
Explainable Concept Drift in Process Mining

Jan Niklas Adamsa,∗, Sebastiaan J. van Zelstb,a, Thomas Roseb,c, Wil M.P. van der Aalsta,d,b

aProcess and Data Science, RWTH Aachen University, Ahornstraße 55, Aachen, 52074, North Rhine-Westphalia, Germany
bFraunhofer Institute for Applied Information Technology, Konrad-Adenauer-Straße, Sankt Augustin, Bonn, 53757, North

Rhine-Westphalia, Germany
cInformation Systems and Databases, RWTH Aachen University, Ahornstraße 55, Aachen, 52074, North

Rhine-Westphalia, Germany
dCelonis SE, Theresienstraße 6, Munich, 80333, Bavaria, Germany

Abstract

The execution of processes leaves trails of event data in information systems. These event data are analyzed
to generate insights and improvements for the underlying process. However, companies do not execute
these processes in a vacuum. The fast pace of technological development, constantly changing market
environments, and fast consumer responses expose companies to high levels of uncertainty. This uncertainty
often manifests itself in significant changes in the executed processes. Such significant changes are called
concept drifts. Transparency about concept drifts is crucial to respond quickly and adequately, limiting
the potentially negative impact of such drifts. Three types of knowledge are of interest to a process owner:
When did a drift occur, what happened, and why did it happen. This paper introduces a framework to
extract concept drifts and their potential root causes from event data. We extract time series describing
process measures, detect concept drifts, and test these drifts for correlation. This framework generalizes
existing work such that object-centric event data with multiple case notions, non-linear relationships, and an
arbitrary number of process measures are supported. We provide an extendable implementation and evaluate
our framework concerning the sensitivity of the time series construction and scalability of cause–effect testing.
Furthermore, we provide a case study uncovering an explainable concept drift.

Keywords: Process Mining, Concept Drift, Cause-Effect, Object-Centric Process Mining, Explainability

1 Introduction

Throughout the past decades, information systems
have become an elementary component supporting
various businesses. Executions of business processes
[1] leave traces of event data in such information sys-
tems, describing the conducted actions. These data

∗Corresponding author
Email addresses: niklas.adams@pads.rwth-aachen.de

(Jan Niklas Adams), s.j.v.zelst@pads.rwth-aachen.de
(Sebastiaan J. van Zelst), thomas.rose@fit.fraunhofer.de
(Thomas Rose), wvdaalst@pads.rwth-aachen.de (Wil M.P.
van der Aalst)

can be analyzed to generate insights and improve-
ments for the supported processes. The techniques
dealing with these types of problems are summa-
rized under the term process mining [2]. Applying
such techniques helps businesses increasing efficiency
through understand their processes and is, therefore,
a fundamental part of every competitive company.

Different process mining techniques have different
objectives of knowledge discovery. Process discovery,
for example, delivers a visual representation of the
possible executions paths within a process [3]. Con-
formance checking techniques allow a user to uncover
deviations of process executions and measure the cor-

Preprint submitted to Information Systems January 25, 2023



respondence of a process to the recorded event data
[4]. Other techniques aim to identify and solve prob-
lems within a process, e.g., by simulation [5] or by
predicting problematic process executions [6].
Concept drift is one process-related problem that

has drawn attention over the past years [7, 8, 9]. A
concept drift is a significant change in a process over
time. The occurrence of a concept drift may lead to
several problems or inefficiencies. However, concept
drifts are challenging to detect and analyze because
the process is already dynamic, exhibiting stochas-
tic behavior. In the literature, three main questions
about problems related to concept drifts are of impor-
tance: (1)When did the concept drift occur? If a con-
cept drift happens in the control-flow of the process,
i.e., the ordering of executed actions, process discov-
ery, conformance checking, and predictive monitoring
techniques have to be adjusted accordingly [10]. (2)
What happened and how did it happen? Significant
changes need to be understood by the process owner
to react accordingly [11]. (3)Why did it happen? Sig-
nificant changes might be caused by other changes in
the process [12]. Uncovering potential cause-effects
helps uncover problems and improve the process.
These three questions are the main research lines

related to concept drift in process mining. Differ-
ent works aim to solve one or multiple of these ques-
tions. In this work, we focus on dealing with the
third research question. However, we can also gener-
ate insights for the first two research questions as a
byproduct of our work.

RQ1 Detection The existence of a concept drift
needs to be detected, and its change point needs
to be located as precisely as possible.

RQ2 Characterisation The nature of the concept
drift needs to be described as accurately and ex-
tensively as possible.

RQ3 Explanation Potential cause-effects of a con-
cept drift contained within the event data need
to be uncovered.

Several techniques have addressed RQ1 over the last
years, with a focus on solving this problem for the
control-flow of a process [13]. Generally, these tech-
niques first calculate some numeric representation of

the control-flow and, subsequently, use one of many
change point detection algorithms [14] such as hy-
pothesis testing, cost-based segmentation techniques,
or visual inspection. Different techniques have been
proposed to answer RQ2, both in an interactive and
fully automated manner. Yeshchenko et al. [9] pro-
vide an extensive visual analytics framework for hu-
mans to explore concept drifts and understand the
dynamics and changes behind them. Ostovar et al.
[15] uncover change patterns of a concept drift by
testing the data against predefined business process
change patterns. These are given as textual output
to the user. In recent work, we propose a general
framework to answer RQ3 [12]. In this paper, we
generalize and extend our previous work to address
several challenges encountered in real-life information
systems.

The first of these challenges is the so-called “object-
centricity” of information systems: Traditional pro-
cess mining techniques assume the existence of a sin-
gle case notion and that each recorded event is asso-
ciated with exactly one object of the case notion. In
reality, an information system, e.g., an ERP system,
consists of many case notions, e.g., different docu-
ment types, and events may be related to multiple
objects of different case notions [16]. To apply tradi-
tional process mining techniques, these object-centric
event data have to be flattened first, forcing them into
traditional event log format[17]. Flattening is related
to certain problems (cf. Subsection 4.1) and provides
misleading insights. Therefore, process mining tech-
niques have to be adapted into the object-centric set-
ting to provide accurate insights. Recently, academia
and industry have picked up this challenge. On the
one hand, many techniques have been proposed to
translate traditional process mining problems to the
object-centric setting [18, 19, 20, 21, 22, 23, 24]. On
the other hand, industry leaders provide initial sup-
port of object-centric event data, e.g., Celonis by sup-
porting a secondary case identifier, or Mehrwerk Pro-
cess Mining by supporting multiple case identifiers.

The second challenge is non-linear cause-effect re-
lationships contained in information systems. The
investigation of cause-effect relationships behind con-
cept drifts cannot be limited to linear relationships.
Different dynamics in processes, e.g., workload-

2



productivity relationships of resources [25], may show
non-linear behavior.
The third challenge is the absence of domain

knowledge. One cannot always assume that a ba-
sic knowledge or suspicion of a candidate perspective
for a concept drift and its potential cause is present.
In our original framework, the user has to choose one
perspective to be investigated for concept drifts and
another perspective to be investigated for potential
causes. However, an approach stripped from its ne-
cessity for domain knowledge would be more gener-
ally applicable.
Therefore, the work presented in this paper is a

generalization and extension of our original frame-
work [12] in the following ways: a) Our revised frame-
work supports event data with multiple case notions.
b) We support the detection of non-linear relation-
ships. c) No choice about a primary and secondary
perspective has to be made. The user can choose
arbitrarily many features.
Our new framework is depicted in Figure 1. The

event log is first segmented into subsequent windows.
For each of these windows, we calculate multiple nu-
merical features subject to the user’s choice. These
values are concatenated into a time series for each
feature. Subsequently, we detect concept drifts in
these time series. For each pair of features and each
pair of concept drifts of the two series, we test for
Granger causality [26] given the time difference be-
tween drifts. Non-linear relationships are covered by
applying a kernel function. Granger-causal concept
drift pairs are given to the user as explainable concept
drifts.
We answer RQ1 by detecting concept drifts us-

ing existing concept drift detection techniques. The
time series provide a visualization to explore the na-
ture of the concept drift, helping in answering RQ2.
The correlated concept drifts give explanations and
potential root causes for drifts, answering RQ3.

The remainder of this paper is structured as fol-
lows: Section 2 introduces related work on concept
drift in process mining. We formalize object-centric
event data in Section 3. Extracting time series from
object-centric event logs is introduced in Section 4.
We give a general definition for concept drift de-
tection in Section 5. Section 6 introduces Granger

causality for time series and testing for non-linear
relationships. Our general framework and a short
overview of the implementation is given in Section 7.
In Section 8, the framework is, first, evaluated for
sensitivity and scalability and, second, applied to a
real-life event log uncovering an explainable concept
drift in a case study. We conclude this paper in Sec-
tion 9.

2 Related Work

Over the past years, many techniques dealing with
problems related to concept drifts in processes have
been introduced. This section discusses the scope of
these approaches compared to our framework. Fur-
thermore, we discuss the differentiation of this work
from our previous work [12], for which this work con-
stitutes an extension and generalization. Table 1 de-
picts an overview of the scope of papers on concept
drift in process mining.

Most papers deal with the detection of the drift,
i.e., pinpointing the occurrence of the drift in time.
[13] provides an extensive overview of the techniques
and the feature encodings and algorithms they use.
Characterizing refers to describing the drift’s nature,
i.e., the underlying change, e.g., the decrease of an
indicator or the removal of an activity. Most tech-
niques use either visual analytics [9] or automatically
detect change patterns [15]. Since our technique pro-
vides a time series, it can be used as a starting point
to visually characterize the concept drift even though
we do not explicitly aim to provide a characterization
technique. The explanation of a concept drift refers
to finding potential reasons, e.g., pre-occurring, cor-
related concept drifts, for a concept drift within the
event data itself. This problem was, so far, only tack-
led in [12]. However, our framework introduced in
[12] only allows for the detection of linear relation-
ships. Furthermore, two features have to be explicitly
chosen. In this work, we generalize this framework
by allowing for the testing of non-linear relationships.
Furthermore, we allow for an arbitrary number of fea-
tures of interest to be chosen and automatically test
all combinations. At last, we generalize the frame-
work such that object-centric event data can be used
as an input. Object-centric event data is a general

3



Figure 1: General Framework for deriving explainable concept drifts from an event log. First, multiple time series are extracted
based on a set of features. These time series are investigated for concept drifts. We test for linear and non-linear relationships
between each pair of concept drifts between time series.

Table 1: Overview of the scope of related approaches for concept drift detection in process mining. The framework proposed
in this paper is the first technique to cover object-centric event data. A plethora of techniques deal with detecting and
characterizing drifts. This paper extends the work of [12] by also considering non-linear relationships and object-centric event
data with multiple case notions.

Object-Centric
Detect. Charact.

Explanation
Event Data Linear Non-Linear

[27], [7], [8], [28], [29], [30], [31],
✓

[32], [33], [34], [35], [36], [37]
[15], [38], [39], [11], [9], [40] ✓ ✓
[12] ✓ (✓) ✓

This work ✓ ✓ (✓) ✓ ✓

form of event data with multiple case notions for a
single event [18].

Traditional “flat” event data consists of a set of
event sequences where each event belongs to exactly
one event sequence, and each sequence is of the same
type. Each sequence is associated to an object of
that type, e.g., a specific customer or a manufactur-
ing item. In contrast, object-centric event data gen-
eralize the classical event log notion and allow for
events that refer to any number of objects of differ-
ent types. Therefore, events can be shared between
the sequences of different objects, expressing interac-
tions. The new OCEL standard [41] provides a data
format for such event data.

The problem of applying traditional process mining
techniques on such a general form of event data has
been formulated in [17]. Object-centric event data
can only be used by traditional process mining tech-
niques when first flattening them. However, flatten-
ing leads to altered event data and, therefore, mis-

leading results (cf. Subsection 4.1). Therefore, pro-
cess mining techniques need to be adapted to object-
centric event data. Adams et al. [23] propose to gen-
eralize the process mining concepts cases and variants
from sequences to graphs, allowing for accurate sup-
port of object-centric event data. The graph-based
approach is, also, supported by other authors encoun-
tering problems of object-centricity [19, 22, 20]. We
generalize the framework proposed in [12] such that
object-centric event data can also be processed by
using the concept of process executions, i.e., object-
centric cases1. This is the first work dealing with
concept drift in object-centric event data to the best
of our knowledge.

Inferring causality between time series has been an

1Please note, traditional event data is a specific case of
object-centric event data. Therefore, our approach is backward
compatible.

4



important task in many application domains such as
medicine [42], finance [43] or social sciences [44]. As
the basic definition of Granger causality [26] only al-
lows for the testing of linear relationships between
univariate time series, many adaptations to different
needs such as multivariate time series [45] or non-
linear relationships [46] have been proposed. The
extensions to non-linear relationships are of interest
to our framework. In essence, solutions incorporat-
ing non-linear relationships [47] employ the kernel
trick [48]. Instead of projecting the data into a high-
dimensional feature space, the data is transformed
within the feature space using a kernel function. Af-
ter applying a suitable kernel function, the relation-
ship can be detected by linear classifiers. Granger
causality for non-linear relationships employs kernel
functions by applying a non-linear transformation
to one time series and testing for standard Granger
causality. Employed kernel functions are either ex-
plicitly chosen [49] or learned [47]. In our framework,
we employ a general case of choosing a kernel func-
tion, leaving the opportunity to learn a kernel func-
tion if necessary.

3 Event Data

First, we introduce some notations used through-
out this paper. A sequence σ : {1, . . . , n} → X as-
signs positions to elements of a set X. We denote a
sequence σ ∈ X∗ with σ = ⟨x1, . . . , xn⟩ for elements
x1, . . . , xn ∈ X. A sequence σ = ⟨x1, . . . , xn⟩ is of
length len(σ) = n. We denote subsequences with
σ(l, k) = ⟨xj , . . . , xk⟩ for l < k. The notation x ∈ σ
is overloaded to express x ∈ range(σ).

Event data describe the executions of a process as
a collection of events. E is the universe of events.
Each event corresponds to the execution of a single
action in a process, i.e., an activity. The activity is
an attribute of the event. Additionally to the ac-
tivity attribute, an event can contain many differ-
ent attributes, such as cost or other associated data.
The universe of attributes is denoted with A. The
universe of attribute values is denoted with V. Each
event has a timestamp describing the execution time.
The universe of timestamps is the positive real num-

bers R+
0 . The universe of time intervals is denoted

by T I = {(tstart, tend) ∈ R+
0 × R+

0 | tend > tstart}.
Events are associated with cases. A case describes

a process instantiation. Traditionally, each event is
associated with exactly one case [2]. For many pro-
cesses, this is a valid assumption. Imagine an in-
surance claim handling process: Each claim is a new
instantiation of the process, i.e., a new case. No event
is associated with multiple claims since each claim is
handled separately. However, this assumption does
not hold for all types of event data generated by pro-
cesses: There might not always be one clear case
identifier for each event. Consider the example of
an order handling process depicted in Table 2: We
assume that the information system records the pro-
cess of ordering items at an online shop. Orders of
multiple items are placed. These items are collected,
packed together, and shipped together. There are
events with just a single case identifier, e.g., an item
being picked (cf. e2 in Table 2). However, there are
also events with multiple case identifiers, e.g., two
items that are shipped together (cf. e9 in Table 2).

In this general setting of event data, we refer to
case identifiers as objects. O denotes the universe
of all objects. For traditional, single-case event logs,
such objects would be homogeneous, i.e., all objects
would be of the same type. In the example of the in-
surance claim handling process, each object would be
of the type insurance claim. However, when looking
at the example of the order handling process, this as-
sumption is also invalid: Objects can be of different
types, e.g., of type order or type item. OT denotes
the universe of all object types. Every object has
one type πtype : O → OT . Furthermore, objects can
have attributes. In summary, such event data de-
scribe multiple instances of different processes that
overlap with non-trivial relationships.

An event log is a set of events related to objects and
attributes. Each object is associated with a sequence
of events. This general form of an event log is known
as an object-centric event log2.

Definition 1 (Event Log) Let A ⊆ A be a set of

2www.ocel-standard.org

5



event attributes, V ⊆ V be the set of possible attribute
values and T ⊆ T be a set of timestamps. An event
log L = (E,O, πtime , trace, πattr ) is a tuple of

• a set of event identifiers E ⊆ E,

• a set of objects O ⊆ O,

• a timestamp mapping πtime : E → T ,

• a sequence mapping trace : O → E∗ such
that ∀⟨e1,...,en⟩∈range(trace) ∀1≤i<n πtime(ei) <
πtime(ei+1)

• a mapping of attributes to attribute values for
events and objects πattr : E×A ↛ V ∪O×A ↛ V

An example of such an event log is depicted in Ta-
ble 2. Each row corresponds to an event. Events can
be associated with objects of two types: orders and
items. For example, event e1 is associated to object
o1 of type order and objects i1, i2 of type item. Fur-
thermore, each event has an activity, timestamp, and
an additional attribute, the associated cost. Each
object is associated to the sequence of events of its
appearances, e.g., trace(i1) = ⟨e1, e3, e5, e12, e13⟩ or
trace(o3) = ⟨e14, e16, e17⟩. Using multiple objects for
events enables an event log to express interactions
and dependencies between event sequences of differ-
ent objects.

4 Time Series Extraction

This section introduces a general approach for
transforming an object-centric event log into a time
series. This approach is split into three steps: First,
process executions are extracted from the event log.
Second, the event log is segmented into windows of
timeframes. Third, a numerical feature is calculated
for each window.

4.1 Process Execution Extraction

Traditionally, extracting process executions (also:
cases or process instances) from an event log is triv-
ial: Each event belongs to exactly one sequence,
given by an identifier. The sequence of each iden-
tifier is considered to be one process execution. How-
ever, this is not possible in object-centric event data:

events may belong to multiple sequences. Therefore,
process executions consist of multiple, connected se-
quences forming an event graph rather than an event
sequence. We extend the process execution definition
typically used in process mining to event graphs of
connected objects. To extract connected objects, we
use the concept of an object graph, describing the co-
occurrence relationships between objects in the event
log.

Definition 2 (Object Graph) Let L =
(E,O, πtime , trace, πattr ) be an event log. We
introduce the following notations:

• objL(e) = {o ∈ O | e ∈ trace(o)} are the objects
associated to an event,

• GO = (O, {{o, o′} ∈ O×O | o ̸= o′ ∧ ∃e∈E o, o′ ∈
objL(e)}) is the object graph of an event log.

The objects of an event log form the nodes of the
object graph. The edges are introduced between two
objects that share an event. The left-most column
of Figure 2 depicts the object graph for Table 2.
Connected subgraphs of this object graph describe
objects that directly or transitively depend on each
other by sharing events. We use a general definition
of a process execution containing connected objects
and their events. A process execution is a graph of
events constructed by merging the event sequences of
connected objects.

Definition 3 (Process Execution) Let L =
(E,O, πtime , trace, πattr ) be an event log and GO the
associated object graph. For a set of objects X ⊆ O
forming a connected subgraph in GO, a process exe-
cution pX = (EX , DX) consists of

• events Ep = {e ∈ E | X ∩ objL(e) ̸= ∅}

• directly-follows relations DX = {(e, e′) ∈ E ×
E | ∃o∈X trace(o) = ⟨e1, . . . , en⟩ ∧ ∃1≤i<ne =
ei ∧ e′ = ei+1}

Each connected subgraph of the object graph de-
fines a process execution. Selecting a subset of con-
nected subgraphs of the object graph to extract pro-
cess executions is a non-trivial decision and influences

6



Table 2: Exemplary event log in table format, depicting two event attributes, i.e., activity and cost. Object attributes are
dropped for accessibility reasons.

ID activity Order Item timestamp cost
e1 Place Order o1 i1,i2 03.03.2022 12:15 1
e2 Pick Item i2 03.03.2022 14:21 3
e3 Out of Stock i1 03.03.2022 14:57 4
e4 Place Order o2 i3,i4,i5 04.03.2022 07:12 1
e5 Reorder i1 04.03.2022 08:45 2
e6 Pick Item i3 04.03.2022 14:01 2
e7 Pick Item i5 04.03.2022 14:01 2
e8 Pick Item i4 04.03.2022 14:06 3
e9 Ship Order o2 i3,i4,i5 04.03.2022 14:56 120
e10 Receive Payment o2 06.03.2022 09:00 6
e11 Receive Payment o1 06.03.2022 09:03 4
e12 Reorder arrived i1 07.03.2022 08:32 10
e13 Ship Order o1 i1,i2 07.03.2022 08:01 80
e14 Place Order o3 i6 10.03.2022 15:38 1
e15 Pick Item i6 10.03.2022 16:59 3
e16 Ship Order o3 i6 10.03.2022 17:07 40
e17 Receive Payment o3 13.03.2022 09:01 4

the interpretation of results. We define three extrac-
tion techniques to extract process executions through
certain classes of subgraphs.

Definition 4 (Execution Extraction) Let L =
(E,O, πtime, trace, πattr) be an event log and GO the
associated object graph. We define three different pro-
cess execution extraction techniques:

• exflat(L, ot) = {p{o} | o ∈ O ∧ πtype(o) = ot} for
an object type ot ∈ OT

• excomp(L) = {pX | X ⊆ O ∧
X forms a connected component in GO}

• exlead(L, ot) = {pX | o ∈ O∧πtype(o) = ot∧X =
{o′ ∈ O ∧ dist(o, o′) ̸=⊥ ∧¬∃o′′∈O πtype(o

′) =
πtype(o

′′)∧dist(o, o′′) < dist(o, o′)}} where dist :
O × O → N ∪ {⊥} provides the shortest path
length between two objects in GO.

The universe of all execution extraction functions is
defined as EX = {exflat , ex comp , ex lead}

For each extraction technique, we depict the con-
sidered subgraphs of the object graph and the re-
trieved process executions in Figure 2. exflat is the
extraction technique known as flattening [17]: One
chooses one object type and collects all objects of this
type. The event sequences of each of those objects are
considered to be process executions. While this is
straightforward and the resulting process executions
are compatible with all traditional process mining
techniques, there are three main problems associated
with flattening. First, events not associated with any
object of the chosen types will be discarded, elimi-
nating information. This is called deficiency. Second,
events that are associated with multiple objects of the
chosen object type will be included in al object’s pro-
cess executions, leading to a duplication of events and
potentially misleading results. This is called conver-
gence. Third, events of different object types might
be forced into a precedence relationship, introduc-
ing misleading precedence constraints. This can best
be exemplified by thought experiment: One could
create composite objects of co-appearing objects of

7



Figure 2: Object graph for Table 2. We present different execution extraction techniques and the process execution they would
retrieve on the exemplary event log of tab:ocel.

different types and flatten using this new composite
object type. This would tackle the deficiency and
convergence problem. Use the objects o2, i3, i4, i5 of
Table 2 as an example. A composite object would be
associated with the events {e4, e6, e7, e8, e9}. Flat-
tening with this composite object, one would retrieve
a sequence where three Pick item events follow each
other. This implies some precedence between these
activities that is not present in the actual event log.
Therefore, flattening can not be used to retrieve pro-
cess executions that are free of deficiency, conver-
gence, and divergence.

Since flattening can not accurately capture the
structure of object-centric event data further extrac-
tion techniques are needed. One extraction technique
is connected components extraction ex comp . Each
connected component of the object graph is a set
of transitively dependent objects. By extracting one
process execution for each connected component all
dependencies contained in the event log can be en-
coded into the process executions. The set of con-
nected components is a partitioning of the graph,
i.e., it is mutually exclusive but collectively exhaus-
tive. Therefore, neither deficiency nor convergence
problems are present in the resulting event log. The

precedence constraints of the event log are transferred
to the process executions as they are contained in the
event log. Therefore, no misleading precedence con-
straints are added.3 However, there is one drawback
using connected components: There may be large
clusters of transitively connected objects. For some
tasks, this might render the retrieved process execu-
tions too complex.

We use a third technique ex lead allowing users to
extract only a subset of transitively dependent ob-
jects. This aims to achieve a balance between incor-
porated dependencies and size of the retrieved pro-
cess executions. One leading object type is chosen
by the user. Each object of this leading type forms
the basis of one process execution. Starting from this
object the object graph is traversed for transitively
related objects. All objects are added to the process
execution for which no other object of the same type
exists that is reachable with a shorter shortest path
length. Depending on the chosen leading object type

3Depending on how the object-centric event log is extracted
and how objects are logged on the event level, misleading
precedence constraints may still be introduced. Imagine log-
ging the associated order at each Pick item activity.

8



different results are retrieved (cf. Figure 2). Sim-
ilar to ex comp no misleading precedence constraints
are added. Therefore, the divergence problem is not
present in this extraction technique. However, this
extraction technique may come with convergence and
deficiency issues: Objects not connected to any lead-
ing object will not end up in any process execution
(deficiency) and some objects might end up in mul-
tiple process executions (convergence, cf. Figure 2).
The discussed drawbacks should be considered when
interpreting the results. 4

Scalability experiments for ex comp and ex lead can
be found in [23]. The extraction technique ex comp

will be used for the remainder of the running exam-
ple.

4.2 Log Segmentation

A log segmentation generates sub logs from an
event log. As we are interested in the development of
the process over time, we need strategies for segment-
ing the event log based on time attributes. First, we
define the start and end of a process execution.

Definition 5 (Start and End of a Process Execu-
tion) Let L = (E,O, πtime , trace, πattr ) be an event
log, ex ∈ EX an extraction technique, and pX =
(EX , DX) ∈ ex (L) a process execution. We intro-
duce the following notations:

• StartpX
= min({πtime(e) | e ∈ EX})

• EndpX
= max({πtime(e) | e ∈ EX})

Table 3 depicts the start and end of the process ex-
ecutions derived from Table 2 using ex comp . We need
to extract the behavior of an event log specific to a
certain time interval. However, there can be differ-
ent strategies to decide whether event data belongs
to a certain time interval. These can be based on the
time interval covered by process executions or on the

4If the object-centric event log only contains one object
type and each event is associated with exactly one object of
that type (i.e. a traditional event log) all of our extraction tech-
niques yield the traditional sequential case concept. Therefore,
our approach is a generalization of traditional process execu-
tion extraction and backward-compatible.

timestamp of the event. We introduce five inclusion
functions.

Definition 6 (Inclusion Function) Let L =
(E,O, πtime , trace, πattr ) be an event log, ex ∈ EX an
extraction technique, and P = ex (L) a set of process
executions. An inclusion function maps process exe-
cutions onto a set of process executions given a time
interval. We define different inclusion functions:

• f in
start(P, (tstart, tend)) = {p ∈ P | Startp ≥
tstart ∧ Startp < tend}

• f in
end(P, (tstart, tend)) = {p ∈ P | Endp ≥ tstart ∧
Endp < tend}

• f in
contained(P, (tstart, tend)) = {p ∈ P | Startp ≥
tstart ∧ Endp ≤ tend}

• f in
spanning(P, (tstart, tend)) = {p ∈ P | (Startp ≤
tstart∧Endp ≥ tstart)∨(Startp ≤ tend∧Endp ≥
tend)}

Furthermore, we define an event-based inclusion
function f in

event(P, (tstart, tend)) = {pY = (EY , DY ) |
pX = (EX , DX) ∈ f in

spanning(P, (tstart, tend)) ∧ EY =
{e ∈ EX | tstart ≤ πtime(e) ≤ tend} ∧ Y = {o ∈
X | ∃e∈EY

e ∈ trace(o)} ∧ DY = DX ∩ EY × EY }.
Fin = {f in

start, f
in
end, f

in
contained, f

in
spanning, f

in
event} is the

universe of inclusion functions.

Figure 3 depicts the different inclusion functions.
Process executions are included based on start and
end timestamps. Our four execution-based tech-
niques cover all reasonable inclusion strategies: exe-
cutions starting within a time interval, ending within
a time interval, starting and ending in a time in-
terval, and overlapping a time interval. Further-
more, we provide one event-based inclusion function.
Events are included based on their timestamps, not
the timestamps of the process executions. This also
has one important side effect: Events of the same
process execution can end up in different windows.
Therefore, the process execution is split between dif-
ferent windows. Instead of one process execution, as
contained in the original event log, the windows con-
tain shorter parts of the original process execution.

9



Table 3: Start and end timestamp for the process executions of Table 2

Process Execution Startp Endp
p{o1,i1,i2} 03.03.2022 12:15 07.03.2022 08:01
p{o2,i3,i4,i5} 04.03.2022 07:12 06.03.2022 09:00
p{o3,i6} 10.03.2022 15:38 13.03.2022 09:01

Figure 3: The three lines in each lane show the time intervals covered by three process executions. For a time interval
[tstart, tend], the figure depicts which process executions are included for which functions. Grey areas indicate not included
events, black areas indicate included ones. For the events inclusion function, process executions can be partly included.

Based on the later usage of the windows, e.g., calcu-
lating the number of process executions per window,
this might lead to misleading measures.
The event log can be segmented into subsequent

sub logs using a window size (time interval) and an
inclusion function. For each subsequent window, the
behavior of the event log specific to this time interval
is extracted using the inclusion function. We retrieve
a sequence of sets of process executions.

Definition 7 (Log Segmentation) Let L =
(E,O, πtime , trace, πattr ) be an event log, ex ∈ EX an
extraction technique, and P = ex (L) a set of process
executions, w ∈ R+

0 be a window size and f in ∈ Fin

be an inclusion function. We introduce the following
notations:

• The start time of an event log is StartL =
min({πtime(e) | e ∈ E}),

• The end time is EndL = max({πtime(e) | e ∈
E}),

• The number of sublogs is m = ⌈EndL−StartL
w ⌉.

seg(P,w, f in) = ⟨P1, . . . , Pm⟩ with Pi =
f in(P, (StartL + i · w, StartL + (i + 1) · w)) for
i ∈ {1, . . . ,m} segment the event log into m sublogs
of subsequent time intervals based on the inclusion
function.

We show an example of such a log segmentation
based on the event log in Table 2 and the pro-
cess executions of Table 3. We use a window size
w = 7 days. The start time of the event log is
03.03.2022 12:15, the end time 13.03.2022 09:01. We
retrieve m = 2 sublogs. With the inclusion func-
tion f in

contained, the segmentation yields the following
sublogs seg({p{o1,i1,i2}, p{o2,i3,i4,i5}, p{o3,i6}}, 7 days,
f in
contained) = ⟨{p{o1,i1,i2}, p{o2,i3,i4,i5}}, {p{o3,i6}}⟩.

4.3 Feature Calculation

A feature is a numerical measure for an event log.
It can be used to describe one aspect of a process. We,
first, give a general definition of a feature extraction
function. Subsequently, we provide a taxonomy of
features used throughout process mining to describe

10



different perspectives and measures of a process. We
describe the challenges of adapting these features to
the object-centric setting for each of these perspec-
tives. Finally, we define the retrieval of the time series
based on a segmented event log and a feature.

4.3.1 Object-Centric Features

First, we provide a general definition for a feature
extraction function.

Definition 8 (Feature Extraction Function) Let L
be an event log, ex ∈ EX an extraction technique,
and P = ex (L) a set of process executions. A feature
function feat(P ) ∈ R maps process executions onto a
real valued number. We denote the universe of feature
functions with F .

Table 4 describes a taxonomy of features used in
process mining to describe different perspectives of
a process. We extend the work in [12] by the per-
spective of objects as we are looking at object-centric
event data. Thus, we divide features into five per-
spectives: control-flow, performance, data, resources,
and objects. Most of the features can be trivially
translated to the object-centric setting. However, for
some features, a non-trivial adaptation is necessary
and will be discussed in the following paragraphs.
Please note that all features used throughout pro-
cess mining can be used when flattening the data,
i.e., selecting an object type and extracting the pro-
cess executions for each object of that type. A recent
overview of feature adaptations to the object-centric
setting can be found in [56].

Control-Flow. Control-flow features are numerical
representations of the activity relationships within
event sequences typically used for the discovery of
process models. We, furthermore, consider confor-
mance measures describing the correspondence be-
tween model and log. Directly-follows frequencies can
be easily adapted, either per object type or across all
object types. α-relations build on top of directly-
follows relation and can, therefore, also be adapted.
The same holds for the a ⇒W b score of the heuris-
tic miner. Conformance measures are not that eas-
ily adaptable, as they need to be applied to object-
centric process models. [21] provides an adaptation

of replay fitness and escaping edges precision [57]
to object-centric event logs and object-centric Petri
nets.

Performance. The performance perspective deals
with measures indicating or influencing the commer-
cial success of the process. Based on the timestamp
of events, one can calculate activity durations, dura-
tions of whole process executions, customers’ waiting
times, and more. Significant changes in these mea-
sures are almost always crucial for the process owner.
Performance measures for object-centric event data
have recently been adapted and extended [24]. First,
this work adapted the calculation of process execu-
tion level performance metric: Throughput times of a
process execution are calculated based on the process
execution graph not a flattened event sequence of one
object type. Second, the graph structure of process
executions was leveraged to define new performance
metrics on the event level: synchronization time (dif-
ference between the first and last object arriving at
one event), pooling time (time to collect all objects of
one type for one event), and lagging time (difference
between the last objects of two object types arriv-
ing at one event). Furthermore, the flow time was
defined as sum of synchronization time and sojourn
time.

Data. Most of the features calculated on the data
perspective can be trivially adapted to the object-
centric setting. However, traditional process mining
assumes features on the case level. Features on the
object level now replace these. For different object
types, different attributes may be available. For cal-
culating aggregations of object features, one would
need to specify the object type next to the attribute.
See [58] for an extensive discussion on feature calcu-
lation based on the data perspective.

Resources. The resource perspective is concerned
with measuring organizational matters. The primary
differentiation between traditional and object-centric
event data is the potential involvement of multiple
resources in one event. This raises the question of
how, e.g., the individual workload should be calcu-
lated for multiple involved resources. The workload

11



Table 4: A collection of feature extraction functions for different perspectives used throughout process mining.
Control-Flow Performance Data Resources Objects

Directly-follows
Service times [25]

Aggregation of
Workload [25]

Number of
frequencies [50] object attributes Objects

α-relations [50] Overtime executions [51]
Aggregation of

Involved resources
Number of

activity attributes Object Types

α+-relations [52] Execution durations [53]
Number of Number of Object
events or executions active resources relationships

Heuristic Miner’s Activity sojourn Threshold Aggregation of Object
a ⇒W b score [54] time [53] exceedings attribute values attributes
Conformance [21] Waiting time [53] Social Network [55]
Declare constraints [11] Synchronization time [24]
. . . . . . . . . . . . . . .

could, e.g., be uniformly distributed. Similar ques-
tions are present for the calculation of social network
features, e.g., the handover of work [55]. The total
workload calculation does not need to be adapted.

Objects. Features in the object perspective are con-
cerned with encoding information about objects and
their relationships. Simple calculations such as the
average number of objects per event or executions
can be performed. By analyzing the object graph,
one can obtain frequent relationships present in the
event log. Counting such patterns might yield in-
teresting insights about changes in the process. Fur-
thermore, object attributes can be aggregated. Three
new object features have recently been introduced by
Galanti et. al [59] to be employed in predictive pro-
cess monitoring.

4.3.2 Time Series Retrieval

A feature function is applied to each set of process
executions of a segmented log. The resulting val-
ues are concatenated in the timely order of the sub
logs, forming a times series. This time series describes
the development of the specific process measure over
time.

Definition 9 (Time Series) Let L =
(E,O, πtime , trace, πattr ) be an event log, ex ∈ EX an
extraction technique, and P = ex (L) a set of process
executions, w ∈ R+

0 be a window size, f in ∈ Fin

be an inclusion function and feat ∈ F be a feature
function. −→s (P,w, f in, feat) = ⟨v1, . . . , vm⟩ with
vi = feat(seq(P,w, f in)(i)) is the resulting time
series.

We construct a time series for the exemplary
event data of Table 2. We use the segmented
log ⟨{p{o1,i1,i2}, p{o2,i3,i4,i5}}, {p{o3,i6}}, {p3}⟩ that
was provided earlier. We use a feature function
that calculates average number of objects per
process execution avgo,exec({pO1

, . . . , pOk
}) =

1
k ·

∑
i∈{1,...,k} |Oi| The resulting time series is

−→s ({p{o1,i1,i2}, p{o2,i3,i4,i5}, p{o3,i6}}, 7 days, f in
contained,

avgo,exec) = ⟨2.5, 1⟩.

5 Concept Drift Detection

In process mining, a plethora of techniques has
been applied to detect concept drifts and locate their
change points in time series constructed from event
data of a process. Many of the techniques use hy-
pothesis testing to compare the distribution of val-
ues for subsequent time windows [29, 27] or global
cost function-based segmentation of the time series
[11, 12]. We provide a general definition for a con-
cept drift detection technique.

Definition 10 (Concept Drift Detection) Let s ∈ R∗

be a time series. A concept drift detection technique
cp(s) ⊆ {1, . . . , len(s)} maps a time series to the
points of significant change.

Figure 4 depicts two examples of possible concept
drift detection techniques. Hypothesis testing and
cost functions are two popular techniques for detect-
ing concept drifts in time series. In the case of hy-
pothesis testing, two windows of values before and
after a reference point are extracted. If their dis-
tribution differs significantly, this reference point is

12



Figure 4: Example of two concept drift detection techniques. Hypothesis testing compares the distribution of values between
(subsequent) windows for significant differences. Furthermore, one can minimize a cost function depending on segmentations
to find change points.

classified as a change point. This test can be done for
each point in time as a reference point. Using a cost
function, one can globally assign segmentations to a
time series where the borders between segments are
change points. These segments are chosen as param-
eters to a cost minimization problem: The deviations
of points from their segment’s mean are summed up.
Additionally, each segmentation adds a penalty cost
to this term, avoiding overfitting. The segmentation
with the lowest cost yields the concept drifts. We
refer to the papers discussed in related work for fur-
ther concept drift detection techniques and in-depth
discussion.

6 Drift Correlations

This section introduces the general formulation of
Granger causality to determine linear and non-linear
correlations between concept drifts. We first define
Granger causality and subsequently provide a gen-
eral definition to test for non-linear relationships. We
combine these techniques to our setting to find con-
cept drift correlations.

Granger causality [26] describes a statistical test to
determine a weak form of causality between two time
series based on linear regression. A time lag between

the two time series is considered. First, future values
of the first time series are predicted based on its past
values. Subsequently, future values of the first time
series are predicted based on its past values and the
lagged values of the second time series. If the predic-
tion significantly improves, the second time series is
considered Granger causal to the first one. Granger
causality cannot be considered true causality since
confounding effects can not be ruled out. However, it
is often interpreted as predictive causality. The exact
mathematical definition can be found in [26].

Definition 11 (Granger Causality) Let n ∈ N and
Sn = {σ ∈ R∗ | len(σ) = n} be time series of
length n. Granger-causality Granger : Sn × Sn ×
{1, . . . , n−1} → [0, 1] maps two time series on a real
value under consideration of a time lag.

Only linear relationships can be detected using this
basic formulation of Granger causality. To test for
non-linear relationships, several approaches use ker-
nel functions [48] to transform the original time series
[46, 47].

Definition 12 (Kernel Functions) Let s =
⟨s1, . . . sn⟩ ∈ R∗ be a time series and Φ : R → R
be a kernel function. Φ(s) = ⟨Φ(s1), . . . ,Φ(sn)⟩ is a
transformed time series.

13



Figure 5: Example of applying a kernel function to transform time series. One time series is transformed using a quadratic
kernel, the other time series is not transformed.

We depict the transformation of time series using
kernel functions in Figure 5. The changes of series
s are correlated to preceding changes in series s′ in
a quadratic manner. After transforming s′ with a
quadratic kernel, the transformed time series are cor-
related linearly. The original formulation of Granger
causality can be applied to the transformed time se-
ries to detect the quadratic relationship.

We use these two concepts to determine whether
two concept drifts of different time series are corre-
lated. We consider a pair of concept drifts from the
two time series. The time lag between drifts gives the
lag between time series. We test for Granger causal-
ity under consideration of a kernel function5.

Definition 13 (Concept Drift Correlation) Let
Φ,Φ′ : R → R be kernel function and s =
⟨s1, . . . sn⟩ ∈ R∗ and s′ = ⟨s′1, . . . s′n⟩ ∈ R∗ with
len(s) = len(s′) be two time series with change
points cp(s), cp(s′). For a concept drift pair (d, d′) ∈
cp(s)×cp(s′) the concept drift correlation is retrieved
by Granger(Φ(s),Φ′(s′), d− d′).

This test can be applied to all pairs of concept
drifts between any two time series to find all corre-
lated concept drifts.

5Using Φ(x) = x we can still test for linear relationships

7 Framework for Explainable Concept Drift

The previously introduced notations allow us to
define our general framework to correlate significant
changes in object-centric event data. Several param-
eters can be chosen, Table 5 depicts an overview of
the parameters for different framework steps. We
extract the correlated concept drifts called explain-
able concept drifts based on these parameters. The
combinations of each pair of change points in both
times series are considered for each pair of features.
We test for Granger causality for each change point
pair after transforming the time series with the ker-
nel functions. If the p-value of this test is lower than
the threshold p, the features together with the two
change points are added to the set of correlated drift.

Definition 14 (Explainable Concept Drifts) Let L =
(E,O, πtime , trace, πattr) be an event log, ex ∈ EX an
extraction technique, and P = ex (L) a set of process
executions, w ∈ T be a window size, f in ∈ Fin be an
inclusion function, f ⊆ F be a feature set, cp be a
change point detection algorithm, Φ,Φ′ ∈ R → R be
kernel functions and p ∈ [0, 1] a probability thresh-
old. EXC = {(feat i, featj , d, d′) ∈ F × F × N ×
N | feat i ̸= featj ∧ si = −→s (P,w, f in, feat i) ∧ sj =
−→s (P,w, f in, featj) ∧ d ∈ cp(si) ∧ d′ ∈ cp(sj) ∧ d′ <
d ∧Granger(Φ(si),Φ(sj), d− d′) ≤ p} is the set of
explainable concept drifts.

14



Table 5: Summary of parameter choices in our framework.

Main Framework Step Substep Parameters Symbol

Time Series Extraction

Execution Extraction Process Executions ex

Log Segmentation
Window size w
Inclusion function f in

Feature Calculation Feature set F
Drift Detection Detection Detection algorithm cp

Drift Correlation Granger causality
Kernel functions Φ,Φ′

Probability threshold p

7.1 Implementation

We implement our framework in Python. The
framework as well as the experiments of Section 8
are publicly available on GitHub6. Every figure can
be reproduced using the expriments.py script. For
further instructions, please visit the repository.
The framework can be extended with new features

or different concept drift detection techniques. The
user can freely choose the kernel function. Our im-
plementation is based on the ocpa7 library [60].

8 Evaluation

This section evaluates our proposed framework.
We provide a quantitative evaluation in terms of sen-
sitivity and scalability and, subsequently, showcase
our framework in a case study. First, we investigate
the sensitivity of the time series extraction to the cho-
sen inclusion function and the window size. Second,
we evaluate the scalability of the whole framework
depending on the number of features. We will not
evaluate the performance of different concept drift de-
tection techniques. The corresponding papers cover
these aspects. We employ the Pruned Exact Lin-
ear Time (PELT) [61] algorithm for our experiments.
The PELT algorithm minimizes a cost-function that
strikes a balance between the number of assigned
change points and the variance in each resulting seg-
ment. The PELT algorithm was already employed
for concept drift detection in process mining [9] and
has low computation times. Furthermore, we do not

6https://github.com/niklasadams/ex_concept_drift.
7https://github.com/ocpm/ocpa

Figure 6: Visualization of a process execution with one appli-
cation and two offers retrieved from the OCπ tool.

evaluate the influence of the p-value threshold on the
detected explainable concept drifts since data sets
providing ground truths for these do not exist yet.
Furthermore, we provide a case study by applying
our framework and uncovering an explainable con-
cept drift.

We use an object-centric event log describing a loan
application process [62]. This event log has two ob-
ject types: application and offer. A customer submits
an application for a loan. Subsequently, this appli-
cation is answered with one or multiple offers. An
offer can be canceled, accepted, or refused. We use
the process executions defined by the connected com-
ponents of the objects graph: Each process execution
describes exactly one application and the correspond-
ing offer objects created throughout the application.
Figure 6 depicts a visualization for the activities of
an exemplary process execution with two offers. The
visualization is retrieved from the OCπ tool [63]. The
chosen extraction technique for this visualization and
the remainder of this evaluation is ex comp .

8.1 Time Series Extraction Sensitivity

In this section, we discuss the influence of different
parameters on the extracted time series. First, we
investigate the impact of the inclusion function for
features calculated on the execution and event level.
Subsequently, we depict the influence of the window

15



Figure 7: Time series of the average throughput time of a pro-
cess execution for different inclusion functions. The underlying
window size is one week, i.e., 7 days.

size on the extracted time series.

Inclusion Function. We extracted time series for the
same features and the same window size for different
inclusion functions to depict the influence of the in-
clusion function on the retrieved time series. We can
generally calculate features on the process execution
level, e.g., the throughput time, and on the event
level, e.g., the number of objects per event. We take
one feature of both categories and extract time series
with all inclusion functions.

Figure 7 depicts the time series for the average ex-
ecution time of a process execution, i.e., the time
difference between the first and last event. We can
observe significant differences between the retrieved
time series. Using the event-based inclusion function
(cf. Definition 6, Figure 3), process executions are
split into smaller ones, significantly impacting fea-
tures calculated based on process executions, e.g., the
throughput time. If possible, the event-based inclu-
sion function should not be used to calculate process
execution-based features. The remaining four inclu-
sion functions can be grouped into two groups: Exact
decompositions (start and end) and subset generators
(contained and spanning). Exact decomposition in-
clusion functions assign each execution to exactly one

Figure 8: Time series of the average number of objects per
event for different inclusion functions. The underlying window
size is 7 days.

window. Subset generators can assign executions to
an arbitrary amount of windows, including zero.

The time series for the contained inclusion function
(cf. Definition 6, Figure 3) exhibits low values, as
only executions with lower throughput times than the
window size can be included. Others are discarded.
The time series of the spanning inclusion function
exhibits high levels as process executions spanning
relatively many windows increase the average of each
of those.

The start and end inclusion functions show simi-
lar behavior. However, both have effects on the re-
sulting time series. Start leads to empty windows if
no process execution starts within this time frame.
For demonstration purposes, these empty windows
are depicted by zero values in Figure 7. Only long-
lasting process executions are completed in the lat-
est time frame, shown by the increase in the time
series given by the end inclusion function. In conclu-
sion, when interpreting results, one should be aware
of the chosen inclusion function. Furthermore, the
event-based inclusion function should not be used on
process execution features as it might lead to a mis-
leading time series.

Figure 8 depicts the time series retrieved for the
average number of objects per event. Two observa-

16



Figure 9: Time series of the average throughput time retrieved
for different window sizes. The inclusion function is start.
Empty windows are discarded.

tions can be made: Two inclusion functions (start
and contained) can not obtain any event values for
windows where no process execution starts. Further-
more, the event-based inclusion function shows an
increase in the average number of objects towards
the end, a dynamic that the remaining two inclusion
functions cannot capture. Therefore, the default in-
clusion function for event-based features should be
the event-based inclusion function.
In general, the event-based inclusion function

should be used for event-based features, and process
execution-based inclusion functions should be used
for process execution-based features. The start and
end inclusion functions seem to give the most accu-
rate measures. However, some postprocessing to re-
move empty parts might be necessary. When remov-
ing empty parts, it might be necessary to post-process
time series of other features to ensure equal time se-
ries length.

Window Size. In this section, we investigate the in-
fluence of the window size choice on the retrieved
time series. Again, we use the average throughput
time and the average number of objects per event as
features. We use the start inclusion function.
Figure 9 depicts the retrieved time series for the

average throughput time of process executions start-

Figure 10: Time Series of the average number of objects per
event retrieved for different window sizes. The inclusion func-
tion is events.

ing within that time frame; Figure 10 depicts the
retrieved time series for the average number of ob-
jects per event for all events within a time frame. We
can observe a high variance for time series extracted
with window size one day. A daily window size calcu-
lates the feature for every day of the year, including
weekends and holidays. This leads to highly variable
time series, not due to concept drifts but due to the
nature of working weeks and holidays. Choosing a
different window size can correct some of these prob-
lems. Choosing a windows size of a multiple of seven
days will lead to an equal distribution of weekends
over the windows. Choosing higher multiples of one
week, e.g., 28 days, leads to a smoother time series
averaging out some effects. However, it also reduces
the number of observations and eliminates short-term
dynamics. This trade-off that has to be determined
by the user.

8.2 Framework Scalability

In this section, we investigate the scalability of
our framework. The user can select an arbitrary set
of features to be investigated for correlated concept
drifts. Each of the time series of these features is
investigated for concept drifts, leading to a linear de-
pendency of the concept drift detection time to the

17



Figure 11: Decomposition of the framework’s running time for
different numbers of features. With an increasing number of
features the Granger causality check takes a greater relative
share of computation time.

number of features. However, all of the time series
are tested for correlated concept drift to all other
time series. The Granger causality testing converges
to a quadratic runtime with an increasing number
of features. For this reason, we inspect the scala-
bility of our framework depending on the number of
features in this section. We segment the log based
on a window size of seven days and the start inclu-
sion function. To simulate the worst-case scenario of
a large number of concept drifts demanding a large
number of tests, we use the PELT algorithm with a
low penalty value of 0.1 to detect concept drifts. We
test for linear relationships. We calculate 38 trivial
features for the feature space. Figure 11 depicts the
results. We can observe increasing running times of
the overall framework with an increasing number of
features. The increasing running times are primar-
ily due to the time series extraction and the Granger
causality checking. Time series extraction takes up
a majority of the computation time for multiple rea-
sons: First, the extraction includes subdividing the
event log into sublogs. This includes copying data,
and recomputing concepts such as process executions.
Second, the features have to be computed on the basis
of each event log. Since the event logs contain many

events, these are expensive operations. While the
time series extraction deals with hundreds of thou-
sands of data points, it boils these data points to only
a few. Therefore, subsequent steps have much lower
input sizes and therefore much lower computation
times. The concept drift detection does not show any
notable share of the computation time. The Granger
causality checking takes an increasingly large share
of the computation time for an increasing number of
features. However, for the number of features tested,
Granger causality testing never accounts for the ma-
jority of computation time. Therefore it does not
pose a threat to the applicability of our framework
for feature spaces of this size.

8.3 Case Study

We apply our framework to the object-centric event
log of the loan application event log to test for the
presence of explainable concept drifts. Resource
workload and service times (i.e. a resource’s time
spent actively working on one activity) have shown
to frequently exhibit relationships [25]. Therefore,
we choose the features of workload (active process
executions) and service times to extract time series.
According to the previously discussed experiments, a
window size of one week provides some smoothing of
day-to-day dynamics but captures long-term dynam-
ics and cancels out weekends. Therefore, we extract
the time series with weekly windows. The number
of ongoing process executions is captured by count-
ing the number of different process executions that
events within one week are associated with. Further-
more, we are interested in retrieving the average ser-
vice times of an activity over the course of a specific
week. For these two reasons, we choose the event-
based inclusion function. If we would choose any
process execution based inclusion function, events ac-
tually occurring in other windows might be counted
for another window if the corresponding process exe-
cution starts/end within this window.

We depict the retrieved result in Table 6. Apply-
ing the PELT concept drift detection algorithm we
retrieve the provided set of concept drifts. Each pair
is checked for Granger-causality given the lag pro-
vided by the time difference between concept drifts.
If the time difference between drifts is too large,

18



Table 6: Detected concept drifts, checked concept drift pairs and the results of applying our framework to the loan application
event log. When the drift lag is too large there are not sufficient observations to test for Granger-causality (NA). We uncover
one explainable concept drift between a workload drift in week 20 and a service times drift in week 25.

Feature
Concept Drifts

Checked Pairs Results
(Week)

Workload
24

(24,29) p = 0.0075
(24,49) NA

49 ∅ ∅

Service times
(W Validate application)

19
(19,24) p = 0.7517
(19,49) NA

24 (24,49) NA
25 (24,49) NA
49 ∅ ∅

there might not be sufficient observations to test for
Granger-causality. Therefore, some pairs are ruled
out. Two pairs are tested for Granger-causality:
Whether the drift in workload is Granger-causal to
drift in service times 5 weeks later and vice versa.
While the p-value for a Granger-causality for a ser-
vice times drift causing a workload drift is very high
(0.7517, i.e., very unlikely), the Granger-causality for
a workload drift causing a service times drift 5 weeks
later is very low (0.0075, i.e., very likely). Therefore,
we uncovered an explainable concept drift from work-
load to service times. This is confirming the existence
of the explainable concept already uncovered in [12],
where an increase in workload led to a decrease in
service times.

9 Conclusion

In this paper, we introduced a framework to un-
cover explainable concept drifts in object-centric
event data. Our framework is split into three steps.
First, time series for different features are extracted
from an objct-centric event log and, second, investi-
gated for concept drifts. Third, we test for correla-
tions between concept drifts using Granger causality.
Through the use of kernel functions, we can test for
non-linear relationships. In our evaluation, we in-
vestigated the choice of different parameters to the
retrieved time series and the framework’s scalability.
The inclusion function and window size significantly

affect the retrieved time series. The inclusion func-
tion should be chosen in accordance with the feature.
Selecting a window size of multiples of seven days
corrects the time series for irregularities like week-
ends and provides a smoothing of the time series.
Furthermore, we provide a case study uncovering an
explainable concept drift where increased workload
led to reduced service times. In conclusion, we pro-
vide a general framework to extract time series and
correlate concept drifts to retrieve insights about ex-
planations for significant changes in a process.

The general approach of correlating concept drifts
in different perspectives with each other might also be
of interest for other application areas that experience
concept drifts, e.g., data streams. Furthermore, by
dropping the concept drift detection step and exhaus-
tively testing through all lags for all feature pairs,
one can find arbitrary linear and non-linear relation-
ships between different process features. It is possible
to extend the framework into multiple directions is
possible: First, one could incorporate the support of
multivariate time series for checking Granger causal-
ity. Second, n-wise causality relationships should be
supported as some drifts may only be enabled by n
preoccuring changes. Third, learning kernel functions
to provide an automated kernel function choice could
be a significant support for applying the framework
in large scale.

19



Funding

We thank the Alexander von Humboldt (AvH)
Stiftung for supporting our research (grant no.
1191945).

References

[1] M. Dumas, M. L. Rosa, J. Mendling, H. A. Rei-
jers, Fundamentals of Business Process Manage-
ment, Second Edition, Springer, 2018. doi:10.
1007/978-3-662-56509-4.

[2] W. M. P. van der Aalst, Process mining: Data
science in action, Springer, 2016.

[3] S. J. J. Leemans, D. Fahland, W. M. P. van der
Aalst, Discovering block-structured process
models from event logs - A constructive ap-
proach, in: PETRI NETS, Springer, 2013.
doi:10.1007/978-3-642-38697-8\_17.

[4] A. Adriansyah, B. F. van Dongen, W. M. P.
van der Aalst, Conformance checking using cost-
based fitness analysis, in: EDOC, IEEE, 2011,
pp. 55–64. doi:10.1109/EDOC.2011.12.

[5] M. Camargo, M. Dumas, O. González, Auto-
mated discovery of business process simulation
models from event logs, Decis. Support Syst.
134 (2020).

[6] N. Tax, I. Verenich, M. L. Rosa, M. Du-
mas, Predictive business process monitoring
with LSTM neural networks, in: CAiSE,
Springer, 2017, pp. 477–492. doi:10.1007/
978-3-319-59536-8\_30.

[7] R. P. J. C. Bose, W. M. P. van der Aalst,
I. Žliobaitė, M. Pechenizkiy, Dealing with con-
cept drifts in process mining, IEEE Trans. Neu-
ral Networks Learn. Syst. 25 (2014) 154–171.

[8] T. Brockhoff, M. S. Uysal, W. M. P. van der
Aalst, Time-aware concept drift detection using
the earth mover’s distance, in: ICPM, 2020, pp.
33–40. doi:10.1109/ICPM49681.2020.00016.

[9] A. Yeshchenko, C. Di Ciccio, J. Mendling,
A. Polyvyanyy, Visual drift detection for se-
quence data analysis of business processes, IEEE
Transactions on Visualization and Computer
Graphics (2021).

[10] A. E. M. Chamorro, I. A. Nepomuceno-
Chamorro, M. Resinas, A. Ruiz-Cortés, Up-
dating prediction models for predictive pro-
cess monitoring, in: CAiSE, volume 13295,
Springer, 2022, pp. 304–318. doi:10.1007/
978-3-031-07472-1\_18.

[11] A. Yeshchenko, C. D. Ciccio, J. Mendling,
A. Polyvyanyy, Comprehensive pro-
cess drift detection with visual ana-
lytics, in: ER, 2019, pp. 119–135.
doi:10.1007/978-3-030-33223-5\_11.

[12] J. N. Adams, S. J. van Zelst, L. Quack,
K. Hausmann, W. M. P. van der Aalst,
T. Rose, A framework for explainable con-
cept drift detection in process mining, in:
BPM, Springer, 2021, pp. 400–416. doi:10.
1007/978-3-030-85469-0\_25.

[13] D. M. V. Sato, S. C. D. Freitas, J. P. Barddal,
E. E. Scalabrin, A survey on concept drift in
process mining, ACM Comput. Surv. 54 (2022)
189:1–189:38.

[14] S. Aminikhanghahi, D. Cook, A survey of
methods for time series change point detection,
Knowl. Inf. Syst. 51 (2017) 339–367.

[15] A. Ostovar, A. Maaradji, M. L. Rosa, A. H. M.
ter Hofstede, Characterizing drift from event
streams of business processes, in: CAiSE,
Springer, 2017, pp. 210–228. doi:10.1007/
978-3-319-59536-8\_14.

[16] W. M. P. van der Aalst, et al., Pro-
cess mining manifesto, in: BPM Work-
shops, Springer, 2011, pp. 169–194. doi:10.
1007/978-3-642-28108-2\_19.

[17] W. M. P. van der Aalst, Object-centric pro-
cess mining: Dealing with divergence and con-
vergence in event data, in: SEFM, Springer,
2019, pp. 3–25.

20



[18] W. M. P. van der Aalst, A. Berti, Discovering
object-centric Petri nets, Fundam. Informaticae
175 (2020) 1–40.

[19] S. Esser, D. Fahland, Multi-dimensional event
data in graph databases, J. Data Semant. 10
(2021) 109–141.

[20] P. Waibel, L. Pfahlsberger, K. Revoredo,
J. Mendling, Causal process mining from rela-
tional databases with domain knowledge, CoRR
abs/2202.08314 (2022).

[21] J. N. Adams, W. M. P. van der Aalst, Precision
and fitness in object-centric process mining, in:
ICPM, IEEE, 2021, pp. 128–135. doi:10.1109/
ICPM53251.2021.9576886.

[22] D. Fahland, Process mining over multiple behav-
ioral dimensions with event knowledge graphs,
in: Process Mining Handbook, volume 448 of
Lecture Notes in Business Information Process-
ing, Springer, 2022, pp. 274–319. doi:10.1007/
978-3-031-08848-3\_9.

[23] J. N. Adams, D. Schuster, S. Schmitz, G. Schuh,
W. M. P. van der Aalst, Defining Cases and
Variants for Object-Centric Event Data, IEEE,
2022, pp. 128–135. doi:10.1109/ICPM57379.
2022.9980730.

[24] G. Park, J. N. Adams, W. M. P. van der Aalst,
OPerA: Object-centric performance analysis, in:
ER, Springer, 2022, pp. 281–292. doi:10.1007/
978-3-031-17995-2\_20.

[25] J. Nakatumba, W. M. P. van der Aalst, An-
alyzing resource behavior using process min-
ing, in: BPM, 2009, pp. 69–80. doi:10.1007/
978-3-642-12186-9\_8.

[26] C. W. Granger, Investigating causal relations
by econometric models and cross-spectral meth-
ods, Econometrica: Journal of the Econometric
Society (1969) 424–438.

[27] R. P. J. C. Bose, W. M. P. van der Aalst,
I. Zliobaite, M. Pechenizkiy, Handling con-
cept drift in process mining, in: CAiSE,

Springer, 2011, pp. 391–405. doi:10.1007/
978-3-642-21640-4\_30.

[28] J. Martjushev, R. P. J. C. Bose, W. M. P. van der
Aalst, Change point detection and dealing with
gradual and multi-order dynamics in process
mining, in: BIR, Springer, 2015, pp. 161–178.
doi:10.1007/978-3-319-21915-8\_11.

[29] A. Maaradji, M. Dumas, M. L. Rosa, A. Os-
tovar, Fast and accurate business process drift
detection, in: BPM, 2015, pp. 406–422. doi:10.
1007/978-3-319-23063-4\_27.

[30] R. Accorsi, T. Stocker, Discovering workflow
changes with time-based trace clustering, in:
SIMPDA, Springer, 2011, pp. 154–168.

[31] P. Weber, B. Bordbar, P. Tiño, Real-time de-
tection of process change using process mining,
in: ICCSW, Imperial College London, 2011, pp.
108–114.

[32] J. Carmona, R. Gavaldà, Online techniques
for dealing with concept drift in process min-
ing, in: IDA, 2012, pp. 90–102. doi:10.1007/
978-3-642-34156-4\_10.

[33] C. Zheng, L. Wen, J. Wang, Detecting
process concept drifts from event logs, in:
OTM, Springer, 2017, pp. 524–542. doi:10.
1007/978-3-319-69462-7\_33.

[34] A. Maaradji, M. Dumas, M. L. Rosa, A. Ostovar,
Detecting sudden and gradual drifts in business
processes from execution traces, IEEE Trans.
Knowl. Data Eng. 29 (2017) 2140–2154.

[35] S. B. Junior, G. M. Tavares, V. G. T.
da Costa, P. Ceravolo, E. Damiani, A
framework for human-in-the-loop monitoring of
concept-drift detection in event log stream, in:
WWW, ACM, 2018, pp. 319–326. doi:10.1145/
3184558.3186343.

[36] M. Hassani, Concept drift detection of event
streams using an adaptive window, in: ECMS,
European Council for Modeling and Simulation,
2019, pp. 230–239. doi:10.7148/2019-0230.

21



[37] L. Lin, L. Wen, L. Lin, J. Pei, H. Yang, LCDD:
Detecting business process drifts based on local
completeness, IEEE Transactions on Services
Computing (2020).

[38] B. Hompes, J. C. A. M. Buijs, W. M. P. van der
Aalst, P. M. Dixit, H. Buurman, Detecting
change in processes using comparative trace
clustering, in: SIMPDA, 2015, pp. 95–108.

[39] A. Seeliger, T. Nolle, M. Mühlhäuser, Detecting
concept drift in processes using graph metrics on
process graphs, in: S-BPM ONE, 2017, p. 6.

[40] A. Koschmider, D. S. V. Moreira, Change
detection in event logs by clustering, in:
OTM, Springer, 2018, pp. 643–660. doi:10.
1007/978-3-030-02610-3\_36.

[41] A. F. Ghahfarokhi, G. Park, A. Berti,
W. M. P. van der Aalst, OCEL: A stan-
dard for object-centric event logs, in: AD-
BIS, Springer, 2021, pp. 169–175. doi:10.1007/
978-3-030-85082-1\_16.

[42] M. Ding, Y. Chen, S. L. Bressler, Granger
causality: basic theory and application to neu-
roscience, Handbook of time series analysis: re-
cent theoretical developments and applications
(2006) 437–460.

[43] C. Hiemstra, J. D. Jones, Testing for linear and
nonlinear granger causality in the stock price-
volume relation, The Journal of Finance 49
(1994) 1639–1664.

[44] J. R. Freeman, Granger causality and the times
series analysis of political relationships, Ameri-
can Journal of Political Science (1983) 327–358.

[45] K. J. Blinowska, R. Kuś, M. Kamiński, Granger
causality and information flow in multivariate
processes, Physical Review E 70 (2004) 050902.

[46] Y. Chen, G. Rangarajan, J. Feng, M. Ding, An-
alyzing multiple nonlinear time series with ex-
tended granger causality, Physics letters A 324
(2004) 26–35.

[47] A. Wismüller, A. M. Dsouza, M. A. Vosoughi,
A. Abidin, Large-scale nonlinear granger causal-
ity for inferring directed dependence from short
multivariate time-series data, Scientific reports
11 (2021) 1–11.

[48] B. Schölkopf, A. J. Smola, Learning with Ker-
nels: support vector machines, regularization,
optimization, and beyond, Adaptive computa-
tion and machine learning series, MIT Press,
2002.

[49] D. Marinazzo, W. Liao, H. Chen, S. Stramaglia,
Nonlinear connectivity by granger causality,
Neuroimage 58 (2011) 330–338.

[50] W. M. P. van der Aalst, T. Weijters,
L. Maruster, Workflow mining: Discovering pro-
cess models from event logs, IEEE Trans. Knowl.
Data Eng. 16 (2004) 1128–1142.

[51] S. Suriadi, C. Ouyang, W. M. P. van der Aalst,
A. H. M. ter Hofstede, Root cause analy-
sis with enriched process logs, in: BPM,
Springer, 2012, pp. 174–186. doi:10.1007/
978-3-642-36285-9\_18.

[52] A. K. A. de Medeiros, B. F. van Dongen,
W. M. P. van der Aalst, A. J. M. M. Weijters,
Process mining : Extending the α-algorithm to
mine short loops, in: BETA Working Paper Se-
ries, volume WP 113, 2004.

[53] B. F. A. Hompes, A. Maaradji, M. L. Rosa,
M. Dumas, J. C. A. M. Buijs, W. M. P.
van der Aalst, Discovering causal factors ex-
plaining business process performance variation,
in: CAiSE 2017, Springer, 2017, pp. 177–192.
doi:10.1007/978-3-319-59536-8\_12.

[54] A. Weijters, W. M. P. van der Aalst,
A. Medeiros, Process mining with the heuristics
miner-algorithm, CIRP Annals-Manufacturing
Technology 166 (2006).

[55] W. M. P. van der Aalst, H. A. Reijers, M. Song,
Discovering social networks from event logs,
Comput. Support. Cooperative Work. 14 (2005)
549–593.

22



[56] J. N. Adams, G. Park, S. Levich, D. Schus-
ter, W. M. P. van der Aalst, A Framework for
Extracting and Encoding Features from Object-
Centric Event Data, Springer, 2022, pp. 36–53.
doi:10.1007/978-3-031-20984-0\_3.

[57] J. Munoz-Gama, J. Carmona, A fresh look at
precision in process conformance, in: BPM,
Springer, 2010, pp. 211–226.

[58] M. de Leoni, W. M. P. van der Aalst, M. Dees,
A general process mining framework for correlat-
ing, predicting and clustering dynamic behavior
based on event logs, Inf. Syst. 56 (2016) 235–257.

[59] R. Galanti, M. de Leoni, N. Navarin, A. Marazzi,
Object-centric process predictive analytics, Ex-
pert Syst. Appl. 213 (2023) 119173.

[60] J. N. Adams, G. Park, W. M. van der Aalst,
ocpa: A python library for object-centric process
analysis, Software Impacts 14 (2022) 100438.

[61] D. Gachomo, The power of the pruned exact
linear time (PELT) test in multiple changepoint
detection, American Journal of Theoretical and
Applied Statistics 4 (2015) 581.

[62] B. van Dongen, BPI Challenge 2017 (2017).

[63] J. N. Adams, W. M. P. van der Aalst, Ocπ:
Object-centric process insights, in: PETRI
NETS, volume 13288, Springer, 2022, pp. 139–
150. doi:10.1007/978-3-031-06653-5\_8.

23


