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Abstract. Event logs, as viewed in process mining, contain event data
describing the execution of operational processes. Most process mining
techniques take an event log as input and generate insights about the
underlying process by analyzing the data provided. Consequently, han-
dling large volumes of event data is essential to apply process mining
successfully. Traditionally, individual process executions are considered
sequentially ordered process activities. However, process executions are
increasingly viewed as partially ordered activities to more accurately re-
flect process behavior observed in reality, such as simultaneous execution
of activities. Process executions comprising partially ordered activities
may contain more complex activity patterns than sequence-based pro-
cess executions. This paper presents a novel query language to call up
process executions from event logs containing partially ordered activities.
The query language allows users to specify complex ordering relations
over activities, i.e., control flow constraints. Evaluating a query for a
given log returns process executions satisfying the specified constraints.
We demonstrate the implementation of the query language in a process
mining tool and evaluate its performance on real-life event logs.

Keywords: Process Mining · Process querying · Partial orders

1 Introduction

Executing operational processes generates large amounts of event data in enter-
prise information systems. Analyzing these data provides great opportunities for
operational improvements, for example, reduced cycle times and increased con-
formity with reference process models. Therefore, process mining [17] comprises
data-driven techniques to analyze event data to gain insights into the under-
lying processes; for example, automatically discovered process models, confor-
mance statistics, and performance analysis information. Since service-oriented
computing is concerned with orchestrating services to form dynamic business
processes [6], process mining can provide valuable insights into the actual exe-
cution of processes within organizations [16]. These insights can then be used,
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for example, to define services and ultimately construct service-oriented archi-
tectures. Further, process mining provides valuable tools for service monitoring.

Most process mining techniques [17] define process executions, termed traces,
as a sequence, i.e., a strict total order, of executed activities. In reality, however,
processes can exhibit parallel behavior, i.e., several branches of a process are ex-
ecuted simultaneously. Consequently, the execution of individual activities may
overlap within a single trace. Thus, traces are defined by partially ordered exe-
cuted activities. Considering traces as partial orders, the complexity of observed
control flow patterns, i.e., relations among executed activities, increases com-
pared to sequential traces. Thus, tools are needed that facilitate the handling,
filtering, and exploring of traces containing partially ordered process activities.

This paper introduces a novel query language for querying traces from an
event log containing partially ordered activities. The proposed language allows
the specification of six essential control flow constraints, which can be further
restricted via cardinality constraints and arbitrarily combined via Boolean op-
erators. The language design is based on standardized terms for control flow
patterns in process mining. We provide a formal specification of the language’s
syntax and semantics to facilitate reuse in other tools. Further, we present its im-
plementation in the process mining software tool Cortado [14], which supports
partially ordered event data. Query results are visualized by Cortado using a
novel trace variant visualization [13]. Finally, we evaluate the performance of
the query evaluation on real-life, publicly available event logs.

The remainder of this paper is structured as follows. Sect. 2 presents related
work. Sect. 3 introduces preliminaries. In Sect. 4, we introduce the proposed
query language. We present an exemplary application use case of the query
language in Sect. 5. In Sect. 6, we present an evaluation focusing on performance
aspects of the proposed query language. Finally, Sect. 7 concludes this paper.

2 Related Work

A framework for process querying methods is presented in [10]. In short, process
query methods differ in the input used, for instance, event logs (e.g., [3,20]) or
process model repositories (e.g., [2,5]), and the goal or capabilities of the query
method. Overviews of process querying languages can be found in [8,9,10,19];
the majority of existing methods focuses on querying process model repositories.
Subsequently, we focus on methods that operate on event logs.

Celonis PQL [18] is a multi-purpose, textual query language that works on
event logs and process models and provides a variety of query options. However,
traces are considered sequentially ordered activities compared to the proposed
query language in this paper. In [3], a query language is proposed that operates
on a single graph, i.e., a RDF, connecting all events in an event log by user-
defined correlations among events. The query language allows to partition the
events by specified constraints and to query paths that start and end with events
fulfilling certain requirements. Compared to our approach, we do not initially



Control-Flow-Based Querying of Process Executions 3

transform the entire event log into a graph structure; instead, we operate on
individual traces composed of partially ordered event data.

In [4], the authors propose a natural language interface for querying event
data. Similar to [3], a graph based search is used. The approach allows specifying
arbitrary queries like “Who was involved in processing case x” and “For which
cases is the case attribute y greater than z.” However, control flow constraints
over partially ordered event data are not supported, unlike the query language
proposed in this paper, which is designed exclusively for control flow constraints.
In [11], the authors propose an LTL-based query language to query traces, con-
sisting of sequentially aligned process activities, fulfilling specified constraints
from an event log. In [20], the authors propose an approach to query trace frag-
ments from various event logs that are similar to a trace fragment surrounding a
selected activity from a process model using a notion of neighborhood context.
Traces are, in this approach, considered sequentially ordered activities.

In summary, various process querying methods exist, most of them operating
over process model repositories rather than event logs, cf. [8,9,10,19]. In short,
the proposed query language differs in three main points from existing work.

1. First process querying language focusing on traces containing partially or-
dered activities (to the best of our knowledge)

2. Focus on traces rather than event data as a whole, i.e., executing a query
returns traces satisfying the specified constraints

3. Specific focus on control flow patterns, i.e., extensive options for specifying
a wide range of control flow patterns

3 Preliminaries

This section introduces notations and concepts used throughout this paper.
We denote the natural numbers by N and the natural numbers including 0 by

N0. We simplify by representing timestamps by positive real numbers denoted
by R+. We denote the universe of activity labels by L, activity instance identifier
by IA, and case identifier by IC . Further, we denote a missing value by ⊥.

Definition 1 (Activity instances). An activity instance a = (i, c, l, ts, tc) ∈
IA × IC × L ×

(
R+ ∪ {⊥}

)
× R+ uniquely identified by i ∈ IA represents the

execution of an activity l ∈ L that was executed for the process instance identified
by c ∈ IC . The activity instance’s temporal information is given by the optional
start timestamp ts ∈ R+ ∪ {⊥} and the complete timestamp tc ∈ R+. If ts ̸=
⊥ ⇒ ts ≤ tc. We denote the universe of activity instances by A.

Let a=(i, c, l, ts, tc) ∈ A be an activity instance, we use short forms to assess
the different components of a; we write ai, ac, al, ats , and atc .

An event log can be seen as a set of activity instances describing the same pro-
cess; Table 1 shows an example. Each row corresponds to an activity instance
describing the execution of an activity. For instance, the first row describes
the execution of the activity “credit request received” executed on 16.06.21 at
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Table 1: Example of an event log with partially ordered event data

ID Timestamp

Activity
Instance

Case Activity Label Start Completion . . .

1 1 credit request received (CRR) ⊥ 16.06.21 12:43:35 . . .
2 1 document check (DC) 17.06.21 08:32:23 18.06.21 12:01:11 . . .
3 1 request info. from applicant (RIP) 19.06.21 09:34:00 22.06.21 09:12:00 . . .
4 1 request info. from third parties (RIT) 19.06.21 14:54:00 25.06.21 08:57:12 . . .
5 1 document check (DC) ⊥ 28.06.21 14:23:59 . . .
6 1 credit assessment (CA) 30.06.21 13:02:11 04.07.21 08:11:32 . . .
7 1 security risk assessment (SRA) 01.07.21 17:23:11 06.07.21 18:51:43 . . .
8 1 property inspection (PI) ⊥ 05.07.21 00:00:00 . . .
9 1 loan-to-value ratio determined (LTV) ⊥ 05.07.21 00:00:00 . . .
10 1 decision made (DM) ⊥ 08.07.21 14:13:18 . . .
11 2 credit request received (CRR) ⊥ 17.06.21 23:21:31 . . .
. . . . . . . . . . . . . . . . . .

CRR DC RIP

RIT DC CA PI

LTV

SRA

DM

Fig. 1: Ordering of the activity instances within the trace describing case 1. Solid
arcs depict the transitive reduction; solid and dotted arcs the transitive closure.

12:43:35 for the process instance identified by case-id 1. Individual process ex-
ecutions within an event log are termed traces. Next, we formally define traces
as a partially ordered set of activity instances belonging to the same case.

Definition 2 (Trace). Let T⊆A. We call (T,≺) a trace if:

1. ∀ai, aj∈T (aci = acj) and
2. ≺⊆ T×T and for arbitrary ai, aj∈T holds that ai≺aj iff:

– atci < atsj given that atci , atsj ∈R+, or

– atci < atcj given that atci ∈R+ and atsj =⊥.

We denote the universe of traces by T .

For a trace (T,≺)∈T , note that the relation ≺ (cf. Definition 2) is the tran-
sitive closure. We denote the transitive reduction of ≺ by ≺R. For ≺R it holds

that ∀a, b∈T
[
a≺Rb ↔

(
a≺b ∧

(
̸ ∃ã∈T (a≺Rã ∧ ã≺Rb

))]
. Fig. 1 visualizes the

ordering relations of the activity instances of the trace describing case 1 (cf. Ta-
ble 1). Solid arcs show direct relationships among activity instances. Thus, the
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solid arcs represent the transitive reduction. Solid and dotted arcs represent all
relations among activity instances and thus, represent the transitive closure.

Finally, we define notation conventions regarding the existential quantifier.
Let k∈N and X be an arbitrary set, we write ∃=k, ∃≥k, and ∃≤k to denote that
there exist exactly, at least, and at most k distinct elements in set X satisfying a
given formula P (. . . ). Below we formally define the three existential quantifier.

– ∃=kx1, . . . , xk∈X
(
∀1≤i≤k P (xi)

)
≡ ∃x1, . . . , xk∈X

[(
∀1≤i<j≤k xi ̸=xj

)
∧(

∀1≤i≤k P (xi)
)
∧
(
∀x∈X\{x1,...,xk} ¬P (xi)

)]
– ∃≥kx1, . . . , xk∈X

(
∀1≤i≤k P (xi)

)
≡ ∃x1, . . . , xk∈X

[(
∀1≤i<j≤k xi ̸=xj

)
∧(

∀1≤i≤k P (xi)
)]

– ∃≤kx1, . . . , xk∈X
(
∀1≤i≤k P (xi)

)
≡ ∃x1, . . . , xk∈X

[(
∀1≤i≤k P (xi)

)
∧(

∀x∈X\{x1,...,xk} ¬P (x)
)]

Note that x1, . . . , xk must not be different elements in the formula above; it
specifies that at most k distinct elements in X exist satisfying P (. . . ).

4 Query Language

This section introduces the proposed query language. Sect. 4.1 introduces its
syntax, while Sect. 4.2 defines its semantics. Sect. 4.3 covers the evaluation of
queries. Finally, Sect. 4.4 presents the implementation in a process mining tool.

4.1 Syntax

This section introduces the syntax of the proposed query language. In total, six
operators exist, allowing to specify control flow constraints. Table 2 provides an
overview of these six operators, three binary, (i.e., isContained (isC), isStart
(isS), and isEnd (isE)), and three unary operators (i.e., isDirectlyFollowed
(isDF), isEventuallyFollowed (isEF), and isParallel (isP)). Next to each
operator, we list query examples, including the corresponding operator, and
present its semantics in natural language. As the examples show, each operator
can be additionally constrained by a cardinality. We call a query a leaf query
if only one operator is used, for instance, all examples shown in Table 2 are
query leaves. Query leaves can be arbitrarily combined via Boolean operators,
for instance, see Fig. 2. Next, we formally define the query language’s syntax.

(
(’DC’ isC =2) OR

(
(’DC’ isC =1) AND (’CRR’ isDF ’DC’)

))
AND

(
NOT(’DC’ isDF ’DM’)

)
AND

OR

(’DC’ isC =2) AND

(’DC’ isC =1) (’CRR’ isDF ’DC’)

NOT

(’DC’ isDF ’DM’)

Fig. 2: Example of a query. Leaves represent individual control flow constraints
(cf. Table 2) that are combined via Boolean operators.
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Table 2: Overview of the six control flow constraints and corresponding examples

Type Syntax
Example

Nr. Query Description of semantics

u
n
a
ry

isContained
(isC)

E1 ’A’ isC activity A is contained in the trace

E2 ’A’ isC ≥ 6
activity A is contained at least 6 times in the
trace

E3 ALL{’A’,’B’} isS ≥ 6
activity A and B are both contained at least 6
times each in the trace

isStart
(isS)

E4 ’A’ isS there exists a start activity A(a)

E5 ’A’ isS = 1

exactly one start activity of the trace is an A

activity(a)

E6 ANY{’A’,’B’} isC = 1

trace starts with exactly one A activity or/and

with exactly one B activity(a)

isEnd
(isE)

E7 ’A’ isE there exists an end activity A(a)

E8 ’A’ isE ≥ 2
at least two end activities of the trace are an A
activity(a)

E9 ALL{’A’,’B’} isE
trace ends with at least one A and one B
activity(a)

b
in
a
ry

isDirectly
Followed
(isDF)

E10 ’A’ isDF ’B’
a B activity directly follows each A activity in
the trace

E11 ’A’ isDF ’B’ = 1
trace contains exactly one A activity that is di-
rectly followed by B

E12 ’A’ isDF ALL{’B’,’C’}
every A activity is directly followed by a B and
C activity

isEventually
Followed
(isEF)

E13 ’A’ isEF ’B’
after each A activity in the trace a B activity
eventually follows

E14 ’A’ isEF ’B’ ≥ 1
trace contains at least one A activity that is
eventually followed by B

E15 ALL{’A’,’B’} isEF ’C’
all A and B activities are eventually followed by
a C activity

isParallel
(isP)

E16 ’A’ isP ’B’
each A activity in the trace is in parallel to some
B activity

E17 ’A’ isP ’B’ ≤ 4
trace contains at most four A activities that are
in parallel to some B activity

E18 ’A’ isP ANY{’B’,’C’} ≤ 2
trace contains at most two A activities that are
parallel to a B or C activity

(a) Trace may contain arbitrary further start respectively end activities.

Definition 3 (Query Syntax). Let l1, . . . , ln−1, ln∈L be activity labels, k∈N0,
□∈{≤,≥,=}, ◦∈{isDF, isEF, isP}, •∈{isC, isS, isE}, and △∈{ALL, ANY}. We
denote the universe of queries by Q and recursively define a query Q∈Q below.

Leaf query with an unary operator (without/with cardinality constraint)

– Q=’l1’ • Q=’l1’ • □k

– Q=△{’l1’, . . . , ’ln−1’} • Q=△{’l1’, . . . , ’ln−1’} • □k
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Leaf query with a binary operator (without/with cardinality constraint)

– Q=’l1’ ◦ ’ln’ Q=’l1’ ◦ ’ln’ □k

– Q=△{’l1’, . . . , ’ln−1}’ ◦ ’ln’ Q=△{’l1’, . . . , ’ln−1}’ ◦ ’ln’ □k

– Q=’ln’ ◦ △{’l1’, . . . , ’ln−1}’ Q=’ln’ ◦ △{’l1’, . . . , ’ln−1}’ □k

Composed query using Boolean operators

– If Q1, Q2∈Q are two queries and ■∈{AND, OR}, then Q=(Q1■Q2) is a query
– If Q1∈Q is a query, then Q=NOT(Q1) is a query

4.2 Semantics

This section introduces the query language’s semantics. Table 2 presents query
examples with corresponding semantics. In short, the unary operators allow to
specify the existence of individual activities within a trace, for example, is con-
tained (isC), is a start activity (isS), or is an end activity (isE). Optionally,
operators can have cardinality constraints that extend the existential seman-
tics of unary operators by quantification constraints. Binary operators allow to
specify relationships between activities; for example, two activities are parallel
(isP), directly follow each other (isDF), or eventually follow each other (isEF).
In contrast to unary operators, binary operators always have to hold globally
when no cardinality constraint is given. For example, E10 (cf. Table 2) specifies
that a B activity must directly follow each A activity, i.e., there is an arc in the
transitive reduction from each A activity to a B activity. In comparison, E11
specifies that the trace contains precisely one A activity that is directly followed
by a B activity. ALL sets specify that a constraint must be fulfilled for all activity
labels within the set. Analogously, ANY sets specify that the constraint must be
fulfilled at least for one activity. Next, we formally define the semantics.

Definition 4 (Query Semantics). Let Q,Q1, Q2∈Q be queries, T≺=(T,≺) ∈
T be a trace, and l1, . . . , ln∈L be activity labels. We recursively define the func-
tion eval : Q×T → {true, false} assigning a Boolean value, i.e., eval(Q,T≺),
to query Q and trace T≺.

Unary operators:

– If Q=’l1’ isC □k , then eval
(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k(a

l
i=l1)

]
– If Q=’l1’ isS □k , then eval

(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1 ∧ ¬∃ã∈T (ã≺ai)

)]
– If Q=’l1’ isE □k , then eval

(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1 ∧ ¬∃ã∈T (ai≺ã)

)]
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Binary operators:

– If Q=’l1’ isDF ’l2’ , then eval
(
Q,T≺) ⇔

∀a∈T
[
al=l1 → ∃ã∈T

(
ãl=l2 ∧ a≺Rã

) ]
– If Q=’l1’ isDF ’l2’ □k , then eval

(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ãl=l2 ∧ ai≺Rã

) )]
– If Q=’l1’ isDF ANY{’l2’, . . . ,’ln’} , then eval

(
Q,T≺) ⇔

∀a∈T
[
al=l1 → ∃ã∈T

(
a≺Rã ∧

(∨n
j=2 ã

l = lj
))]

– If Q=’l1’ isDF ANY{’l2’, . . . ,’ln’} □k , then eval
(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ai≺Rã ∧

∨n
j=2(ã

l=lj)
))]

– If Q=’l1’ isDF ALL{’l2’, . . . ,’ln’} □k , then eval
(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1∧∃ã2, . . . , ãn∈T

(∧n
j=2

(
ai≺Rãj ∧ ãlj=lj

)))]

– If Q=’l1’ isEF ’l2’ , then eval
(
Q,T≺) ⇔

∀a∈T
[
al=l1 → ∃ã∈T

(
ãl=l2 ∧ a≺ã

) ]
– If Q=’l1’ iEF ’l2’ □k , then eval

(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ãl=l2 ∧ ai≺ã

) )]
– If Q=’l1’ isEF ANY{’l2’, . . . ,’ln’} , then eval

(
Q,T≺) ⇔

∀a∈T
[
al=l1 → ∃ã∈T

(
a≺ã ∧

(∨n
i=2 ã

l = li
))]

– If Q=’l1’ isEF ANY{’l2’, . . . ,’ln’} □k , then eval
(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ai≺ã ∧

(∨n
j=2 ã

l=lj
)))]

– If Q=’l1’ isEF ALL{’l2’, . . . ,’ln’} □k , then eval
(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1 ∧ ∃ã2, . . . , ãn∈T

(∧n
j=2(ai≺ãj ∧ ãlj=lj)

))]

– If Q=’l1’ isP ’l2’ , then eval
(
Q,T≺) ⇔

∀a∈T
[
al=l1 → ∃ã∈T

(
ãl=l2 ∧ a̸≺ã ∧ ã̸≺a

) ]
– If Q=’l1’ isP ’l2’ □k , then eval

(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ãl=l2 ∧ ai ̸≺ã ∧ ã ̸≺ai

)) ]
– If Q=’l1’ isP ANY{’l2’, . . . ,’ln’} , then eval

(
Q,T≺) ⇔

∀a∈T
[
al=l1 → ∃ã∈T

(
a̸≺ã ∧ ã̸≺a ∧

(∨n
j=2 ã

l = lj
))]

– If Q=’l1’ isP ANY{’l2’, . . . ,’ln’} □k , then eval
(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ai ̸≺ã ∧ ã̸≺ai ∧

(∨n
j=2 ã

l=lj
)))]
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– If Q=’l1’ isP ALL{’l2’, . . . ,’ln’} □k , then eval
(
Q,T≺) ⇔

∃□ka1, . . . , ak∈T
[
∀1≤i≤k

(
ali=l1∧∃ã2, . . . , ãn∈T

(∧n
j=2(ai ̸≺ãj∧ãj ̸≺ai∧ãlj=lj)

))]
Boolean operators:

– If Q=NOT(Q1) , then eval
(
Q,T≺) ⇔ ¬eval

(
Q1, T

≺)
– If Q=(Q1 OR Q2) , then eval

(
Q,T≺) ⇔ eval

(
Q1, T

≺) ∨ eval
(
Q2, T

≺)
– If Q=(Q1 AND Q2) , then eval

(
Q,T≺) ⇔ eval

(
Q1, T

≺) ∧ eval
(
Q2, T

≺)
Note that Definition 4 does not cover all queries constructible using the syn-

tax in Definition 3. However, any query can be rewritten into a logically equiva-
lent one covered by Definition 3. We call queries Q1, Q2∈Q logically equivalent,
denoted Q1≡Q2, iff ∀T≺∈A∗(eval(Q1, T

≺) ⇔ eval(Q2, T
≺)

)
. Below, we list

query rewriting rules.

– ’l1’• ≡ ’l1’•≥1
– ANY{’l1’, . . . ,’ln’}• ≡ (’l1’•) OR . . . OR (’ln’•)
– ALL{’l1’, . . . ,’ln’}• ≡ (’l1’•) AND . . . AND (’ln’•)
– ANY{’l1’, . . . ,’ln’}• □k ≡ (’l1’•□k) OR . . . OR (’ln’• □k)
– ALL{’l1’, . . . ,’ln’}• □k ≡ (’l1’• □k) AND . . . AND (’ln’• □k)
– ANY{’l1’, . . . ,’ln−1’}◦’ln’ ≡ (’l1’◦’ln’) OR . . . OR (’ln−1’◦’ln’)
– ALL{’l1’, . . . ,’ln−1’}◦’ln’ ≡ (’l1’◦’ln’) AND . . . AND (’ln−1’◦’ln’)
– ANY{’l1’, . . . ,’ln−1’}◦’ln’□k ≡ (’l1’◦’ln’□k) OR . . . OR (’ln−1’◦’ln’□k)
– ALL{’l1’, . . . ,’ln−1’}◦’ln’□k ≡ (’l1’◦’ln’□k) AND . . . AND

(’ln−1’◦’ln’□k)
– ’l1’◦ALL{’l2’, . . . ,’ln’} ≡ (’l1’◦’l2’) AND . . . AND (’l1’◦’ln’)

Note that according to Definition 4, the following queries are not logically
equivalent. Thus, ANY and ALL sets are not syntactic sugar.

– ’l1’◦ANY{’l2’, . . . ,’ln’} ̸≡ (’l1’◦’l2’) OR . . . OR (’l1’◦’ln’)
– ’l1’◦ANY{’l2’, . . . ,’ln’} □k ̸≡ (’l1’◦’l2’□k) OR . . . OR (’l1’◦’ln’ □k)
– ’l1’◦ALL{’l2’, . . . ,’ln’}□k ̸≡ (’l1’◦’l2’□k) AND . . . AND (’l1’◦’ln’□k)

For example, consider E18 in Table 2. The query states that there exist at
most two A activities that are in parallel to B or C activities. Thus, a trace
containing four A activities, two parallel to an arbitrary number (greater than
zero) of B activities, and two parallel to C activities, does not fulfill query E18.
However, the described trace fulfills the query Q = (’A’ isP ’B’ ≤ 2) OR

(’A’ isP ’C’ ≤ 2); hence, E18 = ’A’ isP ANY{’B’,’C’} ≤ 2 ̸≡ Q.

4.3 Evaluating Queries

This section briefly discusses our approach to query evaluation. As shown in
Fig. 2, queries represent trees. Since each leaf represents a query, we evaluate the
queries composed of Boolean operators bottom-up. First, the leaves are evaluated
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on a given trace, resulting in Boolean values per leaf. Then, bottom-up, the given
Boolean operators are applied recursively.

In many cases, however, a complete query evaluation is not needed to de-
termine its overall Boolean value for a given trace. For instance, if one leaf of a
logical AND parent evaluates to false, the other leaves do not need to be further
evaluated for the given trace. Similar applies to the logical OR. Reconsider the
query given in Fig. 2 and the trace depicted in Fig. 1. The query consists of four
leaves; however, only two must be evaluated. Following a depth-first traversing
strategy, we first evaluate the leaf (’DC’ isC =2) satisfied by the given trace.
Thus, we do not need to evaluate the right subtree of the OR, i.e., leaves (’DC’
isC =1) and (’CRR’ isDF ’DC’). Finally, we evaluate the leave (’DC’ isDF

’DM’). In short, by evaluating only two leaves, we can evaluate the entire query.

4.4 Implementation

This section briefly demonstrates the implementation of the proposed query
language in the process mining tool Cortado [14]3. We refer to [14] for an intro-
duction to Cortado’s architecture and a feature overview.

Fig. 3: Excerpt from a screenshot of Cortado showing a query editor (bottom
right), a trace variant explorer visualizing the matching trace variants of the
query, and a tabular overview of activities from the event log

3 Available at https://cortado.fit.fraunhofer.de/

https://cortado.fit.fraunhofer.de/
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Fig. 4: Example of an application scenario of the proposed query language, i.e.,
trace variant selection in the context of incremental process discovery

Fig. 3 depicts a screenshot of Cortado. The shown chevron-based visual-
izations represent trace variants4 from the loaded event log that satisfies the
displayed query. We refer to [13] for an introduction to the trace variant visu-
alization. As shown in Fig. 3, the query editor offers syntax highlighting; colors
of the activity labels in the query editor correspond to the colors used in the
variant explorer to improve usability. Executing a query results in an updated
list of trace variants satisfying the query. In Fig. 3, the numbers at the top next
to the blue filter icon indicate that 109 out of 3,830 trace variants satisfy the
displayed query. In the backend, we use ANTLR [7] for generating a parser for
the query language. The language’s design ensures that every valid query, when
parsed with ANTLR, corresponds to a single parse tree that can be transformed
into a unique query tree (cf. Fig. 2).

5 Application Scenario Example

This section presents an exemplary application scenario of the proposed query
language. Process discovery is concerned with learning a process model from an
event log. Conventional discovery approaches [1] are fully automated, i.e., an
event log is provided as input and the discovery algorithm returns a process
model describing the event data provided. Since automated process discovery
algorithms often return process models of low quality, incremental/interactive
process discovery approaches have emerged [15] to additionally utilize domain

4 A trace variant summarizes traces that share identical ordering relationships among
the contained activities.
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knowledge next to event data. Incremental process discovery allows users to
gradually add selected traces to a process model that is considered under con-
struction. By building a process model gradually, users can control the discovery
phase and intervene as needed, for example, by selecting different traces or mak-
ing manual changes to the model. In short, gradually selecting traces from event
data is the major form of interaction in incremental process discovery, cf. Fig. 4.

With event logs containing numerous trace variants, user assistance in explor-
ing, finding, and selecting trace variants is critical for the success of incremental
process discovery. For instance, the log used in Fig. 3 contains 3,830 trace vari-
ants. Manual visual evaluation of all these variants is inappropriate. In such a
scenario, the proposed query language is a valuable tool for users to cope with
the variety, complexity, and amount of trace variants. As most process discovery
approaches [1], including incremental ones, focus on learning the control flow of
activities, a specialized query language focusing on control flow constraints is a
valuable tool. To this end, we implemented the query language in Cortado, a
tool for incremental process discovery, cf. Fig. 4.

6 Evaluation

This section presents an evaluation focusing on performance aspects of the query
language. Sect. 6.1 presents the experimental setup and Sect. 6.2 the results.

6.1 Experimental Setup

We used four publicly available, real-life event logs, cf. Table 3. For each log, we
automatically generated queries from which we pre-selected 1,000 such that no
finally selected query is satisfied by all or by no trace in the corresponding log.
With this approach, we have attempted to filter out trivial queries to evaluate.
We measured performance-related statistics given the 1,000 queries per log.

Table 3: Statistics about the event logs used

Event Log #Traces #Trace Variants(a)

BPI Challenge 2012(b) 13, 087 3, 830

BPI Challenge 2017(d) 31, 509 5,937

BPI Challenge 2020, Prepaid Travel Cost log(d) 2, 099 213

Road Traffic Fine Management (RTFM)(e) 150, 370 350

(a) Based on the variant definition presented in [13]
(b) https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
(d) https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
(d) https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
(e) https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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Fig. 5: Query evaluation time. Since the queries are applied to all traces, they
are ordered by the median number of leaves evaluated per trace

6.2 Results

Each query is applied to all traces from the given event log. Since not all leaves
of a query have to be evaluated, cf. Sect. 4.3, the number of leaves evaluated may
differ per trace. Thus, the actual trace determines how many leaves of a given
query must be evaluated. Fig. 5 shows the runtime (in seconds) of the queries
per event log for the median number of leaf nodes that were evaluated. Thus,
each boxplot is made up of 1,000 data points, i.e., 1,000 queries each evaluated
on all traces from the given log. Across all four event logs, we clearly observe a
linear trend of increasing runtime the more query leaves are evaluated.

Fig. 6 depicts the distribution of queries according to their evaluation time.
Further, we can see the proportion of leaves evaluated at the median. As before,
each plot contains 1,000 data points, i.e., 1,000 queries. Similar to Fig. 5, we
observe that the number of evaluated leaves is the primary driver of increased
evaluation time. The observed behavior is similar for the different logs.

Fig. 7 shows the impact of early termination, as introduced in Sect. 4.3.
Note that in the previous plots, i.e., Fig. 5 and Fig. 6, early termination was
always used. We clearly see from the plots in Fig. 7 that early termination has
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Fig. 6: Query evaluation time distribution

a significant impact on the evaluation time of a query across all used event logs.
In conclusion, the results shown in this section indicate that the time required
to evaluate queries increases linearly with the number of leaves evaluated.

7 Conclusion

We proposed a novel query language that can call up traces from event logs
containing partially ordered event data. The core of the language is the control
flow constraints, allowing users to specify complex ordering relationships over
executed activities. We formally defined the query language’s syntax and seman-
tics. Further, we showed its implementation in the tool Cortado. We presented
one potential application scenario of the language, i.e., the trace selection within
incremental process discovery. In short, the proposed query language facilitates
handling large event logs containing numerous traces consisting of partially or-
dered activities. For future work, we plan to conduct user studies exploring the
query language’s ease of use [12]. Further, we plan to extend the language with
a graphical editor allowing query specification in a no-code environment.
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Fig. 7: Impact of early termination on the query evaluation time
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