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Abstract. Standard process discovery algorithms find a single process
model that describes all traces in the event log from start to end as best as
possible. However, when the event log contains highly diverse behavior,
they fail to find a suitable model, i.e., a so-called ”flower” or ”spaghetti”
model is returned. In these cases, discovering local process models can
provide valuable information about the event log by returning multiple
small process models that explain local behavior. In addition to explain-
ability, local process models have also been used for event abstraction,
trace clustering, outcome prediction, etc. Existing approaches that dis-
cover local process models do not scale well on event logs with many
events or activities. Hence, in this paper, we propose a novel approach
for discovering local process models composed of so-called place nets, i.e.,
Petri net places with the corresponding transitions. The place nets may
correspond to state- or language-based regions, but do not need to. The
goal however is to build multiple models, each explaining parts of the
overall behavior. We also introduce different heuristics that measure the
model’s frequency, simplicity, and precision. The algorithm is scalable on
large event logs since it needs only one pass through the event log. We
implemented our approach as a ProM plugin and evaluated it on several
data sets.
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1 Introduction

The main goal of process mining is to help people analyze and improve pro-
cesses. One subarea of process mining is process discovery which automatically
creates process models from available event logs [1]. Process discovery tech-
niques [13,15,26,27] try to explain and visualize the process from start to end,
while other algorithms like sequence and episode mining [19,21] try to mine small
patterns that frequently happen in the event log. This paper will focus on lo-
cal process model discovery which was first introduced in [24] as an individual
branch and was positioned between process discovery and pattern mining. Local
process models are able to describe complex constructs in contrast to sequences
and episodes, but keep the local perspective introduced in pattern mining, which
separates them from process discovery. This way, instead of describing a process
with one overall model, a set of models is used.
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Some processes we want to analyze are too diverse to have a clear structure.
Thus, making it almost impossible to discover an end-to-end model, resulting in
a discovery of a so-called ”flower” or ”spaghetti” models. Hence, one straight-
forward use-case of local process model discovery is when traditional process
discovery approaches fail to produce an understandable model. However, the
importance of local process models is not constrained to processes where pro-
cess discovery fails to produce a good model. Despite the limited number of
approaches that offer local process model discovery [2,24], local process models
have been used in event abstraction [18], classification of traces [20], clustering
of resources [8], as sub-part of end-to-end discovery algorithms [12,17], and in
different use-case studies [7,11].

In this paper, we introduce a novel approach for discovering local process
models. We are inspired by region-theory discovery algorithms. We assume that
the possible regions are already available to us, and instead of building one end-
to-end model, we combine the regions in smaller local process models. We accept
the regions in the form of place nets, that we can get from any of the existing
process discovery approaches. Our proposed algorithm is available as a plugin
in ProM1 [25] (Figure 1) that allows the input to be defined as a set of place
nets or a Petri net. The first notable difference between our approach and the
existing ones is that we build the local process models as Petri nets instead of
process trees as in [2,24]. This allows us to find constructs like long-term depen-
dencies that are not possible in process trees. The next significant difference is
speed and feasibility. We show that in contrast to the existing approaches, we
are able to handle event logs with many activities or events and we return re-
sults much faster. Previous approaches rely on pruning infrequent local process
models early on to gain on speed. Thus, forcing them to return only frequently
appearing models. And although we are able to return frequent models, we are
not constrained to find only those, since our speed arises from passing the event
log only once and not pruning out infrequent patterns. In the future, this would
allow for even broader usage and application of local process models in other
areas of process analysis. To summarize, our contribution is threefold:

– We introduce an entirely new technique to build local process models that
is completely based on Petri nets.

– We offer a technique that is feasible on event logs with many activities or
events because it is linear in the size of the event log.

– We do not limit the results to frequent local process models.

We continue the paper by presenting some related work in Section 2, and
preliminaries in Section 3. In Section 4, we present the approach for local process
model discovery. Section 5 explains our evaluation strategy and the results we
get. Section 6 concludes the paper by summarizing and giving an outlook for
future work.

1 The plugin ”LocalProcessModelDiscoveryByCombiningPlaces” is available in ProM
6.11 and the Nightly Builds
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(a) Table with local process models (b) Visualizing a local process model

Fig. 1. Implementation of our approach as a ProM plugin.

2 Related Work

As previously mentioned, local process model discovery is positioned in-between
traditional process discovery and episode and sequence mining. Although process
discovery approaches [4,6,13,15,26,27] are highly valuable for process analysis,
the purpose of local process models is different. Local process models try to ex-
plain subsequences of the traces like in episode and sequence mining but can
discover much more complex constructs as compared to traditional process dis-
covery. To take advantage of all the different discovery techniques, we can use
the output they produce as input for our algorithm. To be flexible regarding the
existing and future discovery methods, we only require that the input is a Petri
net or a set of place nets no matter how or which algorithm produced them.

To the best of our knowledge, there are two existing techniques for mining
local process models from event logs. Both [24] and [2] mine local process models
by recursively extending process trees.

The approach in [24] was the first to discover local process models and con-
sists of four main steps. In the first step, for each activity in the event log a
process tree containing exactly one leaf node that represents the activity is cre-
ated. This set is the first set of candidate local process models. In the second
step, each of the local process models from the candidate set is evaluated on the
event log with different quality metrics, and only a subset of them that satisfy
certain thresholds are selected in the third step. In the fourth step, the selected
local process models (process trees) are expanded by replacing one of the leaves
with each process tree operator (sequence, loop, parallel, and exclusive choice)
and adding the replaced leaf as one child and an activity not already present in
the process tree as a second child. The expanded local process models become
candidates in the next step, and the procedure is repeated until the maximal size
of the local process model is achieved or none of the candidates pass the selection
phase. Each process tree is evaluated on the entire event log and extended with
all activities, making the approach infeasible for event logs with many events or
activities.

The approach in [2] was inspired by [24], and also recursively extends process
trees. However, they create new process trees by combining two existing process
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trees, called seeds, that differ only in one leaf node. In the combined process
tree this differentiating node is replaced with a process tree operator and the
two nodes are added as children to the new operator. In addition to [24] they do
not reevaluate the process trees on the entire event log but on projections of the
seeds. Additionally, they define compact and maximal process trees and strive
to return only such local process models.

Both approaches use monotonicity of model frequency for pruning, but still
struggle to return results in reasonable time on mid-sized event logs. To handle
this problem, [23] extends the work in [24] by mining local process models for
specific subsets of activities decided via heuristics. [22] allows for mining local
process models of a specific interest using utility functions, and with [3] the
work in [2] is extended to discover patterns that are frequent for a given context.
Although not in the focus of this paper, our algorithm can adopt both utility
functions and in-context search without impacting our running time significantly.

3 Preliminaries

In this section, we introduce important background information needed for un-
derstanding the rest of the paper. We start with some general notations, and we
continue with topic-specific definitions.

General. We use sets ({a, b, ...}), multisets ([a2, b, ...]), sequences (⟨a, b, ...⟩), and
tuples ((a, b, ...)) as usually defined. Given a set X, X∗ represents the set of
all sequences over X, and M(X) is the set of all multisets over X. Given a
sequence σ = ⟨s1, s2, ...sn⟩, we access the i-th element of the sequence with σ[i],
i.e., σ[i] = si, for 1 ≤ i ≤ n. We extend σ with an additional element sn+1

by writing σ · sn+1. We call the sequence σ′ a subsequence of σ, if and only if
σ′ = ⟨sl, sl+1, ...sm⟩ and 1 ≤ l < m ≤ n (we write σ′ ⊑ σ or σ′ = σ[l,m] if the
indices are known). We call σ′ a relaxed subsequence (we write σ′ ⊏˜ σ) if and only
if for some k ≥ 1 there is σ′ = ⟨si1 , si2 , ...sik⟩ such that 1 ≤ i1 < i2 < ... < ik ≤ n,
i.e., we drop any number of elements from σ (at most n− 1) and keep the order
for the rest. We write {σ′ op σ} or [σ′ op σ ] where op ∈ {⊑,⊏˜ ,⊑k,⊏˜k}, to
denote the set or multiset of all sequences σ′ that satisfy the given operator
in regard to σ. We use ⊑k and ⊏˜k when we are interested in subsequences
respectively relaxed subsequences of a particular length. To recalculate sets or
multisets from other sets, multisets or sequences, we use the {·} and [ · ] operators.
We use f(X) = {f(x)|x ∈ X} (respectively f(σ) = ⟨f(s1), f(s2), ...f(sn)⟩) to
apply the function f to every element in the set X (the sequence σ) and f↾X
(respectively σ↾X ) to denote the projection of the function f (respectively the
sequence σ) on the set X.

Process Mining. The collected data used for process analysis is given in the
form of event logs. Hence, in Definition 1, we formally define traces and event
logs. Note that although traces are usually defined as sequences of events, in this
work, we are interested only in the activity the events represent.
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Definition 1. Given the universe of activities A, we define ρ ∈ A∗ as a trace,
and L ∈ M(A∗) as an event log.

In Definition 2, we define labeled Petri nets. Note that a transition t ∈ T with
l(t) = τ is called silent, and that there may be duplicate transitions t1, t2 ∈ T
such that l(t1) = l(t2).

Definition 2 (Labeled Petri net). A labeled Petri net N = (P, T, F,A, l)
is a tuple, where P is a set of places and T is a set of transitions such that
P ∩ T = ∅. F ⊆ (P × T ) ∪ (T × P ) is the flow relation, A ⊆ A is a set of
activities, and l : T −→ A ∪ {τ} the labeling function.

Now given a labeled Petri net N = (P, T, F,A, l), for each element
x ∈ P ∪ T we define the preset of x to be •x = {y|(y, x) ∈ F}, and the
postset of x to be x• = {y|(x, y) ∈ F}. We additionally define the set
N = {(ti, to)|∃p∈P ((ti, to) ∈ •p× p•)} to denote all pairs of transitions in the
net N , that are directly connected via a place. We call each such pair a passage.

A labeled Petri net can be in a given state with the help of markings. Given
a labeled Petri net N = (P, T, F,A, l), we define a marking M as M ∈ M(P ),
and with [ ] we denote the empty marking. Every element in the marking M
represents a token in one of the places in P . The state can change by following
the firing rule. We say that a transition t ∈ T is enabled in the marking M if
and only if there is a token in each place in the preset of t, i.e., •t ⊆ M (we write
M [t⟩). A transition t can fire in marking M if and only if it is enabled in M . By
firing, the transition changes the marking to M ′ = (M \ •t) ∪ t•. In this case,

we can write M
t−→ M ′. To denote getting from M to M ′ by firing a sequence of

transitions σ = ⟨t1, ..., tn⟩ ∈ T ∗ such that M
t1−→ M1

t2−→ M2 · · ·
tn−→ M ′, we write

M
σ−→ M ′.
In Definition 3, we define a union of two labeled Petri nets and we extend

for multiple labeled Petri nets. Then in Definition 4 we define what it means for
a labeled Petri net to be connected.

Definition 3 (Union of labeled Petri nets). Given two labeled
Petri nets N1 = (P1, T1, F1, A1, l1) and N2 = (P2, T2, F2, A2, l2) we de-
fine their union as N1 ∪N2 = N = (P, T, F,A, l) where P = P1 ∪ P2,
T = T1 ∪ T2, F = F1 ∪ F2, A = A1 ∪A2, and l : T −→ A ∪ {τ,⊥} is the

mapping l(t) =


l1(t), if t ∈ T1 \ T2

l2(t), if t ∈ T2 \ T1

l1(t), if t ∈ T1 ∩ T2 ∧ l1(t) = l2(t)
⊥, otherwise

.

The union is a valid union if there is no t ∈ T such that l(t) = ⊥. We write⋃n
i=1 Ni = (· · · ((N1 ∪N2) ∪N3) · · · ∪Nn) to denote the union of the set of

labeled Petri nets {N1, . . . , Nn}.

Definition 4 (Connected labeled Petri net). A labeled Petri net
N = (P, T, F,A, l) is connected, if and only if for each two different elements
x, x′ ∈ P ∪ T there exists a sequence ⟨y1, . . . , yn⟩ such that n ≥ 2, (yi, yi+1) ∈ F
or (yi+1, yi) ∈ F for 1 ≤ i < n and y1 = x and yn = x′.
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Local Process Models. Our algorithm discovers a set of local process models, that
we represent with labeled Petri nets. We discover these local process models from
an event log and a set of place nets. To represent our input, in Definition 5 we
define a place net as a labeled Petri net with only one place.

Definition 5 (Place net). A place net is a labeled Petri net
Np = ({p}, T, F,A, l), where {p} is a set of places containing one place only,
and T is a set of transitions such that P ∩ T = ∅. F ⊆ ({p} × T ) ∪ (T × {p}) is
the flow relation, A ⊆ A is a set of activities, and l : T −→ A ∪ {τ} the labeling
function.

Next, with the help of Definitions 3 and 4, in Definition 6 we define a local
process model as a union of place nets.

Definition 6 (Local Process Model). Given a set of place nets
Npi

= ({pi}, Ti, Fi, Ai, li) for 1 ≤ i ≤ k, their union is a local process model,

LPM =
⋃k

i=1 Npi
, if and only if LPM is a valid union and a connected labeled

Petri net.

What makes our local process models local is the behavior. Therefore, we
define the term locality or local distance to be the maximal length of the trace’s
subsequences we want our local process models to explain. Since local process
models are a subset of labeled Petri nets, markings, enabled transitions and firing
rule, also hold for them. The opportunity to change states and fire transitions
makes it possible local process models to describe behavior. Since we want to
discover models that explain selected parts of the behavior in an event log, we
need to somehow align the two. Thus, in Definition 7 we define how a local
process model can replay a sequence of activities. In addition, we want to be
able to skip some of the activities during the replay, so we also define relax
replay (Definition 8).

Definition 7 (Replay). Given a local process model LPM = (P, T, F,A, l)
and a sequence of activities ρ = ⟨a1, a2, . . . an⟩, we say LPM replays ρ if and
only if there exists a sequence of transitions σ = ⟨t1, t2, . . . , tm⟩ ∈ T ∗ such that

l(σ)↾A = ρ and [ ]
σ−→ [ ].

Definition 8 (Relaxed Replay). Given a local process model
LPM = (P, T, F,A, l) and a sequence of activities ρ = ⟨a1, a2, ...an⟩, we
say LPM relax replays ρ if and only if there exists at least one relaxed
subsequence ρ′ ∈ [ρ′ ⊏˜ ρ ] that LPM can replay.

By defining replay and relax replay to require starting and ending in an empty
marking, makes the subset of place nets Np = ({p}, T, F,A, l) for which •p ⊆ p•
or p• ⊆ •p unsuitable for our local process models. Hence, in the continuation
we will discard place nets of this type.

In addition, we use replay and relax replay to define the language (Defi-
nition 9) and relaxed language (Definition 10) for a given local process model
LPM .
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Definition 9 (Language). Given a local process model LPM = (P, T, F,A, l),

we define L(LPM) = {ρ ∈ A∗|∃σ∈T∗(l(σ)↾A = ρ ∧ [ ]
σ−→ [ ])} to be the language

of LPM .

Definition 10 (Relaxed Language). Given a local process model
LPM = (P, T, F,A, l), we define the relaxed language of LPM as
Lrlx(LPM) = {ρ ∈ A∗|∃ρ′∈L(LPM)(ρ

′ ⊏˜ ρ)}.

We conclude this section, by defining how a local process model can be com-
pact in regard to a sequence of activities (Definition 11).

Definition 11 (Compact Local Process Model). Given a lo-
cal process model LPM = (P, T, F,A, l) and a sequence of activities
ρ = ⟨a1, a2, ..., an⟩ ∈ Lrlx(LPM), we say LPM is compact with respect to ρ if

and only if it holds that ∃σ∈T∗([ ]
σ−→ [ ]∧ l(σ)↾A ⊏˜ ρ∧∀p∈P (∃t∈{σ}(p ∈ •t∪ t•))).

4 Approach

Our algorithm combines place nets into local process models. Hence, as input we
require place nets and an event log for which we want to build the local process
models. However, for n place nets, there are 2n − 1 non-empty candidate local
process models. Even if we remove the ones that do not satisfy Definition 6,
our search space would still be enormous. Additionally, some of the local process
models we build, can be too complicated or not satisfy basic quality expectations.
Therefore, we propose a framework with three modules (Figure 2). Since our
search space directly depends on the number of place nets we use, we use the first
module for filtering and adapting the place nets to limit their number. However,
at the same time the quality of the built local process models directly depends
on the quality of the chosen place nets, so we want to choose these wisely. After
the place nets are chosen, the second module introduces the main algorithm for
building local process models. The goal of the algorithm is to consider different
subsets of place nets, construct their union and check whether it can relax replay
subsequences of the traces in the given event log. Although we restrict the set
of place nets we use, we can still end up with a lot of local process models.
Therefore, we also provide a module for evaluating and ranking the found local
process models with different metrics. In the following, we introduce each of the
modules, with the main focus on the combination algorithm (the second module
in Figure 2).

4.1 Place net Adaptation and Filtering (PAF)

We use an ”oracle” to get the place nets from which we build our local process
models. Any algorithm that returns a labeled Petri net or a set of place nets
based on an event log can be considered an oracle. The oracle can return many
place nets, so for efficiency reasons, we want to limit the number of those we
use for building local process models. On the other side, the set of place nets we
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Fig. 2. Top view of our framework for local process model discovery

use restricts our models to a representational bias defined by them. Hence, to
promote simplicity and higher relax replay frequency (see Definition 8), we rank
the place nets by giving preference to nets with fewer transitions that can relax
replay more subsequences. For place nets that rank the same on the previous
criteria, we use the lexicographic order of the included transitions. Afterward,
we keep the k highest ranking place nets to build local process models, where k
is a user-defined parameter. For simplicity in the continuation of the paper, we
assume that given the set of place nets P that we return now

⋃
P is a valid union.

Otherwise, we keep track of all the subsets where label disagreements exist and
do not use multiple contradicting place nets in one local process model.

4.2 Building Local Process Models (B-LPMs)

This module covers the part of the framework that combines place nets into local
process models, thus, making it the main contribution of this paper. To explain
the approach, we give a high-level pseudo-code in Algorithm 1. There are three
main steps that make up the gist of the algorithm, and get us from a set of place
nets, to a set of local process models that describe the event log:

1. Focus on locality by iterating all subsequences in the event log of certain
length (Line 2).

2. Build local process models for each subsequence separately (Line 3).
3. Store the built local process models in a single structure (Line 4).

The high-level algorithm looks pretty straightforward. However, optimizing the
traversal of the event log on line 2, the particulars of the global storage and how
we create local process models that relax replay the window, is what makes the
algorithm not only feasible but also efficient.

Focus on locality. We want our local process models to describe what happens
within some local distance in the event log. Hence, with a sliding window we
get subsequences of certain length, that we call windows. The sliding window
size represents the locality we are interested in, and we accept it as an input
parameter. We formally define the sliding window in Definition 12.
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Algorithm 1: Combining Places in Local Process Models

input : L - event log; d - local distance; P - set of place nets;
output: LPM - set of local process models

1 LPM ← [ ]; // initialize the global storage

2 forall w ∈ [ρ′ ⊑d ρ|ρ ∈ L ] do
// for each subsequence of L of length d find subsets of P that

relax replay w and satisfy some additional constraints AC
(e.g., compactness)

3 lpms← {
⋃

P ′|P ′ ⊆ P ∧ w ∈ Lrlx(
⋃

P ′) ∧AC(
⋃

P ′, w)};
4 LPM ← LPM ∪ lpms; // add lpms to the global storage

Definition 12 (Sliding Window). Given a trace ρ = ⟨a1, a2, ..., an⟩ and local-

ity d > 0, we define the function Wd(i, ρ) =

{
ρ[i, i+ d− 1], if 1 ≤ i ≤ n− d+ 1
⟨⟩, otherwise

to be a sliding window. Each generated subsequence for a concrete i and ρ we
call a window.

The sliding window helps us to iterate the event log, and focus on a local level.
However, for each window, we need to efficiently and exhaustively (consider-
ing our representational bias and limitations) combine places into local process
models that can relax replay that window.

Building local process models for one window. At this point, we have our
set of place nets P = {Np1

, Np2
, . . . , Npk

} and a sequence of activities, i.e., our
window w. Our goal is to find subsets of P , P ′ ⊆ P , to form local process models,
LPM =

⋃
P ′, that satisfy Definition 6 considering the following constraints:

– LPM can relax replay w (w ∈ Lrlx(LPM))
– LPM is compact in regard to w (see Definition 11)

Additionally, we want to be time efficient. Therefore, given a trace
ρ = ⟨a1, a2, . . . , an⟩ we consider that two consecutive windows Wd(m, ρ) and
Wd(m + 1, ρ), share d − 1 of their elements. The models found for this over-
lapping sequence shared by both windows, are the same. Hence, it is important
that we do not recalculate these models, which in turn defines the goal to reuse
local process models shared between consecutive windows.

Idea. The core idea is to create new local process models by extending exist-
ing ones with an additional place net such that the relaxed subsequence of the
window that they can replay increases in length. We start with the empty local
process model that can somehow replay the empty trace, and we want to extend
it with carefully selected place nets such that two activities from the window can
be replayed. In the next step, we would extend those local process models by
adding an additional place net such that the newly created local process models
can replay three of the activities in the window. We continue as long as there
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(a) Existing local process model LPM (b) New local process model LPM ∪Np

Fig. 3. Extension of a local process model with a new place net.

are still unprocessed activities in the window. For example, let us consider the
window W7(4, ρ) in Figure 3a where ρ is a trace. We have built a local process
model LPM such that ⟨a4, a6, a7⟩ ∈ L(LPM)2. Since ⟨a4, a6, a7⟩ ⊏˜ W7(4, ρ),
W7(4, ρ) ∈ Lrlx(LPM). We now want to extend LPM with an additional place
net Np = ({p}, Tp, Fp, Ap, lp). What is specific for Np is that it should be able to
replay a7 such that a token is put in p, and also replay one of the unprocessed
activities (a8, a9 or a10) such that the token is removed from p. Hence, the newly
built local process model LPM ∪Np is empty after replaying four activities from
the window, and the used firing sequence is an extension of the firing sequence
used for replaying ⟨a4, a6, a7⟩ on LPM . In our case the new activity is a9 and
we visualize this in Figure 3b. To know whether we can extend LPM with Np

we have to check that we do not break the replay of ⟨a4, a6⟩. Hence, we need
the firing sequence σ for which we replayed ⟨a4, a6⟩, to ensure that σ can still
fire when the new place net is added. To know where to connect the place net
and the local process model such that a7 can be replayed we need the marking
M after firing σ i.e., [ ]

σ−→ M . At the end, we also store the two indices indIn
and indOut in the window for which the last extension happened. Note that
σ↾A ⊏˜ w[1, indIn] and w[1, indOut] ∈ Lrlx(LPM).

Algorithm. We now present an algorithm that builds local process models given
a set of place nets P and a window w. We explained that at every step we
extend existing local process models with new place nets. To be aware of the
extension path from which we got to a particular local process model and how
to continue extending it, we organize the local process models in a tree structure
that we call local tree. Each node in the local tree represents a local process
model LPM = (P, T, F,A, l) that can relax replay w. There is an edge between
two nodes n and n′ when the local process model represented by n′ was built by
extending the local process model in n with an additional place net. We formally
define our local tree in Definition 13.

Definition 13 (Local Tree). A local tree LT = (N,E) is a pair, where N is
a set of nodes and E a set of edges such that:

– A node n = (LPM,σ,M, indIn, indOut) is a tuple, where
LPM = (P, T, F,A, l) is a local process model, σ ∈ T ∗ is a sequence

2 Note that this doesn’t have to be the only one such local process model.
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of transitions, M ∈ M(P ) is the marking [ ]
σ−→ M , and indIn, indOut ∈ N

are the indices for which the last extension happened.
– An edge e = (n, n′) is a pair of nodes.

In Algorithm 2 we give the pseudo-code of the entire procedure. As input we
are given the set of place nets P and the window w. We start by initializing the
local tree to contain only a root node that represents the empty local process
model (line 1). Then we traverse all activity pairs of the window, and for each
pair, we extend existing local process models in LT with additional place nets.
We get suitable place nets by filtering those that can replay the currently consid-
ered two events w[i] and w[j], and suitable nodes by filtering those that contain
a local process model in a marking in which w[i] can be replayed (lines 5 and 6).
Afterward, we restrict that local process models are extended with a place net
only if the place net does not add a new constraint on an already used transition
(line 9). Then, we find a common transition of the place net and the local pro-
cess model that can replay w[i]. If there are no such transitions and the node is
not the root, the extension can not happen (line 12). If there are multiple such
transitions we randomly choose one (line 14). We create a new node n′ (line 15)
that represents the local process model built by adding the place net Np to the
local process model in the node n, in a marking after replaying w[i]. We add the
newly created node in the tree and connect it with the node from which it was
created (lines 16 and 17). We finish by adding the local process model to the
final set if after replay of w[j] we end in the empty marking (lines 18 and 19).

Fulfillment of Constraints and Goals. In the following, we give some intuitions
that connect the design of the algorithm to the constraints and the goal. The
first constraint is that each returned local process model satisfies Definition 6. In
the PAF module we assumed that

⋃
P is a valid union. Hence, the union of any

subset P ′ ⊆ P is also a valid union. That the local process model is connected is
satisfied by requiring T ′ ̸= ∅ when the place net we add is not the first in the local
process model (line 12). The constraint that each created local process model
can relax replay w is satisfied by combining lines 5, 6, 9 and 18. The filterings
of the nodes and place nets, ensure that a local process model is extended with
a new place net only when the newly created local process model replays one
more activity of the window than its base local process model. In line 9 we make
sure we do not break the successful replay of the base local process model, and
with line 18 we make sure that there is at least one unprocessed activity in the
window, after whose replay the local process model ends in an empty marking.
Definition 11 is also satisfied because of the filtering in line 5. A place net is added
to a local process model only if a token can be put in the place it represents
and removed from it, by replaying two activities. Therefore each place is marked
at some point of the replay. Finally, our goal to reuse local process models
between consecutive windows, is satisfied by the way we organize our nodes in
the tree, i.e., how we create edges (line 17). Given two nodes n and n′ such that
(n, n′) ∈ LT.E, we know that n.LPM.l(n.σ) = n′.LPM.l(n′.σ)[1, |n′.σ| − 1].
Hence, the most distant ancestor of n′ apart from the root, is some node n∗ that
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Algorithm 2: Building Local Process Models for a Window

input : w - window; P - set of place nets;
output: LPMs - set of local process models
// In the pseudo-code we use a dot notation for accessing elements

of an object, similar as in object-oriented programming.

1 LT ← (N = {root = (∅, ⟨⟩, [ ], 0, 0)}, E = ∅); // initialize the storage

2 d = |w|; // length of the window

3 for j ← 1 to d do
4 for i← 1 to j − 1 do

// for each pair of events get suitable place nets and nodes

5 P ′ ← {Np ∈ P |⟨w[i], w[j]⟩ ∈ L(Np)};
6 N ′ ← {n ∈ N |n.LPM.l(n.σ)↾n.LPM.A · w[i] ∈ L(n.LPM)} ∪ {root}

// try to extend LPM in each node with each place net

7 for n = (LPM,σ,M, indIn, indOut) ∈ N ′ do
8 for Np = ({p}, Tp, Fp, Ap, lp) ∈ P ′ do
9 if p • ∩{σ} ≠ ∅ then

10 continue; // no new constraint

11 T ′ ← {t′ ∈ LPM.T ∩ •p|LPM.M [t′⟩ ∧ LPM.l(t′) = w[i]};
12 if n ̸= root ∧ T ′ = ∅ then
13 continue; // no common transition

14 t←R T ′ // choose any transition

15 n′ ← (LPM ∪Np, σ · t, (M \ •t) ∪ t•, i, j); // create node

16 LT.N ← LT.N ∪ n′; // add node

17 LT.E ← LT.E ∪ (n, n′); // add edge

// add n′.LPM in final set if w ∈ Lrlx(n
′.LPM)

18 if ∃t∈n′.LPM.T (n
′.M

t−→ [ ] ∧ n′.LPM.l(t) = w[j]) then
19 LPMs← LPMs ∪ {n′.LPM};
20 return LPMs

is a child of the root. Then, n∗.σ = ⟨n′.σ[1]⟩. Therefore, if we want to remove
all local process models that replay w[1], we just need to remove all children of
the root n∗ for which n∗.LPM.l(n∗.σ[1]) = w[1] (have in mind that |n∗.σ| = 1
for the children of the root).

Example. To clarify how the algorithm works given its input, we additionally pro-
vide an example. For simplicity we assume that t = l(t) for each transition. Given
the set of place nets P (see Figure 4a) and the window w = ⟨b, a, x, a, d⟩ we build
local process models by following Algorithm 2. We first initialize the local tree
LT = ({root}, ∅) and the resulting set LPMs = ∅. Then we iterate through the
window with the indices i and j. We start with i = 1 and j = 2. Since w[i] = b
and w[j] = a, we get P ′ = ∅ so we continue. For i = 1 and j = 3 (w[i] = b
and w[j] = x) we filter P ′ = {Np2}, N ′ = {root}. Since p2 • ∩{root.σ} = ∅
and T ′ = {b}, we create the node n1 = ({Np2}, ⟨b⟩, [p21], 1, 3) and add it as

child to the root node (LT = ({root, n1}, {(root, n1)})). Because [p21]
x−→ [ ] and

w[j] = x we add the local process model to the final set (LPMs = {{Np2}}).
We skip i = 2, j = 3 and all pairs for j = 4, since P ′ = ∅ for them. For i = 1
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Fig. 4. Place nets and Local Process Models for the example

and j = 5 we calculate P ′ = {Np1}, N ′ = {root}. Given p1 • ∩{root.σ} = ∅ and
T ′ = {b}, we create the node n2 = ({Np1}, ⟨b⟩, [p11], 1, 5), add it as child to
the root node and to the final set (LT = ({root, n1, n2}, {(root, n1), (root, n2)})
and LPMs = {{Np2}, {Np1}}). We again skip i = 2, j = 5
since P ′ = ∅. For i = 3 and j = 5 we calculate P ′ = {Np3},
N ′ = {root, n1}. For Np3 and root, p3 • ∩{root.σ} = ∅ and T ′ = {x} so we
create n3 = ({Np3}, ⟨x⟩, [p31], 3, 5). For Np3 and n1, p3 • ∩{n1.σ} = ∅ and
T ′ = {x} so we create n4 = (

⋃
{Np2, Np3}, ⟨b, x⟩, [p31], 3, 5). We add n3

as child to the root node and n4 as child to n1. Our local tree now is
LT = ({root, n1, n2, n3, n4}, {(root, n1), (root, n2), (root, n3), (n1, n4)}) and fi-
nal set LPMs = {{Np2}, {Np1}, {Np3},

⋃
{Np2, Np3}} . We do nothing for i = 4

and j = 5 since P ′ = ∅. The final set LPMs is given in Figure 4b.

Choice and Concurrency. After processing the window w, the tree contains all
local process models LPM for which w ∈ Lrlx(LPM) and given the used firing

sequence σ it holds that ∀t∈σ(M
t−→ M ′ =⇒ M ∩ M ′ = ∅), i.e., concurrency

is not considered. To build the concurrency constructs, we combine nodes from
different branches in the local tree and take the union of the local process mod-
els that the nodes contain. The number of transitions that can be concurrent
directly depends of the number of nodes we combine. To avoid an explosion of
possibilities, the number of concurrent transitions can not be too large since
we try all possible node combinations. Because of the place nets, the choice
construct is embedded in our input, so no additional processing is needed.

Silent and Duplicate Transitions. The presented algorithm handles the duplicate
transitions as all other transitions. However, in the case of silent transitions we
convert the set of place nets to a set of paths. Each path is a valid and connected
union of one or multiple place nets connected via silent transitions. Then, on
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Fig. 5. Global Tree Structure. With red, we denote the place nets in the global tree,
blue the local process models, and the count in green is for the number of windows the
local process model (starting in the root and ending in that node) can relax replay.

line 5 we check whether the sequence consisted of the two activities, is in the
language of the path and the path is compact for the sequence.

Collecting local process models on a global level. The local process models
we want to store in the global storage are just sets of place nets. Hence, to
represent them efficiently, we use a tree structure as shown in Figure 5. Every
node in the tree stores one place net. At the same time each node also represents
exactly one local process model by taking the union of the place nets in the path
from that node to the root. Hence, in each node we also keep the number of
windows the corresponding local process model can relax replay. Any additional
information about the local process model that we might want to store in the
future, can be stored in the same way as the relax replay count.

Structuring the tree this way we share place nets between the stored local
process models. To also make the structure efficiently extendable, we want each
path in the tree to represent a unique local process model. Therefore, we in-
troduce a rank function. The rank function rank : P 7→ N gives priority to each
place net which in turn determines the order in which the place nets appear in
the tree path representing the local process model. In Figure 6 we illustrate the
problem when a local process model

⋃
{Np1, Np2} needs to be added to the tree

in Figure 6a.
After processing each window, we add all discovered local process models to

the global storage. At the end, after processing all windows, the tree will contain
each local process model we find together with the number of windows each local
process model can relax replay.

4.3 Local Process Models Evaluation and Ranking (LPMs-ER)

Our exhaustive search can end up in a large number of local process models.
Hence, we need to limit the number of local process models we return and first
show the ones we classify as more relevant. One simple restriction is to limit the
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Fig. 6. Difficulty in the global tree for adding the same local process models multiple
times when we do not use a rank function.

minimal and maximal number of places and transitions a local process model
can have.

To measure the quality of our local process models we propose different
heuristics. All metrics are calculated for an event log L, a local distance d, and a
local process model LPM = (P, T, F,A, l). With WL = [w ∈

⋃
ρ∈L[ρ

′ ⊑d ρ ] ]
we define the multiset of all windows in L with length d, and with
SL
LPM = [s ∈ [w′ ⊏˜ w ]|w ∈ WL ∧ s ∈ L(LPM)] a multiset of the sequences re-

played by LPM during relax replay of the windows.

– Fitting windows evaluation calculates the fraction of windows a local process
model can relax replay (Equation (1)).

fw(LPM,L) = |{w∈WL|w∈Lrlx(LPM)}|
|WL| (1)

This metric is in a way an adaptation for calculating fitness for the local
process models. We never expect one local process model to explain the
entire event log, so to make the metric comparable, we compare the values
to the best scoring local process model.

– Passage coverage evaluation calculates the fraction of the passages used in
the relax replay of the fitting windows (Equation (2)).

pc(LPM,L) =
|{(t1,t2)∈LPM |∃

s∈SL
LPM

(∃i∈{1,...,|s|−1]}(si=l(t1)∧si+1=l(t2)))}|

|LPM | (2)

The values are in the interval (0, 1], where we get 1 when all the local process
model passages are used at least once. This metric is similar to precision since
lower values mean that the local process model allows more behavior than
seen in the event log.

– Passage repetition evaluation calculates whether multiple place nets of the
local process model contain the same passages (Equation (3)). We define
#(t1,t2) = |{p ∈ P |(t1, t2) ∈ •p× p•} to be the number of place nets in LPM
that have the passage (t1, t2).

pr(LPM,L) =

|LPM |·|LPM |−
∑

(t1,t2)∈LPM

#(t1,t2)

|LPM |·|LPM |−|LPM | (3)
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Table 1. Information about the event logs used in our analysis

Event log alias Trace variants count Activities count Total event count
BPIC2012 [9] 4366 24 182467
BPIC2019 [10] 11973 42 338247
RTFM [14] 231 13 2353
Sepsis [16] 846 16 13775

Artificial Small 2 7 45
Artificial Big 96 13 1624

This metric tries to express the simplicity of the local process model. The
value of 1 denotes that each passage is contained by only one place net, and
0 denotes that all passages are contained in all place nets.

– Transition coverage evaluation calculates in how many of the relax replayed
windows in which a transition t can be used, that transition is actually
used during the replay. The average value over all transitions is returned.
(Equation (4)).

tc(LPM,L) = 1
|T | ·

∑
t∈T

|[s∈SL
LPM |∃i∈{1,...,|s|}(s[i]=l(t))]|

|[w∈WL|w∈Lrlx(LPM)∧∃i∈{1,...,|w|}(w[i]=l(t))]| (4)

The values for the metric are in the interval (0, 1]. Low values indicate that
we use only a few transitions in our local process model during the relax
replay, meaning our model is more complex than necessary.

We finish by ranking the found local process models, by taking the average
score of the presented evaluation metrics. The higher the average score, the
better the rank of the local process model.

5 Evaluation and Results

In this section, we evaluate our method on real and artificial event logs (see
Table 1). We split the evaluation into several parts. We start by discussing how
quality is defined and measured for local process models, and the challenges
around it. Then, we compare the results of our algorithm with several process
discovery approaches and presented related work on a specific event log. After-
ward, we present the running time our algorithm has on different event logs, and
the effect different parameters have on it. We end the evaluation section by com-
paring the running time with the running time of existing approaches discussed
in related work [2,24]. For all experiments, we use the plugin we implemented in
ProM and the eST Miner [15] as a place oracle. To allow for reproducibility of
the experiments, we provide the artificial event logs and the sets of place nets
we use at https://github.com/VikiPeeva/PlacesAndEventLogs.

5.1 Quality Definition and Challenges

Calculating the quality of local process models is challenging because of all the
different ways it can be looked at. From one side we can look at the quality

https://github.com/VikiPeeva/PlacesAndEventLogs
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of each individually returned local process model or the quality of all of them
as a group. If we use local process model discovery when traditional process
discovery fails, the desired result would be a minimal set of local process models
that cover the entire event log with as little overlaps between them as possible.
This is discussed in [5] where one event log is analyzed by hand and compared
to the results from [24]. Both [24] and [2], nor their future work offer this as a
possibility and neither our algorithm. However, as discussed in the introduction,
that is not the only usage of local process models. If we are interested in what
happens when patients are cured, when companies lose money, when employees
resign, etc., then we might be interested in finding local process models in regard
to some utility functions or different contexts. This is to some degree investigated
in [22] and [3] accordingly. Our work, currently does not support this type of
local process mining, however, it is orthogonal to the current work, and can be
integrated in the algorithm. With the previous information in mind we see how
challenging is to give quality comparison on hundreds returned local process
models between different approaches, especially when the most straight-forward
comparison - event log coverage - is not available for any of them. Hence, for us,
the goal was the new approach we propose to be more feasible than the existing
ones in regard to running time and number of local process models found, and
extendable towards event log coverage and utility mining.

5.2 Discoverability of Constructs

To illustrate the need for local process model discovery, and why the approaches
proposed in [24] and [2] are not enough, we give an event log whose traces are
generated by repeating the pattern AXDBXE. We additionally add noise (from
the alphabet l, m, n) between the different occurrences of the pattern and in
smaller amount in-between the pattern itself. An example trace in such event
log would be ⟨m,A,X, n,D,B,X,E, l⟩. We ran the generated event log with
α++ miner [26], inductive miner [13], ILP miner [27], the local process model
discovery approaches proposed in [24] and [2], and the approach proposed in
this paper. We present the results we get in Figure 7. ILP and α++ miner
returned a spaghetti-like models, while the inductive miner returned a model
with mostly flowery behavior. In none of these models the pattern is clearly
visible. The approaches in [24] and [2] although returning local process models
that represent parts of the pattern, are not able to return a local process model
that describes the pattern accurately. In contrast, our algorithm finds a local
process model that completely describes the pattern (Figure 1b) in addition to
the other local process models that we find. By finding this model we show that
we are able to skip in-between noise, and that we can discover constructs like
long-term dependencies which the approaches in [2] and [24] cannot because of
the representational bias of process trees.
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(a) α++ Miner (b) Inductive Miner (c) ILP Miner

(d) Approach in [24]
(e) Approach in [2]

Fig. 7. Process models for an event log focusing on the pattern AXDBXE.

5.3 Running Time vs Parameters

The main parameters that we can control are the number of place nets we use
and the size of the local distance. Other important parameter is the cardinality
of the concurrency, i.e, what is the maximal number of transitions we allow to be
in a concurrent construct. Hence, we show diagrams to see how these parameters
affect the running time of the algorithm.

In Figure 8, we show the running time for place net counts of [50, 75] and
locality of [5, 7, 10, 12]. As expected, given a fixed amount of place nets used, the
running time increases as the locality increases, and also the other way around,
given a fixed locality, the running time increases as the number of place nets
used increases. We can notice that for 50 place nets the algorithm finishes in less
than five minutes for all event logs and different localities except for BPIC2019
and locality 12. However, when considering 75 place nets, for all event logs
except Artificial Small the limit of ten minutes is reached at locality 12. What
is interesting to see is that both Artificial Big and RTFM have a larger running
time for place net count of 75 and localities 5, 7 and 10 than BPIC2012 and
BPIC2019 although the latter are much larger event logs, both in the number
of events and number of activities they contain (see Table 1). This shows the
impact the linearity of our algorithm has in regard to the size of the event log,
and the importance of how we choose which place nets to use.

Regarding our concurrency cardinality parameter, we see in Figure 9 that
we are able to handle concurrency constructs with 4 transitions for 50 place
nets, and 3 transitions for 75 place nets. However, we notice that by adding the
possibility for just one more transition, the running time exceeds 10 minutes.
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Fig. 8. Diagram that shows the effect different settings for the count of place nets and
local distance have on the running time.

Fig. 9. Diagram that shows how the concurrency cardinality parameter affects the
running time.

5.4 Comparison to other approaches

In this section, we focus on the comparison of our approach to the ones presented
in [24] and [2] in regard to the running time. We run all algorithms on real and
artificial event logs with time limit of 10 minutes on a PC with i7-1.8GHz, 16GB
RAM and Windows 10. We use the provided default settings of the plugins where
for the approach of Tax et al. the default settings also include the log projections
explained in [23]. The only setting we vary for our algorithm is the number of
places used (50, 75 and 100). We present the results at Table 2. We see that for
the artificial event logs our approach is comparable in the time needed to return
results to the one in [24] when we use 50 places. However, when it comes to
real event logs, our approach is notably faster than the other two. For example,
on the BPIC2019 event log the other approaches do not return results at all
because of memory problems, while we are able to build a large amount of local
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Table 2. Results comparison to [24] and [2]

Event log
Our approach Approach in [24] Approach in [2]

#places runtime #LPMs runtime #LPMs runtime #LPMs

BPIC2012
50 4s 284

90s 454 out of time75 20s 2473
100 23s 6484

BPIC2019
50 28s 3190

out of memory out of memory75 48s 7617
100 out of time /

RTFM
50 15s 8967

out of time out of time75 368s 90862
100 out of time /

Sepsis
50 2s 18

56s 4627 125s 37575 4s 3384
100 22s 14951

Artificial Big
50 40s 8979

70s 56110 out of time75 536s 65383
100 out of time /

Artificial Small
50 2s 5123

2s 2665 16s 12675 9s 15623
100 25s 34844

process models in less than a minute when we use less than 75 places. For the
BPIC2012 event log, [2] needs more than 10 minutes to return results and [24]
investigates 454 candidate local process models in 90 seconds. This is less than
what we can discover and it needs four times more time than our approach. The
Sepsis and RTFM event logs further confirm these results, which shows that our
algorithm is able to handle large event logs much better, while returning a large
amount of local process models.

6 Conclusion and Outlook

In this paper, we introduced a novel way of discovering local process models. We
proposed a first solution to the problem, which can be further investigated and
extended. Our first goal was to have an algorithm that can find local process
models for large event logs, and we achieved this by building local process models
through one pass of the event log. Different quality dimensions that we discussed
are returning minimal number of local process models that cover the entire event
log or mining using utility functions. These are compelling directions that we
plan to investigate as future work. Another point is that we get the place nets
from which we build local process models from an oracle which currently is a
regular process discovery algorithm. Hence, how to generate place nets valuable
for local process model discovery or build the local process models without using
place nets is something that warrants further research. The algorithm we propose
is able to process large event logs and is flexible to support improvements for
the above mentioned topics without destroying the linear complexity on the size
of the event log.

Acknowledgments: We thank the Alexander von Humboldt (AvH) Stiftung for
supporting our research.
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