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Abstract. Process discovery is one of the most challenging tasks in process mining. Based on
event data, a process discovery approach generates a process model that captures the behavior
recorded in the data. The hybrid miner is a two-step process discovery approach that creates
a balance between the advantages of formal modeling and the necessity of remaining informal
for vague structures. In the first discovery step, an informal causal graph is constructed
based on direct succession dependencies between activities. In the second discovery step, the
hybrid miner tries to convert the discovered dependencies into formal constraints. For vague
structures where formal constraints cannot be justified, dependencies are depicted informally.
In this paper, we reduce the representational bias of the hybrid miner by exploiting causal
graph metrics to mine for long-term dependencies. Our evaluation shows that the proposed
approach leads to the discovery of more precise models.
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1 Introduction

Process mining is a family of techniques that can be applied to analyze and monitor systems based
on the events they produce. Process discovery is one of the main branches of process mining. Pro-
cess discovery techniques analyze event data, aiming at discovering a process model capturing the
behavior recorded in the data; the resulting process model illustrates how process activities are re-
lated to each other [6]. Most existing process discovery techniques produce formal models that have
executable semantics and are able to classify traces into fitting and non-fitting. Alternatively, most
commercial process mining tools use informal models that illustrate causal dependencies between
activities without providing executable semantics. Although formal models provide more power-
ful insights, commercial tools favor representing processes using informal models due to multiple
reasons. First of all, attempting to formally model complex structures results in complex models
that cannot be easily interpreted by users. Moreover, for most real-life processes there is no clear
correct classification of traces into fitting and non-fitting due to noise and infrequent behavior.
Trying to precisely model all behavior seen in an event log can lead to overfitting process models
that are not able to generalize well on unseen data. Finally, the discovery of formal models is very
time-consuming compared to the discovery of informal models. Commercial process mining tools
need to handle huge logs and interactively generate and update process models based on them.

The hybrid miner [7] combines the best of formal and informal modeling notations by discovering
hybrid Petri nets. A hybrid Petri net shows some causal dependencies in an informal way similar
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Fig. 1: Causal graph extended to include long-term dependencies.

to the models produced by commercial tools, and at the same time, it contains places that provide
formal semantics for other parts of the process. The hybrid miner is a two-step discovery approach.
In the first discovery step, causal metrics are computed based on direct succession dependencies
between activities, and a causal graph is generated based on these metrics. A causal graph consists
of nodes representing activities and two types of directed edges connecting nodes. Certain edges
represent strong causal dependencies and uncertain edges represent weak dependencies. In the
second discovery step, the hybrid miner converts the discovered certain edges into formal places
if there is enough evidence in the data justifying adding formal constraints. For vague structures
where formal constraints cannot be justified, causal relations are depicted in the final hybrid Petri
net as informal edges. Since uncertain edges represent weak dependencies, they are not used for
building places; they are added to the final Petri net as informal edges as well.

One of the main limitations of the hybrid miner is that it is not able to detect long-term de-
pendencies. The hybrid miner constructs the causal graph based on direct succession dependencies
between activities, preventing the discovery of simple structures with long-term dependencies. For
instance, let us consider a simple process of booking concert tickets. After selecting the number
of tickets, customers either select their seats (against additional fees) or confirm a random seat
allocation. Afterward, customers confirm their order by paying. Finally, based on the earlier deci-
sion, customers either directly receive their tickets with assigned seat numbers via email or receive
a confirmation code that they should use on the day of the concert to get their tickets. Figure 1
shows a causal graph discovered in the first step of the hybrid miner to model this process extended
with two additional edges modeling long-term dependencies (visualized through yellow arcs). The
causal graph shows dependencies between activities in an informal manner. The additional long-
term dependency edges cannot be discovered by the hybrid miner because certain edges are con-
structed based on direct succession metrics (select seats is never directly followed by send tickets
and confirm random seat selection is never directly followed by send confirmation code).

Certain edges are transformed into formal constraints in the second discovery step of the hybrid
miner as shown in Figure 2. The edges (confirm payment → send tickets) and (confirm payment →
send confirmation code) are transformed into the place (visualized through a circle) connecting
confirm payment with send tickets and send confirmation code. This place formally models a choice
between sending tickets and confirmation codes after the payment. Since this choice depends on
the earlier decision, two additional places are needed to capture this non-free-choice: the place con-
necting select seats with send tickets and the place connecting confirm random seat selection with
send confirmation code. This behavior cannot be modeled precisely by the hybrid miner because
these two places are generated based on the additional yellow edges we added to model long-term
dependencies. Without these places, the model would allow, for instance, for behavior where cus-
tomers select their seats and then receive a confirmation code for a random seat assignment.

In this paper, we propose an approach for extending the first discovery step of the hybrid miner
to detect long-term dependencies. The proposed approach keeps using direct succession metrics
for creating the initial causal graph, and it mines for long-term dependencies as a post-processing
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Fig. 2: (Hybrid) Petri net discovered based on Figure 1.

step. We define additional metrics based on eventually-follow relations between activities. We use
these metrics to detect and filter long-term dependencies, and we add certain edges based on them.
These certain edges are used in the second step for generating candidate places to formally capture
long-term dependencies. This helps reduce the representational bias of the hybrid miner.

The remainder of the paper is structured as follows. We present some preliminaries in Section 2.
In Section 3, we define an extended version of the causal graph miner that supports the detection
of long-term dependencies. We evaluate our approach in Section 4, and we discuss related work in
Section 5. Finally, we provide a short summary of the paper in Section 6.

2 Preliminaries

In this section, we address the preliminaries needed to understand the concepts we present in this
paper.

2.1 Event Log

In the field of process mining, data is often represented in the form of events. The term event refers
to the recording of an activity that happened during the execution of a process instance. Each event
contains attributes providing information about the executed activity. The term trace refers to a
sequence of events that represents the execution of a process instance. An event log is a collection
of events that record the execution of multiple instances of a particular process. For simplicity, we
abstract from these notations and define an event log as a multi-set of activity sequences.

Before providing any formal definitions, we introduce basic notations (based on [7]):
– B(X) denotes the set of all multi-sets over some set X. For example, M = [x1

2, x2] ∈ B(X) is a
multi-set over X = {x1, x2, x3} with |M | = 3.

– X∗ denotes the set of all sequences over some set X.
– For a sequence σ, σ(i) denotes the i-th element of the sequence and |σ| denotes the length
of the sequence. For example, ⟨x1, x2, x1⟩ ∈ X∗ is a sequence over X = {x1, x2, x3} with
σ(1) = σ(3) = x1, σ(2) = x2, and |σ| = 3.

Definition 1 (Event Log [7]). Let A be a set of activities. A trace σ ∈ A∗ is a sequence of
activities. An event log L ∈ B(A∗) is a multi-set of traces.

L1 = [⟨select number of tickets, select seats, confirm payment , send tickets⟩70 , ⟨select number
of tickets, confirm random seat selection, confirm payment , send confirmation code⟩30 ] is an ex-
ample of an event log that contains 100 traces and 400 events.

2.2 Causal Graph

A causal graph is a directed graph with nodes representing activities and edges representing causal
relations between activities. There are two types of edges: certain and uncertain. The edge type
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is based on the strength of the causal relation between the two activities connected by the edge.
Certain edges are used to represent strong causal relations; uncertain edges are used to represent
weak relations. Note that different metrics can be used to determine the strength of causal relations.

Definition 2 (Causal Graph [7]). A causal graph is a triple G = (A,RS ,RW ) where A is a set
of activities, RS ⊆ A×A is the set of certain edges, RW ⊆ A×A is the set of uncertain edges,
and RS ∩ RW = ∅.

In all examples in this paper, we abstract from uncertain edges because they represent weak
dependencies and they are not used for generating candidate places in the second discovery step;
We only visualize certain edges. Figure 1 shows an example causal graph.

2.3 Direct Dependency Metrics

There are many possible approaches for constructing a causal graph based on an event log. The
hybrid miner uses a variant of the approach used by the heuristic miner [6, 15]. In order to construct a
causal graph, we define a causality metric (Causα) for evaluating causal relations between activities
and adding edges accordingly. This metric is based on direct succession dependencies between
activities while taking concurrency and loops into account as well. In Definition 3, we define the
causality metric Causα.

Definition 3 (Direct Dependency Metrics [7]). Let L ∈ B(A∗) be an event log over a set of
activities A and let {a, b} ⊆ A.
– #(a, b, L) =

∑
σ∈L |{i ∈ {1, .., |σ| − 1} | σ(i) = a ∧ σ(i+ 1) = b}| counts the number of times a

is directly followed by b in L.

– #(a, ∗, L) =
∑

σ∈L |{i ∈ {1, .., |σ| − 1} | σ(i) = a}| counts the number of times a is directly fol-
lowed by any activity in L.

– #(∗, b, L) =
∑

σ∈L |{i ∈ {2, .., |σ|} | σ(i) = b}| counts the number of times b is directly preceded
by any activity in L.

– Rel1 (a, b, L) =
#(a, b, L) + #(a, b, L)

#(a, ∗, L) + #(∗, b, L)
evaluates the strength of the causal relation (a, b) relative

to the split and join behavior of activities a and b.

– Rel2 (a, b, L) =



#(a, b, L)−#(b, a, L)

#(a, b, L) + #(b, a, L) + 1
if #(a, b, L)−#(b, a, L) > 0

#(a, b, L)

#(a, b, L) + 1
if a = b

0 otherwise

evaluates the strength of the causal relation (a, b) taking into account concurrency and loops.

– Causα(a, b, L) = α · Rel1 (a, b, L) + (1− α) · Rel2 (a, b, L) is the weighted average of Rel1 (a, b, L)
and Rel2 (a, b, L) where α ∈ [0, 1].

The metrics Rel1 , Rel2 , and Causα all produce values between 0 and 1. Low values indicate
weak dependencies; high values indicate strong dependencies. The variable α ∈ [0, 1] sets the weight
of the relations Rel1 and Rel2 in Causα. Let us consider our example log L1 and the causal graph
shown in Figure 1. Both long-term dependency edges (yellow arcs) achieve a Causα score of 0
regardless of the value of α. Therefore, the hybrid miner is not able to discover these edges.
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Fig. 3: Three steps of the hybrid Miner.

2.4 Hybrid Miner

The hybrid miner is a two-step process discovery approach that constructs a hybrid Petri net based
on an input event log. The hybrid miner works according to the three steps shown in Figure 3.

First, the hybrid miner preprocesses the log by adding a unique start activity “start” and a
unique end activity “end” to all traces in order to help make the discovered models more under-
standable for users1. Moreover, the user sets a filtering threshold, and infrequent activities are
filtered out based on it. In the first discovery step, a causal graph is discovered based on the causal-
ity metric Causα defined in Definition 3. A parameter tRS

is used for setting a threshold for certain
edges. Similarly, another parameter tRW

is used for uncertain edges 2. An additional parameter is
used to set the value of the weight α. In Section 3, we will formally define an extended version of
the causal graph miner that detects long-term dependencies.

In the second discovery step, the hybrid miner transforms the discovered causal graph into a
hybrid Petri net. Candidate places are generated by combining certain edges, and they are evaluated
using a quality metric. A parameter teval is used for setting a threshold for the quality metric. Based
on this evaluation, some places are accepted and added to the hybrid Petri net while other places
are rejected. At the end of the second discovery step, uncertain edges as well as certain edges that
are not covered by any accepted places are added to the hybrid Petri net as informal edges. As the
second discovery step is beyond the scope of this paper, we refer to [7] for more details on hybrid
Petri nets and the second discovery step of the hybrid miner.

3 Detection of Long-Term Dependencies

In this section, we introduce an extended version of the causal graph miner; we extend the causal
graph miner to detect and filter long-term dependencies.

3.1 Quantifying Long-Term Dependencies

The causal graph miner constructs causal edges based on direct succession relations between ac-
tivities. In order to detect long-term dependencies, we also consider eventually-follow relations. In
Definition 4, we define outgoing and incoming dependency metrics based on both direct succession
relations and eventually-follow relations between activities. For a pair of activities (a, b), the Out-

1 In all examples in this paper, we assume that all traces in any event log start with the activity “start”
and end with the activity “end” without explicitly mentioning them.

2 For all examples and experiments in this paper, we use tRW = 1 to deactivate the detection of uncertain
edges because these edges are out of the scope of this paper
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going Direct Dependency ODD(a, b, L) is an estimation of the probability of executing b directly
after executing a. The Incoming Direct Dependency IDD(a, b, L) is an estimation of the probability
of executing a directly before executing b. The Outgoing Long-term Dependency OLD(a, b, L) is
an estimation of the probability of eventually executing b after executing a. The Incoming Long-
term Dependency ILD(a, b, L) is an estimation of the probability of eventually executing a before
executing b.

Definition 4 (Outgoing and Incoming Dependency Metrics). Let L ∈ B(A∗) be an event
log over a set of activities A and {a, b} ⊆ A.

– ODD(a, b, L) =
#(a, b, L)

#(a, ∗, L)
is the outgoing direct dependency score of (a, b) in L.

– IDD(a, b, L) =
#(a, b, L)

#(∗, b, L)
is the incoming direct dependency score of (a, b) in L.

– #̂(a, L) =
∣∣{σ ∈ L | ∃1≤i≤|σ| σ(i) = a}

∣∣ counts the number of traces in L where a occurs.

– #̂(a, b, L) =
∣∣{σ ∈ L | ∃1≤i≤j≤|σ| σ(i) = a ∧ σ(j) = b}

∣∣ counts the number of traces in L where
a is eventually followed by b.

– OLD(a, b, L) =
#̂(a, b, L)

#̂(a, L)
is the outgoing long-term dependency score of (a, b) in L.

– ILD(a, b, L) =
#̂(a, b, L)

#̂(b, L)
is the incoming long-term dependency score of (a, b) in L.

Note that the dependency metrics ODD , IDD , OLD , and ILD all produce values between 0 and
1. Low values indicate weak dependencies; high values indicate strong dependencies. For a weight
α ∈ [0, 1], we define the Long-Term Dependency LDα as the average of OLD and ILD while taking
into account concurrency and loops as well. Using higher values for the weight α means placing
more emphasis on the long-term split and join behavior of activities (i.e., it means focusing on the
outgoing and incoming long-term dependency scores); using lower values indicates placing more
emphasis on the detection of concurrency and loops.

Definition 5 (Long-Term Dependency). Let L ∈ B(A∗) be an event log over a set of activities
A, {a, b} ⊆ A, and α ∈ [0, 1]. We define the long-term dependency score (LDα) of (a, b) in L as
follows.

LDα(a, b, L) = α · ((OLD(a, b, L) + ILD(a, b, L)) / 2) + (1− α) ·max{0, #̂(a, b, L)− #̂(b, a, L)

#̂(a, b, L) + #̂(b, a, L)
}.

For the sake of simplicity, we define an event log L2 = [⟨a1, c, a2⟩, ⟨b1, c, b2⟩] with two
straightforward long-term dependencies (a1, a2) and (b1, b2), and we use this event log in the
reminder of the section as our running example. For any α ∈ [0, 1], both relations (a1, a2) and
(b1, b2) achieve a long-term dependency score (LDα) of 1.

3.2 Pruning Long-Term Dependencies

Adding all discovered long-term dependencies to the causal graph abundantly increases the number
of certain edges and, therefore, abundantly increases the number of candidate places. This has a
huge impact on the time performance of the hybrid miner. We can use a threshold for filtering
long-term dependencies based on the scores obtained by LDα; however, this is not sufficient. In our
running example, LDα achieves a score of 1 for the relations (start, c), (c, end), and (start, end).
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These relations are clearly not the type of long-term dependencies we are interested in because
they are implied by other dependencies. A hybrid Petri net modeling a free-choice between a1 and
b1 after start and another free-choice between a2 and b2 after c fixes the execution order of the
activities (start → c → end), and there is no need for additional places for modeling the long-term
dependencies. Adding additional certain edges to the causal graph for such long-term dependencies
leads to additional time costs without helping improve the quality of the final models. Therefore,
we propose further reduction mechanisms to keep only “interesting” long-term dependencies.

We define an extended version of the causal graph miner that mines for long-term dependencies.
Long-term dependency relations between activities are evaluated based on the scores obtained by
LDα, and they are then filtered based on the metrics defined in Definition 4. We use a parameter
tLD to set a minimum threshold for LDα. For the weight α, we use the same parameter used to
set the weight α for Causα. We recommend using high values for tLD in order to avoid obtaining
“fake” long-term dependencies resulting from loops, noise, or concurrency. We are often interested
in long-term dependency relations that achieve high scores for LDα.

Definition 6 (Extended Causal Graph Miner). Let L ∈ B(A∗) be an event log over a set of ac-
tivities A, α ∈ [0, 1], tRS

∈ [0, 1], tRW
∈ [0, 1], and tLD ∈ [0, 1]. A causal graph G = (A,RS ,RW ,RLD)

is discovered for L as follows:
– RDD = {(a, b) ∈ A×A | Causα(a, b, L) ≥ tRS } is the set of direct dependency certain edges.
– RLD = {(a, b) ∈ A×A | a ̸= b ∧ (a, b) /∈ RDD ∧ LDα(a, b, L) ≥ tLD ∧

∀x∈A\{a,b}OLD(a, b, L) > OLD(a, x, L) ·OLD(x, b, L) ∧
∀x∈A\{a,b}ILD(a, b, L) > ILD(a, x, L) · ILD(x, b, L) ∧

OLD(a, b, L) >

∑
x∈A\{a} ODD(a, x, L) ·OLD(x, b, L)∑

x∈A\{a} ODD(a, x, L)
∧

ILD(a, b, L) >

∑
x∈A\{b} ILD(a, x, L) · IDD(x, b, L)∑

x∈A\{b} IDD(x, b, L)
}

is the set of long-term dependency edges.
– RS = RDD ∪ RLD is the set of all certain edges.
– RW = {(a, b) ∈ A×A | Causα(a, b, L) ≥ tRW ∧ (a, b) /∈ RS} is the set of uncertain edges.

3.3 Example Application

In this section, we apply the extended causal graph miner (Definition 6) to our running example in
order to investigate the seven conditions used to filter long-term dependencies. Moreover, we apply
the approach to another log that covers more advanced structures.

We apply the extended causal graph miner to a the event log L2 = [⟨a1, c, a2⟩, ⟨b1, c, b2⟩]
using the parameters tRS = tLD = 0.3 and α = 0.5. The discovered causal graph is shown in Fig-
ure 4a. The certain edges discovered based on long-term dependencies are visualized using yellow
arcs. The causal graph is annotated with outgoing and incoming dependency scores; i.e., long-term
dependency edges (RLD) are annotated with OLD and ILD scores, and other certain edges (RDD)
are annotated with ODD and IDD scores. We use this example to explain the seven conditions
that a causal relation must fulfill in order to be accepted as a long-term dependency (i.e., the seven
filters used for constructing RLD in Definition 6):
– Self-loops are filtered out. We accept a distance of 0 when computing the eventually-follow score
(Definition 4); i.e., each activity is always eventually followed by itself, resulting in a self-loop.

– The second filter ensures avoiding duplicate certain edges. For example, no long-term dependency
edge can be discovered for (a1, c) because a certain edges is discovered for (a1, c) based on direct
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(a) Causal graph discovered for L2. (b) Causal graph discovered for L3.

Fig. 4: Causal graphs discovered using the extended causal graph miner (Definition 6).

succession dependencies.
– The parameter tLD is used to set a minimum threshold for LDα.
– The fourth and fifth filters are based on the idea of filtering out a long-term dependency relation
if it is covered by other two relations. Outgoing long-term dependency scores are used in the
fourth filter; incoming long-term dependency scores are used in the fifth filter. For example, the
long-term dependency relation (start, end) can be filtered out based on the fourth filter be-
cause OLD(start, end, L2) = 1 ≯ 1 · 1 = OLD(start, c, L2) ·OLD(c, end, L2). All three OLD
scores have the value 1 because in all traces start is eventually followed by both c and end, and
c is eventually followed by end.

– The last two filters exploit both direct succession dependencies and long-term dependencies. Out-
going dependency scores are used in the sixth filter; incoming dependency scores are used in the
seventh filter. The idea is to filter out a long-term dependency if the relation can be covered
by the direct neighbors of the source (sixth filter) or by the direct neighbors of the target (sev-
enth filter). For example, the long-term dependency relation (start, c) can be filtered out based
on the sixth filter. start is directly followed by a1 with a probability of 0.5 and is directly fol-
lowed by b1 with a probability of 0.5 (i.e., ODD(start, a1, L2) = ODD(start, b1, L2) = 0.5).
We do not need to consider further nodes as a1 and b1 are the only direct neighbors of
the source start (i.e., other nodes achieve an ODD score of 0). Both a1 and b1 are always
eventually followed by c (i.e., OLD(a1, c, L2) = OLD(b1, c, L2) = 1). Therefore, we obtain:
OLD(start, c, L2) = 1 ≯ 1 = (0.5 · 1 + 0.5 · 1)/(0.5 + 0.5).

A long-term dependency edge was added to the causal graph to represent the causal relation
(a1, a2) because this relation fulfills all seven conditions:
– a1 ̸= a2.
– (a1, a2) /∈ RDD .
– LDα(a1, a2, L) = 1 ≥ 0.3 = tLD .
– OLD(a1, a2, L) = 1 > OLD(a1, x, L) ·OLD(x, a2, L) for all x ∈ A \ {a1, a2}.
– ILD(a1, a2, L) = 1 > ILD(a1, x, L) · ILD(x, a2, L) for all x ∈ A \ {a1, a2}.

– OLD(a1, a2, L) = 1 > 0.5 =
1 · 0.5
1

=
ODD(a1, c, L) ·OLD(c, a2, L)

ODD(a1, c, L)
.

– ILD(a1, a2, L) = 1 > 0.5 =
0.5 · 1
1

=
ILD(a1, c, L) · IDD(c, a2, L)

IDD(c, a2, L)
.

In order to test our approach on more complex long-term dependencies, we extend our run-
ning example to include loop, choice, and concurrency structures. We define an event log L3 that
consists of the following traces: ⟨a, c1, c2, c, d, d, a1, a2⟩, ⟨a, c2, c1, c, d, a2, a1⟩, ⟨b, c2, c1, c, d, d, b3⟩,
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Table 1: Time results of the evaluation of the parameter tLD . We use t0.5 (resp. t0.7, t0.9, and t1.1)
to denote the results obtained using tLD = 0.5 (resp. 0.7, 0.9, and 1.1). We highlight high time
values (higher than 5 minutes) in red and moderate time values (between 1 minute and 5 minutes)
in yellow.

Log
|RLD | #Places time (seconds)

t0.5 t0.7 t0.9 t1.1 t0.5 t0.7 t0.9 t1.1 t0.5 t0.7 t0.9 t1.1
BPI2011 6695 1378 37 0 123 126 100 68 1697.03 191.62 31.25 24.96
BPI2012 12 9 4 0 20 19 18 15 5.88 6.02 6.79 6.06
BPI2014 15 3 0 0 8 8 8 8 42.41 41.54 43.97 43.36
BPI2015 4508 2194 239 0 616 687 391 165 167.73 161.41 49.95 18.36
BPI2016 2767 575 17 0 22 25 22 10 188.23 150.41 39.63 9.62
BPI2017 10 3 0 0 20 20 20 20 12.20 8.02 8.15 8.14

⟨b, c1, c2, c, d, b3⟩, ⟨b, c2, c1, c, d, b2⟩, ⟨b, c1, c2, c, d, b2⟩, ⟨b, c1, c2, c, d, b1, e, f, f, g, b2⟩, and ⟨b, c2, c1, c,
d, d, d, b1, e, g, b2⟩. More complex long-term dependencies can be identified in this log. The log con-
tains a long-term concurrency relation between a1 and a2 after a. Moreover, there is a long-term
choice between the activities b2 and b3 after b. In case b2 is selected, a sequence of activities starting
with b1 can be executed before b2.

Figure 4b shows the causal graph discovered for L3 using the parameters tLD = α = 0.5 and
tRS

= 0.3. The long-term concurrency relation between a1 and a2 after a is captured by the long-
term dependency edges (a, a1) and (a, a2). The long-term choice between the activities b2 and
b3 after b is captured by the long-term dependency edges (b, b2) and (b, b3). An additional long-
term dependency edge (b, b1) is discovered for representing the case where an optional sequence of
activities starting with b1 is executed after b.

4 Evaluation

In this section, we evaluate the extended causal graph miner based on real-life event logs3. We
evaluate the effect of changing the value of the parameter tLD on the time performance of the
hybrid miner (Section 4.1) and the quality of the discovered models (Section 4.2).

4.1 Time Performance

In this section, we use the same six BPI Challenge data sets [8, 9, 10, 11, 2, 12] used to evaluate the
initial version of the hybrid miner in [7]. We use the parameters tRS

= w = 0.5. For the long-term
dependency threshold (tLD), we test the values 0.5, 0.7, 0.9, and 1.1 (tLD = 1.1 means deactivating
the detection of long-term dependencies). We use the plugin “Extended Hybrid Petri Net Miner”
in ProM [13] to discover hybrid Petri nets based on the discovered causal graphs. The parameter
teval = 0.6 is used in the second discovery step.

The results of the evaluation are shown in Table 1. For each case, we report the number of
discovered long-term dependency edges in the first discovery step, the number of discovered places
in the second discovery step, and the time needed to discover the models. The results show that, in
general, decreasing the value of tLD increases the time required to discover the models. For instance,

3 A new plugin “Extended Causal Graph Miner” has been implemented in ProM [13] to support the
approach introduced in this paper.
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(a) Fitness. (b) Precision.

Fig. 5: Conformance checking results of the evaluation of the parameter tLD .

decreasing the value of tLD from 0.9 to 0.7 for BPI2016 increased the time from 39.63 seconds to
150.41 seconds. This behavior was expected because adding more long-term dependency edges leads
to the generation of more places in the second discovery step, and the evaluation of these places is
a time-consuming step. However, we observe that increasing the number of long-term dependency
edges does not necessarily mean increasing the number of places in the final hybrid Petri net. For
example, decreasing the value of tLD from 0.7 to 0.5 for BPI2011 increased the number of long-
term dependency edges from 1378 to 6695, but it decreased the number of places from 126 to 123.
This might be due to the replacement of a group of places by a larger place covering all of their
underlying dependencies.

We observe that many long-term dependencies are not transformed into places in the second
discovery step. This behavior was expected as the core idea of the hybrid miner is to create models
with both formal and informal parts. For instance, let us consider the log BPI2014. Decreasing the
value of tLD from 0.9 to 0.5 generated 15 long-term dependency edges, but no places are added in
the second discovery step based on them.

4.2 Qualitative Evaluation

We evaluated the quality of the discovered hybrid Petri nets in Section 4.1 by applying conformance
checking techniques4[1]. We were not able to get conformance checking results for many of the
models due to out-of-memory exceptions. Therefore, we repeat the experiment using the same
settings but after preprocessing the event logs by filtering them. For BPI2016, we filter out activities
that are present in less than 50% of traces; for BPI2017, we filer out trace variants that cover less
than 1% of traces; for the other logs (BPI2011, BPI2012, BPI2014, and BPI2015), we filter out
trace variants that have an absolute frequency of 1.

We omit the time results of the second experiment because all models were discovered in less than
a second. The conformance checking results are shown in Figure 5. For BPI2014 and BPI2016, no
places were discovered based on long-term dependencies, and the quality of the discovered models
did not change, therefore. For the other four logs (BPI2011, BPI2012, BPI2015, and BPI2017),
decreasing the value of tLD improved the precision of the discovered models. For BPI2011, enabling
the detection of long-term dependencies increased the precision from 0.184 to 0.230 without affecting
the fitness. However, we observe a decrease in fitness after decreasing tLD for other cases. For
instance, decreasing the value of tLD from 0.9 to 0.7 for BPI2017 decreased the fitness from 0.962

4 In order to apply conformance checking techniques, hybrid Petri nets are transformed into standard Petri
nets by simply removing all informal arcs.
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to 0.951 and increased the precision from 0.277 to 0.321. This behavior was expected because
detecting long-term dependencies leads to the generation of additional places, and adding more
places often lowers the fitness of the model as more traces become non-fitting.

Summary. The time performance evaluation (Section 4.1) shows that the detection of long-term
dependencies generates additional time costs. The qualitative evaluation (Section 4.2) shows that
detecting long-term dependencies improves the precision of the models, but it can reduce the fitness
as more places are discovered. We assess these differences in time and fitness to be acceptable as the
goal of detecting long-term dependencies is to reduce the representational bias of the hybrid miner
and produce more precise models. Based on our evaluation, we recommend using high values for
the long-term dependency parameter (tLD) in order to avoid high time costs and achieve a trade-off
between fitness, precision, and simplicity.

5 Related Work

In [6], van der Aalst presented a wide range of process discovery approaches. The heuristic miner
[6, 15] is a two-step discovery approach that produces an informal dependency graph in the first
discovery step, and it uses this informal model to generate a formal causal net in the second discovery
step. The causal graph created by the hybrid miner is inspired by the first discovery step of the
heuristic miner. The idea of combining formal and informal models in process discovery and the
notation of hybrid Petri nets were first introduced in [7]. The initial hybrid miner [7] was inspired by
the idea of modeling vagueness suggested in [3, 4]. In [5, 17], other types of hybrid process models
are defined by combined declarative and imperative modeling notations.

In this paper, we introduce an approach for improving causal graphs to detect and filter long-
term dependencies. The discovery approach introduced in [14] also mines for long-term dependencies
as a post-processing step. However, the approach in [14] is restricted to simple long-term dependen-
cies as it assumes an equal frequency for any pair of activities of a long-term dependency relation.
Our approach allows for the detection of more complex long-term dependency structures. In [16],
another approach for detecting non-free-choice constructs is proposed. The main difference between
this approach and our approach is that we mine for long-term dependencies in the first discovery
step; we generate a causal graph that only contains the filtered set of long-term dependencies. In
[16], redundant implicit dependencies are dynamically eliminated while generating the places of the
final Petri net.

6 Conclusion

Process discovery is one of the main branches of process mining. Based on an event log, a process
discovery approach generates a process model that captures the behavior recorded in the log. The
hybrid miner is a two-step process discovery approach that combines formal Petri nets with an
informal representation of vague structures. In the first discovery step, an informal causal graph is
discovered, and this graph is used to generate candidate places in the second discovery step. In this
paper, we introduced an extended version of the first discovery step. The new causal graph discovery
approach enables the detection of long-term dependencies. This helps to reduce the representational
bias of the hybrid miner as the additional long-term dependencies are used to generate candidate
places in the second discovery step. We implemented the extended version of the causal graph miner
in ProM [13] and we evaluated it using real-life event logs.
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We propose multiple ideas for future work. Although enabling the detection of long-term de-
pendencies reduces the representational bias of the hybrid miner, it is still not able to model some
simple structures. For instance, the hybrid miner is not able to model any structures that require
using silent or duplicate transitions. Another important topic for future work is to investigate the
time performance of the hybrid miner and to propose solutions for speeding up the generation and
evaluation of candidate place in the second discovery step. We also suggest tailoring process con-
formance checking techniques to support hybrid Petri nets and defining new metrics for evaluating
the quality of hybrid Petri nets. Finally, the idea of combining formal and informal models is not
restricted to the discovery of hybrid Petri nets. This idea can be applied to other types of process
models to discover new types of hybrid models.
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