
PROMISE: Coupling Predictive Process Mining to
Process Discovery

Vincenzo Pasquadibiscegliea,∗, Annalisa Appicea,b, Giovanna Castellanoa,b,
Wil van der Aalstc

aDepartment of Informatics, Università degli Studi di Bari Aldo Moro, via Orabona, 4 -
70125 Bari - Italy

bConsorzio Interuniversitario Nazionale per l’Informatica - CINI, Italy
Tel.: +39-080-5443262

cRWTH Aachen University, Aachen, Germany

Abstract

Process discovery, one of the main branches of process mining, aims to discover a

process model that accurately describes the underlying process captured within

the event data recorded in an event log. In general, process discovery algorithms

aim to return models describing the entire event log. However, this strategy

may lead to discover complex, incomprehensible process models concealing the

correct and/or relevant behavior of the underlying process. Processing the entire

event log is no longer feasible when dealing with large amounts of events. In

this study, we propose the PROMISE+ method that rests on an abstraction

involving predictive process mining to generate an event log summary. This

summarization step may enable the discovery of simpler process models with

higher precision. Experiments with several benchmark event logs and various

process discovery algorithms show the effectiveness of the proposed method.

Keywords: Process discovery, Predictive process mining, Deep learning,

Abstraction, Event log summarization

∗Corresponding author
Email addresses: vincenzo.pasquadibisceglie@uniba.it (Vincenzo Pasquadibisceglie),

annalisa.appice@uniba.it (Annalisa Appice), giovanna.castellano@uniba.it (Giovanna
Castellano), wvdaalst@pads.rwth-aachen.de (Wil van der Aalst)

Preprint submitted to Journal of LATEX Templates January 1, 2023

1. Introduction

Process-Aware Information Systems (PAISs) are software systems that are

being used increasingly by public and private organizations to manage and ex-

ecute operational processes involving people, applications and/or information

sources. Examples of PAISs are workflow management systems, case-handling5

systems and enterprise information systems. In principle, these systems are

driven by process models [17] that can be represented in a graphical language,

e.g., in a Petri-net-like notation. In practice, most PAISs do not use an ex-

plicit process model, i.e., there are implicit, emerging processes based on best

practices analysis. This is because processes are commonly invisible and of-10

ten exist as abstract concepts, hence they are frequently difficult to materialize

[18]. In addition, even when processes are documented in some way, they are

often described using a variety of notations [18]. Fortunately, more and more

detailed information about the execution of process instances (e.g., activities

being executed) are being recorded in the form of event logs [19]. These event15

logs represent the key enabler for process discovery algorithms [18].

Process discovery is a branch of process mining [19] that is concerned with

the automatic discovery of process models from event logs. Existing process

discovery algorithms are formulated in process mining [19] and strike different

trade-offs between the accuracy in capturing the behavior recorded in an event20

log and the complexity of the derived process model. Ensuring the quality of

discovered process models is one of the main issues of the current research in

process discovery. In fact, to be useful the process model should: (1) parse

the traces in the log, (2) parse traces that are not in the log but are likely to

belong to the process that produced the log and (3) not parse other traces. The25

first property is called fitness, the second one generalization, and the third one

precision. On the other hand, the process model should be as simple as possible.

The simplicity property is usually quantified via complexity measures [2].

Most of the process discovery algorithms tend to use the whole event log

for discovery. This makes no longer effective traditional process discovery al-30

2

gorithms in the emerging big data settings, where the event data may be too

big to be entirely processed with standard hardware in a reasonable time [51].

A straightforward solution to overcome this problem is to build summaries of

huge event logs by down-sizing the amount of event data to be processed with

a process discovery algorithm. To this purpose, various filtering [8, 38, 39, 44]35

and sampling [40, 37, 16] methods have been proposed as preprocessing step

for process discovery. These methods apply extractive approaches to identify

important traces (sampling) or relevant excerpts from traces (filtering) in event

logs, and reproduce them verbatim as part of the log summary.

In this study, we explore how an abstraction-based approach can be effec-40

tively used as an alternative to the extraction strategy performed by filtering

or sampling. In particular, the goal is to use an abstraction strategy to distill

the most important information from an event log, in order to produce a syn-

thesized version of the log useful for the process discovery task. This idea is

borrowed from the text summarization field [15], where abstraction-based meth-45

ods are proved to be commonly more effective than extraction-based methods

for realizing text summaries. When applied to event logs, traditional filtering

and sampling methods extract a subset of existing traces (or excerpts of exiting

traces) for inclusion in the summary output. Opposed to these extraction-based

approaches, we propose an abstraction-based method that learns a generative50

representation (abstraction) of an event log that can be helpful to capture im-

portant process information possibly spread across traces. This abstraction is

used for generating few “new” representative traces that comprise more flexi-

ble activity sequences and provide a compact representation of the initial event

log content. These new traces are subsequently processed with process discov-55

ery algorithms to better achieve the ideal balance between the quality and the

complexity of the process models finally discovered.

This idea goes in some way into the direction of [36], where clustering is used

to group traces, while cluster medoids are selected as representative, existing

traces to populate the log summary. However, differently from [36], our method60

creates a log summary by creating new representative traces, apart from extract-

3

ing existing significant ones. In particular, the key idea of our method, named

PROMISE+ (coupling Predictive pROcess MIningto ProceSs DiscovEry), is to

learn the generative abstraction of the event log by setting a predictive process

mining method.65

Predictive process mining is a recently emerged family of process mining

methods to predict the unfolding of running traces (e.g., the next activity) based

on the knowledge learned from a historical event log. With the recent boom

of deep learning, several accurate predictive process mining methods leveraging

deep neural networks have been proposed [47, 46, 7, 32, 35, 33, 34]. Following70

this research stream, we use a deep neural network with Long Short-Term Mem-

ory (LSTM) layers [22] to process executed activities by taking into account the

sequential nature of events recorded in event logs. The trained LSTM model is

used within a trace generation technique to produce new representative traces

by iteratively sampling from the network’s output distribution, then feeding in75

the sample as input at the next step. Finally, we wrap a process discovery al-

gorithm in a forward trace selection strategy that selects the summary traces

that contribute to maximizing the quality of the process model discovered.

The paper is organized as follows. Section 2 overviews recent advances of lit-

erature in process discovery and outlines the motivation of this study. Section 380

reports preliminary concepts, while Section 4 describes the proposed PROMISE+

method. In Section 5, we present an extensive empirical study that compares

PROMISE+ to sampling and filtering baselines taken from the recent literature

on process mining. Finally, Section 6 draws conclusions and sketches the future

work.85

2. Background and Motivation

Several process discovery algorithms (e.g., Alpha Miner [48], Inductive Miner

[25, 26], Heuristic Miner [50], Fodina [49] and Split Miner [2]) have been pro-

posed in the recent process mining literature. Although Alpha Miner [48] and

the basic Inductive Miner [25] have been originally designed to depict as much90

4

as possible behaviors seen in the event log into the process model, several pro-

cess discovery algorithms use filtering. For example, Hybrid ILP Miner [53],

Heuristic Miner [50], Fodina [49] and Split Miner [2] have been designed to filter

infrequent behaviors within their internal data structure, in advance to discov-

ering a process model. Also, the Inductive Miner family has introduced filtering95

mechanisms to filter infrequent directly-follows dependencies [26]. Heuristic

Miner allows OR-joins and OR-splits on filtered directly-follows dependencies.

In addition, in the context of Petri nets, researchers have been looking at the

region theory to construct a system model from a description of its behavior.

State-based regions have been used to construct a Petri net from a transition100

system as an intermediate representation [21] having filters integrated in the

transitions system generation. Language-based regions have been also used to

construct a Petri net from a prefix-closed language [11]. In any case, all these

algorithms still load the whole event log to build the internal data structure

elaborated to discover the final process models, although they start integrating105

built-in filtering mechanisms operating on the internal data structure.

The preprocessing of event logs has recently gained attention as a useful

phase prior to application of process discovery algorithms. Various cleaning

techniques are analyzed in [42] as a means to handle noise produced by the

presence of infrequent behaviors (outliers) in the event raw data. In fact, these110

outliers may lead to discover process models exhibiting infrequent execution

paths that clutter the model. In particular, outliers may have a negative effect

on the precision of the discovered models, as well as on their complexity. To

this regard, in [8] the authors show that leaving outliers in event data may have

a detrimental effect on the quality of the process models produced by various115

process discovery algorithms. To detect and remove infrequent process behaviors

in raw event data, various filtering methods [8, 38, 39] have been formulated in

recent literature. A filtering method for discovering more precise process models

in the presence of chaotic activities is also described in [44]. Filtering methods

effectively reduce the size of traces elaborated by process discovery algorithms.120

However, as discussed in [16], the time spent for applying filtering methods is

5

sometimes longer than the time required for discovering a process model from

the initial event log. In addition, several filtering methods may have no accurate

control over the size of the reduced event log.

Sampling methods reduce the number of traces in event logs. A random125

trace-based sampling method is described in [3]. This method assumes that

traces have different behavior if they have different sets of directly follows re-

lations. A very recent study [37, 16] investigates the effectiveness of applying

sampling on event data prior to invoking process discovery algorithms, instead

of using all the available event data. The authors compare different biased sam-130

pling strategies (frequency-based sampling, length-based sampling, similarity-

based sampling and structure-based sampling) and analyze their ability to im-

prove the scalability of the process discovery algorithm. Finally, in [36] the

authors propose an iterative trace selection algorithm based on clustering and

conformance artifacts. Each iterative phase first performs a trace clustering135

step with the k-medoids algorithm and the edit distance, in order to populate

a sublog with the cluster medoids (i.e., the traces of the original log that are

the closest to the cluster centroids). Subsequently, it discovers a process model

from this sublog and computes the conformance artifacts of the original log on

the discovered process model, in order to identify deviating traces. The itera-140

tive phase is repeated on the deviating traces until the quality of the discovered

process model improves. As a measure of the quality of a process model, the

authors of [36] adopt the F-measure of fitness (computed as Replay fitness [4])

and precision (computed as alignment-based ETC precision [1]). The experi-

ments illustrated in [36] prove that the use of cluster prototypes as input to the145

process discovery algorithms often improves the F-measure of the discovered

process models outperforming both random and biased sampling strategies.

Both filtering and sampling mechanisms reported above down-size event logs

by applying some extractive strategy. Differently, the method presented in this

study takes advantage of an abstraction strategy to generate new representative150

traces potentially unobserved in the initial event logs. These new traces may

combine different activity sub-sequences also belonging to multiple traces result-

6

〈a, b, c, d, e, f, l, h〉2000

〈a, b, i, c, d, e, f, g, h〉1000

〈a, e, f, g, h〉2000

〈a, f, g, h〉2000

〈a, c, d, e, f, g, h〉1500

〈a, b, d, e, f, g, h〉500

〈a, c, d, e, f, h〉500

〈a, g, c, d, e, f, g, h〉100

〈a, g, g, h〉50

(a)

〈a, b, c, d, e, f, g, h〉

〈a, c, d, e, f, g, h〉

〈a, e, f, g, h〉

〈a, f, g, h〉

(b)

〈a, b, c, d, e, f, l, h〉

〈a, e, f, g, h〉

〈a, f, g, h〉

〈a, c, d, e, f, g, h〉

〈a, b, i, c, d, e, f, g, h〉

(c)

〈a, b, c, d, e, f, l, h〉

〈a, c, d, e, f, g, h〉

〈a, f, g, h〉

(d)

Figure 1: A sample event log (a) and its summaries extracted with PROMISE+ (b), frequency-

based SAMPLING [37, 16] (c), CLUSTERING [36] (d).

ing in more flexible event log summaries for the process discovery. In particular,

the proposed trace generation approach uses an abstraction process to abstract

from the raw events recorded in the initial event logs and construct a predictive155

process model that can be used to predict the next-activity of a running trace.

In this way, we take advantage of a predicting process mining pattern learned

from the original event log, in order to improve the process discovery step.

To better illustrate the potential of employing an abstraction-based strategy

in the event log summarization, let us consider the event log reported in Fig-160

ure 1a. The abstraction-based strategy underlying our method generates a new

trace 〈a, b, c, d, e, f, g, h〉 (Figure 1b), which does not belong to the original event

log, but stands out as a combination of subsequences coming from multiple origi-

nal traces (e.g., 〈a,b, c,d, e, f , l, h〉, 〈a, b, i, c, d, e, f,g,h〉 and 〈a, b, d, e, f,g,h〉).

We note that an effect of the abstraction-based strategy that has led to the165

generation of this new trace is that the event l has been dropped from the final

log summary, while it has been kept in the log summaries extracted with both

SAMPLING (Figure 1c) and CLUSTERING (Figure 1d). We compare the process

model discovered from the log summary extracted by our method PROMISE+

(Figure 2b) with the original process model (Figure 2a) discovered from the170

original event log and with the process models discovered from log summaries

7

(a)

(b)

(c)

(d)

(e)

Figure 2: Petri net representation of (a) original process model; (b) process model discovered

with PROMISE+; c) process model discovered with FILTERING; (d) process model discovered with

SAMPLING; (e) process model discovered with CLUSTERING. Process models are discovered

with Inductive Miner.

extracted by other strategies such as FILTERING (Figure 2c), frequency-based

SAMPLING [37, 16] (Figure 2d) and CLUSTERING [36] (Figure 2e). All the

process models have been discovered with Inductive Miner. Note that we run

FILTERING on 50 different set-up of the embedded filtering parameter of the175

process discovery algorithm and select the set-up that allows the discovery of

the process model achieving the highest F-measure of fitness and precision. We

8

run SAMPLING by ranking all the variant-traces by frequency and selecting the

top-variants that allow the discovery of the process model achieving the highest

F-measure of fitness and precision. We observe that the abstraction method180

achieves the highest precision, without significantly decreasing the fitness. It

has SAMPLING strategy as the runner-up in terms of F-measure of precision

and fitness (as shown by conformance metrics of the compared process models

reported in Table 1). In particular, PROMISE+ allows us to discover the pro-

cess model with the highest precision, while SAMPLING allows us to discover185

the process model with the highest fitness. In the example log, this behavior

mainly depends on the fact that SAMPLING (as well CLUSTERING) keeps the

event l in its log summary allowing the discovery of a process model that can

parse traces 〈a, b, c, d, e, f, l, h〉 of the original log. However, in this way, it also

parses traces like 〈a, f, l, h〉 and 〈a, c, d, e, f, l, h〉 that are not in the original log.190

Therefore, dropping l from the log summary, PROMISE+ slightly loses in the

ability to parsing a few traces in the log, but gains in the ability of not parsing

other traces.

Concerning the use of abstraction, we remark that abstraction-based strate-

gies are commonly investigated for text summarizing (see [15] for a survey), but195

not yet for event log summarizing. To the best of our knowledge, our approach

is the first attempt to check the feasibility of an abstraction-based strategy in

the event log summarization. On the other hand, various abstraction strategies

have already been explored in the process mining field. For example, the au-

thors of [5] describe a means to form abstractions on patterns that capture the200

manifestation of process model constructs commonly used in event logs. In par-

ticular, they present an algorithm for the trace transformation, which replaces

the repeated occurrences of the manifestation of a loop with an abstracted ac-

tivity entity that encodes the notion of a loop. In addition, the transformation

algorithm identifies sub processes in traces and replaces them with abstract205

entities. It also implements abstractions to deal with combinations of choice,

parallelism and loops. The authors of [45] introduce a supervised approach that

takes advantage of annotations with high-level interpretations of low-level events

9

Table 1: Conformance metrics of the process models in Fig. 2.

Process model fitness precision F-measure

Original 1.00 0.46 0.63

PROMISE+ 0.95 0.97 0.96

FILTERING 0.88 0.93 0.90

SAMPLING 0.99 0.91 0.95

CLUSTERING 0.96 0.92 0.94

to map from fine-granular events to coarse-granular events. A taxonomy of the

various strategies to abstract the event log to a higher level of granularity has210

been recently described in [54]. In addition, the authors of [20] use the notion of

log and model abstractions to illustrate a unifying overview of process discovery

techniques. In this view, discovery approaches operate on an abstraction of the

event log as a means to relate observed behavior to modeled behavior. In any

case, to the best of our knowledge, no previous study in the field of process215

mining has investigated the feasibility of an abstraction strategy that founds on

predictive process mining to generate the representative traces of an event log

and facilitate the process discovery task.

Finally, we note that the task of trace generation has already received at-

tention in the process mining field [30, 41]. However, these studies describe220

approaches to generate entire event logs mainly through simulation of some

process models. The output of these trace generative approaches is a controlled

(big) event log that can be used to evaluate process mining algorithms in a com-

plete and predictable way. Differently, we describe here a method to generate a

few new traces from a (big) initial event log, in order to distill a compact version225

of the most relevant information of the initial log for the process discovery task.

3. Preliminaries

In this paper, we focus on sequences of activities, also called traces, that are

combined into event logs and next-activity classification functions that are used

in an abstraction strategy to generate event log summaries.230

10

Multisets are commonly used to describe event logs where the same trace

may appear multiple times. An event log is a multiset of traces. Each trace

describes the life-cycle of a particular case (i.e., a process instance) in terms

of the activities executed. In this simple definition of an event log, an event

refers to just an activity. Let us consider some set of activities A ⊆ UA. σ =235

〈a1, a2, . . . , an〉 denotes a sequence over A of length n = |σ|, where σ(i) = ai

for 1 ≤ i ≤ |σ|. hd(σ, k) = 〈a1, a2, . . . , ak〉 with 1 ≤ k ≤ n is the head of the

sequence consisting of the first k elements. tl(σ, k) = 〈ak+1, ak+2, . . . , an〉 with

1 ≤ k ≤ n is the tail of the sequence composed of the last |σ| − k elements. The

selection σ(k+1) corresponds to the next activity of hd(σ, k). Note that the next240

activity of hd(σ, n) is ⊥ where ⊥ denotes the end of the trace. For the sequence

σ = 〈a, b, c, d, e, f, g, h〉, σ(2) = b, hd(σ, 2) = 〈a, b〉 and tl(σ, 2) = 〈c, d, e, f, g, h〉.

The next activity of hd(σ, 2) is c, while the next activity of hd(σ, 8) is ⊥. 〈〉 is

the empty sequence.

Sequences are used to represent traces in an event log. σ1 · σ2 is the con-245

catenation of two sequences. In addition, let A∗ denote the set of all possible

sequences on A. B(A∗) denotes the set of all multisets over A. For a multiset

L ∈ B(A∗), L(σ) is the number of times a distinct variant-sequence σ appears

in L. For example, let us consider a set of activities A = {a, b, c, e, f, g, h},

then L1 = [], L2 = [〈a, b, c, g, h〉, 〈a, b, c, d, e, f, g, h〉, 〈a, b, c, g, h〉] and L3 =250

[〈a, b, c, g, h〉2, 〈a, b, c, d, e, f, g, h〉] are multisets of B(A∗). L1 is the empty mul-

tiset, L2 and L3 both consist of three sequences and L2 = L3, i.e., the ordering

of sequences is irrelevant and a more compact notation may be used for re-

peating sequences. Note that both L2 and L3 contain three sequences, but

two distinct variant-sequences (i.e., 〈a, b, c, g, h〉 and 〈a, b, c, d, e, f, g, h〉) as the255

sequence 〈a, b, c, g, h〉 appears twice in both L2 and L3.

Definition 1 (Trace, Event Log). Let A ⊆ UA be a set of activities. A trace

σ ∈ A∗ is a sequence of activities. L ∈ B(A∗) is an event log, i.e., a multiset of

traces.

We denote as |L| the cardinality (number of traces) of L. We denote as260

11

Table 2: Labeled head sequence multiset TL extracted from the log L reported in Fig. 1a.

σ a occurrences σ a occurrences σ a occurrences

〈a〉 b 3500 〈ae〉 f 2000 〈abde〉 f 500

〈ab〉 c 2000 〈aef〉 g 2000 〈abdef〉 g 500

〈abc〉 d 2000 〈aefg〉 h 2000 〈abdefg〉 h 500

〈abcd〉 e 2000 〈aefgh〉 ⊥ 2000 〈abdefgh〉 ⊥ 500

〈abcde〉 f 2000 〈a〉 f 2000 〈acdef〉 h 500

〈abcdef〉 l 2000 〈af〉 g 2000 〈acdefh〉 ⊥ 500

〈abcdefl〉 h 2000 〈afg〉 h 2000 〈a〉 g 150

〈abcdeflh〉 ⊥ 2000 〈afgh〉 ⊥ 2000 〈ag〉 c 100

〈ab〉 i 1000 〈a〉 c 2000 〈agc〉 d 100

〈abi〉 c 1000 〈ac〉 d 2000 〈agcd〉 e 100

〈abic〉 d 1000 〈acd〉 e 2000 〈agcde〉 f 100

〈abicd〉 e 1000 〈acde〉 f 2000 〈agcdef〉 g 100

〈abicde〉 f 1000 〈acdef〉 g 1500 〈agcdefg〉 h 100

〈abicdef〉 g 1000 〈acdefg〉 h 1500 〈agcdefgh〉 ⊥ 100

〈abicdefg〉 h 1000 〈acdefgh〉 ⊥ 1500 〈ag〉 g 50

〈abicdefgh〉 ⊥ 1000 〈ab〉 d 500 〈agg〉 h 50

〈a〉 e 2000 〈abd〉 e 500 〈aggh〉 ⊥ 50

max lenL the maximum length of a trace in L.

Definition 2 (Labeled head sequence multiset). Let L ∈ B(A∗) be an event

log. TL ∈ B(A∗ × A) is the multiset of all the head sequences (samples) ex-

tracted from the traces of L. Each head sequence is labeled with the next ac-

tivity (labels) associated to the head sequence in the corresponding trace so that265

TL = [hd(σ, k), σ(k + 1)|σ ∈ L ∧ 1 ≤ k ≤ |σ|].

Let us consider the sample event log reported in Figure 1a. The labeled

head sequence multiset extracted form this event log is reported in Table 2.

Definition 3 (Next-activity classification model). A next-activity classi-

fication model F is a function F : A∗×Rd 7→ A, where d represents the number270

of real-valued parameters in a model. The last d arguments of the function are

later fixed to create a hypothesis function from A∗ to A.

Definition 4 (Next-activity classification hypothesis function). Let F be

a model with d real-valued parameters. Let Θ ∈ Rd be a vector of d real-valued

12

parameters. A hypothesis HF,Θ of the model F is a function: HF,Θ : A∗ 7→ A275

such that HF,Θ(x) ≈ F (x,Θ).

Definition 5 (Cost function). Let HF,Θ be a hypothesis of the next-activity

classification model function F . The cost function of HF,Θ is a function CHF,Θ
: A∗×

A 7→ R such that CHF,Θ
(x, y) measures the penalty of an incorrect classification

of the label y done through HF,Θ(x).280

Definition 6 (Next-activity classification algorithm). Let TL be a labeled

head sequence multiset. The next-activity classification algorithm determines the

hypothesis HF,Θ that minimizes the cost function CHF,Θ
, i.e., such that:

Θ = arg min
Θ∈Rd

∑
(σ,a)∈TL

CHF,Θ
(σ, a).

The hypothesis HF,Θ depends on the model type and the labeled multiset. In

this study, following the deep learning approach, the model type is the network

architecture, i.e., the hypothesis is implicitly determined by the architecture

parameters. Under the umbrella of deep learning, the Long-Short-Term Memory

(LSTM) neural network [22] is a recurrent network that is suitable to process285

sequences, such as those underlying a business process event log. The LSTM

network uses cyclical connections among its processing units that enable the

classification of sequential data by using part of the output of a processing

unit for the processing of a new input. The information flows from a unit to

another unit with minimal variation, keeping certain aspects constant during290

the processing of all inputs. This constant input keeps classifications that are

coherent over long periods of time. This results in a long-term memory. A

common LSTM unit accepts ct−1 and ht−1 as state information from the prior

unrolled cell on the same layer, and xt as input from cells of the previous

layer. In turn, it passes ct and ht as new state information to the subsequent295

unrolled cell on the same layer and also provides ht as output to the next layer.

13

Specifically, it performs the following computations:

ft = sigmoid
(
Wf · [ht−1, xt] + bf

)
, (1)

it = sigmoid
(
Wi · [ht−1, xt] + bi

)
, (2)

c̄t = tanh
(
Wc · [ht−1, xt] + bc

)
, (3)

ct = (ft × ct−1) + (it × c̄t), (4)

ot = sigmoid
(
Wo · [ht−1, xt] + bo

)
, (5)

ht = ot × tanh(ct), (6)

where W and b (weights and biases) are the parameters of the network to be

learnt. Eq. 1 represents the “forget gate” that determines, based on the inputs

xt and ht−1, which part of the state to forget. Eq. 2 represents the “input gate”

and determines which values of the state to update; some of the it will be close

to zero, others close to one. Eq. 3 computes new candidate values c̄. Eq. 2 and

3 determine how the inputs xt and ht−1 contribute to the updated cell state.

Eq. 4 computes the new state ct by adding the information kept in ct−1 after

forgetting (i.e., ft× ct−1) to the new information (i.e., it× c̄t). Eq. 5 represents

the “output gate” that determines which values of the cell state are provided

as output to the following layer and subsequent unrolled cell. Eq. 6 computes

the final output ht as the product between the value provided by the output

gate and the tanh of the cell state ct. The number of LSTM processing units

on each layer is a hyper-parameter to fix. The output of the LSTM module is

finally fed into a softmax layer, in order to compute the final output (i.e., the

next activity) from probabilities of different classes (activities) computed using

the softmax activation function:

yi = softmax(y)i =
exp(yi)∑
j exp(yj)

. (7)

The cross-entropy loss function, that measures the error between the ex-

pected label and the probability predicted by the neural network, is commonly300

used as cost function to be optimized in classification tasks [31].

14

Several studies [47, 46, 7, 34] have recently proved that LSTM neural network

architectures can learn accurate next-activity hypothesis functions HF,Θ from

various event logs. In addition, the authors of [47] have recently shown that

repeatedly applying the function HF,Θ learned by an LSTM neural network, we305

are able to make accurate longer-term classifications that predict further ahead

than a single time step by accurately predicting the tail of a trace given its head.

Definition 7 (Trace tail prediction function). Let HF,Θ : A∗ 7→ A be a next-

activity classification hypothesis function, σ ∈ A∗ be a seed sequence, max lenL310

be the expected maximum trace length. H⊥F,Θ : A∗ 7→ A∗ denotes the function:

H⊥F,Θ(σ) =

〈〉 if HF,Θ(σ) = ⊥,

〈〉 if |σ| = max lenL

〈HF,Θ(σ)〉 ·H⊥F,Θ (σ · 〈HF,Θ(σ)〉) otherwise

, (8)

that predicts the full continuation of a trace with head σ.

According to Definition 7, we can generate a new trace σ′ = σ · 〈H⊥F,Θ(σ)〉

by concatenating the head σ and the predicted tail H⊥F,Θ(σ). In principle, any

sequence σ ∈ A∗ can be used as a seed for this trace generation. However, in this315

study, we generate new traces from a few seed sequences that appear as heads

in real traces of L. Specifically, we use a length-based criterion to determine the

seed sequences of the trace generation. Let us consider HDl(L) = {hd(σ, l)|σ ∈

L∧ |σ| ≥ l}, that is, the set of head sequences of L with length equal to l (with

l ≥ 1), we consider all the head sequences of HDl(L) to prompt the generation320

of traces to populate a log summary L∗.

Definition 8 (Event log summary). Let L ∈ B(A∗) be an event log, H⊥F,Θ : A∗ 7→

A∗ be the trace tail prediction function that repeatedly applies the next-activity

classification hypothesis function HF,Θ : A∗ 7→ A learned from TL, HDl(L) be

the set of head sequences of L with size equal to l. The log summary L∗ is a set325

of traces generated through H⊥F,Θ from each distinct head sequence σ ∈ HDl(L),

that is, L∗ = {σ · 〈H⊥F,Θ(σ)〉|σ ∈ HDl(L)}.

15

We highlight that predicting the completion of traces with head in distinct

sequences, we can generate distinct traces for L∗. As an example, let us con-

sider the event log L reported in Figure 1a and the next-activity classification330

hypothesis function HF,Θ learned through an LSTM neural network from the

labeled head sequence multiset TL reported in Table 2. Let us set l = 2. We pro-

cess the set of 2-sized head sequences HD2(L) = {〈a, b〉, 〈a, c〉, 〈a, e〉, 〈a, f〉〈a, g〉}

as seeds for generating the traces of the log summary L∗ = {〈a, b, c, d, e, f, g, h〉,

〈a, c, d, e, f, g, h〉, 〈a, e, f, g, h〉, 〈a, f, g, h〉, 〈a, g, c, d, e, f, g, h〉}. Note that, as re-335

ported in Definition 8, we generate the trace 〈a, b, c, d, e, f, g, h〉 of L∗ as 〈a, b〉 ·

〈c, d, e, f, g, h〉, where 〈a, b〉 ∈ HD2(L) and 〈c, d, e, f, g, h〉 is the full continuation

that we predict through H⊥F,Θ for a trace with head 〈a, b〉 (i.e., H⊥F,Θ(〈a, b〉) =

〈c, d, e, f, g, h〉). We similarly generate the traces 〈a, c, d, e, f, g, h〉, 〈a, e, f, g, h〉,

〈a, f, g, h〉 and 〈a, g, c, d, e, f, g, h〉 of L∗ by predicting the completion of traces340

with head 〈a, c〉, 〈a, e〉, 〈a, f〉 and 〈a, g〉, respectively.

Further considerations concern the fact that, in the previous example, the

log summary L∗ comprises the trace 〈a, g, c, d, e, f, g, h〉 generated by predicting

the full continuation of a trace with the head 〈a, g〉 that is infrequent in L. In

fact, the sequence 〈a, g〉 appears as the head of only 150 traces out of 9650 traces345

originally stored in L. This trace, if processed by a process discovery algorithm,

may lead to discovering process models exhibiting this infrequent execution path

that may clutter the model [42]. To handle the possible drawbacks of generating

traces that are abstractions of infrequent behaviors in the original log, a sam-

pling post-processing mechanism can be applied to L∗ to filter-out generated350

traces that may reduce the performance of process discovery algorithms.

Definition 9 (Summary event log sampling). Let L∗ be a summary log of

L. We define SL∗ as trace-based sample of L∗ so that SL∗ ⊆ L∗.

16

Figure 3: Schema of the PROMISE+ method.

4. Abstraction-based event log summarizing method for process dis-

covery355

In this section, we describe PROMISE+. A schematic schematic view of our

approach is shown in Figure 3. The method is composed of the following steps:

1. Labeled head sequence multiset extraction. It takes as input the

initial event log L and returns the labeled head sequence multiset TL.

2. Next-activity classification. It takes as input TL and learns the next-360

activity classification hypothesis function HF,Θ : A∗ 7→ A.

3. Event log summarization. It takes as input both L and HF,Θ and

generates the event log summary L∗.

4. Process model discovery. It takes as input L∗ and wraps a process

discovery algorithm that is applied to the traces of L∗. In this step, the365

traces of L∗ that may decrease the performance of the process discovery

algorithm are identified and filtered-out them.

The detailed description of each step is reported in the followings.

4.1. Labeled head sequence multiset extraction

We transform L into TL that, as presented in Section 3, is composed of all the370

possible labeled head sequences extracted from all the traces of L. Each head

sequence is labeled with the next activity associated with the head sequence in

the corresponding trace.

17

Table 3: Configuration of neural network hyperparameters.

Parameters Value

Learning Rate [0.00001, 0.01]

LSTM unit size {8, 16, 32}

Batch size [25, 210]

4.2. Next-activity classification

Starting from TL and using an LSTM neural network as model type, we375

learn HF,Θ : A∗ 7→ A to classify the next activity of any sequence of activities

representing a running trace. As reported in Section 3, this function will be

subsequently used as a trace summarizer of L.

We adopt an LSTM neural network architecture with an embedding layer

that automatically learns a multi-dimensional real-valued representation of cat-380

egorical activity sequences. The output of the embedding layer is fed into a re-

current neural network composed of two stacked LSTM layers. The first LSTM

layer provides a sequence output to feed the second LSTM layer. We conduct

the optimization phase of the hyper-parameters by using 20% of the training

set as the validation set. In particular, we perform hyper-parameters optimiza-385

tion with SMAC [23].1 Table 3 reports the hyper-parameters optimized and the

corresponding range of possible values explored with SMAC. The training of

the network is accomplished by the Backpropagation algorithm that performs

iterative backward passes to find the optimal values of network weights based

on gradient descent. We use the cross-entropy loss function for the optimization390

and perform the Backpropagation training with early stopping to avoid overfit-

ting. We stop the training process when there is no improvement of the loss on

the validation set for 20 consecutive epochs. To minimize the loss function, we

use the Nadam optimizer. The maximum number of epochs is set to 200.

1https://automl.github.io/SMAC3/master/quickstart.html

18

https://automl.github.io/SMAC3/master/quickstart.html

4.3. Event log summarization395

Once HF,Θ has been learned by training an LSTM neural network from TL,

we use it to generate L∗ that is an event log summary of L. For this purpose,

we first determine the set HDl(L) of the head sequences of L with size l. These

sequences are used as seeds for the trace generation. In fact, for each seed

sequence σ ∈ HDl(L), we repeatedly use HF,Θ to predict the tail of a new trace400

having σ as head (according to Def. 7). The new trace is added to L∗. We

automatically choose l as the minimum sequence length to select a number of

seed sequences greater than 1. As an example, let us consider the event log L in

Figure 1a. If we consider l = 1, then we get one seed sequence, i.e., the sequence

〈a〉, to prompt the generation of one trace for L∗. If we consider l = 2, then we405

get five distinct seed sequences, i.e., the sequences 〈a, b〉, 〈a, c〉, 〈a, e〉, 〈a, f〉 and

〈a, g〉, to prompt the generation of five distinct traces for L∗. According to the

considerations reported above, in the example, we automatically choose l = 2.

4.4. Process model discovery

Finally, we discover a process model from L∗. Any process discovery algo-

rithm can be used in this step, although it is recommended to use algorithms

that generate sound process models [36]. The selected process discovery algo-

rithm is wrapped within an iterative trace selection process aiming to select the

most relevant traces of L∗ that contribute to discovering the process model that

better conforms to the initial event log L. To this aim, as in [36], we enclose

quality assessment metrics by measuring fitness and precision. However, we may

integrate any other quality metrics. Both metrics are computed on the traces

of the original event log L. As in [36], we consider the classical F-measure to

level fitness and precision with equal weights as defined by:

F −measure = 2× fitness× precision
fitness+ precision

(9)

410

We denote by SL∗ the sample of L∗ that collects the traces contributing to

discover the process model that better conforms to the initial event log L. We

19

populate SL∗ iteratively by exploring traces of L∗ according to a forward trace

selection procedure. Starting from an empty SL∗ set, we iteratively test the

effect of moving a trace from L∗ to SL∗ by using the F-measure as a quality415

criterion. At each iterative selection step, we identify the trace σbest ∈ L∗ that

maximizes the F-measure of the process model that can be discovered from

SL∗ ∪ {σbest}. The trace σbest is definitely moved from L∗ to SL∗ if and only

if the F-measure of the process model discovered from SL∗ ∪ {σbest} is greater

than the F-measure of process model discovered from SL∗ . The forward trace420

selection procedure stops when all the traces have been moved from L∗ to SL∗

or the F-measure decreases (i.e., no improvement is obtained).

The pseudo-code of the process discovery step is shown in Algorithm 1. Note

that it performs a greedy search that may test |L
∗|(|L∗|+1)

2 process models, at

worst. The result of this search depends on both the quality measure selected to425

evaluate the process model and the algorithm wrapped for the process discovery.

In principle, any quality criterion, as well any process discovery algorithm, may

be considered for this step.

Final considerations concern the fact that the described process discovery

step may be adopted to explore any set of distinct variant-traces. Therefore,430

it can be also used to explore the distinct variant-traces of the original event

log L, as well as the subset of distinct variant-traces extracted from L with a

sampling procedure (e.g., frequency-based sampling).

From this moment on, the baseline configuration that returns the process

model discovered from L∗ as output is denoted as PROMISE. The upgrade con-435

figuration that returns the process model discovered from SL∗ as output is

denoted as PROMISE+.

5. Experiments

To evaluate the effectiveness of the proposed method, we have conducted a

broad range of experiments on several benchmark event logs. The main objective440

of this experimental study is to investigate the performance of both PROMISE

20

Algorithm 1: Process discovery step

Data: L∗ (event log summary), L (original event log)

Result: ProcessModel∗ (process model)

1 begin

2 F ∗ = 0;

3 SL∗ = �

4 Improvement =true

5 while L∗ 6= � and Improvement do

6 Fbest = 0

7 for σ ∈ L∗ do

8 ProcessModel=process discovery(SL∗ ∪ {σ})

9 F = F-measure(ProcessModel, L);

10 if F > Fbest then

11 Fbest = F

12 σbest = σ

13 ProcessModelbest = ProcessModel

14 if Fbest > F ∗ then

15 F ∗ = Fbest

16 ProcessModel∗ = ProcessModelbest

17 SL∗ = SL∗ ∪ {σbest}

18 L∗ = L∗ \ {σbest}

19 else

20 Improvement =false

21 return ProcessModel∗

and its upgrade PROMISE+ in generating a compact version of event logs prior

to invoking process discovery algorithms. Specifically, we aim to answer the

following research questions:

Q1: Is the proposed method able to improve the quality and complexity of the445

21

discovered process models by also varying the process discovery algorithm

wrapped-in?

Q2: How does the proposed method affect the time spent completing the dis-

covery process?

Q3: Does the proposed method outperform related filtering or sampling meth-450

ods even when also related methods are coupled with the greedy search

for improving the quality measure selected for the evaluation?

Q4: Can the use of the proposed method aid the process discovery algorithm

in revealing relevant qualitative insights of the original process models?

The implementation of the log summarization method experimented in this455

study is illustrated in Section 5.1. The benchmark event logs considered in the

experiments and the experimental setting are presented in Section 5.2. Finally,

the analysis of the results is illustrated in Section 5.3.

5.1. Implementation details

We have implemented both PROMISE and PROMISE+ in Python 3.6.9 – 64460

bit version by using Keras 2.3.13 library — a high-level neural network API

that adopts TensorFlow 1.15.04 as the back-end. This implementation, that is

available via the public GitHub repository,2 is used to perform the experiments

illustrated in this study.

In the experiments illustrated in this study, the next-activity classification465

hypothesis function is learned through an LSTM neural network. The neural

network is trained on a pre-processed version of the original event log L. The

pre-processing step is performed to simplify the self-loop events that may appear

in each trace σ ∈ L. A self-loop is a sub-sequence of a trace where an activity is

repeated on n consecutive events with n ≥ 2. A self-loop with n repetitions is470

called a n-repetition. Every n-repetition of the same event with a 2-repetition

2https://github.com/vinspdb/PROMISE

22

https://github.com/vinspdb/PROMISE

by performing an activity dropping operation. This simplification is introduced

to reduce the risk that the LSTM is led to learn a next-activity classification

hypothesis function predicting an infinite loop on a specific activity. In addition,

as an LSTM neural network architecture trained for sequence classification takes475

equal-length sequences as input, we use the padding technique in combination

with a windowing mechanism [34], in order to standardize different sequence

lengths and obtain labeled samples with fixed size. The combination of padding

and windowing uses a length equal to W , in order to standardize different se-

quence lengths and obtain fixed sized sequences. According to this mechanism,480

dummy events are added to sequences with lengths less than W , while the most

recent W activities are kept into sequences with lengths greater than W . We

set W = 4 in this experimental study.

In addition, we have used three state-of-the-art process discovery algorithms:

Inductive Miner [25] and Hybrid ILP Miner [52] (ver 6-10.154) imported from485

PROM63, Split Miner [2] imported from Apromore4. We have integrated the

implementation of the Replay Fitness [4], the Align-ETConformance [1], the

Token-based Repair Generalization [6] and the Petri Net Properties from PM4PY,

in order to compute the fitness, precision, generalization and model size (num-

ber of transitions, places, and arcs) of the discovered process models, respec-490

tively. Finally, we have used the Java plug-in of Show Petri-Net Metrics [24]

from PROM6, in order to compute the extended Cardoso index that measures

the complexity of a process model by its complex structures, i.e., Xor, Or and

And components. The subprocess module5 present in Python 3.6.9 is adopted,

in order to run the Java plug-in of Inductive Miner, Hybrid ILP Miner, Split495

Miner and Show Petri-Net Metrics through the Python code by creating new

processes.

3https://www.promtools.org/doku.php?id=prom610
4https://apromore.org/platform/tools/
5https://docs.python.org/3/library/subprocess.html

23

https://www.promtools.org/doku.php?id=prom610
https://apromore.org/platform/tools/
https://docs.python.org/3/library/subprocess.html

Table 4: Event logs description: number of activity classes, traces, events, variants and

directly-follows (DF) relations.

Event Log # Activities # Traces # Events # Variants # DF Relations

BPIC2012 [12] 23 13087 164506 4336 138

BPIC2018 Insp [14] 15 5485 197717 3190 67

BPIC2019 [13] 42 251734 1595923 11973 538

Hospital [29] 18 100000 451359 1020 143

Road [27] 11 150370 561470 231 70

Sepsis [28] 16 1050 15214 846 115

5.2. Experimental setting

5.2.1. Event logs and process discovery algorithms

We have used six real-life event logs provided by the 4TU Centre for Re-500

search. Table 4 reports the characteristics of these event logs. These logs record

executions of business processes in healthcare, finance and traffic management.

They are heterogeneous in the number of activity classes (from 11 to 42), num-

ber of traces (from 1050 to 251734), i number of events (from 15214 to 1595932),

number of variants (from 231 to 11973) and number of distinct direct flow re-505

lations (from 67 to 537). We have considered these event logs to explore to

what extent the method improves the performance of various process discovery

algorithms. We have used the following process discovery algorithms: Hybrid

ILP Miner [52] (ILP), Inductive Miner [25] (IMi) and Split Miner [2] (SM).

5.2.2. Evaluation metrics510

We have analyzed the effectiveness of the proposed method (as well as of the

related methods) by evaluating both the complexity and quality of the process

models finally discovered, as well as the efficiency of the learning process.

To evaluate the complexity, we have used the model size and the Extended

Cardoso index. The model size is measured as the number of transitions, number515

of arcs and number of places. The Extended Cardoso index [24] is based on the

presence of certain splits and joins in the syntactical process definition. In fact,

it counts the various splits (XOR, OR, and AND) and give each of them a

24

certain penalty (e.g., the penalty for a place p is the number of subsets of places

reachable from a place p).520

To evaluate the quality, we have considered the following metrics that are

commonly used in process mining literature: fitness, precision, F-measure of

fitness and precision, generalization. In this paper, we refer to fitness as the

Replay fitness [4], to precision as the alignment-based ETC precision [1] and

to generalization as the token-based repair generalization [6]. In particular,525

the Replay fitness is computed for alignments by returning the percentage of

traces that are completely fit, along with a fitness value that is calculated as

the average of the fitness values of the single traces. The ETC precision is

computed by replaying (whether possible) the different prefixes of the log on

the model. At the reached marking, the set of transitions that are enabled in530

the process model is compared with the set of activities that follow the prefix.

The more the sets are different, the lower the precision value is. The more the

sets are similar, the higher the precision is.The ETC precision measure is also

adopted in the evaluation of the cluster-based sampling procedure described in

[37] due to its high performance. However, this precision method works only535

if the replay of the prefix on the process model works, otherwise the prefix is

not considered for the computation of precision. This is a limit of the metric

to be taken into account for the analysis of precision results. On the other

hand, although various precision measures are formulated in the process mining

field, the recent study of [43] have concluded that none of the existing precision540

measures consistently quantify precision. Finally, the generalization is measured

performing a token-based replay operation and computing 1−avgt(

√
1

freq(t)
),

where avgt is the average of the inner value over all the transitions and freq(t)

is the frequency of t after the replay. All these metrics have been computed on

the original log.545

Finally, to measure the efficiency, we have analyzed the computation time

spent in minutes to complete each step of the method (i.e., “Labeled head se-

quence multiset extraction”, “Next-activity classification”, “Event log summa-

25

rization” and “Process model discovery”). The computation times have been

collected running the experiments on Intel(R) Core(TM) i7-9700 CPU, GeForce550

RTX 2080 GPU, 32GB Ram Memory, Windows 10 Home.

Note that any other metrics may be used for the evaluation of the quality

and complexity of process models. However, the metrics selected in this study

have been commonly used in various process mining studies [38, 37, 16] for the

evaluation of sampling and filtering approaches.555

5.2.3. Compared methods

In these experiments, we have run both the baseline configuration of the pro-

posed method—PROMISE—and its upgrade—PROMISE+. As an initial baseline

we have considered ORIGINAL that performs the process discovery algorithm on

the original event log without any summarizing mechanism enabled (neither560

sampling nor filtering). In addition, we have considered the frequency-based

sampling method SAMPLING [16] coupled with the F-measure analysis as a re-

lated method. For sampling, we have sorted the distinct variant-traces of the

original log by frequency and started with the sample composed of the top-

frequent variant-trace. We have added top-frequent variants one-by-one to this565

sample until the F-measure of the process model discovered with the sample

increases. As an additional related method, we have evaluated the iterative

clustering-based sampling method (CLUSTERING) described in [36]. Note that

also CLUSTERING method uses F-measure to extract a sample of trace medoids

(selected through an iterative clustering step performed on the original log),570

which allows the method to improve the F-measure of the process model finally

discovered. Note that, as in [36], to elaborate event log summaries, determined

through PROMISE, PROMISE+, SAMPLING and CLUSTERING, we have applied

the process discovery algorithms by disabling the built-in filtering mechanisms

of adopted the process discovery algorithms.575

On the other hand, filtering is a prominent approach that various process

mining algorithms (comprising Inductive Miner, Hybrid ILP Miner and Split

Miner) implement to handle large amounts of events reducing the complexity of

26

the process models, while improving their quality. So, for the completeness of

the experiments, we have also applied the process discovery algorithms to the580

entire event logs by testing the effect of built-in filtering mechanisms in each

tested process discovery algorithm (FILTERING), respectively. Experiments with

filtering mechanisms have been conducted by selecting the best internal filter-

ing threshold set-up on 50 different configurations. Again, the tested filtering

configurations have been evaluated with respect to the F-measure of the pro-585

cess model discovered with each configuration. The configuration achieving the

highest F-measure is, finally, selected for the comparative study.

Note that, according to the description reported above, all the methods of

this experimental study have been compared coupled with the search of the pro-

cess model that improves the F-measure. This search may be equally conducted590

by considering any other process model metric.

5.3. Results and discussion

In this section, we illustrate how the experimental results collected in the

evaluation study allow us to address the formulated research questions.

5.3.1. Q1 and Q2595

We start analysing the overall performance of PROMISE and PROMISE+ in

terms of complexity and quality of process models discovered, as well as time

spent completing the discovery process. This analysis is done to quantify the

effect of the log summarization performed by coupling the proposed abstraction-

based strategy (PROMISE) to the removal of the abstraction-generated traces600

that may decrease the F-measure of the final process model discovered (PROMISE+).

So, as a baseline of this initial evaluation we consider ORIGINAL that discovers

process models from initial logs by wrapping the process discovery algorithms

with neither the built-in filtering mechanisms nor the sampling pre-processing

step. This analysis is conducted to explore how the use of an abstraction-based605

strategy in log summarizing may be an opportunity to improve the perfor-

mance of a process discovery algorithm independently of the possible use of

27

Table 5: Comparison of the process models produced by the ORIGINAL, PROMISE and

PROMISE+ approaches in terms of complexity metrics and varying the process discovery

algorithm - Hybrid ILP Miner (ILP), Inductive Miner (IMi) and Split Miner (SM).

Configuration Metric BPIC2012 BPIC2018 Insp BPIC2019 Hospital Road Sepsis

ILP

Original generalization 0.98 0.96 0.92 0.92 0.99 0.92

Model size 33x28x426 26x19x324 61x46x1550 29x22x440 16x15x150 31x20x470

Cardoso 163 142 561 120 67 209

PROMISE generalization 0.99 0.99 0.98 0.98 0.99 0.97

Model size 18x23x130 9x9x21 19x16x88 13x10x100 11x10x37 12x12x68

Cardoso 63 27 32 33 17 34

PROMISE+ generalization 0.99 0.99 0.98 1.00 1.00 0.97

Model size 17x21x108 9x9x21 8x6x16 9x9x21 8x8x16 12x15x60

Cardoso 52 27 8 11 8 30

IMi

Original generalization 0.98 0.93 0.91 0.94 0.99 0.90

Model size 66x37x140 35x20x72 74x31x154 48x25x98 28x25x70 49x38x114

Cardoso 52 27 44 37 27 49

PROMISE generalization 0.98 0.99 0.98 0.93 0.99 0.96

Model size 37x26x76 12x12x26 35x25x74 15x6x30 11x7x22 24x25x62

Cardoso 34 13 31 8 8 28

PROMISE+ generalization 0.99 0.99 0.97 0.99 1.00 0.97

Model size 23x17x46 12x12x26 15x10x30 9x7x18 9x7x18 22x18x48

Cardoso 22 13 12 7 8 22

SM

Original generalization 0.83 0.80 0.69 0.71 0.82 0.72

Model size Model size 84x31x168 568x80x1136 175x37x350 69x24x138 142x35x284

Cardoso Cardoso 84 567 174 69 142

PROMISE generalization 0.97 0.99 0.97 0.93 0.99 0.89

Model size Model size 11x9x22 33x20x66 18x9x36 12x8x24 36x19x72

Cardoso Cardoso 10 30 12 9 9

PROMISE+ generalization 0.99 0.99 0.97 0.99 0.99 0.92

Model size Model size 10x9x20 27x19x54 11x9x22 10x8x20 27x18x54

Cardoso Cardoso 10 23 10 9 26

well-known extraction-based strategies (e.g., filtering or sampling). In any case,

we also compare PROMISE+ to the pipelines with sampling-based pre-processing

(SAMPLING and CLUSTERING) and the pipeline with filtering (FILTERING) in610

the analysis of Q3.

Tables 5 and 6 show the complexity and quality metrics measured on the pro-

cess models discovered with PROMISE, PROMISE+ and ORIGINAL. The analysis

of the complexity metric values shows that both PROMISE and PROMISE+ allow

us to discover process models that are simpler than the baseline process models615

discovered with ORIGINAL. Moreover, we note that the simpler process mod-

els discovered with both PROMISE and PROMISE+, as expected, always gain

in precision by diminishing the number of unobserved process behaviors (other

traces not recorded in the log) that may be inappropriately covered with the

process models discovered with ORIGINAL. On the other hand, both PROMISE620

28

Table 6: Comparison of the process models produced by the ORIGINAL, PROMISE and

PROMISE+ approaches in terms of quality metrics and varying the process discovery algorithm

- Hybrid ILP Miner (ILP), Inductive Miner (IMi) and Split Miner (SM).

Configuration Metric BPIC2012 BPIC2018 Insp BPIC2019 Hospital Road Sepsis

ILP

Original fitness 1.00 1.00 1.00 1.00 1.00 1.00

precision 0.12 0.13 0.36 0.39 0.53 0.20

F-measure 0.21 0.22 0.53 0.57 0.69 0.34

PROMISE fitness 0.77 0.47 0.72 0.84 0.92 0.77

precision 0.87 0.95 0.90 0.56 0.93 0.73

F-measure 0.82 0.63 0.80 0.67 0.92 0.75

PROMISE+ fitness 0.77 0.47 0.78 0.95 0.91 0.75

precision 0.88 0.95 1.00 0.99 1.00 0.86

F-measure 0.82 0.63 0.88 0.97 0.95 0.80

IMi

Original fitness 1.00 1.00 1.00 1.00 1.00 1.00

precision 0.14 0.15 0.26 0.56 0.63 0.29

F-measure 0.25 0.26 0.41 0.72 0.77 0.34

PROMISE fitness 0.86 0.71 0.80 0.82 0.95 0.89

precision 0.75 1.00 0.70 0.54 0.93 0.55

F-measure 0.80 0.83 0.75 0.65 0.94 0.68

PROMISE+ fitness 0.82 0.71 0.81 0.90 0.94 0.84

precision 0.88 1.00 1.00 1.00 1.00 0.81

F-measure 0.85 0.83 0.90 0.95 0.97 0.82

SM

Original fitness 0.98 0.97 1.00 1.00 1.00 0.99

precision 0.46 0.18 0.50 0.75 0.92 0.26

F-measure 0.63 0.31 0.67 0.86 0.96 0.41

PROMISE fitness 0.84 0.66 0.78 0.87 0.95 0.67

precision 0.90 0.67 1.00 0.93 0.93 0.89

F-measure 0.87 0.66 0.88 0.90 0.94 0.76

PROMISE+ fitness 0.84 0.71 0.81 0.94 0.94 0.71

precision 0.91 1.00 1.00 1.00 1.00 0.95

F-measure 0.87 0.83 0.90 0.97 0.97 0.81

and PROMISE+ undergo a slight decrease in fitness by discovering process mod-

els that may fail in parsing a few traces recorded in the initial event logs. This

is commonly accepted, whereas the precision value increases significantly [9].

From this point of view, the F-measure of precision and fitness shows that both

PROMISE and PROMISE+ may achieve a better trade-off between precision and625

fitness in the process models discovered than ORIGINAL. The analysis of the gen-

eralization values further supports these conclusions. In fact, both PROMISE

and PROMISE+ provide generalization values that are greater than (or equal

to) the generalization values measured with ORIGINAL. Both PROMISE and

PROMISE+ always enable the discovery of process models that decrease the630

risk of covering traces that are not in the initial event logs, but are likely to

29

belong to the process that produced the logs.

Further considerations concern the evaluation of how PROMISE+ can ac-

tually improve PROMISE in terms quality and complexity of process models

discovered. PROMISE+ always outperforms PROMISE by discovering process635

models that achieve the lower model size and extended Cardoso index, as well

as the higher F-measure of fitness and precision, and the higher generalization.

Finally, Figure 4 shows the computation time spent completing the various

steps of the compared configurations. These results reveal that both PROMISE

and PROMISE+ spend most of their computation time both training the LSTM640

during the “Next-activity classification” step and discovering the final process

model during the “Process model discovery” step. The computation time spent

preparing the training data set during the “Labeled head sequence multiset ex-

traction” step, as well as generating the new traces during the “Event log sum-

marization” step is negligible. As expected, PROMISE+ spends more computa-645

tion time than PROMISE completing the “Process model discovery” step. This

is due to the greedy search performed in PROMISE+ for removing traces that,

generated during the “Event log summarization” step, may decrease the quality

of the process model discovered. Final considerations concern the comparison

with ORIGINAL. This configuration spends all its computation time complet-650

ing the “Process model discovery” step. So, comparing the cumulative time of

ORIGINAL, PROMISE and PROMISE+, we note that PROMISE and PROMISE+

are more time-consuming than ORIGINAL. On the other hand, repeating the

conclusions drawn above, the additional time spent for the summarization in

both PROMISE and PROMISE+ allows us to discover a better process model.655

All the conclusions illustrated above are equally drawn independently on the

process discovery algorithm and the event log tested.

5.3.2. Q3

We have compared the process models discovered with PROMISE+ to the

models discovered with the FILTERING, SAMPLING and CLUSTERING methods.660

All these methods someway take advantage of the F-measure information in the

30

Figure 4: Computation time spent in minutes completing the “Labeled head sequence multiset

extraction”, “Next-activity classification”, “Event log summarization” and “Process model

discovery” steps.

discovery of the final process model. Figures 5 and 6 compare the values of the F-

measure and extended Cardoso index measured with PROMISE+, FILTERING,

SAMPLING and CLUSTERING methods, respectively. To rank the compared

methods, we statistically test whether the improvement of both F-measure and665

extended Cardoso index of the process models discovered with PROMISE+ is

significant over the various event logs. To this aim, we have used Friedman’s

test [10]. This is a non-parametric test that is commonly used to compare

multiple methods over multiple event logs. It compares the average ranks of

the approaches, so that the best performing approach gets the rank of 1. the670

second best gets rank 2. The null-hypothesis states that all the methods are

equivalent. Under this hypothesis, the ranks of compared methods should be

equal. In this study, we reject the null hypothesis with p-value ≤ 0.05. As the

null-hypothesis has been rejected, that is, no method has been singled out, we

have used a post-hoc test—the Nemenyi test—for pairwise comparisons [10].675

The results of this test are reported in Figures 7a and 7b for Hybrid ILP

Miner (ILP), Figures 7c and 7d for Inductive Miner, (IMi) and Figures 7e and

31

Figure 5: F-measure of precision and fitness: PROMISE+ vs related methods (ORIGINAL,

FILTERING, SAMPLING and CLUSTERING) by varying the process discovery algorithm among

Hybrid ILP Miner (ILP), Inductive Miner (IMi) and Split Miner (SM).

7f for Split Miner (SM). They show that PROMISE+ enables the discovery of

the process models that commonly achieve the highest F-measure by having

FILTERING as runner-up with ILP, while SAMPLING as runner-up with IMi680

and SM. On the other hand, SAMPLING commonly enables the discovery of

the simplest process models independently of the process discovery algorithm.

So, based upon the previous considerations, SAMPLING is the most relevant

competitor of PROMISE+ in this study. In particular, SAMPLING works better

than PROMISE+ in event logs with traces distributed according to the Pareto685

distribution (a large portion of log traces is held by a small fraction of top-

frequent variants). For example, SAMPLING works better than PROMISE+

in Hospital, where SAMPLING with IMi selects the top-six frequent variants

that cover 87.38% of traces in the event log (see Figure 8a). On the other

hand, PROMISE+ works better than SAMPLING in event logs that disregard690

the Pareto distribution (the majority of traces in the log is spanned on a high

number of top-frequent variants). For example, this happens in BPIC2018 Insp

(see Figure 8b).

In general, this analysis shows that the proposed abstraction-based strat-

32

Figure 6: Extended Cardoso index: PROMISE+ vs related methods (ORIGINAL, FILTERING,

SAMPLING and CLUSTERING) by varying the process discovery algorithm among Hybrid ILP

Miner(ILP), Inductive Miner (IMi) and Split Miner (SM).

(a) ILP – F-measure (b) ILP – extended Cardoso

(c) IMi – F-measure (d) IMi – extended Cardoso

(e) SM – F-measure (f) SM – extended Cardoso

Figure 7: Nemenyi test of F-measure and extended Cardoso index on process models discov-

ered using Hybrid ILP Miner (ILP) (a-b), Inductive Miner (IMi) (c-d) and Split Miner (SM)

(e-f) with both PROMISE+ and the related methods (ORIGINAL, FILTERING and CLUSTER-

ING). Groups of methods that are not significantly different (at p ≤ 0.05) are connected.

33

(a) Hospital (b) BPIC2018 Insp

Figure 8: Frequency distribution (axis Y) of 20 - top frequent variant-traces (axis X) in

Hospital (Figure 8a) and BPIC2018 Insp (Figure 8b).

egy may be an effective alternative to the extraction-based strategies already695

formulated in the process discovery field. In this regard, the experiments show

that it can summarize the event log by improving the performance of various

process discovery algorithms. In any case, there is no summarization method

that systematically enables the discovery of the simpler process models with the

highest quality in all the event logs. In fact, the performance of the compared700

methods also depends on the characteristics of the event logs (in addition to the

peculiarities of the process discovery algorithms).

5.3.3. Q4

We complete this study by giving a qualitative understanding of the outcome

of the process models discovered with FILTERING, SAMPLING, CLUSTERING705

and PROMISE+. As an example, let us consider the BPIC2018 Insp event log.

Figures 9a, 9b, 9c and 9d show the process models discovered with FILTERING,

SAMPLING, CLUSTERING and PROMISE+ from BPIC2018 Insp using Inductive

Miner (IMi). In accordance with the conclusions already drawn by analyzing

the complexity metrics measured with these methods (Q3), the process model710

discovered with FILTERING is the most complex, while the process models dis-

covered with both SAMPLING and PROMISE+ are the simplest. On the other

hand, the process models discovered with both SAMPLING and PROMISE+ mea-

sure the highest F-measure with a precision equal to 1 and a fitness equal to

0.67 and 0.71, respectively. The higher fitness of PROMISE+ is achieved thanks715

34

(a) FILTERING - precision=0.63, fitness=0.80, F-measure=0.70, model size=43×31×92, ex-

tended Cardoso index = 42.

(b) SAMPLING - precision=1.00, fitness=0.67, F-measure=0.80, model size=8×8×16, ex-

tended Cardoso index = 8.

(c) CLUSTERING - precision=0.63, fitness=0.96, F-measure=0.76, model size=21×18×48,

extended Cardoso index = 23.

(d) PROMISE+ - precision=1.00, fitness=0.71, F-measure=0.83, model size=12×12×26, ex-

tended Cardoso index = 13.

Figure 9: Comparison of process models discovered by IMi with different sampling methods

on BPIC2018 Insp.

to the ability of capturing the behavior comprising the sub-sequence of activi-

ties ”prepare external” and ”abort external”. This subsequence also appears in

the process model discovered with CLUSTERING (that achieves fitness equal to

0.96), but disappear in the process model discovered with SAMPLING.

35

6. Conclusion720

In this paper, we have presented PROMISE+ – a method that generates event

log summaries by using an abstraction-based summarization strategy. This

strategy leverages a next-activity classification function learned by training a

deep neural network architecture composed of LSTM modules. The log sum-

mary is then used for the process discovery. Experimental results on different725

benchmark event logs show that the proposed method provides synthesized logs

that enable the discovery of process models with high quality according to the

F-measure metric. In particular, the results indicate that PROMISE+ is able

to generate proper new traces (that may not appear in the original event log)

and the resulting log summaries enable process discovery algorithms to return730

process models with a good balance between quality measures. In any case, the

comparison with the extraction-based counterpart (i.e., SAMPLING) highlights

that both approaches are competitive to improve the quality of discovered pro-

cess models according to the F-measure metric. So, as future work we plan to

explore log summarization approaches to other event logs with specific domain735

knowledge, to better identify which log characteristics contribute more to the

success of an extraction or abstraction strategy.

Another important question to address is the selection of the seed sequences

for the trace generation in our method. In this study, we use a length-based cri-

terion to select the initial seeds. However, this may lead to select seed sequences740

that are the head of an infrequent behavior in the event log. We have handled

this issue through a process discovery step that performs a greedy search to

remove traces generated for the summary that may be outliers. In any case, al-

ternative criteria may be studied to determine seeds by exploring properties like

frequency, similarity or structure. The impact of these properties on ranking745

trace-variants has been recently explored in [16] for sampling.

Also, experimental results have shown that the proposed method provides

a good balance between quality and complexity in the process models finally

discovered. One main advantage of the method is that the discovered pro-

36

cess models are not only precise, but also simple and consequently, easier to750

understand and explainable. Another advantage is that the process model is

discovered from event data generated with a next-activity predictive model. So

it may also be seen as a way to provide an easy-to-interpret, graphical explana-

tion of the expected behavior of the predictive model even when it is a black-box

model learned by deep neural networks (such as LSTMs). Hence, a direction for755

future works would be to validate how explainable the resulting process models

are for end-users. Indeed the level of explainability of a process model may have

a significant impact on its usability. Hence our research can be considered as a

step towards adding explanations to business process models, paving the way to

create algorithms capable to discover process models with desirable properties760

of explainability and usability.

Finally, this study opens the door also for different research directions. For

example, besides process discovery, the proposed summarization method could

be designed for conformance checking.

7. Acknowledgment765

The research of Vincenzo Pasquadibisceglie is funded by PON RI 2014-2020

- Big Data Analytics for Process Improvement in Organizational Development

- CUP H94F18000270006.

References

[1] Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B. F., & W.770

van der Aalst (2015). Measuring precision of modeled behavior. Inf. Syst.

E Bus. Manag., 13 , 37–67.

[2] Augusto, A., Conforti, R., Dumas, M., La Rosa, M., & Polyvyanyy, A.

(2019). Split miner: automated discovery of accurate and simple business

process models from event logs. Knowl. Inf. Syst., 59 , 251–284.775

37

[3] Bauer, M., Senderovich, A., Gal, A., Grunske, L., & Weidlich, M. (2018).

How much event data is enough? a statistical framework for process discov-

ery. In J. Krogstie, & H. A. Reijers (Eds.), Advanced Information Systems

Engineering (pp. 239–256). Cham: Springer International Publishing.

[4] Berti, A., & Aalst, W. (2019). Reviving Token-based Replay: Increas-780

ing Speed While Improving Diagnostics. In Proceedings of the Interna-

tional Workshop on Algorithms and Theories for the Analysis of Event

Data (ATAED 2019) (pp. 87–103). volume 2371 of CEUR Workshop Pro-

ceedings.

[5] Bose, R. P. J. C., & W. van der Aalst (2009). Abstractions in process785

mining: A taxonomy of patterns. In U. Dayal et al. (Ed.), Business Process

Management, 7th International Conference, BPM 2009, Proceedings (pp.

159–175). Springer volume 5701 of LNCS .

[6] Buijs, J., Dongen, van, B., & Aalst, van der, W. (2014). Quality dimensions

in process discovery : the importance of fitness, precision, generalization790

and simplicity. International Journal of Cooperative Information Systems,

23 , 1440001/1–39. doi:10.1142/S0218843014400012.

[7] Camargo, M., Dumas, M., & Rojas, O. G. (2019). Learning accurate LSTM

models of business processes. In T. T. Hildebrandt et al. (Ed.), Business

Process Management - 17th International Conference, BPM 2019, Proceed-795

ings (pp. 286–302). Springer volume 11675 of LNCS .

[8] Conforti, R., Rosa, M. L., & t. Hofstede, A. H. M. (2017). Filtering out

infrequent behavior from business process event logs. IEEE Transactions

on Knowledge and Data Engineering , 29 , 300–314.

[9] De Weerdt, J., De Backer, M., Vanthienen, J., & Baesens, B. (2011). A800

robust f-measure for evaluating discovered process models. In 2011 IEEE

Symposium on Computational Intelligence and Data Mining (CIDM) (pp.

148–155).

38

http://dx.doi.org/10.1142/S0218843014400012

[10] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data

sets. J. Mach. Learn. Res., 7 , 1–30.805

[11] van derWerf, J. M. E. M., van Dongen, B. F., Hurkens, C. A. J., & Sere-

brenik, A. (2009). Process discovery using integer linear programming.

Fundam. Inf., 94 , 387–412.

[12] van Dongen, B. (2012). BPI challenge 2012. doi:10.4121/uuid:

3926db30-f712-4394-aebc-75976070e91f.810

[13] van Dongen, B. (2019). BPI challenge 2019. doi:10.4121/uuid:

d06aff4b-79f0-45e6-8ec8-e19730c248f1.

[14] van Dongen, B., & Borchert, F. F. (2018). BPI challenge 2018. doi:10.

4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972.

[15] El-Kassas, W. S., Salama, C. R., Rafea, A. A., & Mohamed, H. K. (2021).815

Automatic text summarization: A comprehensive survey. Expert Systems

with Applications, 165 , 113679.

[16] Fani Sani, M., van Zelst, S., & W. van der Aalst (2021). The impact

of biased sampling of event logs on the performance of process discovery.

Computing , (pp. 1–20).820

[17] W. van der Aalst (2009). Process-aware information systems: Lessons to

be learned from process mining. In K. Jensen, & W. van der Aalst (Eds.),

Transactions on Petri Nets and Other Models of Concurrency II: Special

Issue on Concurrency in Process-Aware Information Systems (pp. 1–26).

Berlin, Heidelberg: Springer Berlin Heidelberg.825

[18] W. van der Aalst (2010). Process discovery: Capturing the invisible. IEEE

Computational Intelligence Magazine, 5 , 28–41.

[19] W. van der Aalst (2016). Process Mining - Data Science in Action, Second

Edition. Springer.

39

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
http://dx.doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
http://dx.doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
http://dx.doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
http://dx.doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
http://dx.doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972

[20] W. van der Aalst (2018). Process discovery from event data: Relating830

models and logs through abstractions. Wiley Interdiscip. Rev. Data Min.

Knowl. Discov., 8 .

[21] W. van der Aalst, Rubin, V. A., Verbeek, H. M. W., van Dongen, B. F.,

Kindler, E., & Günther, C. W. (2010). Process mining: a two-step approach

to balance between underfitting and overfitting. Softw. Syst. Model., 9 , 87–835

111.

[22] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9 , 1735–1780.

[23] Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-

based optimization for general algorithm configuration. In C. A. C. Coello840

(Ed.), Learning and Intelligent Optimization - 5th International Confer-

ence, LION 2011, Selected Papers (pp. 507–523). Springer volume 6683 of

LNCS .

[24] Lassen, K. B., & W. van der Aalst (2009). Complexity metrics for workflow

nets. Information and Software Technology , 51 , 610–626.845

[25] Leemans, S. J. J., Fahland, D., & van der Aalst, W. (2013). Discovering

block-structured process models from event logs - a constructive approach.

In J.-M. Colom, & J. Desel (Eds.), Application and Theory of Petri Nets

and Concurrency (pp. 311–329). Berlin, Heidelberg: Springer Berlin Hei-

delberg.850

[26] Leemans, S. J. J., Fahland, D., & van der Aalst, W. (2013). Discovering

block-structured process models from event logs containing infrequent be-

haviour. In N. Lohmann et al. (Ed.), Business Process Management Work-

shops - BPM 2013 International Workshops, Revised Papers (pp. 66–78).

Springer volume 171 of LNBIP .855

[27] de Leoni, M. M., & Mannhardt, F. (2015). Road traffic fine management

process. doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

40

http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

[28] Mannhardt, F. (2016). Sepsis cases - event log. doi:10.4121/uuid:

915d2bfb-7e84-49ad-a286-dc35f063a460.

[29] Mannhardt, F. (2017). Hospital billing - event log. doi:10.4121/uuid:860

76c46b83-c930-4798-a1c9-4be94dfeb741.

[30] Mitsyuk, A. A., Shugurov, I. S., Kalenkova, A. A., & W. van der Aalst

(2017). Generating event logs for high-level process models. Simulation

Modelling Practice and Theory , 74 , 1–16.

[31] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT865

press.

[32] Pasquadibisceglie, V., Appice, A., Castellano, G., & Malerba, D. (2019).

Using convolutional neural networks for predictive process analytics. In

2019 International Conference on Process Mining (ICPM) (pp. 129–136).

[33] Pasquadibisceglie, V., Appice, A., Castellano, G., & Malerba, D. (2020).870

Predictive process mining meets computer vision. In D. Fahland et al. (Ed.),

Business Process Management Forum - BPM Forum 2020, Proceedings (pp.

176–192). Springer volume 392 of LNBIP .

[34] Pasquadibisceglie, V., Appice, A., Castellano, G., & Malerba, D. (2021).

A multi-view deep learning approach for predictive business process moni-875

toring. IEEE Transactions on Services Computing (2021), .

[35] Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D., & Mod-

ugno, G. (2020). ORANGE: outcome-oriented predictive process monitor-

ing based on image encoding and cnns. IEEE Access, 8 , 184073–184086.

[36] Sani, M. F., Boltenhagen, M., & W. van der Aalst (2020). Prototype880

selection using clustering and conformance metrics for process discovery. In

A. del-Ŕıo-Ortega et al. (Ed.), Business Process Management Workshops

- BPM 2020 International Workshops, Revised Selected Papers (pp. 281–

294). Springer volume 397 of LNBIP .

41

http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
http://dx.doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
http://dx.doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741

[37] Sani, M. F., van Zelst, S. J., & van der Aalst, W. (2020). Improving the885

performance of process discovery algorithms by instance selection. Comput.

Sci. Inf. Syst., 17 , 927–958.

[38] Sani, M. F., van Zelst, S. J., & W. van der Aalst (2017). Improving process

discovery results by filtering outliers using conditional behavioural prob-

abilities. In E. Teniente, & M. Weidlich (Eds.), Business Process Man-890

agement Workshops - BPM 2017 International Workshops, Revised Papers

(pp. 216–229). Springer volume 308 of LNBIP .

[39] Sani, M. F., van Zelst, S. J., & W. van der Aalst (2018). Applying sequence

mining for outlier detection in process mining. In H. Panetto et al. (Ed.),

On the Move to Meaningful Internet Systems. OTM 2018 Conferences,895

Proceedings, Part II (pp. 98–116). Springer volume 11230 of LNCS .

[40] Sani, M. F., van Zelst, S. J., & W. van der Aalst (2019). The impact of event

log subset selection on the performance of process discovery algorithms. In

T. Welzer et al. (Ed.), New Trends in Databases and Information Systems,

ADBIS 2019 Short Papers, Proceedings (pp. 391–404). Springer volume900

1064 of Communications in Computer and Information Science.

[41] Skydanienko, V., Francescomarino, C. D., Ghidini, C., & Maggi, F. M.

(2018). A tool for generating event logs from multi-perspective declare

models. In W. van der Aalst et al. (Ed.), Proceedings of the Dissertation

Award, Demonstration, and Industrial Track at BPM 2018 (pp. 111–115).905

volume 2196 of CEUR Workshop Proceedings.

[42] Suriadi, S., Andrews, R., ter Hofstede, A., & Wynn, M. (2017). Event log

imperfection patterns for process mining: Towards a systematic approach

to cleaning event logs. Information Systems, 64 , 132–150.

[43] Tax, N., Lu, X., Sidorova, N., Fahland, D., & W. van der Aalst (2018).910

The imprecisions of precision measures in process mining. Information

Processing Letters, 135 , 1–8.

42

[44] Tax, N., Sidorova, N., & van der Aalst, W. (2019). Discovering more precise

process models from event logs by filtering out chaotic activities. J. Intell.

Inf. Syst., 52 , 107–139.915

[45] Tax, N., Sidorova, N., Haakma, R., & W. van der Aalst (2018). Event ab-

straction for process mining using supervised learning techniques. In Y. Bi

et al. (Ed.), Proceedings of SAI Intelligent Systems Conference (IntelliSys)

2016 (pp. 251–269). Springer International Publishing.

[46] Tax, N., Teinemaa, I., & van Zelst, S. J. (2020). An interdisciplinary com-920

parison of sequence modeling methods for next-element prediction. Soft-

ware and Systems Modeling , (pp. 1619–1374).

[47] Tax, N., Verenich, I., La Rosa, M., & Dumas, M. (2017). Predictive busi-

ness process monitoring with LSTM neural networks. In E. Dubois, &

K. Pohl (Eds.), International Conference on Advanced Information Sys-925

tems Engineering (pp. 477–492). Springer.

[48] van der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow min-

ing: discovering process models from event logs. IEEE Transactions on

Knowledge and Data Engineering , 16 , 1128–1142.

[49] vanden Broucke, S. K., & De Weerdt, J. (2017). Fodina: A robust and930

flexible heuristic process discovery technique. Decision Support Systems,

100 , 109–118. Smart Business Process Management.

[50] Weijters, A., & Ribeiro, J. (2011). Flexible heuristics miner (fhm). (pp.

310–317).

[51] van Zelst, S., van Dongen, B., & van der Aalst, W. (2018). Event stream-935

based process discovery using abstract representations. Knowl. Inf. Syst.,

54 , 407–435.

[52] van Zelst, S. J., van Dongen, B. F., & W. van der Aalst (2015). Avoiding

over-fitting in ILP-based process discovery. In H. R. Motahari-Nezhad et

43

al. (Ed.), Business Process Management (pp. 163–171). Cham: Springer940

International Publishing.

[53] van Zelst, S. J., van Dongen, B. F., W. van der Aalst, & Verbeek, H.

M. W. (2018). Discovering workflow nets using integer linear programming.

Computing , 100 , 529–556.

[54] van Zelst, S. J., Mannhardt, F., de Leoni, M., & Koschmider, A. (2020).945

Event abstraction in process mining: literature review and taxonomy.

Granular Computing , (pp. 1–18).

44

	Introduction
	Background and Motivation
	Preliminaries
	Abstraction-based event log summarizing method for process discovery
	Labeled head sequence multiset extraction
	Next-activity classification
	Event log summarization
	Process model discovery

	Experiments
	Implementation details
	Experimental setting
	Event logs and process discovery algorithms
	Evaluation metrics
	Compared methods

	Results and discussion
	Q1 and Q2
	Q3
	Q4

	Conclusion
	Acknowledgment

