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Abstract—Free-choice nets, a subclass of Petri nets, have been
studied for decades. They are interesting because they have many
desirable properties normal Petri nets do not have and can be
analyzed efficiently. Although the majority of process models used
in practice are inherently free-choice, most users (even modeling
experts) are not aware of free-choice net theory and associated
analysis techniques. This paper discusses free-choice nets in the
context of process mining and business process management. For
example, state-of-the-art process discovery algorithms like the
inductive miner produce process models that are free-choice.
Also, hand-made process models using languages like BPMN
tend to be free-choice because choice and synchronization are
separated in different modeling elements. Therefore, we introduce
basic notions and results for this important class of process
models. Moreover, we also present new results for free-choice
nets particularly relevant for process mining. For example, we
elaborate on home clusters and lucency as closely-related and
desirable correctness notions. We also discuss the limitations
of free-choice nets in process mining and business process
management, and suggest research directions to extend free-
choice nets with non-local dependencies.

I. INTRODUCTION

FREE-CHOICE nets can be used to model processes
that include process patterns such as sequence, choice,

loop, and concurrency. Compared to general Petri nets they
require choice and synchronization to be separable. This is
automatically the case in languages having explicit split and
join operators (also called connectors or gateways) that do
not mix choice and synchronization. For example, when using
Business Process Modeling Notation (BPMN) with only AND
and XOR gateways, the behavior is automatically free-choice.
Although BPMN allows for many advanced constructs, the
most widely used BPMN constructs can be easily mapped
onto free-choice nets.

In this paper, we relate recent developments in free-choice
nets to Business Process Management (BPM) in general and
process mining in particular. The desire to manage and im-
prove processes is not new. The field of scientific management
emerged in the 1890-ties with pioneers like Frederick Winslow
Taylor (1856-1915) [31]. Taylor already systematically ana-
lyzed manually recorded data in order to uncover potential
process improvements. With the availability of computers,
the focus shifted to automation. In the 1970-ties there was
the expectation that office would would become increasingly
automated, not requiring human intervention. Pioneers like
Skip Ellis [18] and Michael Zisman [34] worked on so-called

office automation systems. The ideas lead to the development
of Workflow Management (WFM) systems in the 1990-ties
(see [8]). Later, BPM systems broadened the scope from
automation to management. In hindsight, these approaches
were not so successful. For example, as the longitudinal
study in [28] shows, many workflow implementations failed.
As a result, WFM/BPM technology is often considered too
expensive and only feasible for highly-structured processes.
At the same time, people continued to model processes using
flowchart-like description languages. For example, modeling
tools such as ARIS and Signavio have been used to model
millions of processes all over the globe. Modeling is less
costly than automation, but the effect is often limited. Due to
the disconnect between reality and such hand-made models,
the BPM market was shrinking until recently. However, this
changed with the uptake of process mining [2].

Process mining dramatically changed the way we look at
process models and operational processes. Even seemingly
simple processes like Purchase-to-Pay (P2P) and Order-to-
Cash (O2C) are often amazingly complex, and traditional
hand-made process models fail to capture the true fabric
of such processes. Process mining bridges the gap between
between process science (i.e., tools and techniques to improve
operational processes) and data science (i.e., tools and tech-
niques to extract value from data).

Fig. 1. Process model discovered using ProM’s inductive miner.

Figure 1 shows ProM’s inductive miner [22] in action. Based
on (heavily filtered) data from SAP’s Purchase-to-Pay (P2P)
process, a process model is derived. Process discovery is just
one of several process mining tasks. First, event data need
to be extracted from information systems like SAP. Process
discovery techniques transform such event data into process
models (e.g., BPMN, Petri nets, and UML activity diagrams).
There are simple approaches like creating so-called Directly-
Follows-Graphs (DFGs) that do not discover concurrency thus
having obvious problems [4]. Dozens, if not hundreds, of



more sophisticated algorithms were proposed [12], [2], [13],
[20], [21], [22], [33]. Using replay and alignment techniques
it is possible to do conformance checking and relate process
models (hand-made or discovered) with event data. This can
be used to discover differences between reality and model
[2], [16], [30]. Moreover, the model can be extended with
additional perspectives, e.g., organizational aspects, decisions,
and temporal aspects.

Fig. 2. BPMN model discovered using Celonis.

Currently, there are over 35 commercial process mining ven-
dors (ABBYY Timeline, ARIS Process Mining, BusinessOp-
tix, Celonis Process Mining, Disco/Fluxicon, Everflow, Lana,
Mavim, MPM, Minit, PAFnow, QPR, etc.) and process mining
is applied in most of the larger organizations. Figure 2 shows
a BPMN model discovered using the Celonis process mining
software. The same model can also be used for conformance
checking and show where reality and model deviate.

Unlike traditional WFM/BPM technologies, there is a direct
connection to the data. This allows stakeholders to spot
inefficiencies, delays, and compliance problems in real-time.
Process mining revitalized the BPM discipline, as is proven by
the valuation of process mining firms. For example, Celonis is
currently the first and only German “Decacorn” (i.e., a start-up
whose value is considered to be over $10 billion).

Fig. 3. A free-choice net generated from the models in Figures 1 and 2.

So how this related to free-choice nets? Process models
play a key role in BPM and process mining, and these
models can often be viewed as free-choice. Commonly used
process notations are DFGs, BPMN models, Petri nets, and
process trees. For example, the inductive mining approach
uses process trees [22]. Although not visible, Figures 1 and
2 were actually generated using this approach. Process trees
can be visualized using BPMN or Petri nets. Figure 3 shows
the Petri net representation of the process tree. Any process
tree corresponds to a so-called free-choice net having the same
behavior. Later we will provide a formal definition for these
notions. At this stage, it is sufficient to know that, in a free-
choice net, choice and synchronization can be separated.

Any process tree can be converted to a free-choice net.
Moreover, a large class of BPMN models is inherently free-
choice. In a BPMN model there are flow objects such as
events, activities, and gateways that are connected through
directed arcs and together form a graph [26]. There are many
modeling elements, but most process modelers use only a
small subset [24]. For example, in many models, only ex-
clusive gateways (for XOR-splits/joins) and parallel gateways
(for AND-splits/joins) are used. Such models can be converted
to free-choice nets [27]. It is also possible to convert BPMN
models with inclusive gateways (i.e., OR-splits/joins) into free-
choice nets (as long as the splits and joins are matching).

Since most process discovery techniques discover process
models that are free-choice and also people modeling pro-
cesses tend to come up with free-choice models, this is an
interesting class to be studied. Therefore, this paper focuses
on free-choice models. The goal is to expose people interested
in BPM and process mining to free-choice-net theory.

Section II introduces preliminaries, including Petri nets,
free-choice nets, and lucency. Luceny is a rather new notion
which states that there cannot be two states enabling the
same set of activities. Section III focuses on the class of
process models having so-called home clusters. This class
extends the class of sound models that can always terminate
(e.g., no deadlocks) with the class of models that have a
regeneration point. Free-choice nets with home clusters are
guaranteed to be lucent. Hence, these nets are interesting for
a wide range of applications and an interesting target class
for process mining. Section IV discusses the limitations of
free-choice nets, e.g., the inability to express non-local (i.e.,
long-term) dependencies. These insights may help to develop
better process discovery techniques that produce more precise
models. Section V concludes this paper.

II. PRELIMINARIES

Free-choice nets are well studied [14], [15], [19], [32]. The
definite book on the structure theory of free-choice nets is
[17]. To keep the paper self-contained, first standard Petri net
notions are introduced. If unclear, consider reading one of the
standard introductions [11], [25], [29]. Most of the notations
used are adopted from [6].
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Fig. 4. A Petri net N = (P, T, F ) with P = {p1, p2, . . . p8}, T =
{t1, t2, . . . , t6}, and F = {(p1, t1), (p1, t2), (t1, p4), . . . , (t6, p8)} that is
not free-choice. The initial marking is M = [p1], i.e., only place p1 contains
a token.



A. Petri Nets

Figure 4 shows a Petri net with eight places, six transitions,
and twenty arcs.

Definition 1 (Petri Net): A Petri net is a tuple N = (P, T, F )
with P the non-empty set of places, T the non-empty set of
transitions such that P ∩ T = ∅, and F ⊆ (P × T )∪ (T ×P )
the flow relation such that the graph (P ∪ T, F ) is (weakly)
connected.

Definition 2 (Pre- and Post-Set): Let N = (P, T, F ) be a
Petri net. For any x ∈ P ∪ T : •x = {y | (y, x) ∈ F} and
x• = {y | (x, y) ∈ F}.

For example, in Figure 4, •p2 = {t1, t2}, •t5 =
{p4, p6, p7}, t1• = {p2, p3, p4}, and p8• = ∅.

Definition 3 (Marking): Let N = (P, T, F ) be a Petri net. A
marking M is a multiset of places, i.e., M ∈ B(P ).1 (N,M)
is a marked net.

In the marking shown in Figure 4, transitions t1 and t2 are
enabled. An enabled transition t can fire consuming a token
from each input place in •t and producing a token for each
output place in t•.

Definition 4 (Enabling, Firing Rule, Reachability): Let
(N,M) be a marked net with N = (P, T, F ). Transition t ∈ T
is enabled if •t ⊆M .2 This is denoted by (N,M)[t〉 (each of
t’s input places •t contains at least one token). en(N,M) =
{t ∈ T | (N,M)[t〉} is the set of enabled transitions. Firing
an enabled transition t results in marking M ′ = (M \•t)∪ t•.
(N,M)[t〉(N,M ′) denotes that t is enabled in M and firing t
results in marking M ′. A marking M ′ is reachable from M if
there exists a firing sequence σ such that (N,M)[σ〉(N,M ′).
R(N,M) = {M ′ ∈ B(P ) | ∃σ∈T∗ (N,M)[σ〉(N,M ′)} is
the set of all reachable markings. (N,M)[σ〉 denotes that the
sequence σ is enabled when starting in marking M (without
specifying the resulting marking).

Let N be the Petri net shown in Figure 4.
(N, [p1])[σ1〉(N, [p4, p6, p7]) with σ1 = 〈t1, t3, t4〉 and
(N, [p1])[σ2〉(N, [p8]) with σ2 = 〈t2, t4, t3, t6〉. We also
define the usual properties for Petri nets.

Definition 5 (Live, Bounded, Safe, Dead, Deadlock-free,
Well-Formed): A marked net (N,M) is live if for every
reachable marking M ′ ∈ R(N,M) and for every transition
t ∈ T there exists a marking M ′′ ∈ R(N,M ′) that enables
t. A marked net (N,M) is k-bounded if for every reachable
marking M ′ ∈ R(N,M) and every p ∈ P : M ′(p) ≤ k. A
marked net (N,M) is bounded if there exists a k such that
(N,M) is k-bounded. A 1-bounded marked net is called safe.
A place p ∈ P is dead in (N,M) when it can never be
marked (no reachable marking marks p). A transition t ∈ T is
dead in (N,M) when it can never be enabled (no reachable
marking enables t). A marked net (N,M) is deadlock-free if
each reachable marking enables at least one transition. A Petri

1In a multiset elements may appear multiple times, e.g., M =
[p1, p2, p2, p2] = [p1, p23] is a multiset with four elements (three have the
same value).

2M1 ⊆M2 (inclusion), M1∪M2 (union),M1\M2 (difference) are defined
for multisets in the usual way (i.e., taking into account the cardinalities. Sets
are treated as multisets where all elements have cardinality 1.

net N is structurally bounded if (N,M) is bounded for any
marking M . A Petri net N is structurally live if there exists
a marking M such that (N,M) is live. A Petri net N is well-
formed if there exists a marking M such that (N,M) is live
and bounded.

Definition 6 (Proper Petri Net): A Petri net N = (P, T, F )
is proper if all transitions have input and output places, i.e.,
for all t ∈ T : •t 6= ∅ and t• 6= ∅.

Definition 7 (Strongly Connected): A Petri net N =
(P, T, F ) is strongly connected if there is a directed path
between any pair of nodes.

Note that a strongly connected net is also proper. Figure 4
shows that the converse does not hold, the net is proper, but
not strongly connected.

Definition 8 (Home Marking): Let (N,M) be a marked
net. A marking MH is a home marking if for every reachable
marking M ′ ∈ R(N,M): MH ∈ R(N,M ′).

The marked Petri net in Figure 4 has one home marking:
[p8].

B. Free-Choice Nets

The concepts and notations discussed apply to any Petri net.
Now we focus on the class of free-choice nets. As indicated
in the introduction, this is an important class because most
process models used in the context of BPM and process mining
are free-choice.

Definition 9 (Free-choice Net): Let N = (P, T, F ) be a
Petri net. N is free-choice net if for any t1, t2 ∈ T : •t1 = •t2
or •t1 ∩ •t2 = ∅.

The Petri net in Figure 4 is not free-choice because •t5 ∩
•t6 = {p6, p7} 6= ∅, but •t5 6= •t6. If we remove the places p4
and p5, then the net becomes free-choice. The places model
a so-called long-term (or non-local) dependency: The choice
between t1 and t2 in the beginning is controlling the choice
between t5 and t6 at the end.
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Fig. 5. A strongly-connected free-choice net.

Figure 5 is free-choice. Transitions t1 and t2 share an input
place, but •t1 = •t2 = {p1}. Transitions t5 and t6 share an
input place, but •t5 = •t6 = {p4, p5}.

The process model discovered using ProM (Figure 1) and
Celonis (Figure 2) based on filtered SAP data is free-choice.
Figure 3 shows the corresponding free-choice net.



C. Lucency

The notion of lucency was first introduced in [3]. A marked
Petri net is lucent if there are no two different reachable
markings enabling the same set of transitions, i.e., states are
fully characterized by the transitions they enable.

Definition 10 (Lucent Petri nets): Let (N,M) be a marked
Petri net. (N,M) is lucent if and only if for any M1,M2 ∈
R(N,M): en(N,M1) = en(N,M2) implies M1 =M2.

The marked Petri nets in Figures 3 and 5 are lucent, i.e.,
there are no two reachable markings that enable the same set
of transitions. The marked Petri net in Figure 4 is not lucent.
Markings M1 = [p2, p3, p4] and M2 = [p2, p3, p5] are both
reachable and enable transitions t3 and t4.

Lucency is often a desirable property. Think, for example,
of an information system that has a user interface showing
what the user can do. In this setting, lucency implies that
the offered actions fully determine the internal state and the
system will behave consistently from the user’s viewpoint. If
the information system would not be lucent, the user could
encounter situations where the set of offered actions is the
same, but the behavior is very different. Another example is
the worklist of a workflow management system that shows the
workitems that can or should be executed. Lucency implies
that the state of a case can be derived based on the workitems
offered for it [6].

Characterizing the class of systems that are lucent is a
foundational and also challenging question [3], [6], [7].

III. FREE-CHOICE NETS WITH HOME CLUSTERS

Workflow nets form a subclass of Petri nets starting with a
source place start and ending with a sink place end [9]. The
modeled workflow can be instantiated by putting tokens on the
input place start. In the context of workflow nets, a correctness
criterion called soundness has been defined [9]. A workflow
net is sound if and only if the following three requirements
are satisfied: for each case it is always still possible to reach
the state which just marks place end (option to complete), if
place end is marked all other places are empty for a given case
(proper completion), and it should be possible to execute an
arbitrary activity by following the appropriate route through
the workflow net (no dead transitions) [9]. In [1], it was
shown that soundness is decidable and can be translated into
a liveness and boundedness problem, i.e., a workflow is sound
if and only if the corresponding short-circuited net (i.e., the
net where place end is connected to place start) is live and
bounded. This can be checked in polynomial time for free-
choice nets [1]. Figures 3 and 4 show two sound workflow
nets. Figures 5 and 6 show free-choice nets that do not have a
designated start and end place. Hence, soundness is not defined
for these models.

A strongly-connected Petri net cannot be a workflow net.
However, the lion’s share of Petri net theory focuses on
strongly-connected Petri nets. Therefore, [6] investigated a
new subclass of Petri nets having a so-called home cluster.
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Fig. 6. A lucent free-choice net having two home clusters.

First, we define the notion of a cluster. A cluster is a maxi-
mal set of connected nodes, only considering arcs connecting
places to transitions.

Definition 11 (Cluster): Let N = (P, T, F ) be a Petri net
and x ∈ P ∪ T . The cluster of node x, denoted [x]c is the
smallest set such that (1) x ∈ [x]c, (2) if p ∈ [x]c ∩ P , then
p• ⊆ [x]c, and (3) if t ∈ [x]c∩T , then •t ⊆ [x]c. [N ]c = {[x]c |
x ∈ P ∪T} is the set of clusters of N . Mrk(C) = [p ∈ C∩P ]
is the marking which only marks the places in C.

Figure 6 has five clusters: [N ]c = {{p1, t1, t2}, {p2, t3},
{p3, p4}, {p4, p5, t5, t6}, {p6, t7}}.

A home cluster is a cluster that serves as a “target” that
can always be reached again. Hence, it can be seen as a
generalization of soundness.

Definition 12 (Home Clusters): Let (N,M) be marked Petri
net. C is a home cluster of (N,M) if and only if C ∈ [N ]c
(i.e., C is a cluster) and Mrk(C) is a home marking of
(N,M). If such a C exists, we say that (N,M) has a home
cluster.

Figure 6 has two home clusters: C1 = {p4, p5, t5, t6} and
C2 = {p6, t7}.

Property 1 (Sound Workflow Nets Have A Home Cluster):
Let (N,M) be a sound workflow net. (N,M) has a home
cluster.

Also, all short-circulated sound workflow nets are guaran-
teed to have a home cluster. All marked Petri nets show thus
far (i.e., Figures 3-6) have a home cluster. However, the nets
in Figures 5 and 6 are not workflow nets.

Most of the results for Petri nets and in particular free-
choice nets are defined for well-formed nets [11], [14], [15],
[17], [19], [25], [29], [32]. Recall that a Petri net is well-
formed if there exists a marking that is live and bounded.
Some well-known properties of well-formed free-choice nets:

• A well-formed free-choice net is strongly connected.
• A bounded and strongly-connected marked free-choice

net is live if and only if it is deadlock free.
• A marked free-choice net is live if and only if every

proper siphon includes a marked trap.
• Well-formed free-choice nets are covered by P-

components and T-components.
• Well-formedness can be decided in polynomial time for

free-choice nets.
• Live and bounded free-choice nets have home markings.



Interestingly, marked free-choice nets having a home cluster
do not need to be well-formed. Yet, free-choice nets having
a home cluster have interesting properties as demonstrated in
[6]. A surprising result is that free-choice nets having a home
cluster are lucent.

Theorem 1 (Home Clusters Ensure Lucency [6]): Let
(N,M) be a marked proper free-choice net having a home
cluster. (N,M) is lucent.

The theorem can be used to show that the process models
in Figures 3, 5, and 6 are lucent.

Theorem 1 is surprising since there are T-systems (i.e.,
marked graphs) that are live, bounded, safe, well-formed, and
strongly connected that are not lucent. A proof of Theorem 1 is
outside of the scope of this paper (see [6] for details). However,
it is important to note that the proof does not rely on any of
the classical results for well-formed nets. Instead, several new
concepts are introduced, such as:
• Expediting transitions in a firing sequence of a free-

choice net. As long as the order per cluster is maintained,
transitions can fire earlier without causing any problems
(e.g., deadlocks).

• The notion of disentangled paths, i.e., paths in the net that
start and end with a place and do not contain elements
that belong to the same cluster. A C-rooted disentangled
path ends with a place in cluster C.

• A C-rooted disentangled path is safe if C is a home
cluster. This implies that marked proper free-choice nets
having a home cluster must be safe.

• The notion of conflict-pairs, i.e., a pair of markings such
that no transition is enabled in both markings, but if a
transition is enabled in one marking, the other marking
must mark at least one of its input places.

• A marked proper free-choice net having a home cluster
cannot have any conflict pairs.

These results make free-choice nets having a home cluster
interesting candidate models in the context of BPM and
process mining. However, as discussed next, there are also
some limitations.

IV. ADDING NON-LOCAL DEPENDENCIES

Although many process discovery techniques return models
that can be seen as free-choice and process modelers using
BPMN are more-or-less forced to draw free-choice models,
there are some limitations when using free-choice nets. Con-
sider again the Petri net in Figure 4, which is not free-choice
due to the places p4 and p5. The process model allows for
the following four traces L1 = {〈t1, t3, t4, t5〉, 〈t1, t4, t3, t5〉,
〈t2, t3, t4, t6〉, 〈t2, t4, t3, t6〉}. Note that t1 is always followed
by t5, and t2 is always followed by t6. In BPMN, we
cannot express such dependencies (without resorting to data
or other more advanced constructs). Ignoring the non-local
dependencies represented by the places p4 and p5 leads to the
BPMN model shown in Figure 7.

The corresponding free-choice net is shown in Figure 8.
Both the BPMN model and the free-choice net allow for the
following eight traces L2 = {〈t1, t3, t4, t5〉, 〈t1, t3, t4, t6〉,

t1 t3 t5

X+X

X+

X

t2 t4 t6X+

Fig. 7. A BPMN model that aims to describe the behavior in Figure 4 without
local dependencies.

〈t1, t4, t3, t5〉, 〈t1, t4, t3, t6〉, 〈t2, t3, t4, t5〉, 〈t2, t3, t4, t6〉,
〈t2, t4, t3, t5〉, 〈t2, t4, t3, t6〉}. Hence, the number of
possibilities doubled.

t2

t1 t3 t5

t6t4

Fig. 8. The free-choice net corresponding to the BPMN model in Figure 7.

Most process discovery techniques will be unable to capture
such non-local dependencies. Given an event log with only
traces from L1, most discovery techniques will produce a
process model that allows for L2. Some of the region-based
process mining techniques can discover the process model
allowing for only L1. However, these techniques have many
other problems: they tend to produce over-fitting models, can-
not handle infrequent behavior, and are very time-consuming.
Therefore, it may be better to first discover a free-choice
backbone model that is then extended to make it more precise.
Concretely, one can first discover a Petri net using the induc-
tive mining approach and then add non-local dependencies.
One can use, for example, a variant of the approach in [23]
to add places. It is also possible to combine two types of arcs
as in hybrid process models [10]. In [10], we use hybrid Petri
nets and first discover a causal graph based on the event log.
Based on different (threshold) parameters, we scan the event
log for possible causalities. In the second phase, we try to
learn places based on explicit quality criteria. Places added
can be interpreted in a precise manner and have a guaranteed
quality. Causal relations that cannot or should not be expressed
in terms of places are added as sure or unsure arcs. A similar
approach can be used for strongly correlating choices in a
free-choice net.

There is also an interesting connection to the notion of
confusion. Confusion is the phenomenon that the order of
executing concurrent transitions may influence choices in the
model. Here, we consider a simpler notion and consider a Petri
net to be confusion-free when transitions that share an input
place either cannot be both enabled or have the same set of
input places.

Definition 13 (Confusion-Free): A marked Petri net (N,M)
with N = (P, T, F ) is confusion-free if for any two transitions
t1, t2 ∈ T with •t1∩•t2 6= ∅ and •t1 6= •t2 there is no reach-
able marking M ′ ∈ R(N,M) such that {t1, t2} ⊆ en(N,M).



All models in this paper are confusion free. Note that free-
choice nets are by definition confusion-free. An interesting
question is to develop automatic conversions from models that
are “almost free-choice”.

Thus far concepts such as confusion-free, lucency, and home
clusters have not been exploited in process mining using tra-
ditional event logs. In [5], an algorithm is presented assuming
translucent event logs that explicitly show the enabling of
activities. However, such event logs are rarely available.

V. CONCLUSION

In this paper, we discussed recent results in free-choice
net theory and related these results to Business Process
Management (BPM) in general and process mining in par-
ticular. Although most discovery techniques produce free-
choice models, this property is rarely exploited explicitly.
Assuming that the process model is a free-choice net with
a home cluster, provides many valuable properties relevant for
process discovery. As shown in this paper, such models are,
for example, guaranteed to be lucent. This implies that there
cannot be two states enabling the same set of activities. Also,
disentangled paths rooted in a home cluster are safe, i.e., such
paths cannot contain two tokens. The open question is how to
exploit this in process mining.

We also discussed the need to add non-local dependencies.
Such dependencies destroy elegant properties such as lucency.
Hence, they can be seen as a secondary layer of annotations.
For example, we can connect clusters that are strongly corre-
lated. The goal is to make the process models more precise
without overfitting the data or destroying the structure of the
model.
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