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Abstract. Open-source process mining provides many algorithms for
the analysis of event data which could be used to analyze mainstream
processes (e.g., O2C, P2P, CRM). However, compared to commercial
tools, they lack the performance and struggle to analyze large amounts of
data. This paper presents PM4Py-GPU, a Python process mining library
based on the NVIDIA RAPIDS framework. Thanks to the dataframe
columnar storage and the high level of parallelism, a significant speed-
up is achieved on classic process mining computations and processing
activities.
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1 Introduction

Process mining is a branch of data science that aims to analyze the execution
of business processes starting from the event data contained in the information
systems supporting the processes. Several types of process mining are avail-
able, including process discovery (the automatic discovery of a process model
from the event data), conformance checking (the comparison between the be-
havior contained in the event data against the process model, with the purpose
to find deviations), model enhancement (the annotation of the process model
with frequency/performance information) and predictive analytics (predicting
the next path or the time until the completion of the instance). Process min-
ing is applied worldwide to a huge amount of data using different tools (aca-
demic/commercial). Some important tool features to allow process mining in
organizational settings are: the pre-processing and transformation possibilities,
the possibility to drill-down (creating smaller views on the dataset, to focus
on some aspect of the process), the availability of visual analytics (which are
understandable to non-business users), the responsiveness and performance of
the tool, and the possibilities of machine learning (producing useful predictive
analytics and what-if analyses). Commercial tools tackle these challenges with
more focus than academic/open-source tools, which, on the other hand, provide
more complex analyses (e.g., process discovery with inductive miner, declarative
conformance checking). The PM4Py library http://www.pm4py.org, based on
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the Python 3 programming language, permits to integrate with the data pro-
cessing and machine learning packages which are available in the Python world
(Pandas, Scikit-Learn). However, most of its algorithms work in single-thread,
which is a drawback for performance. In this demo paper, we will present a
GPU-based open-source library for process mining, PM4Py-GPU, based on the
NVIDIA RAPIDS framework, allowing us to analyze a large amount of event
data with high performance offering access to GPU-based machine learning. The
speedup over other open-source libraries for general process mining purposes is
more than 10x. The rest of the demonstration paper is organized as follows.
Section 2 introduces the NVIDIA RAPIDS framework, which is at the base of
PM4Py-GPU, and of some data formats/structures for the storage of event logs;
Section 3 presents the implementation, the different components of the library
and some code examples; Section 4 assess PM4Py-GPU against other products;
Section 5 introduces the related work on process mining on big data and process
mining on GPU; Finally, Section 6 concludes the demo paper.

2 Preliminaries

This section will first present the NVIDIA RAPIDS framework for GPU-enabled
data processing and mining. Then, an overview of the most widely used file
formats and data structures for the storage of event logs is provided.

2.1 NVIDIA RAPIDS

The NVIDIA RAPIDS framework https://developer.nvidia.com/rapids was
launched by NVIDIA in 2018 with the purpose to enable general-purpose data
science pipelines directly on the GPU. It is composed of different components:
CuDF (GPU-based dataframe library for Python, analogous to Pandas), CuML
(GPU-based general-purpose machine learning library for Python, similar to
Scikit-learn), and CuGraph (GPU-based graph processing library for Python,
similar to NetworkX). The framework is based on CUDA (developed by NVIDIA
to allow low-level programming on the GPU) and uses RMM for memory man-
agement. NVIDIA RAPIDS exploit all the cores of the GPU in order to maximize
the throughput. When a computation such as retrieving the maximum numeric
value of a column is operated against a column of the dataframe, the different
cores of the GPU act on different parts of the column, a maximum is found on
every core. Then the global maximum is a reduction of these maximums. There-
fore, the operation is parallelized on all the cores of the GPU. When a group-by
operation is performed, the different groups are identified (also here using all
the cores of the GPU) as the set of rows indices. Any operation on the group-by
operation (such as taking the last value of a column per group; performing the
sum of the values of a column per group; or calculating the difference between
consecutive values in a group) is also performed exploiting the parallelism on
the cores of the GPU.

https://developer.nvidia.com/rapids
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2.2 Dataframes and File Formats for the Storage of Event Logs

In this subsection, we want to analyze the different file formats and data struc-
tures that could be used to store event logs, and the advantages/disadvantages
of a columnar implementation. As a standard to interchange event logs, the
XES standard is proposed https://xes-standard.org/, which is text/XML
based. Therefore, the event log can be ingested in memory after parsing the
XML, and this operation is quite expensive. Every attribute in a XES log is
typed, and the attributes for a given case do not need to be replicated among
all the events. Event logs can also be stored as CSV(s) or Parquet(s), both re-
sembling the structure of a table. A CSV is a textual file hosting an header
row (containing the names of the different columns separated by a separator
character) and many data rows (containing the values of the attributes for the
given row separated by a separator character). A problem with the CSV format
is the typing of the attributes. A Parquet file is a binary file containing the
values for each column/attribute, and applying a column-based compression.
Each column/attribute is therefore strictly typed. CuDF permits the ingestion
of CSV(s)/Parquet(s) into a dataframe structure. A dataframe is a table-like
data structure organized as columnar storage. As many data processing opera-
tions work on a few attributes/columns of the data, adopting a columnar storage
permits to retrieve specific columns with higher performance and to reduce per-
formance problems such as cache misses. Generally, the ingestion of a Parquet
file in a CuDF dataframe is faster because the data is already organized in
columns. In contrast, the parsing of the text of a CSV and its transformation to
a dataframe is more time expensive. However, NVIDIA CuDF is also impressive
in the ingestion of CSV(s) because the different cores of the GPU are used on
different parts of the CSV file.

3 Implementation and Tool

In PM4Py-GPU, we assume an event log to be ingested from a Parquet/CSV file
into a CuDF dataframe using the methods available in CuDF. On top of such
dataframe, different operations are possible, including:

– Aggregations/Filtering at the Event Level : we would like to filter in/out a
row/event or perform any aggregation based solely on the properties of the
row/event. Examples: filtering the events/rows for which the cost is > 1000;
associate its number of occurrences to each activity.

– Aggregations/Filtering at the Directly-Follows Level : we would like to filter
in/out rows/events or perform any sort of aggregation based on the proper-
ties of the event and of the previous (or next) event. Examples: filtering the
events with activity Insert Fine Notification having a previous event with
activity Send Fine; calculating the frequency/performance directly-follows
graph.

– Aggregations/Filtering at the Case Level : this can be based on global prop-
erties of the case (e.g., the number of events in the case or the throughput

https://xes-standard.org/
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time of the case) or on properties of the single event. In this setting, we
need an initial exploration of the dataframe to group the indexes of the rows
based on their case and then perform the filtering/aggregation on top of
it. Examples: filtering out the cases with more than 10 events; filtering the
cases with at least one event with activity Insert Fine Notification; finding
the throughput time for all the cases of the log.

– Aggregations/Filtering at the Variant Level : the aggregation associates each
case to its variant. The filtering operation accepts a collection of variants
and keeps/remove all the cases whose variant fall inside the collection. This
requires a double aggregation: first, the events need to be grouped in cases.
Then this grouping is used to aggregate the cases into the variants.

To facilitate these operations, in PM4Py-GPU we operate three steps starting
from the original CuDF dataframe:

– The dataframe is ordered based on three criteria (in order, case identifier, the
timestamp, and the absolute index of the event in the dataframe), to have
the events of the same cases near each other in the dataframe, increasing the
efficiency of group-by operations.

– Additional columns are added to the dataframe (including the position of
the event inside a case; the timestamp and the activity of the previous event)
to allow for aggregations/filtering at the directly-follows graph level.

– A cases dataframe is found starting from the original dataframe and having a
row for each different case in the log. The columns of this dataframe include
the number of events for the case, the throughput time of the case, and
some numerical features that uniquely identify the case’s variant. Case-based
filtering is based on both the original dataframe and the cases dataframe.
Variant-based filtering is applied to the cases dataframe and then reported
on the original dataframe (keeping the events of the filtered cases).

The PM4Py-GPU library is available at the address https://github.com/

Javert899/pm4pygpu. It does not require any further dependency than the
NVIDIA RAPIDS library, which by itself depends on the availability of a GPU,
the installation of the correct set of drivers, and of NVIDIA CUDA. The different
modules of the library are:

– Formatting module (format.py): performs the operations mentioned above
on the dataframe ingested by CuDF. This enables the rest of the operations
described below.

– DFG retrieval / Paths filtering (dfg.py): discovers the frequency/perfor-
mance directly-follows graph on the dataframe. This enables paths filtering
on the dataframe.

– EFG retrieval / Temporal Profile (efg.py): discovers the eventually-follows
graphs or the temporal profile from the dataframe.

– Sampling (sampling.py): samples the dataframe based on the specified amount
of cases/events.

– Cases dataframe (cases df.py): retrieves the cases dataframe. This permits
the filtering on the number of events and on the throughput time.

https://github.com/Javert899/pm4pygpu
https://github.com/Javert899/pm4pygpu
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Table 1: Event logs used in the assessment, along with their number of events, cases, variants and
activities.

Log Events Cases Variants Activities

roadtraffic 2 1,122,940 300,740 231 11
roadtraffic 5 2,807,350 751,850 231 11
roadtraffic 10 5,614,700 1,503,700 231 11
roadtraffic 20 11,229,400 3,007,400 231 11

bpic2019 2 3,191,846 503,468 11,973 42
bpic2019 5 7,979,617 1,258,670 11,973 42
bpic2019 10 15,959,230 2,517,340 11,973 42

bpic2018 2 5,028,532 87,618 28,457 41
bpic2018 5 12,571,330 219,045 28,457 41
bpic2018 10 25,142,660 438,090 28,457 51

– Variants (variants.py): enables the retrieval of variants from the dataframe.
This permits variant filtering.

– Timestamp (timestamp.py): retrieves the timestamp values from a column
of the dataframe. This permits three different types of timestamp filtering
(events, cases contained, cases intersecting).

– Endpoints (start end activities.py): retrieves the start/end activities from
the dataframe. This permits filtering on the start and end activities.

– Attributes (attributes.py): retrieves the values of a string/numeric attribute.
This permits filtering on the values of a string/numeric attribute.

– Feature selection (feature selection.py): basilar feature extraction, keeping
for every provided numerical attribute the last value per case, and for each
provided string attribute its one-hot-encoding.

An example of usage of the PM4Py-GPU library, in which a Parquet log is
ingested, and the directly-follows graph is computed, is reported in the following
listing.

import cudf
from pm4pygpu import format , dfg
df = cudf . read parquet ( ’ r e c e i p t . parquet ’ )
df = format . apply ( df )
f r equency d fg = dfg . g e t f r e q u e n c y d f g ( df )

Listing 1.1: Example code of PM4Py-GPU.

4 Assessment

In this section, we want to compare PM4Py-GPU against other libraries/so-
lutions for process mining to evaluate mainstream operations’ execution time



6 A. Berti et al.

against significant amounts of data. The compared solutions include PM4Py-
GPU (described in this paper), PM4Py (CPU single-thread library for pro-
cess mining in Python; https://pm4py.fit.fraunhofer.de/), the PM4Py Dis-
tributed Engine (described in the assessment). All the solutions have been run
on the same machine (Threadripper 1920X, 128 GB of DDR4 RAM, NVIDIA
RTX 2080). The event logs of the assessment include the Road Traffic Fine
Management https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_
Management_Process/12683249, the BPI Challenge 2019 https://data.4tu.

nl/articles/dataset/BPI_Challenge_2019/12715853 and the BPI Chal-
lenge 2018 https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/

12688355 event logs. The cases of every one of these logs have been replicated 2,
5, and 10 times for the assessment (the variants and activities are unchanged).
Moreover, the smallest of these logs (Road Traffic Fine Management log) has
also been replicated 20 times. The information about the considered event logs
is reported in Table 1. In particular, the suffix ( 2, 5, 10) indicates the number
of replications of the cases of the log. The results of the different experiments
is reported in Table 2. The first experiment is on the importing time (PM4Py
vs. PM4Py-GPU; the other two software cannot be directly compared because
of more aggressive pre-processing). We can see that PM4Py-GPU is slower than
PM4Py in this setting (data in the GPU is stored in a way that facilitates par-
allelism). The second experiment is on the computation of the directly-follows
graph in the four different platforms. Here, PM4Py-GPU is incredibly respon-
sive The third experiment is on the computation of the variants in the different
platforms. Here, PM4Py-GPU and the PM4Py Distributed Engine perform both
well (PM4Py-GPU is faster to retrieve the variants in logs with a smaller amount
of variants).

Table 2: Comparison between the execution times of different tasks. The configurations analyzed
are: P4 (single-core PM4Py), P4G (PM4Py-GPU), P4D (PM4Py Distributed Engine). The tasks
analyzed are: importing the event log from a Parquet file, the computation of the DFG and the
computation of the variants. For the PM4Py-GPU (computing the DFG and variants), the speedup
in comparison to PM4Py is also reported.

Importing DFG Variants
Log P4 P4G P4 P4G P4D P4 P4G P4D

roadtraffic 2 0.166s 1.488s 0.335s 0.094s (3.6x) 0.252s 1.506s 0.029s (51.9x) 0.385s
roadtraffic 5 0.375s 1.691s 0.842s 0.098s (8.6x) 0.329s 3.463s 0.040s (86.6x) 0.903s
roadtraffic 10 0.788s 1.962s 1.564s 0.105s (14.9x) 0.583s 7.908s 0.055s (144x) 1.819s
roadtraffic 20 1.478s 2.495s 3.200s 0.113s (28.3x) 1.048s 17.896s 0.092s (195x) 3.380s

bpic2019 2 0.375s 1.759s 0.980s 0.115s (8.5x) 0.330s 3.444s 0.958s (3.6x) 0.794s
bpic2019 5 0.976s 2.312s 2.423s 0.156s (15.5x) 0.613s 8.821s 0.998s (8.9x) 1.407s
bpic2019 10 1.761s 3.156s 4.570s 0.213s (21.5x) 1.679s 19.958s 1.071s (18.6x) 4.314s

bpic2018 2 0.353s 1.846s 1.562s 0.162s (9.6x) 0.420s 6.066s 5.136s (1.2x) 0.488s
bpic2018 5 0.848s 2.463s 3.681s 0.214s (17.2x) 0.874s 14.286s 5.167s (2.8x) 0.973s
bpic2018 10 1.737s 3.470s 7.536s 0.306s (24.6x) 1.363s 29.728s 5.199s (5.7x) 1.457s

https://pm4py.fit.fraunhofer.de/
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853
https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853
https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/12688355
https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/12688355
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5 Related Work

Process Mining on Big Data Architectures: an integration between process
mining techniques and Apache Hadoop has been proposed in [3]. Apache Hadoop
does not work in-memory and requires the serialization of every step. Therefore,
technologies such as Apache Spark could be used for in-memory process mining3.
The drawback of Spark is the additional overhead due to the log distribution step,
which limits the performance benefits of the platform. Other platform such as
Apache Kafka have been used for processing of streams [5]. Application-tailored
engines have also been proposed. The “PM4Py Distributed engine” 4 has been
proposed as a multi-core and multi-node engine tailored for general-purpose pro-
cess mining with resource awareness. However, in contrast to other distributed
engines, it misses any failure-recovery option and therefore is not good for very
long lasting computations. The Process Query Language (PQL) is integrated
in the Celonis commercial process mining software https://www.celonis.com/

and provides high throughput for mainstream process mining computations in
the cloud.
Data/Process Mining on GPU: many popular data science algorithms have
been implemented on top of a GPU [1]. In particular, the training of machine
learning models, which involve tensor operations, can have huge speed-ups using
the GPU rather than the CPU. In [7] (LSTM neural networks) and [6] (con-
volutional neural networks), deep learning approaches are used for predictive
purposes. Some of the process mining algorithms have been implemented on top
of a GPU. In [4], the popular alpha miner algorithm is implemented on top of
GPU and compared against the CPU counterpart, showing significant gains. In
[2], the discovery of the paths in the log is performed on top of a GPU with a
big speedup in the experimental setting.

6 Conclusion

In this paper, we presented PM4Py-GPU, a high-performance library for process
mining in Python, which is based on the NVIDIA RAPIDS framework for GPU
computations. The experimental results against distributed open-source soft-
ware (PM4Py Distributed Engine) are very good, and the library seems suited
for process mining on a significant amount of data. However, an expensive GPU
is needed to make the library work, which could be a drawback for widespread
usage. We should also say that the number of process mining functionalities sup-
ported by the GPU-based library is limited, hence comparisons against open-
source/commercial software supporting a more comprehensive number of fea-
tures might be unfair.

3 https://www.pads.rwth-aachen.de/go/id/ezupn/lidx/1
4 https://www.pads.rwth-aachen.de/go/id/khbht

https://www.celonis.com/
https://www.pads.rwth-aachen.de/go/id/ezupn/lidx/1
https://www.pads.rwth-aachen.de/go/id/khbht
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