . , 6}. Similarly, for traces σ1′′ , σ2′′ , σ3′′ , σ4′′ , σ5′′ , σ6′′ and
their unique enabling sequences, we always have PA(σi

′′ | ρi) = fe5A (t) = 0.7,
where i ∈ {1, . . . , 6}. Next, we calculate the PO(·) values for the 6 possible order-
realizations in RO(τ), which are displayed in Table 2.

One can notice that the I values only depend on the ordering of the first
three events, which are also the only ones with overlapping timestamps. Since the
indeterminate event e6 does not overlap with any other event, pairs of sequences
where the first three events have the same order also have the same probability.
This reflects our assumption that the occurrence and non-occurrence of e6 are
both equally possible. Table 3 displays the calculations for the computation
of the P (σ | τ) values for all realizations. Now we can compute the expected
conformance score for the uncertain process instance τ = {e1, . . . , e6}. We can
do so by computing alignments [5] for each realization of τ :



Probability Estimation of Uncertain Process Trace Realizations 9

Table 2: The possible order-realizations of
the process instance from Table 1 and their
probabilities.

Order-realization ρ I(ρ) PO(ρ)

ρ1:〈e1, e2, e3, e4, e5, e6〉 0.140 0.074

ρ2:〈e1, e3, e2, e4, e5, e6〉 0.780 0.390

ρ3:〈e3, e1, e2, e4, e5, e6〉 0.072 0.036

ρ4:〈e1, e2, e3, e4, e5〉 0.149 0.074

ρ5:〈e1, e3, e2, e4, e5〉 0.780 0.390

ρ6:〈e3, e1, e2, e4, e5〉 0.072 0.036

Table 3: The set of possible realizations of the exam-
ple from Table 1, their enablers, their probabilities,
and their conformance scores. The conformance score
is equal to the cost of the optimal alignment between
the trace and the Petri net in Figure 1.

Realization σ ρ P (σ | τ) conf

σ1′ :〈h, c, r, i, f, v〉 ρ1 PO(ρ1)·PA(σ1′ |ρ1) = 0.022 1

σ1′′ :〈h, c, r, i, t, v〉 ρ1 PO(ρ1)·PA(σ1′′ |ρ1) = 0.052 0

σ2′ :〈h, r, c, i, f, v〉 ρ2 PO(ρ2)·PA(σ2′ |ρ2) = 0.117 3

σ2′′ :〈h, r, c, i, t, v〉 ρ2 PO(ρ2)·PA(σ2′′ |ρ2) = 0.273 2

σ3′ :〈r, h, c, i, f, v〉 ρ3 PO(ρ3)·PA(σ3′ |ρ3) = 0.011 3

σ3′′ :〈r, h, c, i, t, v〉 ρ3 PO(ρ3)·PA(σ3′′ |ρ3) = 0.025 2

σ4′ :〈h, c, r, i, f〉 ρ4 PO(ρ4)·PA(σ4′ |ρ4) = 0.022 0

σ4′′ :〈h, c, r, i, t〉 ρ4 PO(ρ4)·PA(σ4′′ |ρ4) = 0.052 1

σ5′ :〈h, r, c, i, f〉 ρ5 PO(ρ5)·PA(σ5′ |ρ5) = 0.117 2

σ5′′ :〈h, r, c, i, t〉 ρ5 PO(ρ5)·PA(σ5′′ |ρ5) = 0.273 3

σ6′ :〈r, h, c, i, f〉 ρ6 PO(ρ6)·PA(σ6′ |ρ6) = 0.011 2

σ6′′ :〈r, h, c, i, t〉 ρ6 PO(ρ6)·PA(σ6′′ |ρ6) = 0.025 3

conf(τ) =
∑

σ∈R(τ)

P (σ | τ) · conf(σ,M) = 0.022 · 1 + 0.05 · 0 + 0.117 · 3 + 0.273 · 2 + 0.011 · 3

+ 0.025 · 2 + 0.022 · 0 + 0.052 · 1 + 0.117 · 2 + 0.273 · 3 + 0.011 · 2 + 0.025 · 3
= 2.204.

Given the information on uncertainty available for the trace, this conformance
score is a more realistic estimate of the real conformance score compared to
taking the best, worst or average scores with values 0, 3 and 1.75 respectively.

6 Validation of Probability Estimates

In this section, we compute the probability estimates for the realizations of
an uncertain trace, and then show a validation of those estimates by Monte
Carlo simulation on the behavior net of the trace. The process instance of our
example has strong uncertainty in timestamps and weak uncertainty in activities
and indeterminacy. It consists of 4 events: e1, e2, e3 and e4, where e2 and e3

have overlapping timestamps. Event e2 executes b (resp., c) with probability
0.9 (resp., 0.1). There is a probability of 0.2 that e3 did not occur. Figure 2
shows the corresponding behavior graph, an uncertain event data visualization
that represents the time relationships between events with a directed acyclic
graph [8]. Lastly, Table 4 list all the possible realizations, their probabilities,
and the order-realizations enabling them.

We now validate our obtained probability estimates quantitatively by means
of a Monte Carlo simulation approach. First, we construct the behavior net [10]
corresponding to the uncertain process instance, which is shown in Figure 3.
The set of replayable traces in this behavior net is exactly the set of realizations
for the uncertain instance. Then, we simulate realizations on the behavior net,
dividing the accumulated count of each realization by the number of runs, and



10 Pegoraro et al.

e1

a e2

b: 0.9
c: 0.1

e3

d

?: 0.8

e4

e

Fig. 2: The behavior graph of the uncertain
trace considered as example for validation.

Fig. 3: The behavior net obtained from the be-
havior graph in Figure 2.

Table 4: The set of realizations of the trace from Figure 2, their enablers, and their probabilities.
Realization σ ρ P (σ|τ)

σ1:〈a, b, e〉 ρ1:〈e1, e2, e4〉 PO(ρ1)·PA(σ1|ρ1) = 0.8·0.9 = 0.72

σ2:〈a, b, d, e〉 ρ2:〈e1, e2, e3, e4〉 PO(ρ2)·PA(σ2|ρ2) = (0.5·0.2)·0.9 = 0.09

σ3:〈a, d, b, e〉 ρ3:〈e1, e3, e2, e4〉 PO(ρ3)·PA(σ3|ρ3) = (0.5·0.2)·0.9 = 0.09

σ4:〈a, c, e〉 ρ4:〈e1, e2, e4〉 PO(ρ4)·PA(σ4|ρ4) = 0.8·0.1 = 0.08

σ5:〈a, c, d, e〉 ρ5:〈e1, e2, e3, e4〉 PO(ρ5)·PA(σ5|ρ5) = (0.5·0.2)·0.1 = 0.01

σ6:〈a, d, c, e〉 ρ6:〈e1, e3, e2, e4〉 PO(ρ6)·PA(σ6|ρ6) = (0.5·0.2)·0.1 = 0.01

compare those values to our probability estimates. Here, we use the stochastic
simulator of the PM4Py library [3]. In every step of the simulation, the stochastic
simulator chooses one enabled transition to fire according to a stochastic map,
assigning a weight to each transition in the Petri net (here, the behavior net).

To simulate uncertainty in activities, events and timestamps, we do the fol-
lowing: possible activities executed by the same event appearing in an XOR-split
in the behavior net are weighted so to reflect the probability values of the ac-
tivity labels. Indeterminacy is equivalently modeled as an XOR-choice between
a visible transition and a silent one in the behavior net, so to model a “skip”.
If there are two or more possible activities for an indeterminate event, then the
sum of the weights of the visible transitions in relation to the weight of the silent
transition should be the same as in the distribution given in the event type un-
certainty information. Whenever there are events with overlapping timestamps,
these appear in an AND-split in the behavior net. The (enabled) path of the
AND-split which is taken first signals which event is executed at that moment.

Let bn(τ) = (P, T ) be the behavior net of trace τ . Let (e, a) ∈ T be a visible
transition related to some event e ∈ τ . We weight (e, a) the following way:

weight((e, a)) =

{
feA(a) if πo(e) = ∅,
(1− feO(?)) · feA(a) otherwise.

If e ∈ τ is an indeterminate event, then weight((e, ε)) = feO(?).
Note that according to the weight assignment function, if e is determi-

nate, then
∑
a∈πseta (e) weight((e, a)) = 1. Otherwise,

∑
a∈πseta (e) weight((e, a)) =

1− feO(?) = 1−weight((e, τ)). By construction of the behavior net, any transi-
tion related to an event in τ can only fire in accordance with the partial order
of uncertain timestamps. Additionally, all transitions representing events with
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Fig. 4: Plot showing how the frequency of trace
〈a, b, e〉 converges to the expected value of 0.72
over 1000 runs.
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Fig. 5: Plot showing how the frequency of trace
〈a, b, d, e〉 converges to the expected value of
0.09 over 1000 runs.
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Fig. 6: Plot showing how the frequency of trace
〈a, d, b, e〉 converges to the expected value of
0.09 over 1000 runs.
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Fig. 7: Plot showing how the frequency of trace
〈a, c, e〉 converges to the expected value of 0.08
over 1000 runs.

overlapping timestamps appear in an AND construct. By definition of our weight
function, whenever the transitions of some e ∈ τ are enabled (in an XOR con-
struct), the probability of firing one of them is 1/k, where k is the number of
events from τ for which none of the corresponding transitions have fired yet.
This way, there is always a uniform distribution over the set of enabled tran-
sitions representing overlapping events. Assigning the weights according to this
distribution allows to decorate the behavior net with probabilities that reflect
the chances of occurrence of every possible value in uncertain attributes.

Applying the stochastic simulator n times yields n realizations. For each
of the 6 possible realizations for the uncertain process instance, we obtain a
probability measurement by dividing its simulated frequency by n. Figures 4
through 7 show how for greater n, this measurement converges to the probability
estimates shown in Table 4, which were computed with our method.

To conclude, the Monte Carlo simulation shows that our estimated proba-
bilities for realizations match their relative frequencies when one simulates the
behavior net of the corresponding uncertain trace.
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7 Conclusion

Uncertain traces inherently contain behavior, allowing for many realizations;
these, in turn, correspond to diverse possible real-life scenarios, that may have
different consequences on the management and governance of a process. In this
paper, we presented a method to quantify the probability of each realization
of an uncertain trace. This enables process analysts to weigh the impact of
specific insights gathered with uncertainty-aware process mining techniques, such
as conformance checking using alignments. As a consequence, information from
process analysis techniques can be associated with a quantification of risk or
opportunity for specific scenarios, making them more trustworthy.

Multiple avenues for future work on this topic are possible. These include
inferring probabilities for uncertain traces from sections of the log not affected
by uncertainty, adopting certain traces or fragments of traces as ground truth.
Moreover, inferring probabilities by examining evidence against a ground truth
can also be achieved with a normative model that includes information concern-
ing the probability of error or noise in specific parts of the process.
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