
How Can Interactive Process Discovery Address Data
Quality Issues in Real Business Settings? Evidence from a

Case Study in Healthcare

Elisabetta Benevento, Davide Aloini, and Wil M. P. van der Aalst*�

May 1, 2022

Abstract

The focus of this paper is on how data quality can affect business process discovery in real
complex environments, which is a major factor determining the success in any data-driven
Business Process Management project. Many real-life event logs, especially healthcare ones,
can suffer from several data quality issues, some of which cannot be solved by pre-processing
or data cleaning techniques, leading to inaccurate results. We take an innovative Process
Mining (PM) approach, termed Interactive Process Discovery (IPD), which combines domain
knowledge with available data. This approach can overcome the limitations of noisy and
incomplete event logs by putting “humans in the loop”, leading to improved business process
modelling. This is particularly valuable in healthcare, where physicians have a tacit domain
knowledge not available in the event log, and, thus, difficult to elicit. We conducted a two-
step approach based on a controlled experiment and a case study in an Italian hospital. At
each step, we compared IPD with traditional PM techniques to assess the extent to which
domain knowledge helps to improve the accuracy of process models. The case study tests the
effectiveness of IPD to uncover knowledge-intensive processes extracted from noisy real-life
event logs. The evaluation has been carried out by exploiting a real dataset of an Italian
hospital, involving the medical staff. IPD can produce an accurate process model that is fully
compliant with the clinical guidelines by addressing data quality issues. Accurate and reliable
process models can support healthcare organizations in detecting process-related issues and
in taking decisions related to capacity planning and process re-design.

Keywords Interactive Process Discovery, Process Mining, Data quality, Business Process Mod-
elling, Healthcare.

1 Introduction

Healthcare organisations are increasingly pushed to improve the quality of care services in an
unfavourable and rapidly changing scenario [1]. Advances in treatments, an ageing population,
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increased patient expectations, limited resources are some of the factors that have increased the
pressures on hospitals [2]. Therefore, improving process efficiency is of utmost importance and
represents a critical success factor for healthcare organisations.

To accommodate these challenges, it is essential to seize the opportunity offered by digitalisa-
tion. In fact, digital innovation seems to be the key-driver factor to improve the continuity and
the access to care for patients, and to guarantee greater effectiveness, efficiency, and sustainability
of healthcare organisations [3].

Advances in software and hardware such as clouds, IoT sensors, and digital platforms have led
to an ever-growing volume and variety of process and patient data, thus expanding the spectrum
of technologies and techniques applicable to Business Process Management (BPM) [4]. Innovative
data-driven techniques, such as Process Mining (PM), Machine Learning (ML), and Data Mining
(DM), provide new ways to interpret and implement BPM practices [5–7]. Healthcare organizations
can analyse and transform their business processes more effectively and efficiently by leveraging
PM and other data-driven approaches, thus improving decision making [8, 6] to attain operational
efficiency [9, 10].

These advantages can only be achieved if a high level of data quality is guaranteed. Indeed,
data quality can significantly affect the decision-making processes of the organizations and have
direct implications for the quality of healthcare provision [6, 5, 11]. Indeed, the accuracy and
reliability of any analysis are significantly influenced by the quality of the data [9, 12].

However, real-life event logs (i.e., data input for PM techniques) can suffer from several data
quality issues [13], especially in healthcare domain [14]. Indeed, errors in data entry and/or data
collection due to excessive workload of professionals, the need for better training in the use of new
technologies, and extensive manual recording are causes of low quality in most healthcare datasets
[15]. Data quality is thus challenging for BPM [13], particularly in healthcare [14], and is the
focus of numerous studies [16, 17]. However, despite this research into overcoming data quality
issues during the pre-processing phase [18], some problems remain and can lead to unreliable or
misleading results.

We address the data quality issues affecting business process discovery and analysis in the
healthcare environment. We exploit an innovative PM approach, namely Interactive Process Dis-
covery [19], which combines domain knowledge with available event logs. This innovative PM
approach can overcome the limitations of noisy event logs by putting “humans in the loop” [20],
unlike other PM techniques, which are mainly based on raw data. This is particularly valuable in
the healthcare context, where physicians have a tacit domain knowledge not available in the event
log, and, thus, difficult to elicit. Therefore, Interactive Process Discovery can enhance business
process modelling and lead to improved results. However, despite their potential, interactive tech-
niques are still rarely used in real cases and only “high quality” event logs are exploited [19]. Few
studies have addressed the problem of data quality in real business settings [58].

Thus, we address the research question of how Interactive Process Discovery can tackle data
quality issues in real complex BPM applications, like healthcare, since data quality is recognized as
one of the most relevant and critical perspective to analyse the success of BPM data-driven projects
[21, 22]. In responding to the research question, we took a two-step approach and conducted a
controlled experiment and a case study. In our experiment we reproduced two common data
quality issues and estimated their impact on the accuracy of the resulting process models. Our
case study came from the healthcare sector, as this is characterised by complex and noisy event
logs. We analysed a real dataset from an Italian hospital and a multidisciplinary hospital team was
involved in the study. Our aim was to demonstrate the capability of Interactive Process Discovery
to handle large and noisy real-life event logs and to produce accurate and comprehensible process
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models.
From a scientific perspective, our study responds to the call for more effective business pro-

cess modelling approaches that address quality problems within the data [23, 13], especially in the
healthcare sector [14]. In so doing, we intent to demonstrate with a rigorous approach the effective-
ness of Interactive Process Discovery to deal with data quality issues embedded in real-life event
log. To the best of our knowledge, this represents one of the first attempts to evaluate the advan-
tages of tacit domain knowledge in improving the quality and comprehensibility of process models
generated from noisy event logs. From a practical point of view, accurate and reliable process
models can support healthcare organizations in effectively detecting process-related issues (e.g.,
bottlenecks, process anomalies) and enable them to take decisions related to capacity planning,
resource allocation, and process re-design more efficiently. Finally, we demonstrate the suitability
of Interactive Process Discovery in real applications and provide a user’s guide for the technique,
thus assisting practitioners in applying such knowledge and managing data-driven BPM projects
more effectively.

The paper is structured as follows. In Section 2 we describe the theoretical background, and we
introduce the related research in Section 3. Section 4 describes the Interactive Process Discovery
technique and Section 5 illustrates the research design. Section 6 describes the results of the
controlled experiment and in Section 7 we present the results of the hospital case study. Finally,
Section 8 provides conclusions and future work.

2 Theoretical Background

Business Process Modelling is one of the key ingredients of BPM [24], enabling a common and
comprehensive understanding of business processes [25]. Its aim is to produce an effective rep-
resentation of a business process through a process model, which can be used for analysis and
optimization [26]. High-quality process models help organizations improve efficiency [24, 27] and
promptly avoid any errors [28, 29]. This is essential as error costs increase exponentially throughout
the development lifecycle [30].

Thus, the success of a business process modelling project has been recognised as a critical
outcome of BPM, as its consequences can often be significant and lead to the design of new processes
and organizational structures, the re-design of existing processes, and the implementation of ISs
[31]. Several studies of the quality measures and success factors in BPM have been conducted
and approach the problem from multiple perspectives [31, 29, 32–34]. In the following review we
discuss the relevant studies and focus on data-driven BPM.

According to the framework proposed in [31, 34], modelling success can be measured in terms
of model quality, process impacts, and project efficiency. The first two dimensions represent the
effectiveness of the model in terms of the fulfilment of the desired outputs and the effects of the
model improvements, while efficiency is measured by resource usage in the project. Both project-
and modelling-specific success factors can be identified. The former includes a set of factors related
to the project and associated context, i.e., project management capabilities, stakeholder partici-
pation, information resources, and modeller expertise. Modelling-specific success factors involve
the tool used, the language, and the methodology, as a common understanding and a standardised
model development can enhance the quality and reusability of the project outputs [34]. In addition
to these factors, the framework of [34] identifies process complexity and project importance as two
moderators, as they can influence the success of the modelling. Process complexity generally de-
pends on whether the process being modelled is structured or unstructured, while the importance
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of the project to the organization can also determine its perceived success.
This framework fits with model-driven process modelling as it mainly draws on interviews

with process participants, direct field observations, and documentation analysis [35, 36]. However,
in data-driven process modelling projects, data represents another success factor in addition to
project- and modelling-related factors [21, 22]. Although process digitalization often guarantees
the availability of data in a BPM project, the data are often “dirty” [13]. Thus, the success of a
data-driven project depends on the quality of the dataset and how quality issues are detected and
resolved [21].

As shown in the framework below (see Fig. 1), which is adapted from [31, 34], data availability
and data quality are factors specific to data originating from ISs. Model accuracy is measured in
terms of four metrics commonly used in literature to assess the quality of a process model: fitness,
precision, simplicity, and generalization [37].

Figure 1: Data-driven process modelling success framework adapted from [31, 34].

The study of [23] suggests that there are two main categories of data quality problems: (i)
process-related issues, which involve challenges arising from to the characteristics of the investi-
gated process as recorded in the dataset, such as fine-grained activities and heterogeneity; and (ii)
those related to the quality of the event logs in the datasets. Managing these issues is critical, and
they can be separated into four sub-categories [23]:

1. Missing data: Information may be missing from a dataset even though it should be present.

2. Incorrect data: Some data entries in the dataset may be recorded incorrectly.

3. Imprecise data: A lack of detail in the data entries can lead to reduced precision.

4. Irrelevant data: Some data entries may not be usable in their current format and therefore
are irrelevant.

These issues can reduce the applicability of various data-driven techniques and limit the insights
gained, which can potentially lead to complex or incomprehensible process models that do not
provide a meaningful representation of the reality [15, 23]. This is accentuated in knowledge-
intensive processes, like the healthcare ones, that are characterised by high levels of heterogeneity
and fewer repeatable activities [38]. Thus, more effective data-driven approaches able to handle
data quality issues are required [23].
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3 Related Work

In this section, we review previous works relating to process discovery and to data quality issues
in the PM literature. We focus on current Automated Process Discovery (APD) techniques, based
solely on event logs, that address data quality problems that cannot be solved during the data
pre-processing phase and discuss the accuracy and comprehensibility of the models.

Two main strategies for addressing such data quality issues during the discovery phase have
been identified in the PM literature. First, filtering out infrequent events and second, managing
uncertain events, can improve the quality and reliability of the results.

APD techniques including the Heuristic Miner [39, 40], Inductive Miner [41], Fuzzy Miner [42],
and Split Miner [43] are aimed at tackling specific data quality issues such as partial/incomplete
traces within the log [23]. They filter out noisy behaviour during the process discovery phase.
These techniques can result in a process model that contains only the most frequent traces, thus
reducing its complexity. [44] propose an alternative APD technique to manage uncertain events,
by discovering a directly- follows graph from event logs, in which the events are recorded with some
level of uncertainty [45]. A formal description of uncertainty (as a process model) can then be
identified, rather than aiming to eliminate uncertainty so the underlying process can be observed
[46].

However, both approaches have drawbacks when handling large event logs with imprecise data,
such as imprecise timestamps or activity names [47, 48, 37, 23]. If coarse or mixed granular
timestamps occur within the event log [49, 23], event ordering issues can arise, leading to parallelism
instead of sequential behaviour in the mined model [13]. APD techniques can then identify paths
that do not match any trace in the event log, leading to a lack of precision [47, 50]. This condition
can affect the reliability and comprehensibility of the results. In addition, most APD techniques
cannot identify duplicate activities [37], which may appear in different parts of the process model.
Although they differ, these are often mapped onto one activity in the model, leading to loops [37,
19, 23]. This limitation is particularly significant in contexts such as healthcare, where processes
may require that the same activity occurs at various stages (or branches) of the process that have
different aims. Such activity cannot be identified and relabelled neither ex-ante nor ex-post during
pre-processing. Due to these drawbacks, APD techniques often generate complex, less accurate,
or incomprehensible process models [37, 51], that do not provide a significant representation of the
reality.

The PM literature has more recently focused on exploiting the tacit knowledge from experts
with the event logs when discovering process models [19, 52]. For example, [53] propose a hybrid
approach to process discovery, in which a method is developed that can consider a variety of
constraints that the analyst can draw on. Here, domain knowledge can be encoded in the form
of precedence constraints. In [54], the authors develop a technique that leverages prior knowledge
and process execution data to learn a control-flow model. The knowledge is incorporated using
ideas from Bayesian statistics. [55] propose a set of techniques to prune declarative process models
and remove constraints that are not relevant or implied by other constraints, by exploiting domain
knowledge. However, these approaches still present various limitations, such as only enabling users
to express their domain knowledge in the form of rules or constraints that the model must respect
[55, 53, 54]. The user is then limited by the language used to reproduce the rules. In addition, as
the user cannot control the discovery of the process, although the resulting map may be compliant
with all rules it may also be extremely complex. [56] propose an approach that incrementally
discovers process models using domain knowledge. The developed algorithm enables the user to
choose the traces to add to existing process models. The process model constructed is thus gets
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incrementally extended. However, when trace variability is high, as in the case of noisy event logs,
users will find selecting the correct traces difficult.

IPD [19] provides the user with complete control over the modelling phase, enabling both tacit
knowledge and event logs to be applied and the process model to be investigated interactively.
The user can then ignore any indications provided by the event log that are deemed unreliable
or incorrect. In addition, from a technical point of view IPD can identify particular constructs
such as duplicate activities, inclusive choices, and silent activities, which is not possible in many
of the other state-of-the-art techniques, either automated or interactive. Thus, IPD can overcome
typical representational biases that can negatively affect the accuracy and comprehensibility of the
process models [57, 37].

However, to the best of our knowledge, only the study of [58] has tried to apply an interactive
approach to a real-life noisy event log for data quality assessment and data cleaning purposes.
Consequently, evidence on the effectiveness and suitability of such techniques is still limited and
thus valuable to investigate. We contribute to the literature by demonstrating how incorporating
domain knowledge into the modelling phase can result in accurate and understandable process
models, even with noisy event logs. The success of any business process modelling project depends
to a large extent on the ability to manage data quality. We also address the role of domain
knowledge, which is typical in knowledge-intensive contexts, like healthcare. Thus, we investigate
how using an interactive approach like IPD enables us to capture aspects of tacit domain knowledge
that cannot be easily represented in a structured and explicit way.

4 The Interactive Process Discovery Technique: A Brief

Overview

IPD is an innovative PM technique developed by [19] for modelling business processes. It combines
the information in the event log with domain knowledge, unlike APD techniques that exploit only
the dataset during the discovery phase and automatically produce a process model from it. Fig.
2 depicts the general scheme of IPD.

As shown in Fig. 2, IPD enables the interactive editing and construction of process models in
an incremental and structured manner. Feedback and suggestions from the event log are provided
during model building to help the user decide where to position the activities within the model.
The user can decide to take assistance from the data or ignore the suggestions. If the user considers
the recommendations inadequate or incorrect, he can deviate from them and place the activity in
the correct position based on his knowledge. This is repeated until all activities in the event log
have been placed on the map. At the end, the user can export the final map.

IPD uses the following synthesis rules to enable interactive model building: an abstraction rule
(AR), place rule (PR), and transition rule (TR) [59, 19]. From these, a minimal workflow net can
be expanded by adding one transition and/or one place at a time [19]. AR enables the user to
introduce a new place and a new transition between a set of transitions and places. TR enables
the inclusion of a new transition into the labelled free-choice workflow net, while PR adds a new
place. All applications of these rules are projected onto the net, depending on the feedback from
the log and the interaction of the user with IPD [19]. Further mathematical and technical details
are available in [19].

To support the user in decision-making, IPD extracts aggregated information about activity and
contextual information from the event log. The activity information, i.e., the maximum, minimum,
and average occurrences and the percentage of cases, can provide insights about the activity, such
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Figure 2: Overview of IPD.

as whether it is prevalent in the event log, if it should be placed in a loop or duplicated, etc. In
addition, contextual information about the activity in terms of others that are already present
within the net is provided to the user. This supports the user in placing the activity in the net.
Such information from the event log is projected directly onto the current net, and depending on
the activity, the colouring of the other activities within the map is updated. Colours denote which
activities take place before and after the selected one. Purple is used to highlight activities that
occur after the selected activity, yellow denotes those that occur before, and white transitions imply
that the selected activity and others do not occur at the same time. The projected information can
be based either on the eventually follows (precedes) relation or on the directly follows (precedes)
relation, as desired by the user. Fig. 3 provides an example and depicts modifications within
the net when the user chooses an activity x. Transition t1 is completely purple, meaning that x
happens after a. Likewise, t3 is yellow, which implies that x happens before c. Conversely, t2 is
half purple and half yellow, and thus x can occur before and after b. Clearly, x must therefore be
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placed in parallel to b, before c, and after a. The context information from the event log is also
summarized in a table format, thus helping the user take appropriate decisions when the projected
information is too vague.

Figure 3: Projected information when an activity x is chosen by the user. The colours suggest
suitable positions in the model.

5 Research Design

We address the research question using a two-step approach based on experimental and case study
research methods, which are widely used in IS and BPM research [60, 61]. The first step, the
controlled experiment, enables us to conduct a more detailed evaluation by examining specific
data quality issues and their effects on the IPD results. The second step, the case study, enables a
broader and more generalised analysis of how IPD can address data quality issues in complex real-
life contexts, like healthcare. This combined approach can be particularly useful when evaluating
the suitability of BPM technologies and techniques for specific projects [61, 62].

The controlled experiment is aimed at investigating the behaviour of the process model pro-
duced by IPD when two data quality issues, i.e., imprecise timestamps (scenario A) and imprecise
events (scenario B), occur and at estimating the impact of each on the accuracy of the model.
Therefore, the focus of such experiment is not on the functionality of IPD but on the quality of the
resulting process model in the presence of such quality problems. Scenario A involves timestamps
of the events that are too coarse, e.g., in the order of a day, thereby making the ordering of events
unreliable [23, 63]. Scenario B involves events that have the same activity name but different aims,
depending on the context [23, 64]. In the data pre-processing stage, understanding a-priori whether
an event that is repeated several times has the same or different purpose in different stages of the
process can be difficult. Both of these data quality issues are common in real-life datasets and
difficult to manage in the data pre-processing phase [23, 49, 65]. They can affect the reliability of
the results [21], and this evaluation thus helps us understand the extent to which IPD can limit
the negative effects of such quality problems.

We set our case study in the healthcare context, so we can evaluate the effectiveness of IPD
in handling large and noisy event logs in real complex applications. Real datasets suffer from
several data quality issues that are difficult to manage simultaneously. The evaluation allows us
to examine the benefits of combining knowledge with data about the quality of the results, and
also when quality problems occur. The case study also demonstrates how IPD can capture the
tacit knowledge within the healthcare context and how it can be used to improve the accuracy and
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understandability of the process model. Fig. 4 illustrates the whole research design developed for
the evaluation.

In both steps, IPD was compared with current state-of-the-art APD techniques based on event
logs, to evaluate the potential advantages of domain knowledge in improving the quality of process
models generated from noisy event logs. We used synthetic event logs for the controlled experiment
and engaged three process analysts, while we used a real dataset from an Italian hospital for the
case study and involved a team of specialists including the health director, IT staff, the head of the
thoracic surgery department, an oncologist, a ward doctor, and two ward nurses. We evaluated
accuracy (i.e., fitness, precision, and F-score) in both cases, and for the case study only, we also
measured the level of compliance with clinical guidelines that healthcare processes should follow
when treating patients.

The two steps are detailed in Sections Sections 5.1 and 5.2.

STEP 1. Controlled Experiment

STEP 2. Case Study

Analyst

Hospital staff

Figure 4: Two-step approach followed to test the effectiveness of IPD in dealing with data quality
issues.

5.1 Step 1. Synthetic Experiment

The controlled experiment consisted of four phases, which were repeated for scenarios A (i.e., event
log with imprecise timestamps) and B (i.e., event log with imprecise events):

1. Synthetic Model Creation. Three synthetic BPMN models were created using the Sig-
navio tool, by setting the number of activities and the type of constructs (the resulting
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BPMN models are presented in Supplementary Material). These process models were used
to simulate event logs in the next phase.

2. Synthetic Event Log Generation. For each BPMN model, a synthetic event log was gen-
erated through the BIMP Simulator tool. Noise was introduced in all of the synthetic event
logs to produce more realistic datasets. Specifically, starting from each log, three additional
modified synthetic logs were generated, by removing time information or by adding/removing
occurrences of random activity. We thus obtained 12 synthetic event logs (4 for each BPMN
model) at the end of the phase, with each having between 1000 and 9000 events. These
synthetic event logs represent inputs to both IPD and APD techniques.

3. Model Building. We selected the Inductive Miner (IM) [41], Split Miner (SM) [43], and
Directly-Follows Graphs Miner [66] (DFGM) (as a proxy for the commercial tools), as these
are common APD techniques. To discover the process models, we conducted the following
procedure (for more details see Supplementary Material). Three process analysts, experts in
BPM, were engaged for the experiment. Each participant was first provided with: (i) four
different synthetic logs generated in Phase 2; (ii) a set of instructions for using IPD; and (iii)
a set of rules describing certain properties of the synthetic process model to be discovered,
thus mimicking expert knowledge (this is a prerequisite in IPD). Note that each analyst
exploited a different set of event logs during the experiment. The participants were then
asked to apply IPD and the selected APD techniques to discover the process models using
the provided synthetic logs. In the first case (IPD), each participant interactively and actively
created a process model for each log, exploiting the rules as domain knowledge. In doing so,
each analyst was able to either accept (e.g. when suggesting the starting activity) or ignore
(e.g. when suggesting that two activities with a specific relationship be placed in parallel)
the suggestions derived from the dataset. In the second case (APD), all analysts used the
default parameters of each technique. Thus, it was the APD technique that automatically
created the process model.

4. Model Comparison. This step aimed at evaluating the accuracy of the discovered process
models. More in detail, all maps produced by the IPD and APD techniques were assessed and
compared in terms of fitness, precision, and F-score. To calculate fitness and precision, we
used the alignment-based algorithms proposed by [67, 68], and due to the trade-off between
fitness and precision [69, 70], we also used the F-score metric to ensure the model’s balance
fitness and precision [69].

5.2 Step 2. Case Study

We conducted the case study in close collaboration with the hospital staff, following three phases:

1. Data Collection and Preparation. We gathered and processed data of lung cancer
patients, concerning their diagnostic, preoperative, surgical, and postoperative procedures.
The treatment of lung cancer is complicated and based on decisions taken by practitioners
from various disciplines, who must apply their in-depth knowledge and expertise. Thus, the
direct involvement of a specialised multidisciplinary team is essential for accurately modelling
this type of treatment processes. Data were extracted from Hospital Information Systems
(HISs). As expected, the event log had several data quality issues, and thus we attempted
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to refine the event log by (i) removing outliers; (ii) aggregating low-level activities; and (iii)
filtering less frequent activities. The resulting event log consisted of about 1000 patient
cases, 19 activities, and around 17000 events. Some quality issues still remained after data
cleaning.

2. Model Building. To ensure against bias and affecting the experts, we first applied IPD to
obtain the lung cancer patients process model, supported by the hospital staff. During model
construction, we followed some of the suggestions provided by IPD, based on the information
recorded in the event log (e.g., placing the activity “nuclear medicine” on the map), as the
hospital staff deemed them appropriate. In other cases, we decided to deviate from the
suggestions, deeming them incorrect (e.g., positioning the activity “x-ray” on the map), and
add the activities into the correct positions according to the knowledge of the hospital staff.
In addition, since the lab test may be performed several times and at different points in the
process, its placement was critical. The suggestion from the event log was very vague, so it
was necessary to intervene with the knowledge of the doctors to put the activity in the right
points of the process. As in the synthetic experiment (step 1), we then applied IM, SM,
and DFGM. Each APD technique was optimized by testing various parameter values and by
selecting the configuration with the highest F-score [69]. The optimization was conducted by
using a Rapid Miner extension, called RapidProM. The F-score was computed on Petri nets
since the measuring tool work only on them. Conversions of the process model into Petri
nets were done using ProM’s package.

3. Model Comparison. The IPD model and the best configurations of APD techniques were
assessed and compared, in terms of accuracy and conformance with clinical guidelines. As in
the synthetic experiment, we measured fitness, precision, and F-score as a proxy for accuracy
[37, 69]. To evaluate the conformance of the model to the Italian Association of Medical
Oncology (AIOM) guidelines, we conducted a qualitative evaluation with the involvement of
hospital staff, by defining a set of clinical rules that are necessary for the correct treatment of
lung cancer patients and thus must be respected by each model. These rules were extracted
from the AIOM guidelines and formalized by using a subset of (Declare) templates. Each
template provides a way to specify a dependency between two different classes of activities
(e.g., a precedence constraint between the activities involved in the classes “surgery” and
“medical examination”) [55].

6 Synthetic Experiment Results

This section presents the results of the controlled experiment, divided in two Sections (6.1, 6.2)
for scenarios A and B, respectively.

Here, it is convenient to introduce the following notation for the synthetic event logs. In general,
they are referenced as Lb x−y

a . The subscript a refers to the synthetic model used to generate the
synthetic log. In the superscript b ∈ {o, d, n}, o denotes the original event log (i.e., with date and
time registrations of the events) with 0% noise, d the event log with coarse granular timestamps
(i.e., only the date of events is registered) and with 0% of noise, and n the noisy event log with
coarse granular timestamps. Superscripts x and y refer to the percentages of noise due to removed
and added events, respectively. When both x and y are zero, they are omitted for notation brevity.
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6.1 Scenario A - Coarse Granular Timestamps

Table 1 shows the results of the experiment using the 12 synthetic event logs when applying the
IPD and APD techniques. The percentage change in accuracy values calculated with noisy and
good event logs is given in parentheses in Table 1.

We observe that the fitness of the models produced by IM, SM, and DFGM is almost always
higher than that obtained by IPD. Conversely, IPD returns the Petri nets with the highest precision
and F-score values in all cases. This is due to the poor quality of the event log (i.e., no time
registration of the events). If there is no way to decide whether an activity A always precedes
an activity B (or vice versa), APD techniques introduce a parallel construct or a combination
of exclusive choice and loop into the resulting Petri nets. They then catch all traces but allow
paths that do not match any of the traces in the input log, resulting in more imprecise models.
In addition, a significant worsening of the APD technique performance (up to 56%) is observed
in terms of precision and F-score when adding noise to event logs (see the values in parentheses
in each table). Conversely, IPD appears to limit the negative effects of poor data quality, giving
a slight reduction in precision and F-score values (up to 13%). In summary, by incorporating
domain knowledge IPD can overcome the problems that arise when coarse granular timestamps
are present within the event log and can provide more accurate process models than those obtained
using APD techniques.

6.2 Scenario B - Duplicate Events

Table 2 reports the results of a comparative evaluation of the accuracy achieved using IPD and
APD techniques. The percentage change in accuracy values calculated with noisy and good event
logs is given in parentheses in Table 2.

As shown in these tables, APD techniques achieve higher fitness values than those obtained by
IPD. Conversely, IPD yields the highest values for precision and F-scores in all cases. IM, SM, and
DFGM do not allow the activities to be duplicated (i.e., two different occurrences of the activity
A in the traces match a unique transition in the discovered Petri net), and thus they introduce a
cycle within the discovered model. They can then admit paths that are not found in any of the
traces, thus reducing the precision of the model. This becomes more evident when adding noisy
behaviour. A more significant deterioration in the precision and F-score performance of APD
techniques (up to 26%) compared to IPD can be observed with noisy event logs, while the fitness
values remain similar for all techniques (see values in parentheses). In summary, incorporating
domain knowledge can reduce the negative impact of imprecise events in the event logs on the
accuracy of the process models. IPD can provide an accurate model that balances fitness and
precision.

7 Case Study Results and Discussion

This section summarizes the results from the case study. Table 3 reports the fitness, precision, and
F-score values obtained from the IPD and APD techniques, and the best configuration parameters
for the APD techniques, while Table 4 summarizes the results obtained by all techniques in terms
of the number of clinical rules met. The process models obtained by IPD and APD techniques are
presented in Supplementary Material.

Table 3 indicates that with noisy real-life event logs, all techniques achieve a low level of accu-
racy in terms of F-score. However, IPD and SM yield acceptable values of 70 and 69, respectively.
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Table 1: Quantitative evaluation of IPD, IM, DFGM, SM models discovered for scenario A
Process model M1 - Analyst 1

Quality measures/Techniques/Logs Lo
1 Ld

1 Ln15−0
1 Ln30−30

1

Fitness IM 1 1 (0) 0.92 (-0.08) 0.86 (-0.14)
DFGM 1 0.99 (-0.01) 0.89 (-0.11) 0.90 (-0.10)
SM 1 0.97 (-0.03) 0.87 (-0.13) 0.86 (-0.14)
IPD 1 0.99 (-0.01) 0.90 (-0.10) 0.75 (-0.25)

Precision IM 1 0.75 (-0.25) 0.81 (-0.19) 0.45 (-0.55)
DFGM 1 0.86 (-0.14) 0.95 (-0.05) 0.70 (-0.30)
SM 1 0.90 (-0.10) 0.84 (-0.16) 0.80 (-0.20)
IPD 1 1 (0) 1 (0) 1 (0)

F-score IM 1 0.85 (-0.15) 0.86 (-0.14) 0.6 (-0.40)
DFGM 1 0.92 (-0.08) 0.91 (-0.09) 0.78 (-0.22)
SM 1 0.93 (-0.07) 0.85 (-0.15) 0.72 (-0.28)
IPD 1 0.99 (-0.01) 0.94 (-0.06) 0.86 (-0.14)

Process model M2 - Analyst 2
Lo
2 Ld

2 Ln15−0
2 Ln30−30

2

Fitness IM 1 1(0) 0.88 (-0.12) 0.82 (-0.18)
DFGM 1 0.99 (-0.01) 0.93 (-0.07) 0.90 (-0.10)
SM 1 0.97 (-0.03) 0.82 (-0.18) 0.78 (-0.22)
IPD 1 1 (0) 0.79 (-0.21) 0.75 (-0.25)

Precision IM 0.93 0.88 (-0.05) 0.28 (-0.69) 0.37 (-0.60)
DFGM 0.87 0.68 (-0.21) 0.54 (-0.38) 0.52 (-0.40)
SM 0.92 0.84 (-0.08) 0.65 (-0.29) 0.76 (-0.17)
IPD 0.96 0.96 (0) 0.98 (0.02) 0.98 (0.02)

F-score IM 0.96 0.93 (-0.03) 0.42 (-0.56) 0.51 (-0.46)
DFGM 0.93 0.80 (-0.13) 0.68 (-0.26) 0.65 (-0.30)
SM 0.95 0.90 (-0.05) 0.72 (-0.24) 0.76 (-0.20)
IPD 0.97 0.97 (0) 0.87 (-0.10) 0.85 (-0.12)

Process model M3 - Analyst 3
Lo
3 Ld

3 Ln15−0
3 Ln30−30

3

Fitness IM 1 1 (0) 0.88 (-0.12) 0.77 (-0.23)
DFGM 1 1 (0) 0.89 (-0.11) 0.82 (-0.18)
SM 1 0.90 (-0.10) 0.70 (-0.30) 0.82 (-0.18)
IPD 1 0.99 (-0.01) 0.90 (-0.1) 0.78 (-0.22)

Precision IM 0.97 0.78 (-0.19) 0.85 (-0.12) 0.68 (-0.29)
DFGM 0.91 0.64 (-0.29) 0.80 (-0.12) 0.70 (-0.23)
SM 0.96 0.86 (-0.10) 0.69 (-0.28) 0.73 (-0.23)
IPD 0.98 0.94 (-0.04) 0.97 (-0.01) 0.96 (-0.02)

F-score IM 0.97 0.78 (-0.19) 0.86 (-0.11) 0.72 (-0.25)
DFGM 0.95 0.78 (-0.17) 0.84 (-0.11) 0.75 (-0.21)
SM 0.96 0.87 (-0.09) 0.69 (-0.28) 0.77 (-0.19)
IPD 0.98 0.96 (-0.02) 0.93 (-0.05) 0.85 (-0.13)
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Table 2: Quantitative evaluation of IPD, IM, DFGM, SM models discovered for scenario B
Process model M4 - Analyst 1

Quality measures/Techniques/Logs Lo
4 Ln15−0

4 Ln30−0
4 Ln30−30

4

Fitness IM 1 0.86 (-0.14) 0.86 (-0.14) 0.75 (-0.25)
DFGM 1 0.93 (-0.07) 0.88 (-0.12) 0.86 (-0.14)
SM 1 0.90 (-0.10) 0.84 (-0.16) 0.83 (-0.17)
IPD 1 0.90 (-0.10) 0.83 (-0.17) 0.80 (-0.20)

Precision IM 0.94 0.87 (-0.07) 0.89 (-0.05) 0.69 (-0.26)
DFGM 0.89 0.82 (-0.07) 0.80 (-0.10) 0.77 (-0.13)
SM 0.99 0.88 (-0.11) 0.80 (-0.19) 0.87 (-0.12)
IPD 1 1 (0) 1 (0) 1 (0)

F-score IM 0.96 0.86 (-0.10) 0.86 (-0.10) 0.72 (-0.25)
DFGM 0.94 0.87 (-0.07) 0.83 (-0.11) 0.81 (-0.13)
SM 0.99 0.89 (-0.10) 0.81 (-0.18) 0.84 (-0.15)
IPD 1 0.95 (-0.05) 0.90 (-0.10) 0.88 (-0.12)

Process model M5 - Analyst 2
Lo
5 Ln15−0

5 Ln30−0
5 Ln30−30

5

Fitness IM 1 0.86 (-0.14) 0.89 (-0.11) 0.76 (-0.24)
DFGM 1 0.92 (-0.08) 0.86 (-0.14) 0.80 (-0.20)
SM 1 0.88 (-0.12) 0.77 (-0.23) 0.78 (-0.22)
IPD 1 0.86 (-0.14) 0.82 (-0.18) 0.77 (-0.23)

Precision IM 0.96 0.93 (-0.03) 0.85 (-0.11) 0.66 (-0.31)
DFGM 0.78 0.62 (-0.20) 0.60 (-0.23) 0.59 (-0.24)
SM 0.94 0.87 (-0.07) 0.89 (-0.05) 0.88 (-0.06)
IPD 1 1 (0) 1 (0) 1 (0)

F-score IM 0.97 0.88 (-0.09) 0.87 (-0.10) 0.71 (-0.26)
DFGM 0.87 0.74 (-0.14) 0.70 (-0.19) 0.67 (-0.22)
SM 0.96 0.87 (-0.09) 0.82 (-0.14) 0.83 (-0.13)
IPD 1 0.92 (-0.08) 0.90 (-0.10) 0.87 (-0.13)

Process model M6 - Analyst 3
Lo
6 Ln15−0

6 Ln30−0
6 Ln30−30

6

Fitness IM 1 0.89 (-0.11) 0.95 (-0.05) 0.85 (-0.15)
DFGM 1 0.94 (-0.06) 0.90 (-0.10) 0.89 (-0.11)
SM 1 0.80 (-0.20) 0.79 (-0.21) 0.79 (-0.21)
IPD 1 0.86 (-0.14) 0.78 (-0.22) 0.75 (-0.25)

Precision IM 0.91 0.80 (-0.12) 0.70 (-0.23) 0.66 (-0.27)
DFGM 0.91 0.56 (-0.38) 0.57 (-0.37) 0.60 (-0.34)
SM 0.98 0.93 (-0.05) 0.88 (-0.10) 0.87 (-0.11)
IPD 1 1 (0) 1 (0) 1 (0)

F-score IM 0.95 0.84 (-0.11) 0.81 (-0.15) 0.74 (-0.22)
DFGM 0.95 0.70 (-0.26) 0.69 (-0.27) 0.71 (-0.25)
SM 0.98 0.85 (-0.13) 0.83 (-0.15) 0.81 (-0.17)
IPD 1 0.92 (-0.08) 0.87 (-0.13) 0.85 (-0.15)
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Table 3: Accuracy achieved by the IPD model and the best configurations of APD techniques
Techniques Best parameters Fitness Precision F-score
IM 1.0 0.67 0.51 0.58
DFGM 0.2 1 0.21 0.36
SM 0.9 & 0.0 0.81 0.61 0.69
IPD - 0.70 0.71 0.70

Table 4: Rules satisfied by IM, DFGM, SM and IPD models
Rules IM DFGM SM IPD

R1 X-ray should be executed immediately after the Surgical Pro-
cedure

0 0 1 1

R2 Invasive tests (ITs) should be preceded by radiological tests
(RTs) & ITs should not be followed by RTs

0 0 0 1

R3 Surgical Procedure (SP) should be preceded by invasive tests
(ITs) & SP should not be followed by ITs

0 0 0 1

R4 Surgical Procedure (SP) should be preceded by medical tests
(MTs) & SP should not be followed by MTs

0 0 0 1

R5 The x-ray should be executed before removing the therapeutic
aid

1 0 1 1

R6 The treatment should begin with a general examination 0 0 0 1
R7 Lab test should be executed at least 2 times within the process 1 1 1 1

Total score 2 1 3 7

They can obtain a more precise process model despite inaccurate data, without penalising their
fitness. Conversely, DFGM is unable to balance fitness and precision, and thus produces the lowest
F-score (0.36), and allows behaviours not present in the event log, thus limiting the reliability of
results.

However, the compliance of the model produced by APD techniques with the defined rules is
low when compared to that of the IPD model. As shown in Table 4, only some of the rules were
respected by SM, IM, and DFGM, as APD techniques consider neither organizational information
nor domain knowledge in the care process. Their models fail to meet clinical guidelines if the input
information is absent or incorrect, leading to inappropriate behaviours. By putting a human in
the loop, IPD can discern the strict relationships that are not visible in the data due to their poor
quality and can produce a compliant model.

As an example, we can analyse in detail the behaviour of each discovered model in terms of
rule R6. The guidelines indicate that a general physical examination should be the starting point
for the lung cancer process. However, the models produced by IM, SM, and DFGM do not respect
this rule. The process in those generated by IM and DFGM may start with an activity other than
the general physical examination (See Figs. 5 and 7). Similarly, the only starting activity in the
SM model is the lab test, as shown in Fig. 6. This inconsistency is mainly due to timestamp
granularity problems in the event log, which are not handled by APD techniques. As the events in
the log are recorded in the order of days, the automated techniques find it difficult to understand
the correct sequence of events. Conversely, the IPD technique can identify the appropriate care
pathway due to the inclusion of expert knowledge, as shown in Fig. 8.

The main difference between APD techniques and IPD relies in the interaction with the experts,
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Figure 5: Extract of the Petri net produced by IM for lung cancer patients.
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Figure 6: Extract of the Petri net transformed from SM for lung cancer patients.
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Figure 7: Extract of the Petri net converted from DFGM for lung cancer patients.
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Figure 8: Extract of the Petri net produced by IPD for lung cancer patients.

ie., the hospital staff, during the discovery phase, which led to different results in terms of model
quality. APD techniques provide automatic approaches, where users directly discover the process
model from the event log only. Although the hospital staff acknowledged that the APD approach
can be less time-consuming, they did not appreciate the lower quality of the process model and
its poor adherence to clinical guidelines. On the contrary, the hospital staff have appreciated both
the interactivity of IPD, since they can directly exploit their knowledge to conduct the discovery
process incrementally, and the quality of the results in terms of accuracy and compliance with the
guidelines.

To summarize, the results of the case study show that in the presence of noisy and large
real-life event logs, all techniques perform worse than in the synthetic experiment. However, by
exploiting domain knowledge, IPD is able to overcome the limitations caused by low data quality,
and produces a process model that is both accurate and fully compliant with the guidelines. The
other techniques produce inconsistent models that cannot be exploited by practitioners. These
results suggest that IPD can be effectively used by healthcare managers conducting business process
modelling projects when data quality issues occur, by considering their tacit knowledge.

8 Conclusions

In this study, we offer a more effective approach to data quality issues [23]. Data quality is critical
to the success of any data-driven BPM project. This is particularly true in the healthcare context
as data quality can impact on hospital managers and physicians’ decision-making processes and
have direct implications on the quality of healthcare delivery.

However, this issue has been scarcely investigated in the BPM literature [32, 33, 31, 34, 29].
Accordingly, we focused on data quality, by exploiting PM techniques to obtain a more effective
business process modelling in the healthcare environment. In so doing, we responded to the need
to develop new approaches to manage the problem of data quality in healthcare datasets [14].

More in detail, in our study, we demonstrated the effectiveness and suitability of IPD to deal
with data quality issues in real complex contexts, like healthcare. IPD provides the analyst with a
flexible way to interact with model construction, directly exploiting the domain knowledge along
with the event log. Prior knowledge from domain experts represents a precious resource in the
discovery of process models, providing critical advances with respects to automated discovery
techniques [19].

Our study made two main contributions. First, we demonstrated the advantages of exploiting
domain knowledge to improve the quality and comprehensibility of process models generated from
noisy event logs. These include identifying the correct paths, discarding unacceptable sequences
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or redundant activities, and positioning activities according to their purpose. This is valuable in
healthcare where processes may require that certain activities have to follow strict relationships
and the same activity occurs at various stages of the process with different aims, as shown in the
case study. On the contrary, APD techniques do not have such advantages, as they solely use
the information from the event logs, leading to unreliable and inaccurate results. This confirms
suggestions in the literature that the capacity of APD techniques to produce comprehensible
process models is limited in cases of noisy and large event logs [37, 51].

Second, we propose IPD as an alternative approach for data-driven business modelling projects
in a real setting where quality problems occur, which cannot be solved in the pre-processing phase.
This is the case for particular problems such as imprecise events and timestamps, which are typical
for healthcare datasets. The presence of these problems can be due to the fact that data entry often
requires manual action by clinicians or administrative staff. This may lead to errors, omissions, or
delays in recording the activities or timestamps. No extant studies have addressed the problem of
data quality in real applications during the process discovery phase. In our study, we confirm that
an accurate and reliable process model can be obtained from IPD, even if generated by noisy real-
life event logs. This represents the optimal output of a successful business modelling project and
supports the evidence in the PM literature concerning the importance of integrating knowledge in
the model discovery phase [47, 54]. The results from the controlled experiment and the healthcare
case study provide the following insights regarding the impact of data quality issues on the final
quality of PM results:

1. The presence of imprecise timestamps and/or events in the event log significantly worsen the
performance of APD techniques, particularly in terms of precision and the related F-score.
Conversely, IPD appears to limit the effects of such issues.

2. Noisy real-life event logs negatively affect the accuracy of the process models produced by
APD and IPD techniques. However, IPD and SM can achieve acceptable results.

3. Noisy real-life event logs negatively impact compliance with guidelines or procedures in the
models discovered using APD techniques, as they lead to incorrect or ambiguous behaviours.
Conversely, IPD can reduce data quality problems through the inclusion of domain knowl-
edge, as this compensates for missing or incorrect information and results in a fully compliant
process model.

4. IPD can capture and incorporate tacit knowledge from domain experts such as medical staff
within the model (e.g., how to manage x-ray activity during the treatment of lung cancer
patients).

From a managerial perspective, this work provides clear guidance on how to effectively use IPD
and how to leverage it, to ensure a data-driven business process modelling project is successful when
data quality issues occur. Obtaining an accurate and comprehensible process model is valuable
in the process analysis, monitoring, and improvement phases, especially in complex environments,
like healthcare. As a starting point, it can be effective in detecting bottlenecks and deviations,
efficient resource planning, and business process reengineering [26]. IPD can also effectively support
health managers in quality assessment procedures, such as compliance with clinical guidelines, by
providing reliable results. Finally, the model developed using IPD can be an input for simulation
models or for assisting in the implementation of process-oriented Information Systems [71].

Although IPD is effective, it can be more expensive than APD techniques in terms of time.
Only one activity can be added at a time in the model construction, and the user is only provided
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with information concerning the control-flow aspect from the event log. Other data attributes
can be useful when making decisions during the development of the process model. Finally, our
case study is exploratory and may be affected by the bias of the context, i.e., the specific process
(e.g., complexity, flexibility, and multi-disciplinarity) and the actors involved (highly specialized
professionals).

We are currently planning to conduct a more in-depth assessment and replicate the study
in other healthcare contexts, to further test the suitability of IPD in terms of addressing data
quality issues and its generalizability. Furthermore, as future work, it may be interesting to test
the interactivity of IPD or other promising functionalities to have a more complete evaluation
of the technique. In addition, decision-making during the process discovery phase can be further
supported through design improvements, such as by providing intermediate conformance results or
additional information about event-level and case-level attributes. Finally, another future direction
could be to allow the user to choose the type of model to be obtained in output, including the
BPMN model. This may be valuable in healthcare as the Petri net is often difficult for doctors to
interpret without the help of an expert.
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