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Abstract

Given a process model and an event log, conformance checking aims to relate the
two together, e.g. to detect discrepancies between them. For the synchronous
product net of the process and a log trace, we can assign different costs to
a synchronous move, and a move in the log or model. By computing a path
through this (synchronous) product net, whilst minimizing the total cost, we
create a so-called optimal alignment – which is considered to be the primary
target result for conformance checking. Traditional alignment-based approaches
(1) have performance problems for larger logs and models, and (2) do not pro-
vide reliable diagnostics for non-conforming behaviour (e.g. bottleneck analysis
is based on events that did not happen). This is the reason to explore an alter-
native approach that maximizes the use of observed events. We also introduce
the notion of milestone activities, i.e. unskippable activities, and show how the
different approaches relate to each other. We propose a data structure, that
can be computed from the process model, which can be used for (1) computing
alignments of many log traces that maximize synchronous moves, and (2) as
a means for analysing non-conforming behaviour. In our experiments we show
the differences of various alignment cost functions. We also show how the per-
formance of constructing alignments with our data structure relates to that of
the state-of-the-art techniques.
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1. Introduction

Modern information systems allow us to track, often in great detail, the
behaviour of the process it supports. Moreover, instrumentation and/or pro-
gram tracing tools allow us to track the behavioural profile of the execution
of enterprise-level software systems [16, 15]. Such behavioural data is often re-5

ferred to as an event log, which can be seen as a set of log traces, i.e. sequences
of observed events in the system. However, it is often the case, due to noise
or under/over-specification, that the observed behaviour does not conform pre-
cisely to a valid process instance, i.e. it deviates from its intended behaviour as
specified by its reference model.10

In the field of process mining [24] there are three main branches: process
discovery, conformance checking, and enhancement of processes, using event
data recorded during process execution. In process discovery, we aim to discover
process models based on traces of executed event data. In conformance checking,
we assess to what degree a process model (potentially discovered) is in line with15

recorded event data. Finally, in process enhancement, we aim at improving or
extending the process model based on facts derived from event data.

Conformance checking [8] assesses to what degree the event log and model
conform to each other. Early conformance checking techniques [22] are based
on simple heuristics and, therefore, may yield ambiguous/unpredictable results.20

Alignments [25, 2] were introduced to overcome the limitations of early confor-
mance checking techniques. Alignments map observed behaviour onto behaviour
described by the process model. As such, we identify four types of relations be-
tween the model and the event log in an alignment:

1. A log move, in which we are unable to map an observed event, recorded25

in the event log, onto the execution of an action in the reference model.

2. A model move, in which an action is described by the reference model, yet
this is not reflected in the event log.

3. A synchronous move, in which we are able to map an event, observed in
the event log, to a corresponding action described by the reference model.30

4. A silent move, in which the model performs a silent or invisible action
(denoted with τ). We are unable to observe such actions.

Consider the example model of a simple file reading system given in Figure 1
and the trace σ = 〈A,D,B,D〉. An alignment for the model and σ is given by γ0

(top right in Figure 1). Here, the upper-part depicts the trace and the bottom-35

part depicts an execution path described by the model, starting at state [p0]
and ending at state [p5]. The first pair, (A, t0), represents a synchronous move,
in which both the log and the path in the model describe the execution of an A
activity (open file). The next pair, (D,�), is a log move where the logged trace
describes the execution of a D activity that is not mapped to an activity in the40

model. The skip (�) symbol is used to represent such a mismatch. Observe
that the model remains in the same state. This is continued by a model move
in which the model executes a C activity, which is not recorded in the trace, i.e.
(�, t2). Finally, the alignment ends with two synchronous moves.
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Figure 1: Example process model (in Petri net formalism) for a simple file reading system
and an alignment for the trace σ = 〈A,D,B,D〉 (γ0). For the trace σ = 〈B〉, two optimal
alignments are given using the standard- (γ1) and proposed (γ2) cost functions.

An optimal alignment is an alignment that minimizes a given cost function.45

Typically, each type of move gets a non-negative value. The cost of an alignment
is simply the sum of the costs of its individual moves. The most common way
to do this is to assign a cost of 1 to both model and log moves and a cost 0 to
synchronous and silent moves. In practice, the A* shortest path algorithm [1]
is often used for computing optimal alignments using the aforementioned cost50

function as a distance function in its search graph.
In this paper, we argue that the standard cost function is not always the best-

suited function for computing alignments. Consider the model in Figure 1 again,
together with the trace σ′ = 〈B〉. An optimal alignment using the standard cost
function would result in γ1. Considering that event B is observed behaviour,55

i.e. the system logged “parse file”, it is illogical to map this behaviour with a
path in the model indicating that the file was not found. In case we set up
the cost function such that the number of synchronous moves are maximized,
an optimal alignment would result in γ2. One may prefer this function, as it
provides a more sensible explanation for the logged behaviour.60

We formalise the relation between the event log and the process model, and
show how different cost functions affect the resulting alignments. Regarding
the cost-function where we maximize synchronous moves, we employ a data
structure, called a Milestone Transitive Closure Graph (MTCG), that can be
computed from the reference model. Note that the MTCG needs to be computed65

only once and can be used to align all traces in the log. We propose an algorithm
for computing alignments, which exploits the structure and is comparable with
the state-of-the-art when computing alignments for small models and many log
traces.

1.1. Contributions70

This paper is an extended version of our earlier work [6]. We extend the
work with the following contributions.

Milestones. We introduce the notion of milestone activities, which are events on
which the log and the model must agree, i.e. if the event occurs in the log trace,
it must be synchronized with the model. There may be several reasons for intro-75

ducing milestone activities. Milestone activities need to be observed and cannot
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be skipped. They serve as minimal requirements for an alignment, avoiding that
an arbitrary path is taken. To illustrate the concept, reconsider Figure 1 and
assume activity E to be a milestone activity, i.e. disallow alignments to include
the pair (�, t4). Now, the standard cost function (with milestones) would also80

result in the desired alignment as the shortcut through the model is now un-
available. An interesting result is that in some scenarios, milestones can make it
impossible to align a trace with a model (i.e. in case an alignment must include
the milestone activity as a model move).

Milestones help to address a major limitation of the cost function that maxi-85

mizes synchronous moves, which occurs when the process model contains a large
cycle. We discuss this in Section 3 and show that milestones can be used to pre-
vent such cycles from being traversed carelessly (by marking a particular event
on the cycle as a milestone). We extend the transitive closure graph to also
include milestones, and call it a Milestone Transitive Closure Graph (MTCG)90

and show how alignments can be computed.
To evaluate our approach, we analyse differences between alignments with

and without milestones on a set of generated models and log traces, and show
how their computation times are affected on a set of industrial models with
many log traces.95

Transitive closure graph for analysing non-conforming behaviour. We also con-
sider the MTCG from a diagnostic point of view. Visualizing alignments by
projecting them on the reference model or its corresponding marking graph
may not always be desired. An issue is that model moves are not observed in
the log trace, but are ‘generated’ in the diagnostics. When fabricating events100

that did not really happen (i.e. model moves), timestamps need to be created.
This may lead to misleading results. By mapping alignments on a MTCG we
only depict synchronous moves, i.e. only moves that really happened, which are
easier to interpret and trust. We discuss the advantages and disadvantages of
this method.105

2. Preliminaries

We assume that the reader is familiar with the basics of automata theory
and Petri nets (otherwise, we refer to [24]). A sequence or trace is an ordered
list of events, which we denote by σ = 〈σ0, σ1, . . . , σ|σ|−1〉. Two sequences are
concatenated using the · operation. Given a sequence σ and a set of elements S,110

we refer to σ\S as the sequence without any elements from S, e.g. 〈a, b, b, c, a, f〉\
{b, f} = 〈a, c, a〉. For two sequences σ1 and σ2, we call σ1 a subsequence of σ2
(denoted with σ1 v σ2) if σ1 is formed from σ2 by deleting elements from σ2
without changing its order, e.g. 〈c, a, t〉 v 〈a, c, r, a, t, e〉. Similarly, σ1 @ σ2
implies that σ1 is a strict subsequence of σ2, thus σ1 contains fewer elements115

than σ2.
A multiset (or bag) is an unordered set that may contain multiple instances of

the same element. For example, [a2, b, c3] is a multiset in which a occurs 2 times
(we represent multiple occurrences of an element in superscript). Two multisets
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are combined with a ] operation, e.g. [a2, b, c3] ] [b, c2, d2] = [a2, b2, c5, d2]. We120

will use multisets to represent markings and event logs. In figures, we use a
more concise notation to denote multisets, e.g. we may write [a2, b, c3] as a2bc3.
Given a set of elements S, we denote the set of all possible multisets as B(S),
and its power-set by 2S .

Traces are sequences σ ∈ Σ∗, for which each element is called an event and125

is contained in the alphabet Σ, also called the set of events. We globally define
the alphabet Σ, which does not contain the skip event (�) nor the invisible
action or silent event (τ). An event log E ∈ B(Σ∗) is a multiset of traces.

2.1. Petri nets

Petri nets are a mathematical formalism that allow us to describe processes,130

they allow us to represent parallel behaviour in a relatively compact manner.
Consider Figure 1 which is a simple example of a Petri net. The Petri net
consists of places, visualized as circles, that allow us to express the state (or
marking) of the Petri net. Furthermore, it consists of transitions, visualized as
boxes, that allow us to manipulate the state of the Petri net. It is not allowed135

to connect a place with another place nor a transition with another transition.
Thus, from a graph-theoretical perspective, a Petri net is a bipartite graph.

Definition 1 (Petri net, marking). A Petri net is defined as a tuple N =
(P,T,F,Στ , λ,m0,mF) such that:

• P is a finite set of places,140

• T is a finite set of transitions such that P ∩ T = ∅,

• F ⊆ (P× T) ∪ (T× P) is a set of directed arcs, called the flow relation,

• Στ is a set of activities, with Στ = Σ ∪ {τ},

• λ : T→ Στ is a labelling function for each transition,

• m0 ∈ B(P) is the initial marking of the Petri net,145

• mF ∈ B(P) is the final marking of the Petri net.

A marking is defined as a multiset of places, denoting where tokens reside
in the Petri net. For instance, in Figure 1, p0 contains a token (represented by
a black dot), and the marking [p0] represents the initial marking. A transition
t ∈ T can be fired if, according to the flow relation, all places directing to150

t contain a token. After firing a transition, one token is removed from these
places and all places with an incoming arc from t receive a token. It may be
possible for a place to contain more than one token.

Definition 2 (Marking graph). The corresponding marking graph or state-
space for a Petri net N = (P,T,F,Στ , λ,m0,mF) is given by the deterministic155

automaton MG = (Q,Στ , δ, q0, qF), such that:
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• Q ⊆ B(P ) is the (possibly infinite) set of vertices in MG, which corre-
sponds to the set of reachable markings from m0 (obtained from firing
transitions),

• δ ⊆ (Q × T × Q) is the set of edges in MG, i.e. (m, t,m′) ∈ δ iff there is160

a t ∈ T such that m′ is obtained from firing transition t from marking m,

• q0 = m0 is the initial state of the graph,

• qF = mF is the final state of the graph.

Given an edge e = (m, t,m′) ∈ δ with λ(t) = a, we write λ(e) to denote λ(t).

We use the notation m
a−→ m′ to represent an edge e for which λ(e) = a1. The165

source and target markings of edge e are respectively denoted by src(e) and
tgt(e), thus we have src(e) = m, and tgt(e) = m′. We refer to the transition
of e by trans(e) = t.

Definition 3 (Path, language). Given a Petri net N and its corresponding
marking graph MG = (Q,Στ , δ, q0, qF), a sequence of edges ρ = 〈e0, e1, . . . , en〉 ∈170

δ∗ is called a path in N if it forms a trace on the marking graph of N: src(e0) =
m0 ∧ tgt(en) = mF ∧ ∀0≤i<n : tgt(ei) = src(ei+1). The set of all paths in N
is denoted by Paths(N). We overload notation and write λ(ρ) for referring to
the sequence of labels visited in ρ, i.e. λ(ρ) = 〈λ(e0), λ(e1), . . . , λ(en)〉 (there
may be different paths ρ and ρ′ such that λ(ρ) = λ(ρ′), due to e.g. multiple175

transitions with the same label). We define the language L of a Petri net N
by L(N) = {λ(ρ) | ρ ∈ Paths(N)}. By extension, we also call a sequence
of transitions ω ∈ T∗ a path if there is a path ρ = 〈e0, e1, . . . , en〉 such that
ω = 〈trans(e0), trans(e1), . . . , trans(en)〉, and we define λ(ω) to equal λ(ρ).

Definition 4 (Trace to Petri net). Given a trace σ = 〈σ0, σ1, . . . , σn−1〉 ∈ Σ∗,180

its corresponding Petri net is defined as Nσ = (P,T,F,Στ , λ,m0,mF) with

• P = {p0, p1, . . . , pn, pn+1},

• T = {t0, t1, . . . , tn},

• F = {(p0, t0), (p1, t1), . . . , (pn, tn)} ∪ {(t0, p1), (t1, p2), . . . , (tn, pn+1)},

• Στ =
⋃

0≤i<n{σi}, ∀0≤i<n : λ(ti) = σi,185

• m0 = p0, and mF = pn+1.

2.2. Alignments

With alignments we map observed behaviour from an event log onto the
behaviour that is described in the reference model. An alignment is represented
by a sequence of log-model pairs.190

1There may be multiple distinct edges that are represented by m
a−→ m′.
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Definition 5 (Alignment). Let σ ∈ Σ∗ be a log trace and let N be a Petri net
model such that N = (P,T,F,Στ , λ,m0,mF), for which we obtain the mark-
ing graph MG = (Q,Στ , δ, q0, qF). We refer to Σ� as the alphabet containing
skips: Σ� = Σ ∪ {�} (and τ /∈ Σ�). We define T� as the set of transi-
tions and the skip event: T� = T ∪ {�}. Now, let γ ∈ (Σ� × T�)∗ be a195

sequence of log-model pairs. For γ = 〈(γ00 , γ10), (γ01 , γ
1
1), . . . , (γ0|γ|−1, γ

1
|γ|−1)〉, we

define γ` as the log trace events, i.e. γ` = 〈γ00 , γ01 , . . . , γ0|γ|−1〉 \ {�} and γm as

the events for the path through the model, by γm = 〈γ10 , γ11 , . . . , γ1|γ|−1〉 \ {�}.
We refer to the corresponding sequence of actions from γm by λ(γm), i.e.
λ(γm) = 〈λ(γm0 ), λ(γm1 ), . . . , λ(γm|γ|−1)〉. We call γ an alignment if the following200

conditions hold:

1. γ` = σ (the activities of the log-part, equals to σ),

2. λ(γm) ∈ L(N) (γm forms a path in N),

3. ∀a ∈ Σ,∀b ∈ T : a 6= λ(b)⇒ (a, b) /∈ γ (illegal moves are not allowed),

4. (�,�) /∈ γ, (the ‘empty’ move may not exist in γ).205

Definition 6 (Alignment cost). Let γ ∈ (Σ�×T�)∗ be an alignment for σ ∈ Σ∗

and the Petri net N. The cost function maps elements of γ onto alignment
costs of individual moves, c : (Σ� × T�) → (R≥0 ∪ {∞}), and we overload c
for assigning costs to alignments; c : (Σ� × T�)∗ → (R≥0 ∪ {∞}), such that

c(γ) =
∑|γ|−1
i=0 c(γi).210

We call an alignment γ under cost function c a successful alignment if c(γ) 6=
∞, otherwise, if c(γ) = ∞, we call γ a failed alignment. We call a successful
alignment γ optimal iff @γ′ : c(γ′) < c(γ), i.e. there does not exist an alignment
γ′ with a smaller cost.

Definition 7 (Standard cost function). The standard cost function cst is de-
fined for an alignment pair (`,m) ∈ (Σ� × T�) as follows (assuming small
ε > 02):

cst(`,m) =


ε ` =� and m ∈ T and λ(m) = τ

(
silent move)

0 ` ∈ Σ and m ∈ T and λ(m) = `
(
synchronous move

)
1 ` ∈ Σ and m =�

(
log move

)
1 ` =� and m ∈ T and λ(m) 6= τ

(
model move

)
.

In the standard cost function, we penalize log- and model moves equally.215

Synchronous moves are the preferred choice in alignments, since they are free.
We note that silent moves also have a small cost, which is there in case there

2 The value for ε is chosen such that cycles are prevented and an acyclic path with costs of
0 and ε (upper-bounded by the longest acyclic path in the marking graph) is preferred over
a single 1-cost move. If a larger value is chosen for ε, more 1-cost moves may be taken in
optimal alignments as a result. However, we assume that this is undesired and therefore set
a sufficiently low value for ε in our experiments.
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Figure 2: Example Petri net for which the csync cost function yields undesired results.

are so-called τ -cycles in the model (τ transitions in the model that compose a
cycle in the marking graph). An alignment could otherwise contain an infinite
sequence of silent moves, by continuously traversing these τ -cycles.220

3. Maximizing Synchronous Moves and Milestones

The standard cost function from Definition 7 is the most commonly used
cost function in literature [24, 28, 3, 1], though note that any cost function
could be used (e.g. see [13] for an alternative). The standard cost function
may lead to undesired results, as illustrated by the example from Figure 1. We225

consider a new cost function that maximizes the number of synchronous moves,
since it explains as many log moves as possible. We propose the alternative cost
function as follows.

Definition 8 (max-sync cost function). We define the max-sync cost function
csync for an alignment pair as follows (assuming small ε > 02):

csync(`,m) =


ε ` =� and m ∈ T and λ(m) = τ

(
silent move

)
0 ` ∈ Σ and m ∈ T and λ(m) = `

(
synchronous move

)
1 ` ∈ Σ and m =�

(
log move

)
ε ` =� and m ∈ T and λ(m) 6= τ

(
model move

)
.

This cost function only penalizes log moves, which as a consequence causes an
optimal alignment to minimize the number of log moves and thus maximize the230

number of synchronous moves. The ε cost for model moves further filters optimal
alignments to only include shortest paths through the model that maximize
synchronous moves.

An advantage of the max-sync cost function over the standard cost function
is that observed behaviour is not sacrificed for shorter paths through the model235

(as Figure 1 illustrates). A disadvantage is that in order to maximize the number
of synchronous moves, it may be possible that many model moves are required,
especially in case the model contains cycles. Consider for example the Petri
net model depicted in Figure 2. We are always able to synchronize all observed
behaviour by executing the loop, i.e. the reset activity. By simply taking the240

reset transition one can traverse the model again to find a particular event, and
report the steps to reach it as model moves. Therefore, we introduction the
notion of milestone activities.
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3.1. Milestones

To mitigate the problem with undesired alignments, we define a milestone245

as a label that may not be chosen in model moves. Note that we do not assign
an infinite cost to log moves with milestone actions.

Definition 9 (Milestones). Given a Petri net N = (P,T,F,Στ , λ,m0,mF) and
a cost function c, milestones are labels Y ⊆ Σ, such that a new cost function
c′ is formed, which sets the cost for all model moves with a milestone label to
infinity, i.e.

∀(`,m) ∈ (Σ� × T�) : c′(`,m) =

{
∞ if ` =�, m ∈ T, and λ(m) ∈ Y
c(`,m) otherwise.

Consider the example model in Figure 2 and assume we compute an align-
ment with the csync cost function. If we choose the reset action to be a milestone,
then the reset is only scheduled if it synchronizes with a log move. Therefore,250

an optimal alignment includes exactly as many reset actions in the model as
there are in the log. Note that this is not necessarily the case if we employ a
different cost function.

An interesting consequence of having milestones in the model, is that not
every alignment is a successful one. If we assign the start action in Figure 2 as255

a milestone, and align it with a log trace that does not contain a start event,
then the alignment cost would be infinite and therefore we call the alignment
failed.

3.2. Relating the Model and Event Log

Given a Petri net model N and an event log E ∈ B(Σ∗), we distinguish four260

cases based on the languages that they describe. By distinguishing the relative
granularities of N and E we define cases of alignment problems as follows.

C1: σ1 ∈ E : (∃σ2 ∈ L(N) : σ1 = σ2); the majority of log traces cor-
respond to paths in the model. Then, these traces can be mapped
onto the model by only using synchronous and silent moves, which is265

optimal for cst and csync.

C2: σ1 ∈ E : (∃σ2 ∈ L(N) : σ1 v σ2); the majority of log traces corre-
spond to subsequences of paths in the model. Then, these traces can
be mapped onto the model without using any log moves. The exam-
ple model from Figure 1 for σ = 〈B〉 is such an instance. We argue270

that csync provides better alignments in such instances as cst may
avoid synchronization in favour of shorter paths through the model.

C3: σ1 ∈ E : (∃σ2 ∈ L(N) : σ2 v σ1); for the majority of log traces there
is a path through the model that forms a subsequence of the log trace.
Then, these traces can be mapped onto the model without using any275

model moves. Here, csync and to some extent cst can arguably lead
to bad results as model moves may be taken to synchronize with
‘undesired’ behaviour.
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C4: None of the properties hold. All move types may be necessary for
alignments. We regard this as a standard scenario. Depending on280

the use case, either cst or csync could be preferred (which we discuss
in Section 5.1),

We note that each of these cases could also be considered on a trace level,
where e.g. we could have an event log that strictly contains log traces of the form
C1 and C3. Aside from C4, we consider cases C2 and C3 as common instances285

in practice, as logging software often causes either too many or too little events
to be logged or in case the model is over/underspecified. Discrepancies then
show whether the model is of the right granularity. That is, assuming that the
model is correct, i.e. the model itself may also describe incorrect behaviour. We
note that it is also possible to hide certain activities in the model or log before290

alignment. This is however not trivial, especially if there are (slight) deviations
in the log such that the alignment problem does not fit C2 or C3 exactly any
more.

When considering instances that exactly fit case C2 or C3, we are able to
construct alignments by respectively removing all log or model moves from the295

product of the model and log. We define the cost functions cadd and crem to
be variants of cst such that model and log moves respectively have a cost of ∞.
Note that the resulting alignments for cadd and crem will still be successful for
case C3 and C2 respectively. We argue that this results in a better ‘alignment
quality’ and reduces the time for its construction.300

4. Preprocessing Reference Models

When constructing an alignment under the csync cost function, we disregard
the cost for model moves to a certain extent. The goal is to find a path through
the model that maximizes the number of synchronous moves. We achieve this
by searching for a subsequence in the log trace that is also included in the305

language of the reference model. By computing the transitive closure of the
model’s marking graph, we find all paths and subsequences of paths through
the model. We extend the structure from [6] to include milestones, which we
call a Milestone Transitive Closure Graph, or MTCG. Given a log trace, we can
use dynamic programming to search for the maximum-length subsequence that310

is replayable in the MTCG. From this subsequence, we construct a path through
the marking graph and obtain an optimal alignment.

4.1. Milestone Transitive Closure Graph (MTCG)

We construct an MTCG as described in Definition 10. Here, τ -edges are
added for every edge in the marking graph, except for milestone edges (which315

cannot be skipped), such that, in case there are no milestones, every marking
is reachable via τ -steps from the initial marking set. After determinization, for
every path P in the original marking graph the MTCG contains a path P ′ such
that λ(P ′) = λ(P ). In case there are no milestones, the MTCG also contains
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every path P ′ for which λ(P ′) v λ(P ) holds, that is, any subsequence of a path’s320

labels can be formed in the MTCG.

Definition 10 (Milestone Transitive closure graph). Given a marking graph
MG = (Q,Στ , δ, q0, qF) and a set of milestones Y , we first construct an extended
marking graph MG ′ = (Q,Στ , δ

′, q0, qF), with

δ′ = δ ∪ {
(
src(e), τ, tgt(e)

)
| e ∈ δ ∧ λ(e) /∈ Y }.

A milestone transitive closure graph (MTCG) M = (Q,Σ,∆,Q0,QF) is de-
fined as the result of determinizing MG ′. This can be achieved via a standard
determinization algorithm [23]. The idea of a determinization algorithm is to
perform τ -closures such that all unobserved behaviour is contracted to a single325

state. The initial state is formed by combining all reachable markings using only
τ transitions (which consists of all markings in our case). Then, the successors
of markings from this state are computed and combined for each label, followed
by τ -closures on the successor states. This process is performed iteratively until
no new successor states are found, such that330

• Q ⊆ 2Q,

• Σ = Στ \ {τ},

• ∆ ⊆ (Q× Σ×Q),

• Q0 ⊆ Q, and

• QF = {F | F ∈ Q ∧ qF ∈ F}.335

For an edge e ∈ ∆ we also use the notation src(e) and tgt(e) to respectively
refer to the source and target marking sets in the MTCG. Given an MTCG
M, paths over M are defined analogously to paths over marking graphs (see
Definition 3) and we use Paths(M) and L(M) to respectively denote the set of
all paths in M and the language of M.340

In Figure 3, we give an example of an MTCG with milestones B and D. Let
us first consider the example without milestones. Because the marking graph
consists of a single strongly connected component, every marking becomes reach-
able from every other marking. Therefore, if we compute its MTCG without
any milestones, we obtain a single state with a self-loop for each label. Trivially,345

all paths and subsequences of paths are preserved in this structure, however,
this is rather useless in practice.

If we add the milestones B and D to the model, we obtain a more interesting
MTCG. An observation is that the initial state is no longer an accepting one, as
we can only reach the [p5] marking by firing a B and a D action. Other events350

can still be skipped, however, hence we can directly take a B action from the
initial state to Q2, but taking an E action is not allowed. As a result, we ensure
that paths through the MTCG may not skip milestone actions, and are forced
to take these actions if there is no alternative path to reach a final state.
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Figure 3: From left to right, a Petri net with milestone activities B and D, its corresponding
marking graph, its corresponding MTCG without milestones, and the MTCG with milestones.
All highlighted edges and transitions represent milestone activities.

4.2. Searching for optimal subsequences355

Given a log trace σ, we use the MTCG of a model to obtain a subsequence
of the log trace σ̂ v σ, such that σ̂ fully synchronizes with the model. From the
construction of the MTCG we have the following property.

Lemma 1 (Paths in an MTCG synchronize with the model). Given a marking
graph MG and its corresponding MTCG M. If ρ is a path in M, then there360

exists a path ρ′ in MG such that λ(ρ) v λ(ρ′).

Proof. This follows from the construction of an MTCG. An MTCG M is formed
from a marking graph MG by adding τ actions to existing edges. Therefore,
the only additional behaviour that M has compared to MG is to replace visible
actions by τ actions in its paths. Hence, any path in M forms a subsequence of365

a path in MG , i.e. ∀ρ ∈ Paths(M),∃ρ′ ∈ Paths(MG) : λ(ρ) v λ(ρ′).

We use the result of Lemma 1 to search for a subsequence of a log trace
that can fully synchronize with the model. For instance in the example of
Figure 4 (without milestones), consider a log trace σ = 〈F,D,E,B〉. Note
that this does not form a path through the model. The F event can be fired370

from Q0, after which the MTCG is in state Q10. From this state, it is not
possible to perform any other event from log trace. A better choice is to skip
the F event (which results in a log move) and form the subsequence 〈D,E〉,
as highlighted3. We call the maximum-length subsequence σ̂ from a log trace

3 Note that after performing the D action in the MTCG, in the Petri net we have not yet

12



p0

p1 p2 p3

p4 p5 p6

p7

At0 Bt1

Ct2 Dt3 Et4

Ft5 Gt6

p0

p1p2 p2p3

p2p4 p1p5 p3p5 p2p6

p4p5 p5p6

p7

A B

C D D E

D C E D

F G

p0 p1p2

p2p3 p2p4

p1p5 p3p5

p2p6 p4p5

p5p6 p7

Q0

p1p2

p2p4

p1p5

p4p5

p7

Q1

p2p3

p3p5

p2p6

p5p6

p7

Q2

p2p4

p4p5

p7

Q3

p1p5

p4p5

p7

Q4

p3p5

p5p6

p7

Q5

p2p6

p5p6

p7

Q6

p4p5

p7

Q7

p5p6

p7

Q9

p7

Q10

p1p5

p3p5

p4p5

p5p6

p7

Q8

A B

C D D E

D C E D

F G

D

G,F

GF

EC

E

G

G

G

C

F

F

F

Figure 4: Example Petri net model (left), its corresponding marking graph (middle) and
milestone transitive closure graph (right, without milestones) with the sequence 〈D,E〉 high-
lighted.

a maximum fitting subsequence if σ̂ also forms a path through the MTCG, as375

defined in Definition 11.

Definition 11 (Maximum fitting subsequence). Given a sequence (log trace)
σ ∈ Σ∗ and an MTCG M = (Q,Σ,∆,Q0,QF), then σ̂ v σ is a maximum fitting
subsequence if and only if σ̂ ∈ L(M) ∧ ∀σ̂′ v σ : σ̂′ ∈ L(M)⇒ |σ̂| ≥ |σ̂′|.

Given a log trace σ and an MTCG M = (Q,Σ,∆,Q0,QF), we construct a380

maximum fitting subsequence σ̂ by using dynamic programming to search for a
subsequence of σ that forms a maximum-length path in M. A straightforward
implementation of this is by a 2D array (|σ|×|Q|) of sequences. We then iterate
over each element σi from the log trace and track the paths in M that are formed
by choosing to include σi or deciding to skip it (in case it is not a milestone).385

Subsequently we return the largest sequence that ends in a final state.
Once we have found the maximum fitting subsequence σ̂ for a given model

and log trace, we still have to determine which model moves should be applied
to form a path through the original model. This is achieved by using the MTCG
and MG , by traversing backwards through σ̂ as we show in Algorithm 1.390

We assume a maximum fitting subsequence σ̂ 6= 〈〉 (we have a failed align-
ment if σ̂ = 〈〉). We first construct a path MFP from the subsequence σ̂ (line 3),
in the example from Figure 4 with σ̂ = 〈D,E〉 (see also Figure 5 for an illustra-
tion of the path construction process) this is MFP = 〈(Q0, D,Q8), (Q8, E,Q9)〉.

made the choice to fire either an A or a B transition; we implicitly make the decision to fire
the B transition after choosing the E event.
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Then in line 4, a backward search procedure (BackwardsPath) is called to search395

for a path P in the marking graph from an E-edge to the final marking ([p7]).
The BackwardsPath procedure takes a target marking m, label a and search

space S as arguments. A sequence W is maintained to process unvisited mark-
ings from S and a mapping F : Q → (δ ∪ {⊥}) is used for reconstructing
the path. Starting from the target marking m (which is W0), the procedure400

searches for edges e directing towards m in line 17-19 such that src(e) is in S
and not already visited. For every found edge e, its source is appended to W
(to be considered in a future iteration) and src(e) is mapped to e for later path
reconstruction.

Following iterations of the for loop in line 12-19, consider a predecessor Wi405

of m and search for edges directing to Wi. In this way, the search space is
traversed backwards in a breadth-first manner, resulting in shortest paths to m.

In line 13-16, the BackwardsPath procedure checks whether there is an edge

m′
a−→ Wi for some m′ (or an edge q0

a′−→ Wi for arbitrary a′ in case a = ⊥)
and if so, constructs a path towards m in line 15 which is then returned. In the410

example, the path 〈([p3p5], E, [p5p6]), ([p5p6], G, [p7])〉 will be returned for the
first BackwardsPath call.

After the first BackwardsPath call, the main function iterates backwards
over all remaining edges from MFP (line 5-6) to create paths between σ̂i and
σ̂i+1, which are inserted in the path in front of P . Finally, in line 7 a path from415

the initial marking q0 towards the first label σ̂0 is inserted before P to complete
the path (here the label is set to ⊥ to search for q0 in the BackwardsPath call).

Algorithm 1: Path construction from a maximum fitting subsequence σ̂

1 func PathConstr (M = (Q,Σ,∆,Q0,QF),MG = (Q,Στ , δ, q0, qF), σ̂ = 〈σ̂0, σ̂1, . . . , σ̂n〉)
2 // Construct path MFP on MTCG such that λ(MFP) = σ̂
3 MFP := 〈(Q0, σ̂0, S), (S, σ̂1, S′), . . . , (S′′, σ̂n, S′′′)〉 s.t. ∀0≤i≤n : MFPi ∈ ∆
4 P := BackwardsPath(MG, qF, σ̂n, tgt(MFPn)) // Path σ̂n to qF on MG
5 for i := n− 1; i ≥ 0; i := i− 1 do // Add paths from σ̂i to σ̂i+1

6 P := BackwardsPath(MG, src(P0), σ̂i, tgt(MFPi)) · P
7 return BackwardsPath(MG, src(P0),⊥,Q0) · P // Add path from q0 to σ̂0

8 func BackwardsPath (MG = (Q,Στ , δ, q0, qF),m ∈ Q, a ∈ (Σ ∪ {⊥}), S ⊆ Q)
9 W := 〈m〉 // Sequence of unvisited markings in the backward search

10 ∀m ∈ S : F [m] := ⊥ // Mapping from markings to edges; F : Q→ (δ ∪ {⊥})
11 i := 0
12 while i < |W | do // Continue for all markings in W
13 if ∃m′ ∈ Q, a′ ∈ Σ : (m′, a′,Wi) ∈ δ ∧ (a′ = a ∨ (a = ⊥ ∧m′ = q0)) then
14 P := 〈(m′, a′,Wi)〉 // Found path from a (or initial marking)

15 while tgt(P|P |−1) 6= m do P := P · F [tgt(P|P |−1)]

16 return P // Shortest path from a (or q0) to m

17 forall e ∈ δ : src(e) ∈ (S \W ) ∧ tgt(e) = Wi do
18 W := W · 〈src(e)〉 // Add predecessor markings of m to W
19 F [src(e)] := e // Direct the source markings towards m

20 i := i+ 1

21 return 〈〉 // No path from a (or q0) is found (should never occur)

14
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Figure 5: Path construction using Algorithm 1 on the example from Figure 4 for a maximum
fitting subsequence σ̂ = 〈D,E〉 v 〈F,D,E,B〉. Markings in the grey region are not part of
the path. The resulting alignment γ is shown on the right.

In the example, we compute the path 〈([p3p5], E, [p5p6]), ([p5p6], G, [p7])〉 in
line 4, then after line 5-6 we insert the path 〈([p2p3], D, [p3p5])〉, and in line 7
we insert the path from the initial state q0 = [p0], 〈([p0], B, [p2p3])〉, to create
the complete minimal-length path P in the marking graph such that σ̂ v λ(P ),
i.e.

P = 〈([p0], B, [p2p3]), ([p2p3], D, [p3p5]), ([p3p5], E, [p5p6]), ([p5p6], G, [p7])〉.

Alignment. The alignment can be reconstructed by marking all events in the
maximum fitting subsequence as synchronous moves, by marking the remaining420

labels in the log trace as log moves, and inserting the model and silent moves
(as computed by Algorithm 1) at the appropriate places. Regarding milestones,
these cannot be taken as model moves, e.g. when constructing a path, because
all milestone edges are explicitly present in the MTCG. Therefore, a milestone
action is only taken if it is part of the maximum fitting trace. If the maximum425

fitting trace is empty, we have a failed alignment.

4.3. Limitations

We note that the MTCG algorithm does not exactly compute an alignment
for the cost function csync. The backwards BFS does ensure a shortest path
through the model from the initial to the final marking while synchronizing430

with the maximum fitting subsequence. However, there might exist a different
maximum fitting subsequence that leads to an alternative path through the
model with a lower total cost (i.e. fewer model moves). This can be repaired by
computing the alignments for all maximum fitting subsequences. If we consider
a variant cost function c′sync, where silent- and model moves have cost 0, then435

the MTCG algorithm does compute an optimal alignment.
If the marking graph contains cycles, the corresponding markings get con-

tracted to a single state in the MTCG with a self-loop for each activity in the
cycle (as shown in Figure 3), which may be prevented by adding milestones.
The algorithm does prevent alignments to unnecessarily traverse cycles in the440

model (and thus self-loops in the MTCG).
Arguably, a limitation of our approach is that the user has to decide which

activities should be marked as milestones. We remark that this process could
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easily be automated, by e.g. selecting activities on cycles as milestones to prevent
cycles from being collapsed (as in e.g. Figure 3).445

Because each state in the MTCG consists of a subset of markings, there
may be exponentially more states in the MTCG than there are markings in the
marking graph. The construction of the MTCG relies on full knowledge of the
marking graph, thus the MTCG cannot be constructed when the marking graph
is of infinite size. As a result, this would suggest that the MTCG algorithm is450

mainly applicable for small-sized models (in combination with many log traces),
and it may be ineffective for large models. However, since the size of the Petri
net model is not a clear indicator for the size of its marking graph, we may have
small models with a large marking graph and vice versa.

5. Experiments455

The implementation for the MTCG algorithm is available in the
MaxSyncAlignments package from the ProM 6.8 toolset and the results for
the experiments are available at https://github.com/utwente-fmt/MaxSync-
BPM2018. The corresponding models and event logs used in the experiments
are available at https://data.4tu.nl/repository/uuid:5f168a76-cc26-42d6-a67d-460

48be9c978309.
For the experiments, we considered two types of alignment problems. On

the one hand, a large reference model accompanied by an event log consisting of
a single log trace, and on the other hand a smaller reference model accompanied
by an event log containing many traces. All experiments were performed on an465

Intel R© Coretm i7-4710MQ processor with 2.50GHz and 7.4GiB memory. For all
experiments, we used a timeout of 60 seconds.

In Section 5.1 we investigate differences between the alignments resulting
from using the standard- and max-sync cost functions, and the number of mile-
stones. We also investigate the specific alignment problems for which events470

are only added or removed from log traces, i.e. cases C2 and C3 as discussed in
Section 3.2. For all the above experiments we used generated Petri net models,
each accompanied by a single log trace, for which we added various amounts of
noise.

In Section 5.2 we also look at (small-scale) models that are accompanied475

by many log traces to compare the performance of the MTCG algorithm with
related work. We compared our algorithm with the A* algorithm from [1] and
the recent incremental alignment algorithm from Van Dongen [26]. However,
we note that for the computation time comparison, the incremental alignment
algorithm performs practically the same as the A* algorithm, as the experi-480

ments consist of many relatively small log traces. We therefore only present the
results from the incremental algorithm. All algorithms have been implemented
in ProM [30]. For each alignment computation we used a single thread4.

4 We consider multi-threaded experiments not as useful in this scenario, as the log traces can
e.g. be divided over the different threads such that the alignments are computed independently.
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Table 1: Average number of move types per alignment. Comparison between alignments
generated using the cst and csync cost functions. The numbers show averages, e.g. the value of
2.3 in the top-left corner denotes the average number of log moves for all computed alignments
for which 10% noise is added, using the cst cost function.

Moves Noise added (add, remove, swap) Number of activities Average
10% 30% 50% 70% 25 50 75

cst csync cst csync cst csync cst csync cst csync cst csync cst csync cst csync

Log 2.3 1.3 6.5 3.6 9.4 5.4 10.9 6.3 4.7 3.2 8.9 4.6 8.4 4.5 7.0 4.0
Model 2.0 15.7 4.6 30.9 5.8 35.3 6.2 38.1 3.3 10.7 5.6 39.1 5.4 50.2 4.5 29.4
Sync 28.5 29.6 20.9 23.7 16.8 20.8 14.5 19.1 13.8 15.4 23.2 27.5 29.4 33.3 20.6 23.6
Silent 17.3 24.4 14.7 30.4 13.6 35.3 12.8 35.1 10.0 13.3 16.2 39.6 21.6 51.6 14.7 31.0

5.1. Experiments using generated models and singleton event logs

Model generation. Using the PTandLogGenerator [12] we generated Petri net485

models with process operators and additional features set to their defaults;
where the respective probabilities for sequence, XOR, parallel, loop, OR are set
to 45%, 20%, 20%, 10%, and 5%. The additional features for the occurrence of
silent and duplicate activities, and long-term dependencies were all set to 20%.

To examine how alignments scale (the distribution of move types) we ranged490

the average number of activities from 25, 50, and 75, resulting in respectively
110, 271, and 370 transitions on average. For these settings, we generated 30
models (thus 90 in total) and generated a single log trace per model. For this log
trace we added 10%, 30%, 50%, and 70% noise in three different ways (thus 12
noisy singleton logs are created); by (1) adding, removing and swapping events495

(resembling case C4), (2), by only adding events (resembling case C3), and (3)
by only removing events (resembling case C2). In total there are 1,080 noisy
singleton logs. We first consider noise of type (1).

Alignment differences for cst and csync. In Table 1 we compare the resulting
alignments for the different cost functions. When comparing the overall results500

of cst and csync (rightmost column), we observe that csync uses about 43% fewer
log moves, which are added as synchronous moves. However in doing so, more
than six times as many model moves are required.

When looking at an increase in the amount of noise, the relative difference
between the number of log moves remains the same, while this difference in505

model moves slightly drops. When increasing the number of activities from 25
to 75, We observe an increase in the number of model moves for csync from 3.2
times to 9.3 times as many compared to cst. This only results in a few more
synchronized moves than an alignment for a cst cost function returns. The
difference between log moves from csync and cst stays relatively the same for510

increasing activities.
We conclude that, while csync does result in more synchronized moves than

cst, the number of additional model moves increases when the amount of noise,
or the number of activities grows. As a result, the alignments resulting from
csync and cst become more diverse for larger models.515

Alignment problems that only add or remove events. In Table 2, we compare
the resulting alignments for adding or removing events. When inspecting the
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Table 2: Average number of move types per alignment. Comparison between alignments
generated using the cst and csync cost functions for alignment problems, where noise only
consist of adding (Add) or removing (Rem) events. The cost functions cadd and crem are
variations on cst such that model and log moves respectively have a cost of ∞.

Moves Log events added (Add) Log events removed (Rem)
10% 30% 50% 10% 30% 50%

cst csync cadd cst csync cadd cst csync cadd cst csync crem cst csync crem cst csync crem

Log 3.1 2.0 3.1 7.5 5.1 7.6 10.6 7.4 10.8 0.3 0.0 0.0 1.0 0.0 0.0 2.5 0.0 0.0
Model 0.0 13.1 0.0 0.1 21.6 0.0 0.2 23.1 0.0 3.0 3.3 3.3 6.3 7.7 7.7 8.0 11.9 11.9
Sync 29.4 30.5 29.4 26.5 28.9 26.4 24.1 27.4 23.9 30.3 30.7 30.7 21.0 22.0 22.0 13.9 16.4 16.4
Silent 16.3 23.6 16.2 15.5 31.0 15.4 14.0 30.0 13.8 18.4 18.5 18.5 16.0 16.7 16.7 13.2 16.0 16.0

Table 3: Average number of move types per alignment. Comparison between alignments for
the csync cost function on models that have either 2 or 5 randomly chosen milestones. Failed

denotes the percentage of failed alignments.

Noise added (add, remove, swap) Number of activities Average
10% 30% 50% 70% 25 50 75

Milestones 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5

Failed 2% 6% 4% 14% 8% 22% 12% 27% 4% 20% 10% 16% 4% 14% 6% 17%

Log 1.5 1.6 2.7 3.1 3.6 4.6 4.2 5.2 2.6 2.9 2.9 3.6 2.7 2.7 2.7 3.1
Model 2.2 2.0 4.2 3.2 5.4 3.9 5.8 4.3 2.8 2.0 4.3 3.6 6.2 4.7 4.0 3.1
Sync 19.6 19.6 15.2 14.0 11.9 10.8 9.4 9.1 10.7 10.8 15.5 14.7 18.7 16.5 13.9 13.4
Silent 12.4 12.0 11.5 10.6 10.8 9.6 10.1 9.4 8.5 8.2 11.1 10.0 18.5 16.3 11.2 10.5

Add case, we find that, in contrast to csync, cst already avoids model moves
for the most part, which is as we expected. Moreover, there are only small
differences between alignments from cst and cadd. For csync, many model moves520

may be chosen to increase the number of synchronous moves. These additional
synchronous moves are arguably not part of the ‘desired’ alignment since they
require a large detour through the model.

When removing events from the log trace, the cst cost function is only partly
able to describe the removal of events as it still chooses log moves. The csync525

cost function does not take any log moves as this maximizes the number of
synchronous moves, making it equal to crem. When comparing cst and csync, we
argue that for the Add case, the cst cost function better represents a ‘correct’
alignment and for the Rem case csync is better suited. For all cases, the effects
become larger when the amount of noise is increased.530

Influence of milestones on alignments. The results from Table 3 show how mile-
stones affect alignments, and can be compared with the results from Table 1
for 0 milestones. The milestones were selected randomly (uniformly distributed
over the activities). An interesting result is that even though we use the csync
cost function, the number of model moves remains relatively low for both 2 and535

5 milestones. For the alignments with milestones we observe that the number of
activities does not significantly affect the ratio of failed alignments, even though
a larger model should make it easier to ‘avoid’ a milestone. We do observe a
rather clear correlation between the increasing amount of noise and the ratio
of failed alignments. A possible explanation for this is that more noise in the540

log increases the probability that a milestone activity is removed. As expected,
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having more milestones results in a larger alignment failure ratio.
When comparing the alignments resulting from the 2 and 5 milestone ver-

sions, we discover that these are remarkably similar. The largest difference is
in the number of model moves, which is slightly lower for 5 milestones, which545

makes sense as we put a more severe restriction on which model moves can
be taken. In general, only a few milestones are sufficient for mitigating the
downsides of csync, as large detours through the model are now likely avoided.

5.2. Experiments using event logs with more traces

We now consider smaller models on which we align many log traces. For our550

experiments, we selected 9 instances from the 735 industrial business process
Petri net models from financial services, telecommunications and other domains,
obtained from the data sets presented in Fahland et al. [11].

For our selection, we picked the 9 most interesting cases: the top models
with the most number of places and transitions in the Petri net models, the555

largest number of markings and edges in the marking graph, the largest number
of states and edges in the MTCG (for which we were able to compute the MTCG
within 60 seconds), and models for which the computation of the marking graph
and MTCG took longest (within 60 seconds).

For each model, we generated a set of 10, 100, and 1,000 log traces and560

added 30% noise by adding, removing, and swapping events. We also investigate
the effects of having 0, 2, or 5 milestones. We compare the performance of the
MTCG algorithm with the incremental algorithm from [26] using a single thread.
Note that in our experiments, we only consider the csync cost function, as the
MTCG algorithm is not applicable to the cst cost function.565

Results. The results are presented in Table 4. For the incremental algorithm we
clearly see a computation time that is proportional to the log size. However, for
the MTCG algorithm this is not the case. The computation time for aligning
10 log traces is practically the same when 1,000 log traces are aligned5. This
shows us that after computing the MTCG as a precomputation step (which is570

included in the time and takes up most of it), actually aligning log traces takes
very little time.

However, for the models b, c, and e, the MTCG is not able to compute
alignments within 60 seconds, even for 10 log traces. Here, the size of the
MTCG becomes too large. For each of the models for which MTCG timed575

out, the algorithm reported having explored more than 200,0000 different sets
of markings (a set of marking forms a single state in the MTCG). This results
from models that express concurrency or branching behaviour. Every allowed
order for executing events in the model is tracked in the MTCG by storing all
corresponding intermediate states (marking sets) that may be visited.580

5 In some cases we can even observe that MTCG performs faster for 100 traces than for
10 traces. However, this is caused by the randomness that is inherent to program execution.
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Table 4: Comparison of computation times for aligning small models with a large number of
log traces using our MTCG algorithm and the incremental algorithm from [26]. All times are
in milliseconds. For every log trace we applied 30% noise by adding, removing and swapping
events. Here, M is the model name and |P | and |T | denote the number of places and transitions
in the model, respectively. The number of log traces is given by |Log| and |Fail| is the number
of failed alignments. A TO indicates that the algorithm timed out (i.e. requires more than
60 seconds to compute).

0 milestones 2 milestones 5 milestones
M |P | |T | |Log| MTCG Incr |Fail| MTCG Incr |Fail| MTCG Incr

10 723 288 2 465 346 7 327 138
a 35 26 100 658 1,615 30 316 1,291 65 159 630

1000 772 14,217 248 383 13,893 689 200 4,392

10 TO 23 2 764 17 6 68 6
b 13 9 100 TO 224 37 728 142 79 80 35

1000 TO 2,161 325 1,196 1,487 763 161 438

10 TO 102 1 TO 113 10 54 2
c 23 17 100 TO 1,016 37 TO 778 77 59 182

1000 TO 11,018 343 TO 8,966 696 130 3,289

10 310 82 0 127 60 0 29 55
d 40 26 100 344 612 9 128 928 9 52 563

1000 475 6,834 105 180 8,084 105 123 5,282

10 TO 281 1 TO 232 7 119 47
e 25 17 100 TO 1,576 39 TO 1,343 78 163 266

1000 TO 15,175 366 TO 11,926 790 285 2,745

10 602 260 0 174 274 3 131 796
f 59 43 100 575 1,891 0 171 1,731 34 142 2,331

1000 596 19,490 0 213 18,752 288 178 18,198

10 576 2,980 0 611 3,387 3 184 1,510
g 123 81 100 575 29,136 0 638 22,235 29 201 18,992

1000 690 TO 0 721 TO 285 253 TO

10 260 74 4 122 37 7 38 28
h 38 18 100 271 503 28 130 310 58 40 171

1000 293 4,540 256 156 2,911 583 93 1,677

10 103 62 3 15 55 9 6 6
i 24 18 100 109 488 31 19 327 80 9 103

1000 136 4,598 269 43 3,513 751 29 1,023

In particular for model g, we observe that the incremental algorithm already
takes quite some time to compute alignments for 10 log traces, and times out
for 1,000 traces. The MTCG algorithm is for this model significantly faster in
computing alignments. An interesting aspect of this model is that, while the
number of places and transitions is high, there is almost no branching in the585

process. The model has a few branching points, followed by long sequential
processes. Arguably, this is a difficult situation for an on-the-fly algorithm such
as the incremental algorithm or A*, as it may have to explore a large subprocess
before realizing that a different choice at the start of the process would lead to a
better alignment. Here, the MTCG remains reasonably small and for alignment590

computations we do not have to decide which path to take. We note that other
approaches exist that address the limitation of exploring a large state-space, e.g.
decomposition techniques [14, 19, 18], which may also be interesting to combine
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Figure 6: Two event logs (left) with their conforming and non-conforming behaviour displayed
on a Petri net (middle) and its corresponding MTCG (right). The Petri net based visualization
fails to show differences between the two markedly different event logs. The MTCG shows
the differences much better.

with our technique.
Another interesting result is that the computation time decreases for both595

algorithms when we increase the number of milestones. The model becomes
more constrained (we may not allow for particular model moves), hence there
are fewer paths to explore in the model’s state-space.

Overall, we observe that for 10 log traces, the incremental algorithm is
favourable in terms of performance, but MTCG outperforms it from 100 log600

traces and beyond. Of course, the MTCG algorithm may only compute align-
ments for the csync cost function (with the inclusion of milestones), while the
incremental algorithm (and A*) can compute alignments for arbitrary cost func-
tions.

6. MTCG for Analysing Non-conforming Behaviour605

Once alignments have been computed for a model and a set of log traces,
we aim to obtain actionable insights from these alignments. For a single log
trace, we can simply map the alignment on the Petri net or marking graph.
However, this approach is not applicable for multiple alignments on a single
model. Instead, two common ways of visualizing alignments are to (1) only610

depict the alignments, e.g. colour-coded for more convenient inspection, and (2)
to map the alignments on the model such that the count or ratio of synchronized
versus model moves is depicted on the model [8].

In Figure 6 (left and middle), we show how two sets of log traces are aligned
on a Petri net model. We count the number of times that a particular transition615

is taken as a synchronous move (e.g. the arc denoting 20 from p0 to A) and the
number of times that a transition is skipped in the log, forming a model move
(e.g. the arc from p0 to p1). This approach provides insights in the observed
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Figure 7: An event log with timestamps for each event (left) displayed on a Petri net (middle)
and its corresponding MTCG (right). While the MTCG visualization only shows the observed
events, the Petri net version needs to create time stamps for the generated model moves.

behaviour with respect to the model, e.g. each transition is fired an equal number
of times and skipped in one third of the cases.620

In Figure 7 we show how an event log with timing information is aligned to
a Petri net model. Here, the timestamps are given for each event (e.g. B[5]),
which are integrated into the model. In the MTCG we can clearly see how much
time each event takes. This is also mostly true for the Petri net visualization.
However, whenever an event is skipped in the model, we need to generate a
model move along with a timestamp. For the first log trace, we could have
constructed the following alignment:

γ =
A[0] � B[5] D[15]
A[0] C[2.5] B[5] D[15]
t0 t2 t1 t3

where C[2.5] is a generated model action, with a timestamp that is the average
of the time for the two neighbouring events (i.e. 0+5

2 ). This approach may seem
logical, but produces useless information. We could have also constructed an
alignment in which events B and C are swapped, which leads to a different
timestamp for C.625

Drawbacks of mapping alignments on the model. There are some drawbacks to
this approach. As we show in the picture, the results for two distinct event
logs result in the same diagnostic information. Observe that a model move is a
generated event. Hence, when applicable, all accompanying data for this event
(e.g. the timestamp denoting when the event occurred) is generated as well,630

while in practice the event did not take place at all. By displaying model moves
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we are effectively trying to ‘fill the gap’ between two synchronous moves, while
in fact we observed that there is no gap to fill.

Depicting only synchronous moves. A useful property of the MTCG is that it
allows us to represent all synchronous moves in an alignment, without having635

to generate artificial model moves to ‘fill in the gaps’. Consider the rightmost
illustrations from Figure 6. Here we only depict which moves in the model
can be synchronized with the log traces. In the top image, we clearly see how
the trace 〈A,C〉 is depicted. And, since we do not create artificial moves, the
bottom illustration only depicts the 20 〈A,B,C〉 traces (the 〈〉 traces remain640

in the initial state). Of course, here it is still possible to contrive examples in
which two distinct event logs result in the same diagnostics, but the MTCG
structure does mitigate that effect to some extent. The drawback is that for
larger models it may become infeasible to represent alignments on a MTCG,
simply because the graph becomes too big.645

7. Related Work

One of the earliest works in conformance checking was from Cook and
Wolf [10]. They compared log traces with paths generated from the model.

One technique to check for conformance is token-based replay [22]. The idea
is to ‘replay’ the event logs by trying to fire the corresponding transitions, while650

keeping track of possible missing and remaining tokens in the model. However,
this technique does not provide a path through the model. When traces in
the event log deviate a lot, the Petri net may get flooded with tokens and the
tokens do not provide good insights any more. However, token-based replay is
faster to compute when compared to alignments, and it has been implemented655

in commercial tools like Celonis.
Alignments were introduced [25, 1] to overcome the limitations of the token-

based replay technique. Alignments formulate conformance checking as an op-
timization problem, i.e. minimizing the alignment cost-function. Since its in-
troduction, alignments have quickly become the standard technique for confor-660

mance checking along with the A* algorithm for computing alignments [1, 29].
In earlier work [5] we presented an algorithm for computing alignments that
relies on the symbolic computation of the marking graph. We showed that it is
well-suited for large models, but its set-up time makes it not useful in computing
alignments for many log traces [6]. However, our algorithm is able to efficiently665

handle a large number of log traces (albeit for small-scaled models).
For larger models, techniques have also been developed to decompose the

Petri net in smaller subprocesses [19]. For instance, fragments that have a
single-entry and single-exit node (SESE) represent an isolated part of the model.
This way, localizing conformance problems becomes easier in large models [18].670

It would be interesting to combine the MTCG algorithm with such decomposed
models. Another approach is to combine the different log traces in a trie or
directed acyclic automaton [20]. While we have not studied this in-depth, we
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argue that this approach may combine well with the MTCG alignment proce-
dure, as it allows us to compute multiple alignments at once. When combining675

the model with (a sample of) the event log, one may be able to approximate the
part of the marking graph that is actually visited (as in [17]). While sacrific-
ing optimality, such an approach may improve the applicability of conformance
checking techniques.

A sub-field of alignments is to compute a prefix-alignment for an incom-680

plete log trace. This is useful for analysing processes in real-time instead of
a-posteriori. Several techniques exist for computing prefix-alignments [1, 27].
The MTCG approach that we introduced in this paper could also be suitable for
computing prefix-alignments. Burattin and Carmona [7] introduced a technique
similar to the MTCG approach, in which the marking graph is extended with685

additional edges to allow for deviations. However, it cannot guarantee optimal-
ity as a single successor marking is chosen per event, while instead we consider
all possible successors and can, therefore, better adapt for future events.

When alignments are approximated, often only part of the state-space is
considered, which may lead to overly optimistic results. This led to the concept690

of anti-alignments [9]. This is a trace that deviates as much as possible from
the observed behaviour, with the goal to compensate for the optimistic view.
Recent work by Bauer et al. [4] introduces a statistical approach for conformance
checking with large quantities of event data. The idea is to only check for a small
fraction (obtained by trace sampling) of the data and approximate the remaining695

results. While being an approximation, impressive results have been obtained.
An important (and arguably often neglected) aspect of conformance checking

is to determine whether the detected discrepancies originate from the model or
the event log. Rogge-Solti et al. [21] developed a framework that incorporates
a ‘trust value’ to describe the quality of the model or event log, which can be700

applied to more accurately reflect the results to reality.
In a more general setting, conformance checking is related to finding a longest

common subsequence, computing a diff, or computing minimal edit distances.
Here, the problem is translated to searching for a string B from a regular lan-
guage L such that the edit distance of B and an input word α is minimal [31].705

8. Conclusion

In this paper, we considered a max-sync cost function that instead of mini-
mizing discrepancies between a log trace and the model, maximizes the number
of synchronous events. We empirically evaluated the differences with the stan-
dard cost function and compared the alignment computation times. The use of710

the max-sync cost function also lead to a new algorithm for computing align-
ments.

We observed that, in general, a considerable amount of model moves may
be required to add a few additional synchronous moves, when comparing max-
sync with the standard cost function. However, when alignment problems are715

structured such that log moves are on a lower granularity than the model, a
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max-sync cost function is more applicable. Moreover, we introduce the notion
of milestones, i.e. unskippable actions in the model. Milestones may be used to
refine the model or guide the alignment computation. For instance, we observed
that combining the max-sync cost function with a few milestones prevents align-720

ments to take long deviations through the model. We consider milestones to
be valuable in general as they allow a user to filter traces and steer alignment
computations however he or she pleases.

On industrial models with many log traces, we showed that our new algo-
rithm, which uses a preprocessing step on the model to compute a so-called725

milestone transitive closure graph or MTCG, is quite different to the state-of-
the-art techniques for computing alignments. While it does not scale well for
large models, it is able to handle many log traces with ease.

We conclude that the max-sync cost function as well as our MTCG structure
and algorithm, are complementary to the standard techniques, as it provides a730

alternative views that may be preferable in some contexts. We also showed
the added value of milestones, for improving and adapting the max-sync costs.
Finally, we also show that we may use the MTCG structure for analysing non-
conforming behaviour, such that we do not rely on constructing artificial model
moves.735

An interesting direction for future work is to focus on extending the applica-
bility of the MTCG algorithm. When combined with a decomposition strategy,
we may be able to compute alignments for significantly larger models. We may
also consider approaches to reduce the number of visible actions in the model,
by removing ones that are not interesting, and thereby reducing the size of the740

model. This way, diagnostic information can be represented more clearly.
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