
Discovering Hybrid Process Models With Bounds On
Time and Complexity

When to be formal and when not?

Wil M.P. van der Aalsta, Riccardo De Masellisb, Chiara Di Francescomarinoc,
Chiara Ghidinib, Humam Kouranid

aLehrstuhl für Informatik 9 / Process and Data Science, RWTH Aachen University, D-52056
Aachen, Germany

bFBK-IRST, Via Sommarive 18, 38050 Trento, Italy
cUniversity of Trento, via Sommarive 9, 38123 Trento, Italy

dFraunhofer FIT, Schloss Birlinghoven, 53757 Sankt Augustin, Germany

Abstract

Discovering process models from event data is a highly relevant, but also a notori-
ously difficult, problem. Therefore, it is unsurprising that the biggest share of pro-
cess mining research is devoted to process discovery. While techniques reported
in scientific literature tend to produce process models that are formal, i.e., which
mathematically describe the possible behaviors, commercial process mining tools
return informal models (merely a “picture” not allowing for any form of formal
reasoning). Hybrid process models aim at combining the best of both worlds: they
capture behavior that is strongly supported by data and that can be used for formal
reasoning, as well as behavior that cannot be represented in clear-cut process con-
structs or that does not have enough evidence in the data. This paper presents an
approach for discovering hybrid Petri nets, which, unlike existing techniques, pro-
duces models that have both formal and semi-formal constructs so that even if the
behavior in the data is noisy and irregular or it does not fit predefined constructs,
causal relationships are still captured. Our evaluation demonstrates the advantages
of combining such “deliberate vagueness” with formal guarantees. The ideas pre-
sented here are fairly general, and can serve as a foundation for other, new hybrid
discovery techniques.

Keywords:
Process mining, Process discovery, Petri nets, BPM

Preprint submitted to Information Systems April 1, 2024

1. Introduction

Process mining approaches are both data-driven and process-centric [1]. The
starting point is generally event data, which can be used to discover models or
to check compliance with respect to a normative process, but once the events
are coupled to process models, a range of analysis techniques are enabled. For
example, some process mining techniques diagnose bottlenecks based on the evi-
dence in the data [2, 3] while others use the discovered models to predict problems
(e.g., deviations or delays) and to recommend actions [4, 5]. All these techniques
rely on high-quality process models that are well-aligned with the event data [4].
However, discovering such models is extremely challenging in the presence of
irregular, noisy behavior.

The uptake of process mining is reflected by the growing number of commer-
cial process mining tools available today. There are over 40 commercial products
enabling process mining, e.g., Celonis, Signavio/SAP, myInvenio/IBM, Disco,
Minit/Microsoft, ProcessGold/UiPath, LanaLabs/Appian, Apromore and many
others, and all support process discovery, as it can be used to improve compliance
and performance problems [6]. These commercial tools are based on variants
of techniques like the heuristic miner [7] and the fuzzy miner [8] and typically
produce filtered Directly Follows Graphs (DFGs) [1]. They are not able to dis-
cover concurrency and they produce informal (also referred to as semi-formal)
process models, that is, models without formal semantics. Such informal (“boxes
and arrows”) models provide valuable insights, but cannot be used to draw re-
liable conclusions. For example, they cannot be used as a classifier for traces.
Classifying traces into fitting (behavior allowed by the model) and non-fitting (not
possible according to the model) is however important for more advanced types of
process mining. Therefore, most discovery algorithms described in the literature
(e.g., the α-algorithm [9], the state-based region approaches [10, 11, 12, 13, 13],
the language-based region approaches [14, 15, 16, 17, 18, 19], the declarative ap-
proaches [20, 21, 22, 23, 24, 25], and the inductive mining approaches [26, 27,
28]) produce formal models (Petri nets, transition systems, automata, temporal
logics, process trees, etc.) having clear semantics and being able to uncover con-
currency.

At first sight, is seems appealing to discover formal models rather than infor-
mal models. However:

• Formal models act as binary classifiers: traces are fitting or non-fitting. For
real-life processes this is often not so clear-cut. It may be impossible to
capture behavior using the process model constructs provided (e.g., places

2

in Petri nets or gateways in BPMN) or the data may be inconclusive and
may not justify formalization. The model capturing 80 percent of all traces
may be simple and more valuable than the model that allows for all outliers
and deviations seen in the event log. However, we cannot simply discard all
data not directly contributing to undisputed formal model elements. Hence,
“vagueness” may be desirable to show additional relationships.

• Formal models may be hard to understand. End-users need to be able to
interpret process mining results: Petri nets with smartly constructed places
and BPMN with many gateways are quickly perceived as too complex. Un-
derfitting models, namely models that allow for the behavior observed in
the event log but also for much more behavior, may indeed be simpler to
observe. However, they fail to capture knowledge contained in the data by
allowing much more behavior. On the other hand, overfitting models, that
is, models that only allow for the behaviors seen in the logs, are more com-
plex and may lead to conclusions that are valid only for the observed data.

• Commercial process mining tools need to be able to handle logs with mil-
lions of events and still be used in an interactive manner. Many of the more
sophisticated discovery algorithms producing formal models (e.g., region-
based approaches [14, 13, 18]) do not scale well.

This explains why commercial process mining tools resort to informal models.
These tools are scalable, simple, and easy to use. However, a precise interpre-
tation of the generated informal model is often impossible as, informal models
do not provide clear semantics for splitting and joining points. When an activity
has multiple outgoing arcs, i.e., multiple preceding activities, one would like to
know whether these are concurrent or in a choice relation. Which combinations
of output arcs can be combined? Showing frequencies on nodes (activities) and
arcs may further add to the confusion when “numbers do not add up”. With no
clear semantics and formal guarantees, the process model remains a “picture” and
will be distrusted.

In [29], we proposed hybrid process models as a way to combine the best of
both worlds. Such models show informal dependencies (like in commercial tools)
that are deliberately vague and at the same time they provide formal semantics for
the parts that are clear-cut. Whenever there is enough structure and evidence in
the data, explicit routing constructs are used; if, instead, dependencies are weak
or too complex, then they are depicted in an informal manner, rather than being
left out. The technique presented in this paper improves the earlier approach in

3

two ways. First of all, we managed to significantly improve the performance
of the earlier approach by (i) ordering the set of candidate places; (ii) pruning
the set of candidate places with the introduction of new notions of conflict and
exclusion and (iii) quickly removing candidate places that do not meet the preset
quality criteria in a safe manner. Second, we provide more control over the hybrid
process model that is generated. Moreover, the approach incorporating all the
new optimizations has been reimplemented in ProM. The new version of the ProM
package HybridMiner provides the plug-ins Causal Graph Miner and Hybrid Petri
Net Miner corresponding to the two main phases of our approach. The software
is open source and can be obtained from www.promtools.org. Finally, we
provide a broad evaluation of the new approach that takes into account different
perspectives and more datasets.

We use hybrid Petri nets, a new class for Petri nets with informal annotations,
as a concrete representation of hybrid process models. However, the ideas, con-
cepts, and algorithms are generic and could also be used in the context of BPMN,
UML activity diagrams, etc. In a hybrid Petri net, there are three types of arcs:
normal arcs, sure arcs, and unsure arcs. Normal arcs are traditional, Petri net arcs;
sure arcs should be interpreted as causal relationships between activities that can-
not be expressed (easily) in a formal manner, viz., in terms of a Petri net place
and finally, unsure arcs are suspected causal relationships that are too weak to
justify a place connecting activities. We note that, when all causality relationships
among activities are clear and can be expressed in terms of places, a hybrid Petri
net looks exactly as a Petri net. Our discovery technique has two phases. First,
we discover a causal graph from the event log. Based on different (threshold)
parameters we scan the event log for possible causalities. In the second phase, we
learn places based on explicit quality criteria, which are interpreted in a precise
manner and have guaranteed quality. Causal relations that cannot or should not
be expressed in terms of places are added as sure or unsure arcs. Once a hybrid
Petri net is discovered, it can be used as a starting point for other types of process
mining. We acknowledge a few limitations of our approach: it does not allow for
label duplication and silent transitions and it requires the setting of some param-
eters, e.g., the threshold parameters. However, the latter is mitigated by the fact
that some default values are provided and that an evaluation on the impact of the
parameter values on the performance is carried out, so as to provide the users with
some guidelines on parameter configuration.

Note that our objective is much broader: We argue that hybrid process models
are useful and combine simplicity, vagueness, and scalability with partly formal
models that allow for reasoning and provide formal guarantees. The concrete

4

discovery technique and extensive evaluations presented are intended as an illus-
tration of this broader vision. Moreover, the paper demonstrates that other ap-
proaches may provide misleading results or return models that unexpectedly do
not allow for any of the traces seen in the data.

The remainder is organized as follows. In Section 2, we motivate our work
by discussing the weaknesses of existing techniques that produce either formal
models or informal models. Section 3 introduces event logs and traditional Petri
nets, while Section 4 presents causal graphs along with some metrics which will
be used in the evaluation. Section 5 defines hybrid Petri nets. Section 6 first
discusses ways of measuring the quality of a place in relation to an event log and
elaborates on problems related to conflicting places, and then introduces our two-
phase discovery algorithm. Section 7 describes the ProM plug-ins developed to
support the discovery of hybrid process models. Section 8 evaluates the approach
in four different ways. Section 9 discusses related work and Section 10 concludes
the paper.

2. Problem Analysis

In this section, we discuss problems related to formal and informal models,
and we define the requirements for an ideal hybrid process model. To motivate
our contribution, an example of a process is provided.

2.1. Problems Related to Informal Models
Commercial process mining tools like Celonis, Signavio/SAP, Disco, myIn-

venio/IBM, Minit/Microsoft, ProcessGold/UiPath, etc. produce informal models
that can be described as “boxes and arrows”. These tools are inspired by the
fuzzy miner [8], which was the first to provide sliders allowing the user to seam-
lessly simplify the model. Whereas the fuzzy miner provided quite some control
over the creation of arcs, commercial systems simplified matters by providing two
non-configurable frequency-based sliders. The discovered models do not show
the split and join behavior (AND, XOR, or OR) in the process model. In some
cases the tools are able to discover concurrency, but this is not shown. Some-
times concurrency is only detected when activities overlap (Disco) or additional
information is given (Celonis), but this is not exposed to the user. To get an inter-
pretable model, there is often the possibility to simply show the Directly Follows
Graph (DFG henceforth). In this graph, two activities are connected if and only if
one is followed by the other somewhere in the event log. The number on the arc
connecting activities a and b then indicates how often a was followed by b.

5

a b

c d

e
(a) Directly-follows graph for event log with

five concurrent activities

a b

c d

e
(b) Directly-follows graph after removing

less frequent arcs

a

(c) Frequencies do not add up:
233+188 ≠ 564 ≠ 215 +285

564

285

188

233

215

(c) How to interpret these times?

a 23.4
hours

8.5
hours

12.1
hours

31.2
hours

Figure 1: Problems encountered when discovering a process with five parallel activities using a
commercial tool unable to discover concurrency.

The DFG is easy to generate and seems easy to interpret. However, whenever a
set of activities does not happen in a fixed order, the model becomes confusing: the
DFG suggests loops whereas all activities are executed only once and the usage of
frequency-based filtering only adds to the confusion, as some loops might remain
while other possible paths disappear.

Figure 1 sketches the problem more in detail. Let us consider an event log L
with five parallel activities (a, b, c, d, and e) where all possible interleavings are
observed, so that for instance 〈a, b, c, d, e〉 ∈ L, but also 〈b, d, e, a, c〉 ∈ L as well
as any other sequence. The DFG without frequency-based filtering is shown in
Figure 1(a). The graph suggests loops whereas each activity is only executed once.
Using frequency-based filtering, we may remove the less frequent paths resulting
in the model shown in Figure 1(b), which shows the dominant behavior but also
triggers many questions. When showing the frequencies of activities and direct
successions, numbers do not add up after filtering. In Figure 1(c) activity a was
executed 564 times. However, the numbers of the input and output arcs do not add

6

up. When average delays are shown in a DFG they refer to the mean time between
two activities under the condition that the activities directly followed each other.
Based on Figure 1(c) one could think that a is executed 31.2 hours after the start
of the case and b is executed 23.4 hours after a (on average). However, this is not
the case: a is executed 31.2 hours (on average) after the start under the condition
that a was the first activity, but when a was not the first, these times could have
been very different. Also the real average time between a and b may be longer or
shorter than 23.4 hours.

Figure 1 illustrates that simple “boxes and arrows” diagrams may cause confu-
sion and conceal the actual process (which is very structured and simple). More-
over, frequencies and times need to be interpreted carefully. The numbers in Fig-
ure 1 are not wrong, but can be misinterpreted easily.

2.2. Problems Related to Formal Models
The majority of the discovery algorithms described in the literature (e.g., the

α-algorithm [9], the region-based approaches [14, 13, 18], and the inductive min-
ing approaches [26, 27, 28]) produce formal models able to capture sequences,
choices, concurrency, and loops. These can be transition systems, different fla-
vors of Petri nets, automata, process trees, BPMN models, etc. Formal models
may also be declarative. A model is formal if it is able to classify traces into fit-
ting (i.e., part of the language) and non-fitting. Figure 1(b) could be interpreted as
a formal model. However, it is not intended as such.

To explain these challenges, let us first consider a very simple event log L1 =
[〈a, b, d, e, f〉100, 〈a, c, e, d, f〉100]. L1 contains 200 cases, each composed of 5
events (1000 events in total). For 100 cases the following sequence is executed
〈a, b, d, e, f〉 and for the other 100 cases 〈a, c, e, d, f〉 (more precise definitions of
multisets, logs and their notations will be presented in Section 3.1). Figure 2(a)
shows the Petri net discovered by the α-algorithm [9]. The model is deadlocking
(f needs to synchronize but will never be able to do so) and none of the origi-
nal cases fits the model. Figure 2(b) shows the process model discovered by the
inductive miner [26]. This model is underfitting and allows for unseen traces 〈a, c,
d, e, f〉 and 〈a, b, e, d, f〉. Figure 2(c) shows the process model discovered by the
ILP miner [18]. Also, this model allows for too much behavior. It is also possible
to use a process discovery technique that allows for multiple transitions having
the same label (e.g., state-based regions with label splitting [10, 30]). Such an ap-
proach will be able to discover a model only allowing for the two traces observed
(see Figure 2(d)).

7

Figure 2: A few formal process models (represented in terms of Petri nets) discovered for the event
log L1 = [〈a, b, d, e, f〉100, 〈a, c, e, d, f〉100].

Event log L1 has a lot of structure. Now we add a bit of exceptional behavior:
we add 10 traces (i.e., 5%) where one of the events is replaced by an x event. This
may have a dramatic effect on the process models. Figure 3(a) shows the Petri net
discovered by the α-algorithm. The model is still deadlocking and unable to ex-
plain any of the observed traces. Figure 3(b) shows the process model discovered
by the inductive miner. We used a threshold of 0, ensuring that the model captures
all observed behavior. It does, but the resulting model is severely underfitting.
All activities can be skipped, e.g., the empty trace 〈 〉 is a possible behavior. The
process model discovered by the ILP miner shown in Figure 3(c) using the same
(standard) settings as used for Figure 2(c) allows not only to capture the behavior
of the event log but it also allows for any behavior. Figure 3(d) shows the process
model discovered using state-based regions with label splitting. This model cap-
tures the behavior seen in the event log in a smart way, but is rather complicated
and could be considered as overfitting. A single event can dramatically change
the model.

Figures 2 and 3 show the problems of purely formal approaches. First of all,
such approaches need to make a binary decision with respect to possible traces.

8

(a) deadlocking model discovered by the Alpha miner

(b) underfitting model discovered by the inductive miner

(c) process model discovered by the ILP miner (d) process model discovered using state-based regions

Figure 3: Formal process models when adding 10 noisy cases where one “regular” event was
replaced by an exceptional event x.

A formal model needs to make a binary decision whether a certain behavior is
included or not, that is whether a trace fits or not. Second, any discovery approach
is limited by its representational bias. The representational bias refers to the class
of models than can be discovered by the considered discovery approach.1 For
example, the α-algorithm can only discover Petri nets where all transitions have
a unique and visible label. The same holds for the ILP miner. The inductive
miner can only discover block-structured models where all activities are unique.
Therefore, it cannot discover the dependency between b and c and the ordering of d
and e in Figure 2(b). Changing the representational bias can, at best, only provide
a partial solution. Adding more sophisticated modeling constructs will lead to
models that are difficult to understand and also difficult to discover. Moreover,
real-life behavior will seldom perfectly match the representational bias of some
formal modeling language. Therefore, one has to accept that behavior cannot be

1Please note that here we are not necessarily stating that there is no Petri net able to capture the
behavior in the example, but rather that the representational bias of the approach does not allow
for discovering it.

9

fully captured in a model that classifies traces into fitting or non-fitting.
The presence of exceptional behavior (like the randomly inserted activity x

in Figure 3) may lead to degenerate models because the discovery techniques try
to straightjacket erratic behavior in their representational bias. Most of the more
recent mining algorithms provide the option to create a fitting model. For example,
the inductive model guarantees that the discovered model is able to generate the
event log when the noise threshold is set to 0. However, this may lead to severely
underfitting models that allow for behavior unrelated to the observed behavior and
besides, such guarantees are only provided for such extreme settings and do not
apply when the approach is used in practice. Later, we will show examples where
also the inductive miner does not allow for any of the traces seen in the event log.

In short, existing formal approaches suffer from at least one of the following
problems:

• Discovered process models may be deadlocking and/or not allow for the
majority of the behavior seen (Figures 2(a) and Figure 3(a)).

• Discovered process models may be underfitting the observed behavior when
the mainstream behavior is outside the representational bias or because of
erratic/infrequent behavior (Figures 2(b), 2(c), 3(b), and 3(c)).

• Discovered process models may be overfitting the observed behavior when
the mainstream behavior is outside the representational bias or because of
erratic/infrequent behavior (Figure 3(d)).

All have the problem that the behavior that cannot be captured due to the repre-
sentational bias is not represented.

2.3. Requirements
Ideally, a discovery approach has the following properties:

R1. What can be formalized should be formalized. Whenever behavior can be
captured using a formal construct it should not be left informal. What is
formalized should have a clear and unambiguous interpretation.

R2. What is formalized should be supported by formal guarantees that can be
interpreted by the user. Guarantees should hold for all parameter settings
and not just “in the limit”.

10

R3. What cannot be formalized should be left informal. Behavior that cannot
be captured formally (due to limitations of the representational bias or er-
ratic/infrequent behavior), should not lead to degenerate or incorrect mod-
els.

R4. What cannot be formalized should not be left out and captured in a differ-
ent way. The model should provide information on behavior that was not
captured formally.

In this paper, we propose to use hybrid process models to address the above
requirements. In the evaluation, we return to these requirements.

2.4. Motivating Example
To better understand the pitfalls of existing process discovery techniques, let

us consider an event log related to an order handling process. Figure 4 shows
a trace variant representation of our example event log (i.e., a representation
of unique activity sequences with their frequencies). This event log consists of
12 666 cases that can be grouped into nine unique trace variants.

All five models in Figure 5 and Figure 6 have been produced for this event
log using state-of-the-art process discovery approaches. Models (d) and (e) were
created using the commercial process mining tool Disco (Fluxicon) using different
settings. These models are informal. Model (d) shows only the most frequent
paths and model (e) shows all possible paths. For such informal models, it is
impossible to determine the exact nature of splits and joins. Commercial tools
have problems dealing with loops and concurrency. For example, for all cases,
activities make delivery and confirm payment happened at most once, but not in
a fixed order. However, these concurrent activities are put into a loop in models
(d) and (e). This problem is not specific to Disco or this event log: all commercial
tools suffer from this problem when using informal graphs.

Models (a), (b), and (c) are expressed in terms of Petri nets and have formal
semantics. Models (b) and (c) were created using the inductive miner (IMf [27])
with different settings for the noise threshold (0.0 respectively 0.2). Model (b) is
underfitting. For instance, this model allows for instances where the ordered items
are delivered although the payment is skipped. Model (c) is neither fitting nor pre-
cise; i.e., this model only allows for the mainstream behavior observed in the log,
and it allows for additional behavior not observed in the log. For example, cases
with multiple reminders and cases where the payment is done before sending the
invoice do not fit the model, while cases where the order is canceled after the

11

Figure 4: Order handling event log.

payment are allowed. Model (a) was created using the ILP miner with default set-
tings. This model is able to precisely describe the choice between pay and cancel
order; however, it still suffers from some issues. For instance, traces with confirm
payment before make delivery do not fit the model, and it allows for skipping send
reminder and directly executing cancel order after send invoice. Moreover, model
(a) contains a much higher number of arcs compared to the other models. For
larger event logs having more activities and low-frequent paths, the ILP miner is
not able to produce meaningful models (the approach becomes intractable and/or
produces incomprehensible models).

We introduce hybrid Petri nets to combine the models in Figure 5 and the ones
in Figure 6; i.e., we use formal semantics when the behavior is clear and easy to

12

(a) Disco DFG model showing only
the most frequent paths (b) Disco DFG model showing also the infrequent paths

Figure 5: Process models discovered by Disco for an event log recorded for 12 666 orders.

express and we resort to informal annotations when things are blurry or inexact.
Figure 7 shows a hybrid Petri net modeling our example process. In this model,
places represent dependencies that can be easily captured in a formal manner,
e.g., to capture the sequential dependency between place order and send invoice
and to capture the concurrency between make delivery and confirm payment. For
vague structures where formal constraints cannot be justified, causal relations are
depicted in the final hybrid Petri net as informal edges. A hybrid Petri net has
two types of informal edges that directly connect transitions: sure edges repre-
sent strong causal dependencies between activities, and uncertain edges (dashed
arcs) represent weak dependencies. For example, the sure edge (send reminder→

13

(a) Accepting Petri net discovered by the ILP miner

(b) Underfitting process model discovered by the inductive miner

(c) Non-fitting process model discovered by the inductive miner

Figure 6: Process models discovered by ILP and inductive miner for an event log recorded for
12 666 orders (labels are not intended to be readable).

start send

invoice

confirm

payment

pay

make

delivery

send

reminder

cancel

order

place

order

prepare

delivery

?

end

?

p1 p2 p3

p4

p5

p6

p7

p8

p9

Figure 7: A hybrid system net discovered for the event log described in Figure 4.

cancel order) indicates a strong dependency between sending reminders and can-
celing the order; this dependency is strong since cancel order is always directly

14

preceded by send reminder in the event log, but this strong dependency cannot
be easily captured using a formal place because send reminder is not always fol-
lowed by cancel order. The uncertain edge (place order→ pay) indicates a weak
dependency between placing the order and paying; this covers the two infrequent
trace variants where the customer directly pays after placing the order.

3. Event Logs and Petri Nets

In this section, we introduce basic concepts, including multisets, operations
on sequences, event logs and Petri nets.

3.1. Preliminaries
B(A) is the set of all multisets over some set A. For some multiset X ∈ B(A),

X(a) denotes the number of times element a ∈ A appears in X . Some examples:
X = [], Y = [x2, y], and Z = [x3, y2, z] are multisets over A = {x, y, z}. X is
the empty multiset, Y has three elements (Y (x) = 2, Y (y) = 1, and Y (z) = 0),
and Z has six elements. Note that the ordering of elements is irrelevant.

With σ = 〈a1, a2, . . . , an〉 ∈ A∗, that is the Kleene closure of the alphabet A,
we denote a sequence over A; σ(i) = ai denotes the i-th element of the sequence;
|σ| = n denotes the length of σ and dom(σ) = {1, . . . , |σ|} is the domain of σ; 〈 〉
is the empty sequence, i.e., |〈 〉| = 0 and dom(〈 〉) = ∅; σ1 ·σ2 is the concatenation
of two sequences.

Let A be a set and X ⊆ A one of its subsets. �X : A∗ → X∗ is a projection
function, which we use with an infix notation, and is defined recursively: 〈 〉�X=
〈 〉 and for σ ∈ A∗ and a ∈ A: (〈a〉·σ)�X= σ�X if a 6∈ X and (〈a〉·σ)�X= 〈a〉·σ�X
if a ∈ X . For example, 〈a, b, a〉�{a,c}= 〈a, a〉. Projection can also be applied to
multisets of sequences, e.g., [〈a, b, a〉5, 〈a, d, a〉5, 〈a, c, e〉3] �{a,c}= [〈a, a〉10, 〈a,
c〉3].

Later, we will also use summations over multisets, e.g.,
∑

x∈[a,b,b,a,c] x = 2a+
2b + c. For example, if a trace appears multiple times in the log, this needs to be
taken into account.

3.2. Event Logs
The starting point for process discovery is an event log where events are

grouped into cases. Each case is represented by a trace, e.g., 〈., a, b, c, d, �〉.

Definition 1 (Event Log). An event log L ∈ B(A∗) is a non-empty multiset of
traces over some activity set A. A trace σ ∈ L is a sequence of activities. There is

15

p3a

p2 b

c d

e

p1

p4

Figure 8: Small Petri net consisting of four places (P = {p1, p2, p3, p4}) and five transitions
(T = {a, b, c, d, e}). In the initial marking Minit = [p1, p2] there are two tokens. The final
marking used for the corresponding system net is Mfinal = [], i.e., the empty marking.

a special start activity . and a special end activity �. We require that {., �} ⊆ A
and each trace σ ∈ L has the structure σ = 〈., a1, a2, . . . , an, �〉 and {., �}∩{a1,
a2, . . . , an} = ∅. UL is the set of all event logs satisfying these requirements.

An event log captures the observed behavior that is used to learn a process
model. An example log is L2 = [〈., a, b, c, d, �〉45, 〈., a, c, b, d, �〉35, 〈., a, e, d,
�〉20] containing 100 traces and 580 events. In reality, each event has a timestamp
and may have any number of additional attributes. For example, an event may
refer to a customer, a product, the person executing the event, associated costs
and so on. Here we abstract from these notions and simply represent an event by
its activity name.

3.3. Petri Nets
A Petri net is a bipartite graph composed of places (represented by circles)

and transitions (represented by squares). Figure 8 shows an abstract example to
explain the basic concepts.

Definition 2 (Petri Net). A Petri net is a tuple N = (P, T, F) with P the set of
places, T the set of transitions, P ∩ T = ∅, and F ⊆ (P × T)∪ (T × P) the flow
relation.

Transitions represent activities and places are added to model causal relations.
•x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} define input and output sets
of places and transitions. Places can be used to causally connect transitions as is
reflected by relation F̂ : (t1, t2) ∈ F̂ if t1 and t2 are connected through a place p,
i.e., p ∈ t1• and p ∈ •t2. For the Petri net in Figure 8: F̂ = {(a, c), (a, d), (b, c),
(b, e)}.

Definition 3 (F̂). Let N = (P, T, F) be a Petri net. F̂ = {(t1, t2) ∈ T × T |
∃p∈P {(t1, p), (p, t2)} ⊆ F} are all pairs of transitions connected through places.

16

The state of a Petri net, called marking, is a multiset of places indicating how
many tokens each place contains. Tokens are shown as black dots inside places.
Figure 8 shows the marking [p1, p2].

Definition 4 (Marking). Let N = (P, T, F) be a Petri net. A marking M is a
multiset of places, i.e., M ∈ B(P).

A transition t ∈ T is enabled in markingM of netN , denoted as (N,M)[t〉, if
each of its input places (p ∈ •t) contains at least one token. An enabled transition
t may fire, i.e., one token is removed from each of the input places (p ∈ •t) and
one token is produced for each of the output places (p ∈ t•). In Figure 8 both a
and b are enabled and can fire independently.

(N,M)[t〉(N,M ′) denotes that t is enabled in M and firing t results in mark-
ing M ′. Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions, sometimes
referred to as a trace. (N,M)[σ〉(N,M ′) denotes that there is a set of markings
M0,M1, . . . ,Mn such that M0 = M , Mn = M ′, and (N,Mi)[ti+1〉(N,Mi+1) for
0 ≤ i < n.

A system net has an initial and a final marking. The behavior of a system net
corresponds to the set of traces starting in the initial marking Minit and ending in
the final marking Mfinal .

Definition 5 (System Net Behavior). A system net is a triplet SN = (N,Minit ,
Mfinal) where N = (P, T, F) is a Petri net, Minit ∈ B(P) is the initial marking,
and Mfinal ∈ B(P) is the final marking. behav(SN) = {σ | (N,Minit)[σ〉(N,
Mfinal)} is the set of traces possible according to the model.

A system net SN classifies traces σ into fitting (σ ∈ behav(SN)) and non-
fitting (σ 6∈ behav(SN)). For the system net shown in Figure 8 (Minit = [p1, p2]
and Mfinal = []): behav(SN) = {〈a, b, c〉, 〈b, a, c〉, 〈a, b, d, e〉, 〈b, a, d, e〉, 〈a, b, e,
d〉, 〈b, a, e, d〉, 〈a, d, b, e〉, 〈b, e, a, d〉}.

Note that the example net does not have transitions corresponding to the spe-
cial start (.) and end (�) activities. Later we will limit ourselves to system nets
that have a source place p., a sink place p�, a start transition ., and an end transi-
tion � such that p. is the only input place of . and p� is the only output place of �.
Assuming that the net is connected andMinit = [p.] andMfinal = [p�] this implies
that all accepting traces start with . and end with �. However, from a semantical
point of view, . and � are treated like any other activity.

17

4. Causal Graphs: Motivation, Discovery, Precision, and Recall

Let us fix a set A of activities, the semantics of formal process models such
as Petri nets or BPMN models are provided by the set of possible traces over A
they accept/generate. For a given system net SN = (N,Minit ,Mfinal) the set
of traces behav(SN) it accepts is a subset of A∗. When evaluating a process
discovery approach on a discovered model SN , the event log L ∈ B(A∗) used as
input is compared with behav(SN). Hence, process models are viewed as binary
classifiers stating whether a trace σ ∈ A∗ is possible (σ ∈ behav(SN)) or not
(σ 6∈ behav(SN)). In this paper, we would like to move beyond this narrow view
and consider both formal and semi-formal constructs by incorporating information
that cannot be mapped onto a Petri-net place or BPMN gateway. As mentioned,
there may not be a corresponding construct due to the representational bias of the
language or there may be not enough evidence in the event log to justify adding
a place or gateway. Therefore, we need to abandon the idea that the semantics of
a model are fully defined by the set of possible traces. We propose causal graphs
as an additional way to characterize behaviors, next to sets of traces. We use
such causal graphs during the discovery of hybrid process models and to evaluate
process discovery results (next to the classical measures that consider process
models as binary classifiers). In the next sections, we define causal graphs as well
as new metrics for their evaluation.

4.1. Causal Graphs
A formal process model is able to make firm statements about the inclusion

or exclusion of traces, e.g., trace 〈., a, b, c, d, �〉 fits the model or not. Informal
process models are unable to make such precise statements about traces. Event
logs only show example behavior: (1) logs are typically incomplete (e.g., the
data only shows a fraction of all possible interleavings, combinations of choices,
or unfoldings) and (2) logs may contain infrequent exceptional behavior where
the model should abstract from. Therefore, it is impossible to make conclusive
decisions based on event logs. More observations may lead to a higher certainty
and the desire to make a formal statement (e.g., “after a there is a choice between
b and c”). However, fewer observations and complex dependencies create the
desire to remain “vague”. Models (a), (b) and (c) in Figure 6 have formal Petri net
semantics as described in Definition 5 (the initial and final markings are defined
but not indicated explicitly: the source places are initially marked and the sink
places are the only places marked in the final markings). Models (a) and (b) in

18

Type I

?

Type II Type III

strong causality
(“sure”)

weak causality
(“unsure”)

formal
(firm statements about

the inclusion or
exclusion of traces)

informal
(annotations that are
deliberately vague)

Figure 9: The strength of a causality and the formality of a modeling construct are orthogonal.
However, it makes less sense to express a weak causality in a formal manner.

Figure 5 are informal and, therefore, unable to classify traces into fitting and non-
fitting.

In essence, process models describe causalities between activities. Depending
on the evidence in the data we can distinguish between stronger (“sure”) or weaker
(“unsure”) causalities.2 The strength of a causal relation expresses the level of
confidence. A strong causality between two activities a and b suggests that one is
quite sure that activity a causes activity b to happen later in time. This does not
mean that a is always followed by b. The occurrence of b may depend on other
factors, e.g., b requires c to happen concurrently or a only increases the likelihood
of b.

The strength of a causality and the formality of a modeling construct are or-
thogonal dimensions, as shown in Figure 9. Indeed, both strong and weak causal-
ities can be expressed formally and informally. Even when one is not sure, one
can still use a formally specified modeling construct. Moreover, both notions may
be local, e.g., parts of the process model are more certain or modeled precisely
whereas other parts are less clear and therefore kept vague.

As Figure 9 suggests, it seems undesirable to express a weak causality us-
ing a formal construct. Moreover, depending on the representational bias of the
modeling notation, strong causalities may not be expressed easily. The modeling
notation may not support concurrency, duplicate activities, unstructured models,
long-term dependencies, OR-joins, etc. Attempts to express behavior incompati-

2We use two classes two characterize the causal relation strength: “sure” and “unsure”. This is
a design choice. Choosing more levels of causality strength would have required more thresholds
and make the model and approach more complex.

19

ble with the representational bias of the modeling notation in a formal model are
doomed to fail. For instance the α-algorithm and the ILP miner can only discover
Petri nets where all transitions have a unique and visible label. The inductive
miner can only discover block-structured models where all activities are unique.
This results in models overfitting or underfitting. Hence, things that cannot be ex-
pressed easily in an exact manner can only be captured in an informal way, e.g.,
by using annotations that are deliberately vague and non-executable. Instead, we
aim to combine the best of both worlds by considering causalities next to the for-
mal language of a model in terms of the traces it can produce. The first step to
achieve this result is introducing causal graphs.

A causal graph, which is a variant of the one discovered by the heuristic
miner [1, 7], is a directed graph with activities as nodes. There is always a unique
start activity (.) and end activity (�) and there are the two kinds of strong and
weak causal relations corresponding to the two columns in Figure 9.

Definition 6 (Causal Graph). A causal graph is a tuple G = (A,RS, RW) where
A is the set of activities including start and end activities (i.e., {., �} ⊆ A),
RS ⊆ A×A is the set of strong causal relations, RW ⊆ A×A is the set of weak
causal relations, and RS ∩ RW = ∅ (relations are disjoint). UG is the set of all
causal graphs.

Figure 10 shows a causal graph derived from the event log also used to dis-
cover the models in Figure 5 and Figure 6. Analogously to the hybrid model
example in Figure 7, the dashed arcs with question marks represent two weak
causal relations, while the others represent strong causal relations.

Note that the causal graph in Figure 10 does not have formal semantics in the
classical sense, i.e., a causal graph is not a binary trace classifier and should be
viewed as semi-formal.

4.2. Discovering Causal Graphs
Although causal graphs are semi-formal, we want to discover such graphs

from event data and use these to discover and evaluate process models. We as-
sume that a causal graph discovery function provides the strong and weak causal
relations. Note that this is a necessary assumption to discuss hybrid process mod-
els in a meaningful manner.

Definition 7 (Causal Graph Discovery). A causal graph discovery function is a
function disccg ∈ UL → UG that constructs a causal graph disccg(L) = (A,RS,
RW) for any event log L ∈ UL over A.

20

start send

invoice

confirm

payment

pay

make

delivery

send

reminder

cancel

order

place

order

prepare

delivery

?

end

?

Figure 10: A causal graph: nodes correspond to activities and arcs correspond to causal relations.

There are many possible algorithms to construct a causal graph from a log.
Here we use a variant of the algorithm used by the heuristic miner [1, 7] tailored
to hybrid discovery (i.e., different types of arcs) while aiming for parameters that
are intuitive and can be used interactively (e.g., thresholds can be changed seam-
lessly while instantly showing the resulting graph). Note that we clearly separate
the identification of causalities from the discovery of formal process modeling
constructs such as places or gateways. Some preliminary definitions are required
for the causal graph discovery algorithm and they are presented next.

Definition 8 (Log-Based Properties). Let A be a set of activities, L ∈ UL be an
event log over A and {a, b} ⊆ A.

• #(a, L) =
∑

σ∈L |{i ∈ dom(σ) | σ(i) = a}| counts the number of a’s in
event log L.

• #(X,L) =
∑

x∈X #(x, L) counts the number of X ⊆ A activities in L.

• #(a, b, L) =
∑

σ∈L |{i ∈ dom(σ) \ {|σ|} | σ(i) = a ∧ σ(i+ 1) = b}|
counts the number of times a is directly followed by b in event log L.

• #(∗, b, L) =
∑

σ∈L |{i ∈ dom(σ) \ {|σ|} | σ(i+ 1) = b}| counts the num-
ber of times b is preceded by some activity.

• #(a, ∗, L) =
∑

σ∈L |{i ∈ dom(σ) \ {|σ|} | σ(i) = a}| counts the number
of times a is succeeded by some activity.

21

• Rel1 (a, b, L) =
2#(a, b, L)

#(a, ∗, L) + #(∗, b, L)
counts the strength of relation (a,

b) relative to the split and join behavior of activities a and b.

• Rel2 c(a, b, L) =


#(a,b,L)−#(b,a,L)

#(a,b,L)+#(b,a,L)+c
if #(a, b, L)−#(b, a, L) > 0

#(a,b,L)
#(a,b,L)+c

if a = b

0 otherwise
counts the strength of relation (a, b) taking into account concurrency and
loops using parameter c ∈ R+ (default c = 1).

• Causc,w(a, b, L) = w · Rel1 (a, b, L) + (1 − w) · Rel2 c(a, b, L) takes the
weighted average of both relations where w ∈ [0, 1] is a parameter indi-
cating the relative importance of the first relation. If w = 1, we only use
Rel1 (a, b, L). If w = 0, we only use Rel2 c(a, b, L). If w = 0.5, then both
are of equal weight.

Rel1 (a, b, L), Rel2 c(a, b, L), and Causc,w(a, b, L) all produce values between
0 (no relation) and 1 (perfect relation), so that higher values correspond to a
stronger causality relationship. Using the properties in Definition 8, we can now
define a concrete function disccg to create causal graphs. All activities that occur
in at least tfreq traces in the event log are included as nodes. The strength of re-
lations between remaining activities (based on Causc,w) are used to infer causal
relations. Note that, differently from activity frequency, the strength of a causal
relation between two activities measures how sure we are on whether a causal
relation between the activities exists. tRS

and tRW
are thresholds for strong re-

spectively weak causal relations. Parameter w determines the relative importance
of Rel1 and Rel2 c. Parameter c is typically set to 1.

Note that Rel2 c(a, b, L) is similar to one of the features also used in the heuris-
tic miner [7]. However, here negative values are mapped to 0 to get a value be-
tween 0 and 1. Again we would like to stress that other measures could be used to
measure the strength of the relations among activities and that the contribution of
this work is not in the generation of causal graphs, but in the construction of hy-
brid process models (although the quality of the discovered hybrid process model
could depend on the quality of the causal graph).

Definition 9 (Concrete Causal Graph Discovery Technique). Let A be a set of
activities, L ∈ UL be an event log over A and let tfreq ∈ IN+, c ∈ R+, w ∈ [0, 1],
tRS
∈ [0, 1], tRW

∈ [0, 1] be parameters such that tRS
≥ tRW

. The corresponding
causal graph is G = disccg(L) = (A′, RS, RW) where

22

• A′ = {a ∈ A | #(a, L) ≥ tfreq}∪ {., �} is the set of activities that meet the
threshold (the start and end activities are always included).

• RS = {(a, b) ∈ A′ × A′ | Causc,w(a, b, L�A′) ≥ tRS
} is the set of strong

causal relations.

• RW = {(a, b) ∈ A′ × A′ | tRS
> Causc,w(a, b, L�A′) ≥ tRW

} is the set of
weak causal relations.

Figure 10 shows a causal graph constructed using parameters tfreq = 1000,
c = 1, w = 0.2, tRS

= 0.8, and tRW
= 0.75.

In the remainder, we assume disccg(L) to be the causal graph describing the
event log in the best way. This is an assumption parameterized by tRS

and tRW
,

but it is a necessary one when it comes to evaluate (hybrid) process models (it is
possible to pick a different causal graph discovery function disccg ∈ UL → UG).

4.3. Causal-Graph-Based Precision and Recall
Process discovery techniques can be evaluated using a range of indicators re-

ferring to recall (ability to replay the observed behavior, often called fitness), pre-
cision (avoiding underfitting, i.e., penalizing behavior possible according to the
model but never observed), generalization (avoiding overfitting, i.e., the ability to
anticipate behavior not observed yet), and simplicity (is the model easy to under-
stand) [1]. These notions are also relevant for hybrid process models, but they
ignore the two dimensions shown in Figure 9. Indeed classical process models
only consider the Type I relation but do not consider the top row in Figure 9 with
Type II and Type III relations. Therefore, in order to evaluate and compare our
approach, we need to: (i) show to create a causal graph for a formal model and
(ii) define causal-graph-based precision and recall. For systems nets (i.e., Petri
nets with an initial and final marking), we define the corresponding causal graph
as follows. The Petri net transitions define the nodes (i.e., activities) of the causal
graph. The strong causal relations are all pairs of transitions (i.e., activities) con-
nected through a place. There are no weak causal relations, because there are no
“unsure” relationships.

Definition 10 (Causal Graph of a System Net). Let SN = (N,Minit ,Mfinal) be
a system net. G(SN) = (A,RS, RW) is the causal graph of SN where A = T ,
RS = {(a1, a2) ∈ A× A | a1 • ∩ • a2 6= ∅}, and RW = ∅.

23

As mentioned before, we will focus on system nets that have a source place p.,
a sink place p�, a start transition ., and an end transition �, and event logs where
each trace starts with . and ends with �. Hence, causal graphs always include a
start activity . and an end activity �.

The same approach can be used when using other graphical models like BPMN
models or UML activity diagrams. Based on a BPMN model we can derive the
strong causal relations by considering the connections through gateways, just like
we considered connections through shared places in Definition 10. Considering
traditional process model notations not allowing for “unsure” relationships, there
will be no weak causal relations. However, the hybrid process models introduced
later will have such relationships.

Now that we have a causal graph for event logs and process models, we can
define causal-graph-based precision and recall.

Definition 11 (Causal-Graph-Based Precision and Recall). LetGL = (AL, RL
S ,

RL
W) be a causal graph for event log L and GM = (AM , RM

S , R
M
W) be a causal

graph for process model M .

• Strong Causal Recall: SCR(L,M) =
|RL

S∩R
M
S |

|RL
S |

is the fraction of strong

causalities according to the event log supported by the process model.

• Strong Causal Precision: SCP(L,M) =
|RM

S ∩R
L
S |

|RM
S |

is the fraction of strong

causalities according to the process model supported by the event log.

• Weak Causal Recall: WCR(L,M) =
|RL

W∩R
M
W |

|RL
W |

is the fraction of weak

causalities according to the event log supported by the process model.

• Weak Causal Precision: WCP(L,M) =
|RM

W∩R
L
W |

|RM
W |

is the fraction of weak

causalities according to the process model supported by the event log.

Note that SCR(L,M), SCP(L,M), WCR(L,M), and WCP(L,M) are de-
fined independent of the process model notation used. Given a system net M =
SN = (N,Minit ,Mfinal), we can compute GM = (AM , RM

S , R
M
W) = G(SN)

as shown in Definition 10. Given an event log L ∈ B(A∗), we can compute
GL = (AL, RL

S , R
L
W) = disccg(L) as shown in Definition 9 (parameterized by tRS

and tRW
).

24

For traditional process model notations not allowing for “unsure” relation-
ships, we have RM

W = ∅ by definition (cf. Definition 10). This implies that
WCR(L,M) = 0 and WCP(L,M) = 1 (assuming that 0/0 = 1).

In the evaluation of our discovery approach, we use causal-graph-based recall
and precision, next to the more traditional notions of recall and precision.

5. Hybrid Petri Nets

The aim of this paper is to incorporate in our hybrid process model informa-
tion that cannot be mapped onto a Petri-net place or BPMN gateway, e.g., due
to representational bias issues or to the lack of evidence in the log to justify the
addition of these elements. We therefore introduce a new type of hybrid process
models that contain both formal Petri net places and informal causal graph sure
and unsure arcs, so as to have the three types of connections shown in Figure 9.
The resulting model is hybrid Petri nets, as we augment traditional Petri nets with
such arcs. However, we remark that our ideas are generic and could also apply to
other notations such as BPMN, UML activity diagrams, etc.

Figure 7 shows an example of a hybrid Petri net discovered based on the event
log in Figure 4, which is the same log used to create the models in Figure 5 and
Figure 6. Strong causalities are expressed through conventional places and arcs
as well as sure arcs (which directly connect transitions), while weak causalities
are represented using unsure arcs. The figure also uses special symbols for the
start and end activities (. and �) as introduced in Definition 1, but the semantics
of HSN , defined below, do not depend on this.

Definition 12 (Hybrid Petri Net). A hybrid Petri net is a tuple HPN = (P, T,
FI , FII , FIII) where (P, T, FI) is a Petri net, FII ⊆ T × T , and FIII ⊆ T × T
such that F̂I , FII , and FIII are pairwise disjoint. Arcs of Type I ((p, t) ∈ FI or
(t, p) ∈ FI) are the normal arcs connecting a place to a transition or vice versa.
Arcs of Type II ((t1, t2) ∈ FII) are arcs indicating a strong causality between two
transitions (sure arcs). Arcs of Type III ((t1, t2) ∈ FIII) are arcs indicating a weak
causality between two transitions (unsure arcs).

In order to reason about the set of accepted traces, we introduce again initial
and final markings and define the notion of a hybrid system net, which essentially
states that transitions, places, and normal (Type I) arcs have the formal semantics
defined in Section 3.3, while the other two types of arcs are informal and do not
include or exclude traces.

25

Definition 13 (Hybrid System Net). A hybrid system net is a triplet HSN =
(HPN ,Minit ,Mfinal) where HPN = (P, T, FI , FII , FIII) is a hybrid Petri net,
Minit ∈ B(P) is the initial marking, and Mfinal ∈ B(P) is the final marking.
UHSN is the set of all possible hybrid system nets. behav(HSN) is defined as in
Definition 5 while ignoring the sure and unsure arcs (i.e., remove FII and FIII).

Recall that a Petri net without any places allows for any behavior and adding
a place can only restrict behavior. In this light, a sure arc (t1, t2) ∈ FII should
be interpreted as a strong causal relationship that cannot be expressed (easily) in
terms of a place connecting t1 and t2. An unsure arc (t1, t2) ∈ FIII is a suspected
causal relationship that is too weak to justify a place connecting t1 and t2.

Next, we define the causal graph of a hybrid Petri net. In this way, causal-
graph-based precision and recall (as presented in Definition 11) can be used to
directly evaluate and compare our models with others, along with more traditional
evaluation measures which ignore the “unsure” or “inexpressible” causalities.

Definition 14 (Causal-Graph of a hybrid Petri net.). Let HSN be a hybrid sys-
tem net with HSN = (HPN ,Minit ,Mfinal) and HPN = (P, T, FI , FII , FIII).
G(HSN) = (A,RS, RW) is the causal graph of HSN where A = T , RS = {(a1,
a2) ∈ A× A | a1 • ∩ • a2 6= ∅} ∪ FII , and RW = FIII .

Assuming GL = (AL, RL
S , R

L
W) be a causal graph for some event log L and

GM = (AM , RM
S , R

M
W) = G(HSN) for a hybrid Petri net M = HSN , the

casual-graph-based precision and recall are defined as before: SCR(L,M) =∣∣RL
S ∩RM

S

∣∣/∣∣RL
S

∣∣ (strong causal recall), SCP(L,M) =
∣∣RM

S ∩RL
S

∣∣/∣∣RM
S

∣∣ (strong
causal precision), WCR(L,M) =

∣∣RL
W ∩RM

W

∣∣/∣∣RL
W

∣∣ (weak causal recall), and
WCP(L,M) =

∣∣RM
W ∩RL

W

∣∣/∣∣RM
W

∣∣ (weak causal precision).
Section 8 makes use of these and other metrics to perform an extensive evalu-

ation of our approach.

6. Discovering Hybrid Process Models

Our hybrid process discovery technique uses a two-step approach. In the first
step, we discover a causal graph with strong and weak causal relations (as pre-
sented in Section 4). In the second step, we build the actual hybrid Petri net as
follows. First, we take as input the causal graph and we aim at converting as many
strong causal relations as possible into Petri net places. This is done by gener-
ating candidate places and then filtering them based on how well –according to

26

threshold parameters set by the user– they replay log traces. After that, the strong
causalities (in the causal graph) that have not been expressed in term of places
are added to the hybrid model as sure arcs, and unsure arcs (again, in the causal
graph) are added to the model for weak causal relations.

The procedure of identifying and evaluating the quality of candidate places
covers a major role in the discovery technique and it requires reasoning about
places in the context of event data, which is introduced next. Section 6.2 makes
use of them to describe the actual discovery algorithm and finally Section 6.3
describes enhancement techniques to improve the performances.

6.1. Evaluating the Quality of Places in Relation to the Event Log
We begin by recalling that a (traditional) Petri net without places allows for

any behavior, i.e., if SN = ((∅, A, ∅), [], []), then behav(SN) = A∗, i.e., all pos-
sible traces involving activities in A. Therefore process discovery can be viewed
as the process of adding places to constrain the model to the behavior seen in the
event log. Let us then elaborate on the role of places in this setting.

6.1.1. Place Properties
Events do not refer to place names, but only to activities represented by tran-

sitions. Fortunately, Petri-net places can be fully characterized in terms of the
transitions they connect. Here, we assume that no two places have identical in-
put and output transitions, because if two places have identical input and output
transitions, at least one of them is redundant.

Definition 15 (Places). Let A be a set of activities. The set of possible places
is denoted by PA = {(I, O) | I ⊆ A ∧ O ⊆ A}. Place p = (I, O) ∈ PA
has •p = I as input transitions and p• = O as output transitions. P+

A = {(I,
O) ∈ PA | I 6= ∅ ∧ O 6= ∅} is the set of proper places, i.e., places with at least
one input transition and one output transition.

For example the Petri net in Figure 8 has four places: p1 = (∅, {a}), p2 = (∅,
{b}), p3 = ({a}, {c, d}), and p4 = ({b}, {c, e}).

We will use the terms transition and activity interchangeably, because we as-
sume a one-to-one mapping between transitions and activities, i.e., T = A. To
compare sets of activities, we used the following two shorthands: (1) A1 ‖ A2

denotes that A1∩A2 = ∅ and (2) A1÷A2 denotes that A1∩A2 6= ∅, A1 \A2 6= ∅,
and A2 \ A1 6= ∅. These shorthands are used to characterize the relationship be-
tween two sets of activities. For any pair of two non-empty sets of activities A1

27

and A2, precisely one of the following statements holds: A1 = A2 (equality),
A1 ‖ A2 (non-overlapping), A1 ⊂ A2 (proper subset), A1 ⊃ A2 (proper superset),
or A1 ÷ A2 (incomparable). Similarly, we can relate places. To do this, we first
introduce some notations.

Definition 16 (Place Notations). Let p1 = (I1, O1) ∈ PA and p2 = (I2, O2) ∈
PA be two places. These places can be combined to form new places:

• p1 u p2 = (I1 ∩ I2, O1 ∩O2) ∈ PA,

• p1 t p2 = (I1 ∪ I2, O1 ∪O2) ∈ PA, and

• p1 ⊗ p2 = ((I1 ∪ I2) \ (I1 ∩ I2), (O1 ∪O2) \ (O1 ∩O2)) ∈ PA.

We can relate p1 and p2 in different ways:

• p1 = p2 if and only if I1 = I2 and O1 = O2 (equality),

• p1 ‖ p2 if and only if p1 u p2 = (∅, ∅) (non-overlapping),

• p1 @ p2 if and only if I1 ⊆ I2, O1 ⊆ O2, and p1 6= p2 (proper subset), and

• p1÷p2 if and only if p1 6= p2, p1 6‖ p2, p1 6@ p2 and p1 6A p2 (incomparable).

Any two proper places p1, p2 ∈ P+
A are related in precisely one of the follow-

ing ways: p1 = p2 (equality), p1 ‖ p2 (non-overlapping), p1 @ p2 (proper subset),
p1 A p2 (proper superset), or p1÷p2 (incomparable). For the Petri net in Figure 8:
p1 ‖ p2, p1 ‖ p3, and p3÷ p4.

6.1.2. Scoring Places.
To evaluate the quality of a place, we need to check which traces in an event

log allow for it. When replaying a trace, one should only consume tokens that are
actually there and at the end of the trace the place should be empty. behav(SN)
was defined for the system net as a whole. However, one can also check this for
each place separately. This is what we will later do in the discovery approach.

Definition 17 (Replayable Trace). Let p = (I, O) ∈ PA be a place and A a
set of activities. A trace σ = 〈a1, a2, . . . , an〉 ∈ A∗ is perfectly replayable with
respect to place p if and only if

• for all k ∈ {1, 2, . . . , n}: |{1 ≤ i < k | ai ∈ I}| ≥ |{1 ≤ i ≤ k | ai ∈ O}|
(place p cannot “go negative” while replaying the trace) and

28

• |{1 ≤ i ≤ n | ai ∈ I}| = |{1 ≤ i ≤ n | ai ∈ O}| (place p is empty at end).

We write X(p, σ) if σ is perfectly replayable with respect to place p. act(p, σ) =
∃a∈σ a ∈ (I ∪ O) denotes whether the place has been activated, i.e., a token was
consumed or produced for it in σ.

The expression 6X(p, σ) denotes that σ is not perfectly replayable with respect
to place p. Consider the system net in Figure 8 and the three traces: σ1 = 〈a,
b, c〉, σ2 = 〈a, e, b, d〉, and σ3 = 〈a, b, d〉. σ1 is perfectly replayable for all four
places: X(p1, σ1), X(p2, σ1), etc. σ2 is perfectly replayable for three places (i.e.,
X(p1, σ2), X(p2, σ2), X(p3, σ2)), but not for p4: 6X(p4, σ2) because e requires b
to happen first. σ3 is perfectly replayable for the same three places but again not
for p4: 6X(p4, σ3) because a token remains in p4.

Note thatX(p, σ) if σ is a trace of the system net having only one place p = (I,
O). Formally, X(p, σ) if and only if σ ∈ behav(SN p) with SN p = ((Pp, Tp, Fp),
[], []), Pp = {p}, Tp = A, Fp = {(t, p) | t ∈ I} ∪ {(p, t) | t ∈ O}.

For any pair of places p1 and p2 and trace σ ∈ A∗: act(p1 ⊗ p2, σ) if σ
contains at least one activity that either activates p1 or p2 but not both of them.
If ¬act(p1 ⊗ p2, σ), then for any executed activity a ∈ σ: (i) a ∈ •p1 if and
only if a ∈ •p2 and (ii) a ∈ p1• if and only if a ∈ p2• . Therefore, while
replaying σ, at any point in time, places p1 and p2 have the same number of tokens
if ¬act(p1 ⊗ p2, σ).

To evaluate candidate places generated by our discovery algorithm, one can
use different quality scores. Here, we consider two obvious choices, which both
provide an idea of how good the traces fit the place, thus allowing us to get models
of high fitness.

Definition 18 (Place Scores). Let L ∈ UL be an event log. For any place p = (I,
O) ∈ PA, we define the following scores:

• score freq(p, L) =
| [σ∈L|X(p,σ)] |

|L| is the fraction of fitting traces for p, and

• scorerel(p, L) = | [σ∈L|X(p,σ) ∧ act(p,σ)] |
| [σ∈L|act(p,σ)] | is the fraction of fitting traces for p

that have been activated.

Consider the system net in Figure 8 and the event log L = [〈a, b, c〉8, 〈a, e, b,
d〉1, 〈a, b, d〉1]: score freq(p1, L) = score freq(p2, L) = score freq(p3, L) = 1. More-
over, score freq(p4, L) = 0.8. In this particular example, we find the same scores
for scorerel . In general this is not the case. Take L = [〈 〉8, 〈c〉2], now score freq(p3,
L) = score freq(p4, L) = 0.8 and scorerel(p3, L) = scorerel(p4, L) = 0. Later, we
will argue in favor of scorerel .

29

p1a

b d

c

p2

Figure 11: Petri net used to explain the notion of conflict: p1#p2 because p1 ≺ p2.

6.1.3. Conflicting and Redundant Places.
Our discovery approach aims to add places to formally constrain behavior.

Often there are many candidate places. To limit the search space we do not want
to add places that are conflicting, according to the definition below.

Definition 19 (Conflict). The places p1 = (I1, O1) ∈ P+
A and p2 = (I2, O2) ∈

P+
A are conflicting (notation p1#p2) if one of the following two cases holds:

• I1 ⊆ I2, O2 ⊆ O1, and p1 6= p2 (notation p1 ≺ p2) or

• I2 ⊆ I1, O1 ⊆ O2, and p1 6= p2 (notation p1 � p2).

If p1 ≺ p2, then p1 cannot have more tokens than p2 at any point in time when
replaying a trace from some event log. Similarly, if p1 � p2, then p1 cannot have
less tokens than p2. In Figure 11, p1#p2 because p1 ≺ p2.

Lemma 1. Let p1, p2 ∈ P+
A be two proper places and σ ∈ A∗ a trace. IfX(p1, σ),

p1#p2, and act(p1 ⊗ p2, σ), then 6X(p2, σ).

Proof 1. Assume X(p1, σ), p1#p2, and act(p1 ⊗ p2, σ). Hence, p1 ≺ p2 or p1 �
p2. If p1 ≺ p2, then the number of tokens in p2 is always at least the number
of tokens in p1 for any sequence, including σ. In fact, in σ there is at least one
additional token produced or a token was not consumed (because act(p1 ⊗ p2,
σ)). Because p1 ends empty, p2 must have a remaining token at the end. Hence, σ
cannot be fitting. If p1 � p2, then the number of tokens in p2 is always at most the
number of tokens in p1. In fact there is at least one additional token consumed or
a token was not produced (because act(p1 ⊗ p2, σ)). Because p1 ends empty, p2
must have a missing token at the end. Hence, σ cannot be fitting. �

30

Consider the places in Figure 11. Note that p1 ⊗ p2 = ({b}, {c}). Since
X(p1, 〈a, c〉), p1#p2, and act(p1⊗ p2, 〈a, c〉), Lemma 1 tells us that 〈a, c〉 is not
perfectly replayable with respect to p2, i.e., 6X(p2, 〈a, c〉) (indeed a token remains
in p2). SinceX(p2, 〈b, d〉), p1#p2, and act(p1⊗p2, 〈b, d〉), Lemma 1 tells us that
6X(p1, 〈b, d〉) (indeed a token is missing in p1).

During discovery, we would like to avoid adding conflicting places. We will
use an iterative approach adding places one by one. Therefore, we would like to
check conflicts with respect to combinations of existing places.

Definition 20 (Conflict with a set of places). Proper place p ∈ P+
A and the set

of proper places P ⊆ P+
A (with p 6∈ P) are conflicting (notation p#P) if there

is a non-empty subset P ′ = {p1, p2, . . . , pn} ⊆ P such that pi ‖ pj for any
1 ≤ i < j ≤ n and p#(p1 t p2 t . . . t pn).

The following lemma shows why we would like to avoid adding conflicting
places. We will use this to avoid spending time on checking the quality of such
places.

Lemma 2. Let p ∈ P+
A be a proper place and P ⊆ P+

A a set of proper places such
that p#P . By definition there is a non-empty subset P ′ = {p1, p2, . . . , pn} ⊆ P
such that pi ‖ pj for any 1 ≤ i < j ≤ n and p#p′ with p′ = p1 t p2 t . . . t pn.

For any trace σ ∈ A∗: if X(pi, σ) for all 1 ≤ i ≤ n and act(p ⊗ p′, σ), then
6X(p, σ).

Proof 2. The place p′ is a proper place (p′ ∈ P+
A) because •p′ 6= ∅ and p′• 6= ∅.

Assume all pi places are fitting σ. Hence, p′ is fitting and the number of tokens
in p′ is equal to the sum of the tokens in the places in P ′. Hence, X(p′, σ). By
applying Lemma 1 to places p and p′, we have that the requirement act(p⊗ p′, σ)
ensures that p cannot be fitting when p′ is already fitting. �

If p1 ‖ p2, then the number of tokens in p3 = p1 t p2 is identical to the
total number of tokens in both p1 and p2. This means the traces that are perfectly
replayable with respect to places p1 and p2, are also perfectly replayable with
respect to places p3.

Lemma 3. Let p1, p2 ∈ P+
A be two proper places and σ ∈ A∗ a trace. IfX(p1, σ),

X(p2, σ), and p1 ‖ p2, thenX(p1 t p2, σ).

31

Proof 3. Assume X(p1, σ), X(p2, σ), p1 ‖ p2, and p3 = p1 t p2. The number of
tokens in p3 is always the sum of the number of tokens in p1 and p2. Therefore, it
cannot turn negative and equals zero at the end. Hence, σ is perfectly fitting p3.
�

Definition 21 (Redundant). Proper place p ∈ P+
A is redundant with respect to

a set of proper places P ⊆ P+
A (notation p ∼ P) if there is a non-empty subset

P ′ = {p1, p2, . . . , pn} ⊆ P such that pi ‖ pj for any 1 ≤ i < j ≤ n and
p = (p1 t p2 t . . . t pn).

We would like to avoid adding redundant places to the discovered model, be-
cause they no further constrain the behavior and only complicate the model.

6.2. Hybrid System Net Discovery Approach
In this section we describe the approach for the discovery of the hybrid system

net, but first we provide the signature of the function we want to create.

Definition 22 (Hybrid System Net Discovery). A hybrid system net discovery
function dischsn ∈ (UL × UG)→ UHSN is a function that for any event log L and
causal graph G discovers a hybrid system net dischsn(L,G) ∈ UHSN .

Just like there are many algorithms possible to create a causal graph, there are
also multiple ways to construct a hybrid system net from an event log and causal
graph. The minimal consistency requirements can be defined as follows.

Definition 23 (Consistent). Let L ∈ UL be an event log, let G = (A,RS, RW) ∈
UG be a causal graph, and let HSN = (HPN ,Minit ,Mfinal) ∈ UHSN with HPN =
(P, T, FI , FII , FIII) be a hybrid system net. L, G, and HSN are consistent if and
only if:

(c1) T = A ⊆
⋃
σ∈L{a ∈ σ} is the set of activities

(c2) a source and a sink place exist in HSN {p., p�} ⊆ P , Minit = [p.] and
Mfinal = [p�] such that

(c3) FI ∩ (({p., p�} × T) ∪ (T × {p., p�})) = {(p., .), (�, p�)},

(c4) for all p ∈ P \ {p., p�}: •p 6= ∅ and p• 6= ∅,

(c5) RS = F̂I ∪ FII , F̂I ∩ FII = ∅, and

32

(c6) RW = FIII .

Intuitively, an event log L, causal graph G, and hybrid system net HSN are
consistent if (1) L, G, and HSN refer to the same set of activities all appearing
in the event log (but not all activities need to appear in the log) (see c1), (2) there
is a source place p. marked in the initial place and enabling start activity . (c2
and c3), (3) there is a sink place p� marked in the final marking and connected
to end activity � (c2 and c3), (4) all other places connect activities (c3 and c4),
(5) there is a one-to-one correspondence between strong causal relations (RS) and
connections through places (F̂I) or sure arcs (FII) (c5), and (6) there is a one-to-
one correspondence between weak causal relations (RW) and unsure arcs (FIII)
(c6).

Consider two activities a1, a2 ∈ A that are frequent enough to be included in
the model. These can be related in three different ways: (a1, a2) ∈ F̂I if there
is a place connecting a1 and a2, (a1, a2) ∈ FII if there is no place connecting
a1 and a2 but there is a strong causal relation between a1 and a2 (represented by
a sure arc), (a1, a2) ∈ FIII if there is a weak causal relation between a1 and a2
(represented by an unsure arc).

Any discovery function dischsn ∈ (UL × UG) → UHSN should ensure consis-
tency. In fact, Definition 23 already provided hints on how to discover a hybrid
system net. Assume a place p = (I, O) with a non-empty set of input transitions
•p = I and a non-empty set of output transitions p• = O is added. RS = F̂I∪FII
implies that F̂I ⊆ RS . Hence, I × O ⊆ RS , i.e., place p = (I, O) can only con-
nect transitions having strong causal relations. Based on this insight we define the
notion of valid places. A place is valid if the corresponding causalities exist in the
causal graph.

Definition 24 (Valid places). Let G = (A,RS, RW) ∈ UG be a causal graph.
The valid places based on G are: P V

G = {(I, O) ∈ P+
A | I ×O ⊆ RS}.

A place p′ is dominated by another place p if it has fewer arcs, p′ @ p. If p is
valid, then p′ is also valid.

Lemma 4 (Monotonicity). Let P V
G be the set of valid places. If p ∈ P V

G , then all
dominated places are also in P V

G , i.e., {p′ ∈ P+
A | p′ @ p} ⊆ P V

G .

Candidate places characterize the potential places that should be considered
given a causal graph. Candidate places need to be valid, but it is possible to

33

impose other constraints. For example, to ensure the simplicity of the model, one
could consider only places having few connections.

Definition 25 (Candidate places). Let G = (A,RS, RW) ∈ UG be a causal
graph. PC ⊆ P V

G is a candidate place set based on G.

Many choices for PC are possible. In this paper we propose four sets of can-
didate places in the context of a causal graph. The first set contains all the valid
places, while the others impose some constraints on the number of the place input
and/or output connections:

• P all
C = P V

G , i.e., all valid places are candidates.

• P k
C = {(I, O) ∈ P V

G | |I| + |O| ≤ k} with k ≥ 2 meaning that places can
have at most k connections.

• P ki,kO
C = {(I, O) ∈ P V

G | |I| ≤ kI ∧ |O| ≤ kO} with kI , kO ≥ 1, i.e.,
the number of input arcs is bounded to kI and the number of output arcs is
bounded to kO.

• P sj
C = {(I, O) ∈ P V

G | |I| = 1} ∪ {(I, O) ∈ P V
G | |O| = 1} meaning

that places can have multiple ingoing arcs or multiple outgoing arcs, but not
both at the same time.

Given a set of places, we need to evaluate the quality. Earlier we defined:
score freq(p, L) =

| [σ∈L|X(p,σ)] |
|L| and scorerel(p, L) =

| [σ∈L|X(p,σ) ∧ act(p,σ)] |
| [σ∈L|act(p,σ)] | .

We use L2 = [〈., a, b, c, d, �〉45, 〈., a, c, b, d, �〉35, 〈., a, e, d, �〉20] to illustrate
both place quality functions. Let us consider place p1 = (I1, O1) with I1 = {a}
and O2 = {b}. score freq(p1, L2) = scorerel(p1, L2) = 80/100 = 0.8. For place
p2 = (I2, O2) with I2 = {a} and O2 = {b, e}: score freq(p2, L2) = scorerel(p2,
L2) = 1. Hence, the two scoring functions agree and show that the second place
is a better candidate. Note that if the candidate place p does not inhibit any of the
traces in the log, then both scores are 1 by definition.

In the remainder of this paper we will use scorerel rather than score freq . The
choice can be motivated by considering event log L3 = [〈c, d〉1000, 〈a, b〉100, 〈b,
a〉10, 〈a, a, a, a, . . . , a〉] (with the last trace containing 1000 a’s) and candidate
place p1 = (I1, O1) with I1 = {a} and O2 = {b}. score freq(p1, L3) =

1100/1111 =
0.99, scorerel(p1, L3) =

100/111 = 0.90. Now the values are very different. Inter-
preting the scores reveals that score freq is too optimistic. Basically one can add
any place connected to low frequent activities, without substantially lowering the

34

score freq score. Hence, scorerel is preferable over score freq . Based on the above
discussion, we use the scoring function scorerel . in conjunction with a threshold
treplay to select the candidate places to be included in the Hybrid net (that is the
candidate places with scorerel > treplay).

Candidate places are explored in a particular order. This is needed because
we may want to limit the number of places or time needed to construct them.
Moreover, we will avoid adding conflicting or redundant places. In case of two
conflicting places, one can only add the first one. Which one this is, depends on
the order in which places are added.

Definition 26 (Ordering relation). Let PC be a set of candidate places. A func-
tion ord : {1, 2, . . . , |PC |} → PC is an ordering relation over PC iff PC =
{ord(i) | 1 ≤ i ≤ |PC |}.

Such an ordering could be based on |I|+|O|. This means that we first consider
places having a few connecting arcs. It is always possible to start with a preorder
(e.g., based on the number of arcs) and turn it into a total order. The ordering rela-
tion is used to consider candidate places in a particular order. Given the candidate
places added already, we may consider discarding particular places. By doing this
before evaluating the place quality, we can speed up discovery considerably.

Definition 27 (Exclusion relation). Let PC be a set of candidate places. excl ⊆
PC × P(PC) is the exclusion relation. (p, P) ∈ excl means that p is in conflict
with a set of places P assuming exclusion relation excl .

Different exclusion relations are possible. In the remainder, we consider an
exclusion relation excl based on the earlier place conflict definition (Definition 20)
and place redundancy definition (Definition 21), i.e., (p, P) ∈ excl if and only if
p#P or p ∼ P . This way we avoid adding redundant or conflicting places.

Algorithm 1 describes the details of the discovery technique. The algorithm
iterates over the set of candidate places PC in order to identify the places to be
added to the set of places of the hybrid system net, until either the time threshold
is over, the maximum number of internal places has been reached or all the candi-
date places have been inspected. Only the candidate places that reach the replay
threshold (treplay) and that do not meet the exclusion criteria are added (lines 4-8).
Once the set of internal places P has been built, it is enriched with the start and
end places (lines 9-11) and the set of normal, sure and unsure arcs built (lines
12-14).

35

Input:
• an event log L ∈ UL,

• a causal graph G = (A,RS, RW) ∈ UG,

• a candidate place set PC ,

• an ordering relation ord over PC ,

• an exclusion relation excl over PC ,

• a threshold treplay for evaluating candidate places,

• a threshold tmax for the maximal time allowed, and

• a threshold nmax for the maximal number of internal places.

1 begin
2 P ← ∅
3 i← 1
4 while time < tmax ∧ i ≤ |PC | ∧ |P | < nmax do
5 p← ord(i)
6 i← i+ 1
7 if scorerel(p, L�A) ≥ treplay ∧ (p, P) 6∈ excl then
8 P ← P ∪ {p}

9 p. ← (∅, {.})
10 p� ← ({�}, ∅)
11 P ← P ∪ {p., p�}
12 FI ← {(a, p) ∈ A× P | a ∈ •p} ∪ {(p, a) ∈ P × A | a ∈ p• }
13 FII ← RS \ F̂I
14 FIII ← RW

Output: a hybrid system net SN = (PN , [p.], [p�]) with
PN = (P,A, FI , FII , FIII).

Algorithm 1: Approach for Hybrid System Net Discovery.

It is easy to check that this concrete dischsn function indeed ensures consis-
tency. The construction of the discovered hybrid system net is guided by the causal
graph. We can construct hybrid system net dischsn(L, disccg(L)) for any event

36

log L using parameters tfreq , c, w, tRS
, tRW

, and treplay . Our discovery approach is
highly configurable and also provides formal guarantees (e.g., treplay = 1 ensures
perfect fitness). When there is not enough structure or evidence in the data, the
approach is not coerced to return a model that suggests a level of confidence that
is not justified.

We applied our approach to the example event log shown in Figure 4 using
the parameters tfreq = 1000, c = 1, w = 0.2, tRS

= 0.8, tRW
= 0.75 and

treplay = 0.9. In the first discovery step, the causal graph shown in Figure 10
was discovered, and, based on this causal graph, the hybrid Petri net shown in
Figure 7 was discovered in the second discovery step. The causal graph contains
two weak causal dependencies: (place order→ pay) and (send invoice→ prepare
delivery). These weak dependencies are depicted as uncertain edges in the hybrid
Petri net. The hybrid miner tries to discover formal places based on the strong
causal dependencies of the causal graph. For example, the strong dependencies
(confirm payment→ end), (make delivery→ end), and (cancel order→ end) are
transformed into the places p7 and p8 to formally model a choice between either
canceling the order or confirming the payment and making the delivery. Other
strong dependencies where the hybrid miner fails to discover formal places are
depicted in the hybrid Petri net as sure edges, e.g., the sure edge (send reminder
→ cancel order).

6.3. Improving Performance
One of the reasons that commercial vendors resort to informal models or just

the directly follow graph is performance. Process mining tools need to be able to
deal with millions of events. We argue that adding formality and semantics do not
need to create a major performance overhead and is feasible for larger data sets.
This is consistent with the findings in Leemans et al. [28].

6.3.1. Limiting the number of candidate places.
The set of candidate places can be limited as described before (e.g., using P k

C

to ensure that places can have at most k connections). Users are seldom interested
in places with many connections, as they are harder to understand and less precise.
Pruning the set of candidate places has a dramatic effect on the search space with
limited effects on the model’s quality (see Section 8.1). The exclusion relation is
another means to avoid considering candidate places.

6.3.2. Prematurely end place evaluation.
Valid places that are considered candidates and that are not excluded need to

be evaluated. Computing scorerel(p, L) is, in principle, linear in the size of the

37

log because all traces need to be replayed. However, often one does not need to
traverse the whole log if it is already clear that the case do not pass the threshold.
For example, when treplay = 0.9 and we have already found problems for 10%
of the cases, there is no need to check the rest. Therefore, we defined a stopping
criterion that is safe in the sense that places of sufficient quality will be evaluated
completely and places of insufficient quality are also classified correctly, but may
be aborted earlier.

To explain, recall that scorerel(p, L) = | [σ∈L|X(p,σ) ∧ act(p,σ)] |
| [σ∈L|act(p,σ)] | . Now consider

an event log L and candidate place p. Suppose that part of the event log, say L1,
has been processed and another part, say L2, still needs to be processed. Note that
L = L1] L2 (union of two multisets). We need to decide whether the statement
scorerel(p, L) ≥ treplay is true or not. This can be rewritten as

| [σ ∈ L1 | X(p, σ) ∧ act(p, σ)] |+ | [σ ∈ L2 | X(p, σ) ∧ act(p, σ)] |
| [σ ∈ L1 | act(p, σ)] |+ | [σ ∈ L2 | act(p, σ)] |

≥ treplay

Let us now assume the best possible scenario for the unseen part of the log (L2),
i.e., all remaining cases are fitting and activate the place.

| [σ ∈ L2 | X(p, σ) ∧ act(p, σ)] | = | [σ ∈ L2 | act(p, σ)] | = |L2 |

Therefore, the best possible situation is:

| [σ ∈ L1 | X(p, σ) ∧ act(p, σ)] |+ |L2 |
| [σ ∈ L1 | act(p, σ)] |+ |L2 |

≥ treplay

We know all these values already. Moreover, if the rewritten (optimistic) condition
does not hold, it can never hold. Therefore, we can stop the evaluation of place p
if

| [σ ∈ L1 | X(p, σ) ∧ act(p, σ)] |+ |L2 |
| [σ ∈ L1 | act(p, σ)] |+ |L2 |

< treplay

This means that for high treplay values and poor candidates one only needs to
inspect only few cases. In the extreme case where treplay = 1 evaluation can stop
on the first problem encountered.

6.3.3. Using a global place score.
In Definition 18, we defined two quality measures for the evaluation of candi-

date places: score freq(p, L) and scorerel(p, L). We argued that scorerel(p, L) is the
better measure. In the worst-case scenario, one may need to traverse the whole
event log to evaluate the quality of candidate place p. However, we can use a
heuristic to prune the set of candidate places based on their expected score.

38

Definition 28 (Global Place Score). Let L ∈ UL be an event log. For any place
p = (I, O), we define the following score: scoreglob(p, L) = 1− |#(I,L)−#(O,L) |

max(#(I,L),#(O,L))

is a global score only looking at the aggregate frequencies of activities.

The intuition is that scoreglob(p, L) correlates positively with scorerel(p, L). If
all traces fit perfectly, then scoreglob(p, L) = 1. To illustrate the idea, consider
L2 = [〈., a, b, c, d, �〉45, 〈., a, c, b, d, �〉35, 〈., a, e, d, �〉20] and place p1 = (I1, O1)
with I1 = {a} and O2 = {b}. scorerel(p1, L2) = 80/100 = 0.8 and scoreglob(p1,
L2) = 1 − |100−80|/max(100,80) = 0.8. For place p2 = (I2, O2) with I2 = {a}
and O2 = {b, e}: scorerel(p2, L2) = scoreglob(p2, L2) = 1. Although the scor-
ing functions agree in this example, it is clear that the global place score is only
an approximation. This can be illustrated using the event log L3 = [〈c, d〉1000,
〈a, b〉100, 〈b, a〉10, 〈a, a, a, a, . . . , a〉] (with the last trace containing 1000 a’s) and
candidate place p1 = (I1, O1) with I1 = {a} and O2 = {b}. scorerel(p1,
L3) = 100/111 = 0.90, scoreglob(p1, L3) = 1 − |1110−110|/max(1110,110) = 0.099.
Now the values are very different. This is caused by the extreme trace having
1 000 a’s. Clearly, the approximation can be further improved by bounding the
activity count per case.

The value of scoreglob(p, L) can be computed very efficiently because traces
do not need to be replayed and can therefore be used to quickly prune the set of
candidate places. However, as the example shows, one needs to be careful when
traces are unbalanced (i.e., I or O activities occur many times in a few traces).
A global score threshold tglob can be set and used, when needed, to decide the
candidate places to be quickly discarded based on their scoreglob(p, L) value.

6.3.4. Trace variant representation.
Real-life event logs often follow a Pareto distribution of traces [31]. In most

event logs a large fraction of behavior is covered by a small fraction of unique
activity sequences (trace variants) that occur frequently. It would hence be suf-
ficient to replay each trace variant once when evaluating a candidate place, so as
to improve time performance for logs that follow a Pareto distribution of traces
with no effect on the quality of the discovered models. For example, consider the
example event log shown in Figure 4. This event log consists of 12 666 cases that
can be grouped into nine unique activity sequences. When evaluating a candidate
place, we can achieve a large improvement in time by replaying the nine trace
variants instead of replaying all 12 666 traces.

We create for the input event log a trace variant representation; i.e., we trans-
form the log into a list of unique activity sequences with their frequencies. This

39

actually corresponds to our definition of event logs as a multiset of activity se-
quences (Definition 1), and it also conforms with the trace variant visualization
we used in Figure 4 to represent our example event log. This compact representa-
tion is used instead of the original log where each case is represented and checked
separately for helping to speed up the following processes:

(i) In the step of causal graph discovery: we compute all metrics needed to
construct the causal graph based on the trace variant representation instead
of using the original traces. We then multiply the obtained metrics by the
corresponding trace variant frequency.

(ii) In the process of evaluating candidate places: we compute the fitness score
for each sequence of activities only once. We then multiply the obtained
score by the corresponding trace variant frequency.

This idea may lead to large time improvements for huge logs containing trace
variants with high frequencies. Assume we have an event log of 10 trace variants
each with a frequency of 1 000 and a set of valid candidate places of size n, we
are able to reduce the number of performed place evaluations from 10 000×n to
10×n.

6.3.5. Evaluating maximal places before smaller candidate places.
There are many possible ordering relation strategies (see Definition 26) that

can be used for building and evaluating candidate places. Experience shows that
it may be beneficial to check so-called maximal places first. Maximal places are
generated by combining sure edges in an iterative way, so that every two sure
edges sharing the same input node or the same output node are covered by the
same maximal place.

Definition 29 (Maximal Place). Let G = (A,RS, RW) ∈ UG be a causal graph.
R ⊆ RS is a cluster of sure arcs if (1) R 6= ∅, (2) ∀(a1,a2)∈R ∀a∈A {(a1, a), (a,
a2)} ∩ RS \ R = ∅, and (3) there is no smaller R′ ⊂ R satisfying the same
properties. pR ∈ PA is a maximal place if there is a cluster R such that pR =
({a1 | (a1, a2) ∈ R}, {a2 | (a1, a2) ∈ R})

Given a set of sure arcs RS , these arcs can be partitioned into a set of clusters.
Two different clusters cannot have two arcs with the same input or output activity
(they would be merged). Clusters need to be minimal, i.e., the partitioning is
maximal. For each cluster R, there is one maximal place pR.

40

For example, let us assume we have a causal graph with a set of sure edges
RS = {(a, c), (b, c), (b, d), (e, f)}. The cluster that contains the first sure edges
(a, c) must also contain (b, c) since both edges share the same output node c. The
cluster must also contain (b, d) because (b, c) and (b, d) share the same input node
b. Therefore, RS will be partitioned into the two clusters: R1 = {(a, c), (b, c), (b,
d)} and R2 = {(e, f)}. Based on these two clusters, the following two maximal
places will be generated: pR1 = ({a, b}, {c, d}) and pR2 = ({e}, {f}). Note
that a maximal place does not need to be valid. For example, pR1 indicates a
dependency from a to d although this dependency does not correspond to a sure
edge (i.e., (a, d) /∈ RS).

Before building the candidate places according to one of the ordering relation-
ship strategies, we check the maximal places. If any of these places is valid and
achieves the minimally required place evaluation score, then the place is added to
the hybrid Petri net, thus allowing the algorithm to stop evaluating further places
for that set of edges and hence sparing time.

6.3.6. Distribution
Although this is not the topic of this paper, the time-consuming steps of the

approach can also be distributed. The construction of the causal graph requires
counting how many times some activity a was followed by activity b. By parti-
tioning the event log L in n smaller sublogs Li such that L = L1]L2] . . .]Ln,
these numbers can be counted per sublog and easily aggregated. The same holds
for the evaluation of the place quality. Big data platforms like Apache Hadoop,
Spark, and Flink can be used for this [32].

7. Implementation

Two ProM plug-ins have been created to support the approach described in
this paper:3 the Causal Graph Miner and the Hybrid Petri Net Miner.

The Causal Graph Miner plug-in is used to create a causal graph using the
approach described in Definition 9. The user can initially set the values of the pa-
rameters tfreq , tRS

, tRW
and w (see Figure 12 on the left)4. The initial causal graph

will be created based on these initial values of the parameters. The user can then
control the values of the parameters interactively through sliders and directly see
the effects in the resulting graph (see Figure 13 on the left). The sure and unsure

3Install ProM and the package HybridMiner from http://www.promtools.org.
4Some default values are provided based on the parameter evaluation carried out in Section 8.6.

41

Figure 12: Screenshots of the Causal Graph Miner (left) and the Hybrid Petri Net Miner (right)
setting parameters.

edges of the hybrid causal graph are depicted with different colors (blue and red
respectively in Figure 13) and the causal graph is annotated with the causal metrics
Causc,w. The user can select the metrics to visualize: besides Causc,w, the num-
ber of direct successions (#(a, b, L)), the percentage of incoming and outgoing
direct successions (#(a,b,L)

#(∗,b,L) and #(a,b,L)
#(a,∗,L) , respectively), the strength of the relation

taking into account the split and join behavior (Rel1) as well as the strength of the
relation considering concurrency and loops (Rel2c). In order to make the visu-
alization more user-friendly, besides the slider and the panel enabling the choice
of the metrics to be visualized, the plug-in has been equipped with the possibil-
ity of changing the colors of the different types of edges, with the capability of
exporting the visualization, as well as with the possibility of zooming in/out.

The Hybrid Petri Net Miner plug-in implements Algorithm 1. It takes as input
the hybrid causal graph and returns a discovered hybrid system net. Only places
that meet the tglob and the treplay thresholds are added. The replay approach has
been optimized to stop replaying a trace when it does not fit. The user sets the
values of the parameter tglob and treplay and a few other configuration parameters,
thereby limiting the search for the best set of places for the discovered hybrid Petri
net (i.e., time and place number bound), as shown in Figure 12 (right). The plugin
also provides the possibility of changing the colors of the different types of arcs
and places, exporting the visualization, as well as zooming in/out.

Figure 13 shows the two plug-ins in action for the event log containing 12 666
cases and 80 609 events. The results returned correspond to the causal graph de-
picted in Figure 10 and the hybrid system net depicted in Figure 7. Both were
computed in less than a second on a standard laptop. Activity send reminder may
occur repeatedly (or not) after sending the invoice but before payment or cancel-

42

Figure 13: Screenshots of the Causal Graph Miner (left) and the Hybrid Petri Net Miner (right)
analyzing the log containing 12 666 cases and 80 609 events of the example described in Sec-
tion 2.4 with parameter settings tfreq = 1000, c = 1, w = 0.2, tRS

= 0.8, tRW
= 0.75, tglob = 0

and treplay = 0.9.

lation. However, payments may also occur before sending the invoice. The hybrid
system net in Figure 13 (also see Figure 7 which is better readable) clearly differ-
entiates between (1) the behavior which is dominant and clear and (2) the more
vague behavior that cannot be captured formally or is not supported by enough
“evidence”.

8. Evaluation

In this section, we evaluate the Causal Graph Miner and the Hybrid Petri
Net Miner plug-ins that combined implement the Hybrid Miner approach. The
plug-ins are evaluated both in terms of performance, as well as the quality of the
discovered models. We want to compare the results of the version of the Hybrid
Miner described in this paper (HM NV) with the ones obtained with the previous
version of the Hybrid Miner described in [29] (HM OV), as well as with existing
state-of-the-art process discovery approaches.

As mentioned, process discovery techniques are typically evaluated using in-
dicators referring to traditional Petri net-based recall, precision, generalization,
and simplicity [1]. Although these metrics can give us an idea of the differences
between hybrid Petri nets, given our goal to discover hybrid models explicitly
capturing vagueness while providing solid guarantees, these classical measures
are less suitable - especially when the goal is to compare with classical process

43

discovery approaches, such as the Inductive Miner [26]. To this aim, we evalu-
ate the quality of the models discovered not only on classification tasks (that is,
their capability to accept traces that are assumed to be compliant and to discard
traces that are assumed to be non-compliant) but also by looking at strong and
weak causal-graph-based precision and recall metrics SCR(L,M), SCP(L,M),
WCR(L,M), and WCP(L,M) described in Section 4.3. Finally, we are inter-
ested to investigate the impact of different parameter values on the discovered
models.

Specifically, we would like to address the following research questions:

RQ1. What differences do exist in terms of time performance and quality (mea-
sured through classical metrics and qualitative analysis) of the discovered
models between HM OV and HM NV?

RQ2. How does the Hybrid Miner algorithm behave with respect to state-of-the-
art discovery algorithms (using the Inductive Miner as a reference bench-
mark)?

RQ3. How do different parameter values affect the time performance of HM NV

and the quality of the discovered models?

In order to answer RQ1, we compare the performance (in terms of execution
time) and the quality (in terms of classical process mining metrics and supported
by a qualitative analysis) of the discovered models on three different sets of logs.
The first set of logs is composed of real-life logs. The second set of logs aims
at evaluating the performance of HM OV and HM NV on event logs while con-
trolling log features such as size and other characteristics. The third set of logs
focuses on noisy and infrequent behavior.

Section 8.1 summarizes our findings based on an analysis involving six data
sets taken from the well-known BPI Challenges [33] by focusing on classical
Petri net recall and precision measures. Section 8.2 reports in particular on the
performance characteristics of the Hybrid Miner. We applied our approach to a
large number of synthetic event logs with different sizes and generated by models
with different characteristics. We use synthetic event logs because for these logs
we have a known ground truth and can easily vary characteristics in a controlled
manner. In Section 8.3 we show the effects of the Hybrid Miner on concurrency,
duplicates, skips, and non-local dependencies. These experiments show that hy-
brid models can still provide guarantees and additional insights, even when the
underlying process behavior is at odds with the representational bias of the dis-
covery approach.

44

In order to answer RQ2, we carry out three different types of analysis. We first
compare the Hybrid Miner and existing approaches (in particular the Inductive
Miner) on the BPI Challenges [33] in Section 8.4. By ignoring the sure (Type II)
and unsure (Type III) edges, we obtain regular Petri nets and we can use classical
Petri net-based recall and precision measures. In the same section, strong and
weak causal-graph-based precision and recall metrics (see Section 4.3) are also
computed on the same logs so as to take into account also sure and unsure edges.
Finally, in Section 8.5, we also use the Process Discovery Contest logs that turn
process discovery into a classification problem. This allows us to compare the
two versions of our approach with the Inductive Miner producing formal models
without penalizing the Hybrid Miner because of informal dependencies.

Finally, Section 8.6 aims at answering RQ3. It shows the impact of different
values of the Hybrid Miner parameters (tfreq , tRS

, w , treplay) on the results.
All the experiments reported in this evaluation have been carried out on a

workstation Dell Precision 7820 with the following configuration: 314GB of
RAM, double Intel Xeon Gold 6136 3.0GHz CPUs, and a 256GB SATA Solid
State Drive.

8.1. BPI Challenge Logs
In this section, we evaluate the Hybrid Miner on a large number of real-life

data. For this part of the evaluation, we used the same six real-life BPI Challenge
data sets that we used to evaluate the initial version of the Hybrid Miner in [29]
(HM OV): BPI Challenge 2011 [34], BPI Challenge 2012 [35], BPI Challenge
2017 [36], activity log for incidents of the BPI Challenge 2014 [37], municipality
1 log of the BPI Challenge 2015 [38], and a subset of the BPI Challenge 2016
log for logged-in clicks [39]. Table 1 shows an overview of the six event logs:
BPI20XX refers to the year of the corresponding BPI Challenge and the number of
cases, events, and unique activities (event classes) are shown. We tested different
values for the parameters, and we selected the values that led to the best trade-off
between fitness and precision. The values selected for the parameters are reported
in Table 25.

We compared the differences between HM OV and HM NV in terms of time
performance and quality of the discovered models. The results of the evaluation
are shown in Table 3. For each log, we discovered two models (a model using

5In all the evaluations carried out in this paper, we always use tglob = 0, no bound on the
number of places, a candidate place ordering relation strategy going from small to large places,
but evaluating maximal places first.

45

Log Number of cases Number of variants Number of events Number of activities
BPI2011 1 143 981 150 291 624
BPI2012 13 087 4 336 164 506 23
BPI2014 46 616 22 632 466 737 39
BPI2015 1 199 1 170 52 217 398
BPI2016 557 557 286 075 312
BPI2017 31 509 5 623 475 306 24

Table 1: BPI Challenge event logs used for the evaluation.

Log tfreq tRS tRW w treplay
BPI2011 650 0.5 0.5 0.5 0.5
BPI2012 5 000 0.3 0.3 0.5 0.7
BPI2014 15 000 0.5 0.5 0.5 0.7
BPI2015 720 0.5 0.5 0.5 0.6
BPI2016 445 0.5 0.5 0.1 0.8
BPI2017 5 000 0.1 0.1 0.5 0.7

Table 2: Parameters used for evaluating the BPI Challenge logs.

Log |P | Fitness Precision Time (milliseconds)
HM OV HM NV HM OV HM NV HM OV HM NV HM OV HM NV

BPI2011 10 10 0.552 0.552 0.111 0.111 11 916 165 4 286
BPI2012 10 10 0.8147 0.815 0.317 0.317 23 453 4 165
BPI2014 8 8 0.85 0.85 0.667 0.667 38 677 19 725
BPI2015 42 40 0.499 0.499 0.892 0.839 636 937 3 867
BPI2016 2 2 0.757 0.757 0.097 0.097 49 481 3 553
BPI2017 34 29 0.908 0.912 0.527 0.486 2 824 595 14 143

Table 3: Results of the BPI Challenge evaluation.

HM OV and another model using HM NV) and reported the number of discovered
places, the fitness and precision values, as well as the time required to discover
each model, by highlighting in bold the highest values for fitness and precision
and the lowest ones for the required time.

The results show that HM NV is able to achieve major improvements in terms
of time performance. The quality of the discovered models, in terms of classi-
cal fitness and precision metrics, is, however, not affected. For four out of the
six logs, both versions of the Hybrid Miner discovered the exact same models,
but the new version (HM NV) is significantly faster. For example, HM NV dis-
covered a model for BPI2011 in approximately four seconds compared to more

46

Figure 14: Base model for the generation of the event logs used for testing the scalability re-
sults [40].

than three hours required by the old version (HM OV) to discover the same mod-
els. There are two cases where the quality metrics are slightly worse (BPI2015
and BPI2017), because the new version discovered fewer places than the old one
leading to less precise models. For example, HM NV discovered 29 places for
BPI2017 compared to 34 places discovered by HM OV. This decreased the preci-
sion from 0.527 to 0.486 while increasing fitness. This is due to post-processing
where we remove places connecting overlapping sets of transitions. We consider
the decrease in precision for BPI2015 and BPI2017 to be acceptable considering
the huge improvements in time.

8.2. Scalability Analysis Using Parameterized Event Logs
In this section, we focus on comparing HM OV and HM NV especially in

terms of the capability to efficiently deal with a collection of synthetic logs [40]
with increasing size and complexity. The collection of logs is generated by com-
bining different replicas of the same model (reported in Figure 14) through differ-
ent constructs (SEQUENCE, CHOICE, PARALLEL and LOOP) and with different
event log sizes. The constructs used to combine replicas of the base model are
shown in Figure 15. We are indeed interested in evaluating the performance of
the approach with different constructs, different trace lengths (obtained with dif-
ferent replicas of the model) and different sizes of the event log. As shown in
Figure 14, each base component covers seven main activities and an additional
activity that can happen at any point in between them. For each type of model,
different numbers of replicas (1, 2, 5, 10 and 100) and hence different sizes of the
model alphabet (8, 16, 40, 80 and 800) have been considered. Replicated transi-
tions are denoted as a 1, b 1, a 2, b 2, etc.

Moreover, for a fixed number of replicas (2 and 10), data sets of different
sizes have been generated (1 000, 10 000 and 100 000 cases). For the models

47

(a) A sequence of k base models.

(b) A choice of k base models. (c) A concurrency of k base models. (d) A loop of k base models.

Figure 15: Constructs used for the generation of the event logs used for testing the scalability
results [40].

Replica Alphabet Number of PARALLEL SEQUENCE CHOICE LOOP
size cases tRS

tRW
tRS

tRW
tRS

tRW
tRS

tRW

1 8 1 000 0.5 0.5 0.5 0.3 0.5 0.3 0.2 0.2
2 16 100, 1 000, 10 000 0.5 0.5 0.5 0.3 0.5 0.3 0.2 0.2
5 40 1 000 0.5 0.5 0.5 0.3 0.5 0.3 0.2 0.2
10 80 1 000, 10 000, 100 000 0.4 0.4 0.5 0.3 0.5 0.3 0.2 0.2
100 800 10 000, (100 000) 0.4 0.4 0.5 0.3 0.1 0.1 0.2 0.2

Table 4: Alphabet size and the number of cases, as well as values used for the parameters tRS

and tRW in the scalability evaluation experiments for different numbers of replicas of the base
components.

composed of 1 and 5 replicas, only the data set with 1 000 cases has been cre-
ated, while for the models composed of 100 replicas, data sets with 10 000 and
100 000 cases have been generated for CHOICE and LOOP constructs, and only
data sets with 10 000 cases have been considered for SEQUENCE and PARALLEL

constructs. The first three columns of Table 4 summarize the data set composition,
that is, for each number of replicas, the corresponding alphabet size and the size
in terms of the number of cases of the generated data sets are reported. The logs
are labeled by combining the type of composition, the number of replicas, and the
number of traces. For example, the log CHOICE 5 10000 records the execution
of 10 000 cases of the process generated by combining five replicas of the base
model through a CHOICE construct.

For comparing HM OV and HM NV on the event logs, we fixed the values of

48

some of the parameters (tfreq = 0 , w = 0.5, treplay = 0.9), while for tRS
and

tRW
, variable values are used - depending on the number of base components. For

the PARALLEL and CHOICE sets, we used lower thresholds for logs with more
base components in order to discover optimal models. This is necessary because
the dependency scores for the causal relations between activities decrease after
adding more base components. The values used for the thresholds for sure and
uncertain causal edges (tRS

and tRW
, respectively) are reported in the last columns

of Table 4.
The complete results of this experiment are reported in Table 5. Two models

were discovered for each log (HM OV and HM NV); for each model, we report
the number of places, fitness, precision, and the total time required to discover the
model, by reporting in bold the highest fitness/precision and the lowest time. We
set a timeout threshold to 3 hours and we report a timeout (T) when the computa-
tion exceeds the timeout. In the following, we first focus on the time performance,
by investigating the effect of increasing the log size (i.e., the number of cases) and
the number of replicas on the time performance. Then, we discuss the quality of
the discovered models.

Figure 16 shows, for each of the considered model structures, the different
time performance obtained by running the Hybrid Miner on the data set built with
10 different replicas for 1 000, 10 000 and 100 000 traces.

The points related to the executions exceeding the timeout are not reported
in the plots. The plots clearly show that HM NV performs overall better than
HM OV, which often ends up in a timeout. Moreover, as expected, the required
time increases together with the log size, and the required time is higher for mod-
els in which the parallelization is high, while it is lower for event logs generated
from models built by using the CHOICE construct. Nevertheless, the figure also re-
veals some unexpected results. The first one is related to the LOOP logs: HM NV,
indeed, is able to discover models very fast for logs with 10 000 and 100 000 cases,
while it reaches the timeout for the data set of size 1 000. This could be due to
the fact that the noise in the log of size 1 000 does not allow the fast discovery of
proper maximal places that, instead, are identified more easily for the logs having
a data set size of 10 000 and 100 000. A second unexpected behavior is related
to the ability of HM OV to discover models with the PARALLEL event log with
100 000 cases and not with smaller event logs having 1 000 and 10 000 cases. This
could be possibly due to the fact that the model that HM OV is able to discover
with the log of size 100 000 actually has several missing places (around 20 less of
the places of the model discovered by HM NV).

Figure 17 shows instead, for each of the considered model structures, the dif-

49

Structure Replica Number of Place # Fitness Precision Time (s)
cases HM OV HM NV HM OV HM NV HM OV HM NV HM OV HM NV

SEQUENCE

1 1 000 10 10 0.995 1.000 0.533 0.633 0.620 0.556
2 100 17 17 1.000 1.000 0.432 0.432 0.647 0.630
2 1 000 17 17 1.000 1.000 0.468 0.468 0.841 0.690
2 10 000 17 17 0.993 0.993 1.000 1.000 3.001 0.759
5 1 000 38 38 1.000 1.000 0.272 0.272 1.588 1.067
10 1 000 73 73 0.999 0.999 0.169 0.169 3.939 1.897
10 10 000 73 73 0.990 0.990 0.897 0.897 40.170 22.132
10 100 000 73 73 0.990 0.990 0.949 0.949 376.968 351.702
100 10 000 703 703 0.990 0.990 - - 2558.627 1 123.704

CHOICE

1 1 000 10 10 1.000 1.000 0.635 0.635 0.725 0.687
2 100 16 16 1.000 1.000 0.434 0.434 0.769 0.678
2 1 000 16 16 1.000 1.000 0.478 0.478 1.691 1.570
2 10 000 16 16 0.994 0.994 1.000 1.000 2.510 0.798
5 1 000 34 34 1.000 1.000 0.340 0.340 5.407 1.334
10 1 000 64 64 1.000 1.000 0.280 0.280 4979.517 2.050
10 10 000 85 64 0.320 1.000 0.172 0.307 7 220.501 1.582
10 100 000 - 64 - 0.994 - 1.000 T 2.145
100 10 000 - 604 - 0.999 - 0.264 T 19.941
100 100 000 - 604 - 0.994 - 0.855 T 20.849

PARALLEL

1 1 000 10 10 0.994 1.000 0.533 0.634 0.701 0.527
2 100 18 18 1.000 1.000 0.431 0.431 0.693 0.631
2 1 000 18 18 0.997 1.000 0.513 0.525 1.704 1.342
2 10 000 18 18 0.993 0.993 1.000 1.000 3.911 1.330
5 1 000 42 42 1.000 1.000 0.195 0.195 11.647 1.736
10 1 000 - 82 - 1.000 - 0.089 T 390.108
10 10 000 - 82 - 0.990 - 0.199 T 831.414
10 100 000 62 82 0.981 0.991 0.090 0.228 7 489.813 9820.529
100 10 000 - - - - - - T T

LOOP

1 1 000 10 10 0.992 0.992 0.954 0.954 0.890 0.638
2 100 16 16 0.996 1.000 0.519 0.409 2.252 1.607
2 1 000 16 16 0.993 0.993 0.881 0.881 2.859 1.080
2 10 000 16 16 0.993 0.993 0.934 0.934 22.648 1.512
5 1 000 - 34 - 0.995 - 0.483 T 4.356
10 1 000 - - - - - - T T
10 10 000 - 64 - 0.992 - 0.752 T 6.822
10 100 000 - 64 - 0.992 - 0.805 T 67.255
100 10 000 - - - - - - T T
100 100 000 - - - - - - T T

Table 5: Scalability evaluation results.

ferent time performance obtained by running HM OV and HM NV on the data set
built with 2, 10 and 100 replicas of the model and with size 10 000. Also in this
setting, we aborted computations exceeding the 3 hours. Also these plots clearly
show that HM NV performs overall better than HM OV, which often ends up in
a timeout. However, also HM NV exceeds the timeout with event logs gener-
ated by models with 100 replicas for the PARALLEL and for the LOOP structures.
Moreover, as expected, the required time increases together with the number of
replicas, and the required time is much higher for models in which there is a lot of
concurrency, while it is lower for event logs generated from models built by using

50

(a) SEQUENCE (b) CHOICE

(c) PARALLEL (d) LOOP

Figure 16: Time performance for different event log sizes (i.e., the number of cases).

the CHOICE construct. Also in this setting, for the LOOP, when the Hybrid Miner
is able to return results, they are returned in a short time, which is mainly due to
the identification of correct maximal places.

Moving to the quality of the discovered models, we can observe that for most
of the logs for which we did not obtain a timeout exception, both versions of the
Hybrid Miner delivered identical models. However, we observe some exceptions.
Let us consider the log CHOICE 10 10000, that is the event log of size 10 000 built
starting from 10 replicas of the base model composed via the CHOICE construct.
For this log, HM NV shows a decrease in the number of places from 85 to 64
with respect to HM OV. This log contains an XOR-choice between ten base com-
ponents. The improvement of evaluating maximal places before building smaller
places led to the representation of this choice through two places (a place for the
XOR-join and a place for the XOR-split). On the other hand, HM OV was not
able to discover these maximal places and replaced them with 23 places; each of
these 23 places meets the minimal required local fitness score (treplay = 0.9), but
together, they lead to a global fitness score of 0.32. Figure 18 shows the XOR-split
discovered by HM OV and HM NV.

Another interesting example is the log PARALLEL 10 100000. For this log,
we can observe an increase in the number of places of HM NV with respect to

51

(a) SEQUENCE (b) CHOICE

(c) PARALLEL (d) LOOP

Figure 17: Time performance for replicated process constructs (1, 2, 10 and 100 times) resulting in
event logs with vastly different alphabet sizes (ranging from 8 activities to 800 unique activities).
Missing values correspond to computations aborted after three hours.

HM OV from 62 to 82, and an increase in both fitness and precision. This log,
indeed, exhibits parallelism between the ten base components where each base
component contains, in turn, an XOR-choice. Evaluating maximal places before
building smaller places led to the optimal representation of this complex structure
through 20 places (10 places for the AND-join and 10 places for the AND-split).
On the other hand, HM OV was not able to discover any of these 20 maximal
places and represented the parallelism informally instead. Figure 19 shows the
representation of the AND-split by HM OV and HM NV.

Finally, the last difference between the models discovered by HM OV and
HM NV is the representation of noise. For instance, Figure 20 shows the mod-
els discovered for the log SEQUENCE 1 1000. In this log, activity x 1 represents
noise. We observe that HM NV represented noise informally, while x 1 is for-
mally connected to c 1 through a place in the model discovered by HM OV, i.e.,
p = ({a 1, x 1}, {c 1}). The informal representation of noise allows HM NV

getting higher fitness and precision values with respect to HM OV, while execut-
ing activity x 1 in the model discovered by HM OV always generates remaining
tokens that can never be consumed, so that all traces containing noise do not fit
the model.

52

(a) Representation by HM OV. (b) Representation by HM NV.

Figure 18: The representation of an XOR-split between 20 activities after the activity “start”.
Each of the places discovered by HM OV meets to required local fitness score (0.9). However,
the combination of places leads to an extremely low overall fitness score (0.32). The HM NV
performs much better and returns only the maximal place (instead of discovering many places
with reasonable, but not optimal, fitness scores).

8.3. Handling Concurrency, Duplicates, Skips, and Non-Local Dependencies
In this subsection, we evaluate HM OV and HM NV when we vary representa-

tional biases together with noisy and infrequent behavior. To do this, we leverage
a collection of 120 = 4 × 6 × 5 synthetic logs [41] generated by models charac-

53

(a) Representation by HM OV. (b) Representation by HM NV.

Figure 19: The representation of an AND-split of 10 base components following activity “start”.
Each base component starts with an XOR-split making a choice between two activities.

terized by four constructs6:

6 Figure 21 allows for getting a grasp of the four constructs - although they are not the original
models but the discovered ones. 54

(a) Model discovered by HM OV.

(b) Model discovered by HM NV.

Figure 20: The models discovered for the log SEQUENCE 1 1000.

• parallel: a simple parallel structure among five activities a, b, c, d and
e; all five activities must be executed, but they can be executed in any order.

• skip: a simple skip structure, i.e., a sequence of two activities (a and b)
with an additional optional activity c that can be executed in between. This
model allows for only two trace variants: 〈a, b, c〉 and 〈a, c〉.

• duplicates: a duplicate structure, i.e., an activity appears in two po-
sitions in the process. This model allows only for a single trace variant
〈a, b, c, b, d〉. Modeling this structure is challenging because it requires two
b transitions to restrict the number of occurrences of b - and most discovery
approaches use a one-to-one mapping between activities and transitions.

• non-free-choice: a choice in a later part of the process depends on an
earlier choice. Traces generated by this model start either with a or b (i.e., a
free choice between the activities a and b). a is followed by a simple parallel
structure between c and d. Similarly, b is followed by a simple parallel
structure between e and d. Finally, there is a non-free choice between f and
g. Traces with a and c end with f , and traces with b and e end with g.

Moreover, for each of the four structures, the corresponding base model is
used to generate 30 event logs after adding different levels of noise. An infrequent
activity x is used to add noise, and the following levels of noise are created:

• no-noise: activity x does not appear in the event log;

55

• little-local: activity x very rarely (in less than 5% of the traces)
appears at a particular place in the process;

• local: activity x sometimes (in about 5% - 15% of the traces) appears at
a particular place in the process;

• semi-local: activity x sometimes (in about 5% - 15% of the traces)
appears at one of two places in the process;

• little-global: activity x very rarely (in less than 5% of the traces)
appears at some random place in the process;

• global: activity x sometimes (in about 5% - 15% of the traces) appears at
some random place in the process.

For each combination of structure and noise level, our data set contains five
example logs. Each event log records 1 000 process instances. The logs are la-
beled by combining the base structure (parallel, skip, duplicates, or
non-free-choice), the level of noise, and an additional letter (a, b, c, d, or e)
to distinguish between the five example logs for each combination of base struc-
ture and noise level. For example, non-free-choice little-global b
is the second example log (composed of 1 000 traces) that records the execution
of the non-free-choice process with a very low frequency of global noise.

For the representational bias evaluation, we compare the performance of the
two versions of the hybrid miner (HM OV and HM NV) for all the 120 event logs.
We use as parameters tfreq = 0, w = 0.5, tRS

= 0.3, tRW
= 0.2 and treplay = 1.0.

We set low values for tRS
and tRW

as we aim to discover as many relations as
possible and we set the treplay to 1 as we want to ensure a perfect fitness to focus
on how precisely the algorithm is able to model challenging structures.

Since the representational bias logs are of small size, both versions of the
Hybrid Miner were able to discover a model in less than 5 seconds for each log.
Therefore, we omit the time performance results and present the qualitative results
of the experiment. All discovered models achieved a fitness score of 1 because
we used a place evaluation threshold of 1. The precision values, instead, range
according to the specific construct of the model. Table 6 reports the different
precision values for each of the five example logs (a, b, c, d, or e) related to a
specific representational bias and level of noise. Since no difference in terms of
distribution of the precision values is observed between HM OV and HM NV, we
report them only once.

56

Base Noise a b c d estructure level

parallel

no-noise 1 1 1 1 1
little-local 0.751 0.752 0.766 0.766 0.944
local 0.958 0.945 0.953 0.769 0.763
semi-local 0.785 0.795 0.792 0.780 0.792
little-global 0.744 0.757 0.755 0.759 0.731
global 0.749 0.767 0.771 0.771 0.770

skip

no-noise 0.550 0.550 0.550 0.550 0.550
little-local 0.420 0.420 0.420 0.420 0.421
local 0.570 0.421 0.422 0.569 0.423
semi-local 0.483 0.487 0.483 0.482 0.486
little-global 0.576 0.572 0.578 0.576 0.574
global 0.575 0.577 0.574 0.576 0.573

duplicates

no-noise 0.778 0.778 0.778 0.778 0.778
little-local 0.472 0.472 0.471 0.470 0.470
local 0.472 0.472 0.472 0.473 0.472
semi-local 0.530 0.528 0.532 0.530 0.530
little-global 0.756 0.754 0.753 0.754 0.755
global 0.751 0.757 0.751 0.753 0.741

non-free-choice

no-noise 1 1 1 1 1
little-local 0.632 0.631 0.634 0.633 0.633
local 0.995 0.996 0.993 0.995 0.631
semi-local 0.632 0.634 0.633 0.631 0.635
little-global 0.812 0.843 0.794 0.810 0.841
global 0.850 0.849 0.851 0.848 0.849

Table 6: Precision results for the representational bias evaluation. For each type of representational
bias and for each level of noise, precision is collected for each of the five example logs (a, b, c, d,
or e).

As example results, we show the models discovered for the noise-free logs
(no-noise) in Figure 21 and the models discovered for the first example log
with global noise (global 1000a) in Figure 22. For the non-free-choice
and parallel cases, optimal models are discovered regardless of the noise
level. The Hybrid Miner achieved a precision of 1.0 for the noise-free parallel
and non-free-choice logs (see Figure 21a and 21d), while for other levels
of noise lower values are observed. For example, in the model shown in Fig-
ure 22a, arcs of Type II are used for connecting the noisy activity x to start and
end, as well as for enabling the x self-looping. In the model shown in Figure 22d,
arcs of Type II allow for executing x after start and before end and a, while

57

(a) parallel (b) skip

(c) duplicates (d) non-free-choice

Figure 21: Representational biases with no noise.

an unsure arc connects e to x. Although the base structures were correctly dis-
covered for all non-free-choice and parallel log, the introduced noise
led to lower precision values for the noisy logs. However, the decrease in preci-
sion is random since the noise was also inserted randomly. For example, for the
non-free-choice 1000a log, the local log achieved the highest precision
among the noisy logs (0.995), while for the non-free-choice 1000e log, the
global log achieved the highest precision among the noisy logs (0.849).

Unlike the parallel and non-free-choice cases, the Hybrid Miner
is not able to discover optimal models for the skip and duplicates cases.
The noise-free skip logs led to a precision of 0.55 (Figure 21b). This is caused
by the fact that b is continuously enabled considering only places and ignoring
the sure arcs connected to b. The Hybrid Miner is not able to formally model a
skip structure because it does not use silent transitions. A place was discovered
to model the sequential relation between a and c, and the causal relations related
to the optional activity b are modeled informally using two arcs of Type II. The
models discovered for the duplicates logs are also non-optimal. For example,
the noise-free duplicates logs led to a precision of 0.778 (Figure 21c). Since
the Hybrid Miner does not allow for duplicate transitions, the structure is modeled
through a loop that allows for repeating the sequence (c - b) arbitrarily often after
the first execution of b.

By looking at the other skip and duplicates logs (little-local,

58

(a) parallel (b) skip

(c) duplicates (d) non-free-choice

Figure 22: Representational biases for the first example log with global noise (global 1000a).

local, semi-local, little-global, and global), the noise of the logs
does not hamper the discovery of the same structures obtained with the no-noise
logs, while enriching the models with transition x. For example, let us con-
sider the models shown in Figure 22b and Figure 22c. In both models, arcs of
Type II connect the noisy activity x to start and end and are used for a self-
loop over x. Moreover, in the case of skip, an unsure arc also connects x to
a. Although, as in the no-noise case, the Hybrid Miner is not able to cor-
rectly capture these two types of constructs, the introduction of the noise re-
sults in a slightly increased precision in some cases (e.g., from 0.55 to 0.572 for
skip little-global 1000b), and in a precision decrease in other cases (e.g.,
from 0.778 to 0.472 for duplicates little-local 1000a). For all the dis-
covered models, however, the noisy behavior is correctly represented as informal.

The results overall show that when “sure” behavior cannot be captured in for-
mal constructs, it could make sense to capture the causalities in an informal way
rather than ignoring them or trying to formalize them. For example, in Figure 21b,
it is helpful to see that b is connected to a and c using sure arcs.

8.4. State-of-the-art discovery approaches
In this section, we compare HM NV with one of the classical discovery ap-

proaches, the Inductive Miner (IM). We use two types of metrics for this com-
parison: (1) traditional fitness and precision that measure the compliance between

59

Log SCR SCP Recall Precision
IM HM NV IM HM NV IM HM NV IM HM NV

BPI2011 0.48 1 0.667 1 0.277 0.552 0.485 0.111
BPI2012 0.567 1 0.895 1 0.76 0.815 0.755 0.317
BPI2014 0.353 1 0.4 1 0.725 0.85 0.623 0.667
BPI2015 0.604 1 0.763 0.98 0.474 0.499 0.757 0.839
BPI2016 0.964 1 1 1 0.761 0.757 0.047 0.097
BPI2017 0.299 1 0.793 0.987 0.851 0.912 0.702 0.486

Table 7: Evaluation results for the comparison of IM with HM NV. SCR and SCP are causal-
graph-based metrics, while we use recall and precision to refer to the traditional metrics (i.e.,
Petri-net-based metrics).

a Petri net and an event log and (2) causal-graph-based metrics that measure the
compliance between two causal graphs (Definition 11 and Definition 14).

For computing traditional fitness and precision, we transform hybrid Petri
nets into Petri nets by ignoring all arcs of Type II and Type III. Informal arcs
are taken into account when computing causal-graph-based metrics. For causal-
graph-based metrics, we transform the discovered Petri nets and Hybrid Petri nets
into causal graphs7, and we check the compliance between these causal graphs
and the base causal graph (i.e., the causal graph discovered in the first discovery
step of the hybrid miner). Note that this comparison is biased since the hybrid
Petri net is constructed from the causal graph, i.e., we assume the base causal
graph to be perfectly capturing causal dependencies between activities. Since a
causal graph of a Petri net has no arcs of Type III, we only compute Strong Causal
Recall (SCR) and Strong Causal Precision (SCP).

We use the same real-life event logs we used in Section 8.1 (i.e., the six BPI
Challenge event logs), and we also use the same parameters for the HM NV (i.e.,
the parameters reported in Table 2). For IM, we first filter the event logs to only
keep the most frequent variants according to the parameter tfreq, then we apply
IM with a noise filtering threshold of (1− treplay).

The results of this evaluation are reported in Table 7. HM NV achieves better
results with respect to the causal-graph-based metrics. For all event logs, HM NV

achieved a strong causal recall of 1 and a strong causal precision higher than
or equal to 0.98. These results show that the second discovery step of HM NV

7Since the inductive miner produces models with silent transitions, we need to filter them out
in the derived causal graph, i.e., two activities are considered to be causally related if there is a
path connecting two transitions having the corresponding labels through silent transitions.

60

preserves the dependencies discovered in the first step (perfect SCR) and only
a limited number of additional dependencies are added through the places (very
high SCP). For IM, these values are lower except for the BPI2016, where both
IM and HM NV achieved a perfect strong causal precision. As mentioned before,
these results are biased as the IM Petri net is discovered based on the event log,
while the hybrid Petri net is discovered based on the base causal graph we used
for computing these metrics.

For the Petri net-based metrics (i.e., traditional fitness and precision), we ob-
serve different results among the event logs. For most logs, HM NV led to models
of higher recall. This was expected since the hybrid miner only adds places when
there is enough evidence in the data justifying adding such formal constraints,
while the IM models complex structures using silent transitions, loops, and con-
currency structures. With respect to precision, we have cases where IM led to
better results and other cases where HM NV led to better results.

Figure 23 shows the models discovered for the BPI2014 event log. The model
discovered by HM NV is better in terms of all four quality metrics we use. The
hybrid Petri net only allows for executing the activities Status Change and Opera-
tor Update before Caused By CI, while these three activities are concurrent in the
Petri net discovered by IM. Moreover, in contrast to the Petri net discovered by
IM, the Hybrid Petri net discovered by HM NV allows for repeated executions of
the activities Status Change, Operator Update, Assignment, and Reassignment.

Figure 24 shows the models discovered for the BPI2012 event logs. The hy-
brid Petri net discovered by HM NV achieves a higher recall and a lower precision
compared to the Petri net discovered by IM. The main reason for this drop in pre-
cision is the informal representation of self-loops in the hybrid Petri net. The
hybrid Petri net contains self-loops of the activities W Complete aanvraag and
W Nabellen offertes, and both activities are only connected to informal arcs, i.e.,
HM NV was not able to formally model these self-loops because silent transitions
are not supported in hybrid Petri nets. Since we omit informal arcs when com-
puting precision, such activities that are not connected to any places yield a low
precision. Overall, however, there is no clear winner between HM NV and IM.
Indeed, there are cases in which IM allows for getting the best trade-off between
precision and recall (as in the case of BPI2012 and BPI2017), and cases in which
HM NV is able to get the best trade-off between precision and recall (e.g., BPI
2014 and BPI2015).

61

(a) Petri net discovered by IM.

(b) Hybrid Petri net discovered by HM NV.

Figure 23: Models discovered for the log BPI2014.

(a) Petri net discovered by IM.

(b) Hybrid Petri net discovered by HM NV.

Figure 24: Models discovered for the log BPI2012.

62

8.5. Classification Task Using Process Discovery Contest Logs
Although fitness (also called recall) can be measured easily, there is less con-

sensus on how to measure precision [42]. To evaluate a classifier and measure
precision and recall directly, we need to have both positive and negative instances
and a training and test log. In practical applications of process discovery, we only
have positive examples and not a test log. The event log does not tell what is im-
possible in the process and one uses all the data available to get the best results.
However, to evaluate a process discovery algorithm (i.e., not a process model),
we can create synthetic data with positive and negative examples. This is the idea
behind the annual Process Discovery Contest. In this contest both a training set
and a separate test set with cases that are fitting and cases that are non-fitting are
provided. This way process discovery can be treated as a classification problem,
where a case is fitting or non-fitting.

We hence used the BPI Process Discovery Contest 2016 (PDC2016) [43],
the BPI Process Discovery Contest 2017 (PDC2017) [44], and the BPI Process
Discovery Contest 2019 (PDC2019) [45] in order to evaluate the capability of
the approach to correctly classify fitting and non-fitting traces, by computing pre-
cision, recall and F-measure. While precision measures the percentage of traces
correctly classified as fitting with respect to all traces and recall the percentage of
traces correctly classified as fitting with respect to all fitting traces, the F-measure
is their harmonic mean. They all provide a measure of how accurate the model
is in classifying traces as fitting or non-fitting. In detail, we compared the results
obtained by the Hybrid Miner (both HM OV and HM NV) with the ones obtained
by applying IM. Each of the three data sets is composed of 10 training and 10 test
logs generated using ten BPMN models. Each training log contains 1,000 cases
fitting the original model. The test logs, which are used for testing the quality of
the discovered models, are composed of 20 traces, 10 traces fitting the model and
10 traces that do not fit the model used to generate the training log.

We used the following values for the parameters of both versions of the Hy-
brid Miner: tfreq = 0, tRS

= 0.5, tRW
= 1.0,w = 0.5. Moreover, in order to

avoid overfitting of the training event logs, we decided to use a place evaluation
threshold of 0.9 (treplay = 0.9). For IM, we used the plug-in Mine Petri net with
Inductive Miner from the ProM framework [46, 47]. Since we used a place eval-
uation threshold of 0.9 for the Hybrid Miner, we set the noise threshold of the
Inductive Miner to 0.1.

Both the Hybrid Miner versions and the IM were able to discover a model in
a few seconds for each log. Therefore, we omit the time performance results and
focus on the qualitative analysis of the discovered models.

63

Event log F-measure Accuracy
IM HM OV HM NV IM HM OV HM NV

PDC2016 1 0.947 1 1 0.95 1 1
PDC2016 1 0.947 1 1 0.95 1 1
PDC2016 2 0.947 0.952 0.952 0.95 0.95 0.95
PDC2016 3 0.462 0.462 0.571 0.65 0.65 0.7
PDC2016 4 0.182 0.182 0.1818 0.55 0.55 0.55
PDC2016 5 0.667 1 1 0.75 1 1
PDC2016 6 0.556 0.741 0.741 0.6 0.65 0.65
PDC2016 7 0.947 0.952 0.952 0.95 0.95 0.95
PDC2016 8 0.818 0.833 0.833 0.8 0.8 0.8
PDC2016 9 1 1 0.947 1 1 0.95

PDC2016 10 0.462 0.889 0.889 0.65 0.9 0.9
PDC2017 1 0.8 0.87 0.833 0.75 0.85 0.8
PDC2017 2 0.952 0.952 0.952 0.95 0.95 0.95
PDC2017 3 0.778 0.824 0.947 0.8 0.85 0.95
PDC2017 4 0.818 0.909 0.909 0.8 0.9 0.9
PDC2017 5 0.769 0.833 0.833 0.7 0.8 0.8
PDC2017 6 0.947 0.952 0.952 0.95 0.95 0.95
PDC2017 7 0.64 0.667 0.667 0.55 0.5 0.5
PDC2017 8 0.87 0.8 0.8 0.85 0.75 0.75
PDC2017 9 0.625 0.8 0.8 0.7 0.8 0.8

PDC2017 10 0.632 0.769 0.769 0.65 0.7 0.7
PDC2019 1 0.786 1 1 0.8 1 1
PDC2019 2 1 0.916 1 1 0.922 1
PDC2019 3 0.753 0.932 0.978 0.7889 0.933 0.978
PDC2019 4 0.703 0.936 0.96 0.756 0.933 0.956
PDC2019 5 0.957 0.884 0.884 0.957 0.878 0.878
PDC2019 6 0.989 0.989 0.989 0.989 0.989 0.989
PDC2019 7 0.782 0.849 0.849 0.789 0.822 0.822
PDC2019 8 0.605 0.901 0.901 0.478 0.9 0.9
PDC2019 9 0.541 0.909 0.909 0.622 0.9 0.9

PDC2019 10 0.547 0.923 0.923 0.411 0.922 0.922
average 0.749 0.854 0.864 0.771 0.857 0.863

Table 8: Results obtained by applying the Inductive Miner and the two versions of the Hybrid
Miner to the BPI Process Mining Contest data sets.

Table 8 reports the F-Measure and accuracy results obtained by IM, HM NV

and HM OV on the PDC2016, PDC2017 and PDC2019 data sets. The highest
F-measure and accuracy values are highlighted in bold. By looking at the table
we can observe that, for most cases, both versions of the Hybrid Miner were able
to discover models of either a higher quality than the models discovered by IM or
of the same quality. For instance, let us consider the models shown in Figure 25,

64

which were discovered by IM and HM NV for the log PDC2019 8. Since the
Inductive Miner does not support duplicate transitions, it tries to formally cap-
ture the whole process by adding many loops and silent transitions. This leads
to a model of low quality compared to the model discovered by HM NV. How-
ever, in the later model parts of the process are not formally captured. The model
discovered by IM achieves an accuracy of 0.478 compared to 0.9 for the models
discovered by the two versions of the Hybrid Miner. This example demonstrates
how trying to formally capture vague behavior can decrease the quality of the pro-
cess model. On the other hand, we observe some cases where IM delivered better
results than the Hybrid Miner. Figure 26 shows the models discovered for the
log PDC2017 8. The model discovered by IM has an accuracy of 0.85 compared
to 0.75 achieved by the models discovered by the Hybrid Miner. IM, indeed, is
able to formally capture more parts of the process through many additional places.
These additional places cannot be generated by the Hybrid Miner because it does
not support the usage of silent transitions.

For most logs, the two versions of the Hybrid Miner produce models having
the same quality. There are a few exceptions with small differences in the quality
scores. For instance, the model discovered by HM OV for PDC2017 1 has an
accuracy of 0.85 compared to 0.8 obtained for the model discovered by HM NV.
On the other hand, HM NV achieved better results for PDC2017 3 (an accuracy of
0.85 for HM OV and 0.95 for HM NV). We can say, in general, that both versions
of the Hybrid Miner delivered similar results in terms of quality, and these results
are typically better than the results obtained by the Inductive Miner. Considering
all process discovery contest logs, the models discovered by the Inductive Miner
achieved an average accuracy of 0.77 and an average F-measure of 0.75. The mod-
els discovered by the Hybrid Miner achieved higher values: An average accuracy
of 0.86 and an average F-measure of 0.86, with only minor differences between
the two versions.

8.6. Parameter Evaluation
In this section, we evaluate the effect of changing the values of the different

parameters of HM NV on time performance and on the quality of the discovered
models. We investigate the following parameters:

• the activity filter threshold tfreq ,

• the strong causality threshold tRS
,

• the causality weight w , and

65

(a) Petri net discovered by IM.

(b) Hybrid Petri net discovered by HM NV.

Figure 25: Models discovered for the log PDC 2019 8.

• the place quality evaluation threshold treplay .

We omit the analysis related to the weak causality threshold (tRW
) since uncertain

edges are not used for building places and their effect on the quality of the dis-
covered models cannot be measured using formal metrics. For each experiment
presented in this section, we fixed all parameters except the parameter(s) tested by
the experiment. We used the following values for the fixed parameters: tfreq = 0,
tRS

= 0.5, tRW
= 1, w = 0.5, tglob = 0, treplay = 0.8. For all experiments, we

used four event logs from the scalability data sets described in Section 8.2. We

66

(a) Petri net discovered by the Inductive Miner.

(b) Hybrid Petri net discovered by HM NV.

Figure 26: Models discovered for the log PDC 2017 8.

selected one log to represent each of the four structures covered by the scalabil-
ity data sets: PARALLEL 2 10000, SEQUENCE 2 10000, CHOICE 2 10000, and
LOOP 2 10000. Each of these four logs contains 10 000 traces and its underlying
model consists of two base components.

Activity Filter Threshold (tfreq).
We evaluated the activity filtering threshold by testing the following values:

0, 2 000, 4 000, 6 000, and 8 000. Figure 27 shows the performance results for
this experiment (considering speed). As expected, the time costs decrease by
using higher values for tfreq . Increasing the value of the activity filtering threshold
reduces the number of nodes in the causal graph, and this, in turn, reduces the
number of candidate places that need to be evaluated.

Figure 28 shows the qualitative results of the evaluation of the activity filtering
parameter. For each log, fitness and precision scores of the discovered models are
presented. We observe that increasing the value of tfreq reduces the fitness of the
discovered models. This result was expected because using higher values for the
activity filtering threshold reduces the number of transitions in the final models,
and all traces containing any filtered activity become non-fitting. A clear trend of
how the precision of the models changes by changing the value of tfreq is not easy

67

Figure 27: Time performance results of the evaluation of the parameter tfreq .

(a) PARALLEL 2 10000 (b) SEQUENCE 2 10000

(c) CHOICE 2 10000 (d) LOOP 2 10000

Figure 28: Qualitative results of the evaluation of the parameter tfreq . Increasing the threshold
leads to the removal of infrequent activities and hence lower fitness.

to identify for these event logs by looking at the plots.

Strong Causality Threshold (tRS
).

We evaluated the threshold for strong causalities by testing the following val-
ues: 0.1, 0.3, 0.5, 0.7, and 0.9. Figure 29 shows the results of this experiment.
It demonstrates how, by decreasing the value of tRS

, more precise models can be
discovered, but more time is required. These results were expected because low-
ering the threshold for strong causalities will increase the number of sure edges in
the causal graph, and this will create more candidate places to evaluate. Although
we can generally state that a lower strong causality threshold leads to more precise
models, we observe that for all four logs, the optimal model (the model with the

68

(a) Time (b) Precision

Figure 29: Results of the evaluation of parameter tRS
. Fitness values are not reported because all

discovered models achieved a fitness higher than 0.99.

(a) Time (b) Precision

Figure 30: Results of the evaluation of parameter w . Fitness values are not reported because all
discovered models achieved a fitness higher than 0.99.

highest precision) was already discovered using a threshold of 0.5.

Causality Weight (w).
For evaluating the effect of changing the causality weight parameter (w), we

used the following values: 0, 0.25, 0.5, 0.75, and 1. Figure 30 shows the results
of this evaluation. We observe that decreasing the value of w leads to more pre-
cise models, but increases the required time. Using a lower value for the causality
weight w means giving more weight to loop and parallelism detection and less
weight to split and join behavior. The results show hence that Rel2 is more im-
portant than Rel1 for the quality of the discovered models on these event logs.
By investigating the discovered causal graphs, we can notice that using lower val-
ues for w increases the number of discovered causal edges and hence of candidate
places. This explains the increase in both time and precision. For these event logs,
it seems that the optimal model (the model with the highest precision) is already
discovered using a causality weight of 0.5, at the lowest time performance cost.

69

Figure 31: Qualitative results of the evaluation of parameter treplay .

Place Quality Evaluation Threshold (treplay).
We evaluated the threshold for place quality by testing the following values:

0.2, 0.4, 0.6, 0.8, and 1. Figure 31 shows the qualitative results of this experiment.
It demonstrates how by increasing the value of treplay the quality of the discovered
models is improved in terms of both fitness and precision scores. However, we
observe a large drop in precision when reaching the value treplay = 1. This behav-
ior can be justified by the fact that our four logs were not filtered to remove noise;
using a threshold of 1 will prevent adding any places that are not perfectly fitting
all noisy traces, and this will lower the precision of the model.

The time performance results of the experiment for the place quality thresh-
old are reported in Table 9. No big differences are identified for the executions
carried out with different values of treplay and a clear trend of how the time perfor-
mance of the program changes by changing the value of treplay cannot be clearly
identified. This behavior was expected because, although using a higher place
evaluation threshold should speed up the rejection of non-fitting places, using a
lower threshold might lead to accepting more places of maximal size and reducing
the number of candidate places that need to be evaluated (see Section 6.3). This
suggests that a good option is using high values for the place quality threshold
(treplay). However, when the data set is not noise-free, avoiding very high values
seems to be the most suitable choice.

8.7. Discussion and Limitations
The in-depth analysis carried out allows us to answer the research questions

posed earlier. By looking at the quantitative, qualitative, and performance-related
comparison between HM OV and HM NV on real-life logs (Section 8.1), scala-
bility logs (Section 8.2), and the logs used to evaluate different process constructs

70

treplay
Time (milliseconds)

PARALLEL 2 10000 SEQUENCE 2 10000 CHOICE 2 10000 LOOP 2 10000
0.2 2 562 1 865 1 836 2 439
0.4 2 243 1 869 1 834 2 426
0.6 2 569 1 877 1 832 2 388
0.8 2 325 1 841 1 806 2 383
1 2 400 1 893 1 874 2 229

Table 9: Time performance results of the evaluation of parameter treplay .

(Section 8.3), we can state that, overall no big differences in terms of model
quality exist between HM OV and HM NV. However, there are important per-
formance differences, especially for large event logs (RQ1). There are cases in
which small differences in terms of fitness and precision can be observed. How-
ever, in general, HM NV seems to return models that are of slightly better quality
while requiring a fraction of compute time.

The results related to the comparison of the Hybrid Miner with the Inductive
Miner on traditional Petri net-based and on causal-graph-based precision and re-
call - reported in Section 8.4 suggest us that the Hybrid Miner performs better than
the Inductive Miner almost always in terms of Petri net-based recall and in half of
the cases in terms of Petri net-based precision, while it performs always better in
case of causal graph-based metrics. Moreover, the comparison of the approaches
on a classification task - reported in Section 8.5 - allows us to assess that, overall,
the two versions of the Hybrid Miner outperform the Inductive Miner on classi-
fication problems, while no big differences exist between HM OV and HM NV

with slightly better results obtained with HM NV (RQ2).
Overall, we can state that the parameter values have an impact on both the time

performance and the quality of the discovered models (RQ3). Specifically, the
higher the activity filtering threshold (tfreq), the lower the number of activities and
the lower the fitness and the time required for discovering the models. We observe
a similar result for the strong causality threshold (tRS

). Also in this case, indeed,
the higher the threshold, the lower the precision, as well as the time required for
discovering the model. For the causality weight (w), we can also observe that the
higher the value, the lower the precision - as it seems that Rel2 is more important
than Rel1 at least for these logs – and the required time. Finally, we showed
that the place quality evaluation threshold (treplay) has an effect on precision and
performance. Precision and time performance first improve when treplay increases,
but an important drop in precision occurs, as well as an increase of the required

71

time, when treplay approaches 1 and the log includes noisy behavior.
The evaluation reveals that the Hybrid Miner (and in particular HM NV) is

able to discover reasonably good hybrid Petri nets that allow for formally repre-
senting the “sure” behavior and informally capturing noisy and infrequent behav-
ior. This results in (1) fair fitness and precision values for these models - despite
classical process mining metrics are not the most suitable ones for evaluating hy-
brid Petri nets; as well as (2) accurate classifications when the discovered hybrid
Petri nets are evaluated on classification tasks. The time required for the computa-
tion is also acceptable. Except for complex and very large logs, the time required
by HM NV to discover a hybrid Petri net is of the order of seconds or a few min-
utes.

Despite the broad experimentation carried out, some limitations and threats
related to the evaluation can be identified. The main threats affecting the validity
of the evaluation carried out are related to external validity, limiting the general-
izability of the results. A first threat is related to the fact that in the investigation
fixed values have been selected for some of the Hybrid Miner parameters. How-
ever, the choices related to these values have always been well thought-out and
motivated. A second threat is related to RQ3: the analysis of the impact of the
parameter values on the discovered model is limited to a few event logs. This
threat has been mitigated by the fact that investigated event logs are character-
ized by different base structures. We plan to carry on wider experimentation with
more event logs in order to provide users with suggestions on the choice of the
parameter values more suitable to their event logs.

9. Related Work

The work reported in this paper was inspired by the work of Herrmann et al.
[48, 49] who argue that modeling “requires the representation of those parts of
knowledge which cannot be stated definitely and have to be modeled vaguely”.
They propose annotations to make vagueness explicit. In [48, 49] the goal is to
model vagueness, but we aim to automatically discover hybrid models supporting
both vagueness and formal semantics.

Hybrid process models are related to the partial models considered in soft-
ware engineering [50, 51]. In both papers, partial models represent sets of “nor-
mal” models. In Famelis et al. [50] one can use a so-called “may formula” which
expresses allowable combinations of atoms. In Salay et al. [51] it is written “A
partial model P consists of a base model, denoted bs(P), and a set of annotations.
Let T be the metamodel of bs(P). Then, [P] denotes the (possibly infinite) set

72

of models of type T called the concretizations of P . P is called consistent iff it
allows at least one concretization, that is, [P] 6= ∅.” Partial models in the spirit
of [50, 51] are not specific for process modeling and do not address the topic of
discovery. More related is the work on configurable models and business process
variability modeling. See La Rosa et al. [52] for a recent survey. Most of the ap-
proaches allowing for variability and configuration extend a conventional process
modeling language with constructs to capture customizable process models. A
customizable process model represents a family of process variants in a way that
a model of each variant can be derived by adding or deleting fragments according
to customization options or according to a domain model [52]. There have been
a few approaches for learning such models [53, 54, 55]. These either start from
existing variant models as in Chen et al. [55] or from collections of event data, as
in Buijs et al. and Gottschalk et al. [53, 54]. Partial and configurable models are
different from the hybrid models considered here. We do not aim at a concretiza-
tion of a hybrid model: The process is and will be “vague”. Moreover, our input
is not a collection of models [55] or logs [53, 54]. There is just a single event log.

Existing process discovery approaches can be split into approaches that pro-
duce informal models (“boxes and arrows”) or formal models (Petri nets, transition
systems, BPMN models, etc.).

Until now most of the commercial tools resort to discovering informal models,
often based on the directly-follows graph with frequency-based filtering. There
are over 40 commercial tools supporting process mining. Examples include:
Celonis Execution Management System (Celonis), ProcessGold Process Mining
(UiPath), QPR ProcessAnalyzer (QPR), Disco (Fluxicon), minit (Microsoft), my-
Invenio (IBM), LanaLabs (Appian), etc. These tools have been inspired by the
first analysis step of the heuristic miner [7] (dependency graph) or the fuzzy miner
[8] (highly configurable, but not allowing for any form of formal reasoning). Some
of the commercial tools also support the discovery of BPMN models (e.g., Celonis
support the Inductive Mining approach), but not as the first option.

In literature, one can find a range of process discovery approaches that produce
formal models [1]. The α-algorithm in van der Aalst et al. [9] and its variants
produce a Petri net. Approaches based on state-based regions [10, 11, 12, 13, 13],
language-based regions [14, 15, 16, 17, 18, 19], abstract interpretation [56], Hasse
diagrams [57], and inductive logic programming [58] also discover Petri nets.
There are also techniques that learn causal nets [59, 7] or subsets of BPMN [60].
The more recently developed inductive mining approaches produce process trees
that can be easily converted to Petri nets or similar [26, 27, 28].

The above approaches all discover a procedural model. Recently, also sev-

73

eral approaches have been proposed to learn declarative models [20, 21, 22, 23,
24, 25]. Often they use variants of the Declare language. The motivation for
mining declarative models is that many of the formal algorithms tend to produce
spaghetti-like process models or return flower-like models that impose no con-
straints. Declarative models tackle this by using an open-world assumption in
combination with logic-based constraints: Anything is allowed unless explicitly
forbidden by some constraint (expressed in terms of some logic or regular ex-
pressions). In this sense, Petri nets also use an open-world assumption and can
therefore be considered as declarative. A Petri net without any places and just
transitions allows for any behavior involving the activities represented by the tran-
sitions. Each place can be viewed as a constraint. Most discovery techniques do
not exploit the declarative nature of Petri nets (tokens are assumed to trigger the
next activity in a procedural manner). An exception is the work of Mannel et al.
[61, 62] which improves discovery techniques based on regions by allowing for
infrequent behavior. The approach is fully declarative in the sense that places are
seen as constraints and not as a triggering mechanism. The concepts “declarative”
and “hybrid” can be considered as orthogonal. Declarative process models could
also be made hybrid by only expressing the “stronger” constraints (e.g., based
on support, confidence or other measures such as the interestingness of a con-
straint [63]). and use other semi-formal means to show the causalities not covered
by constraints.

Finally, recently, approaches combining procedural and declarative approaches
have been proposed in the literature [64, 65, 66, 67]. The resulting models are also
called “hybrid models”, but the term “hybrid” is used differently. These combine
procedural and declarative notations which are both formal, instead of adding
semi-formal concepts like in this paper. The two notions of hybrid are orthogonal.

It is impossible to give a complete overview of all discovery approaches here.
The initial approach presented in [29] was the first to return hybrid models having
both formal and informal elements. This paper significantly improves and extends
[29]. As described, the core algorithm (see Algorithm 1) has been changed in
several ways:

• We now order the candidate places and have added the exclusion relation.

• The original approach did not use the conflict notion and this could result in
contradicting places.

• We can now control the set of candidate places and put constraints on the
connectivity of places.

74

• The approach has been reimplemented and now incorporates the newly de-
veloped speed-ups described in Section 6.3. Next to prioritizing the eval-
uation of highly connected candidate places and limiting the set of candi-
date places, we also stop the place evaluation as soon as possible and in a
safe manner. Using the global place score we can further reduce the search
space.

Moreover, all evaluations are new (Section 8) and we repositioned the approach
based on experiences with more data sets (Section 2).

10. Conclusion

Hybrid models combine the best of two worlds: commercial tools produc-
ing informal models and more research-oriented discovery approaches providing
formal guarantees. We provided a concrete realization of our hybrid discovery
approach using hybrid Petri nets. The ideas are not limited to Petri nets and could
be applied to other types of process models (e.g., BPMN models with explicit
gateways for the clear and dominant behavior and additional arcs to capture com-
plex or less dominant behavior). Unlike existing approaches, there is no need to
straightjacket behavior into a formal model that suggests a level of confidence
that is not justified. The places in the hybrid Petri nets have to satisfy strict qual-
ity criteria that can be interpreted by end-users. This is different from existing
approaches where the models may not allow for any of the traces seen.

As for the limitations, our approach is not able to discover certain structures
due to the absence of silent and duplicate transitions. In the future, we plan to
extend it in order to deal with these constructs.

Our technique has been fully implemented in ProM and tested on numerous
real-life event logs. Moreover, we reported on several controlled experiments
showing that the approach indeed meets the requirements.

The explicit representation of vagueness and uncertainty in hybrid process
models is analogous to the use of confidence intervals and box-and-whisker di-
agrams in descriptive statistics. This paper provides a starting point for a new
branch of research in Business Process Management and process mining. Future
work will include instantiations of the approach for BPMN and UML activity di-
agrams focusing on different model constructs (gateways, swimlanes, artifacts,
etc.). The same ideas could also be used for very different process models (e.g.,
declarative process models and process trees). We would like to also provide
approximative compliance and performance indicators for sure and unsure arcs.

75

Note that commercial tools show delays and frequencies on arcs, but these indi-
cators may be very misleading as demonstrated in Figure 1.

Our broad evaluation focused on the choice of the most suitable Hybrid Miner
parameters according to the characteristics of the log. Based on the intended pur-
pose of the discovered model we aim to provide users with automated parameter-
setting support when using Hybrid Miner plug-ins.

Future work is needed to make the approach even better scalable. The im-
provements described in Section 6.3 make the approach tractable in real-life set-
tings. However, we would like to use integer linear programming and apriori-style
approaches to tackle even larger event logs. Moreover, we are implementing the
ideas in the context of big data processing engines like Apache Spark.

The approach in this paper also points towards a convergence of discovery
and conformance checking. Commercial tools that support conformance check-
ing (e.g., Celonis) use two representations: one for discovery (filtered Directly-
follows Graphs) and one for conformance checking (e.g., a BPMN model). Clearly,
this disconnect is undesirable and can only be solved by using hybrid process
models. Moreover, we envision that in the future end-users will interact with dis-
covery results and add/remove constraints (e.g., places) based on domain knowl-
edge. Constraints may be normative and descriptive. Users can indicate that
certain constraints are less interesting and others are essential and such informa-
tion can be used to interactively show more meaningful conformance-checking
results.

References

[1] W. van der Aalst, Process Mining: Data Science in Action, Springer-Verlag,
Berlin, 2016.

[2] W. van der Aalst, Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes, Springer-Verlag, Berlin, 2011.

[3] W. van der Aalst, A. Adriansyah, B. van Dongen, Replaying History on Pro-
cess Models for Conformance Checking and Performance Analysis, WIREs
Data Mining and Knowledge Discovery 2 (2) (2012) 182–192.

[4] W. van der Aalst, M. Schonenberg, M. Song, Time Prediction Based on
Process Mining, BPM Center Report BPM-09-04, BPMcenter.org (2009).

76

[5] W. van der Aalst, M. Pesic, M. Song, Beyond Process Mining: From the
Past to Present and Future, in: B. Pernici (Ed.), Advanced Information Sys-
tems Engineering, Proceedings of the 22nd International Conference on Ad-
vanced Information Systems Engineering (CAiSE’10), Vol. 6051 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2010, pp. 38–52.

[6] W. van der Aalst, Process Mining in the Large: A Tutorial, in: E. Zimanyi
(Ed.), Business Intelligence (eBISS 2013), Vol. 172 of Lecture Notes in
Business Information Processing, Springer-Verlag, Berlin, 2014, pp. 33–76.

[7] A. Weijters, W. van der Aalst, Rediscovering Workflow Models from Event-
Based Data using Little Thumb, Integrated Computer-Aided Engineering
10 (2) (2003) 151–162.

[8] C. Günther, W. van der Aalst, Fuzzy Mining: Adaptive Process Simplifica-
tion Based on Multi-perspective Metrics, in: G. Alonso, P. Dadam, M. Rose-
mann (Eds.), International Conference on Business Process Management
(BPM 2007), Vol. 4714 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 2007, pp. 328–343.

[9] W. van der Aalst, A. Weijters, L. Maruster, Workflow Mining: Discovering
Process Models from Event Logs, IEEE Transactions on Knowledge and
Data Engineering 16 (9) (2004) 1128–1142.

[10] W. van der Aalst, V. Rubin, H. Verbeek, B. Dongen, E. Kindler, C. Günther,
Process Mining: A Two-Step Approach to Balance Between Underfitting
and Overfitting, Software and Systems Modeling 9 (1) (2010) 87–111.

[11] J. Carmona, J. Cortadella, M. Kishinevsky, A Region-Based Algorithm for
Discovering Petri Nets from Event Logs, in: Business Process Management
(BPM 2008), 2008, pp. 358–373.

[12] J. Carmona, J. Cortadella, M. Kishinevsky, Genet: A Tool for the Synthesis
and Mining of Petri Nets, in: Application of Concurrency to System Design
(ACSD 2009), IEEE Computer Society, 2009, pp. 181–185.

[13] M. Solé, J. Carmona, Process Mining from a Basis of State Regions, in: Ap-
plications and Theory of Petri Nets (Petri Nets 2010), Vol. 6128 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2010, pp. 226–245.

77

[14] R. Bergenthum, J. Desel, R. Lorenz, S. Mauser, Process Mining Based on
Regions of Languages, in: G. Alonso, P. Dadam, M. Rosemann (Eds.), In-
ternational Conference on Business Process Management (BPM 2007), Vol.
4714 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2007,
pp. 375–383.

[15] R. Bergenthum, J. Desel, R. Lorenz, S. Mauser, Synthesis of Petri Nets from
Finite Partial Languages, Fundamenta Informaticae 88 (4) (2008) 437–468.

[16] R. Bergenthum, J. Desel, S. Mauser, R. Lorenz, Synthesis of Petri Nets from
Term Based Representations of Infinite Partial Languages, Fundamenta In-
formaticae 95 (1) (2009) 187–217.

[17] R. Lorenz, J. Desel, G. Juhas, Models from Scenarios, in: K. Jensen,
W. Aalst, G. Balbo, M. Koutny, K. Wolf (Eds.), Transactions on Petri Nets
and Other Models of Concurrency (ToPNoC VII), Vol. 7480 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2013, pp. 314–371.

[18] J. van der Werf, B. van Dongen, C. Hurkens, A. Serebrenik, Process Discov-
ery using Integer Linear Programming, Fundamenta Informaticae 94 (2010)
387–412.

[19] S. van Zelst, B. van Dongen, W. van der Aalst, Avoiding Over-Fitting in ILP-
Based Process Discovery, in: H. Motahari-Nezhad, J. Recker, M. Weidlich
(Eds.), International Conference on Business Process Management (BPM
2015), Vol. 9253 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2015, pp. 163–171.

[20] C. Di Ciccio, M. Mecella, A Two-Step Fast Algorithm for the Automated
Discovery of Declarative Workflows, in: IEEE Symposium on Computa-
tional Intelligence and Data Mining (CIDM 2013), IEEE Computer Society,
2013, pp. 135–142.

[21] C. Di Ciccio, F. Maggi, J. Mendling, Efficient discovery of Target-Branched
Declare constraints, Information Systems 56 (2016) 258–283.

[22] C. Di Ciccio, M. Mecella, On the discovery of declarative control flows for
artful processes, ACM Transactions on Management Information Systems
5 (4) (2015) 24:1–24:37.

78

[23] S. Ferilli, WoMan: Logic-Based Workflow Learning and Management,
IEEE Transactions on Systems, Man, and Cybernetics: Systems 44 (6)
(2014) 744–756.

[24] F. Maggi, R. Bose, W. van der Aalst, Efficient Discovery of Understand-
able Declarative Process Models from Event Logs, in: J. Ralyte, X. Franch,
S. Brinkkemper, S. Wrycza (Eds.), International Conference on Advanced
Information Systems Engineering (Caise 2012), Vol. 7328 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 2012, pp. 270–285.

[25] S. Schönig, A. Rogge-Solti, C. Cabanillas, S. Jablonski, J. Mendling, Effi-
cient and Customisable Declarative Process Mining with SQL, in: S. Nur-
can, P. Soffer, M. Bajec, J. Eder (Eds.), International Conference on Ad-
vanced Information Systems Engineering (Caise 2016), Vol. 9694 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2016, pp. 290–305.

[26] S. Leemans, D. Fahland, W. van der Aalst, Discovering Block-structured
Process Models from Event Logs: A Constructive Approach, in: J. Colom,
J. Desel (Eds.), Applications and Theory of Petri Nets 2013, Vol. 7927 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2013, pp. 311–
329.

[27] S. Leemans, D. Fahland, W. Aalst, Discovering Block-Structured Process
Models from Event Logs Containing Infrequent Behaviour, in: N. Lohmann,
M. Song, P. Wohed (Eds.), Business Process Management Workshops, Inter-
national Workshop on Business Process Intelligence (BPI 2013), Vol. 171 of
Lecture Notes in Business Information Processing, Springer-Verlag, Berlin,
2014, pp. 66–78.

[28] S. Leemans, D. Fahland, W. van der Aalst, Scalable Process Discovery
and Conformance Checking, Software and Systems Modeling 17 (2) (2018)
599–631. doi:10.1007/s10270-016-0545-x.

[29] W. van der Aalst, R. De Masellis, C. Di Francescomarino, C. Ghidini, Learn-
ing Hybrid Process Models From Events: Process Discovery Without Fak-
ing Confidence, in: J. Carmona, G. Engels, A. Kumar (Eds.), International
Conference on Business Process Management (BPM 2017), Vol. 10445 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2017, pp. 59–
76.

79

[30] J. Cortadella, M. Kishinevsky, L. Lavagno, A. Yakovlev, Deriving Petri Nets
from Finite Transition Systems, IEEE Transactions on Computers 47 (8)
(1998) 859–882.

[31] W. van der Aalst, On the Pareto Principle in Process Mining, Task Mining,
and Robotic Process Automation, in: S. Hammoudi, C. Quix, J. Bernardino
(Eds.), Proceedings of the 9th International Conference on Data Science,
Technology and Applications, DATA 2020, Lieusaint, Paris, France, July
7-9, 2020, SciTePress, 2020, pp. 5–12.

[32] L. Cheng, B. van Dongen, W. van der Aalst, Scalable Discovery of Hy-
brid Process Models in a Cloud Computing Environment, IEEE Trans. Serv.
Comput. 13 (2) (2020) 368–380. doi:10.1109/TSC.2019.2906203.
URL https://doi.org/10.1109/TSC.2019.2906203

[33] B. van Dongen, BPI Challenges (2011-2017), Real life Event Logs Col-
lection, data.4tu.nl/repository/collection:event_logs
(2017).

[34] B. van Dongen, Real-life event logs - Hospital log (4TU Data Set) (2011).
doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.

[35] B. van Dongen, BPI Challenge 2012, dataset.
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
(2012).

[36] B. van Dongen, BPI Challenge 2017 (4TU Data Set) 10.4121/
uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b (2017).
doi:10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

[37] B. van Dongen, BPI Challenge 2014 (4TU Data Set) 10.4121/
uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35 (2014).
doi:10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35.

[38] B. van Dongen, BPI Challenge 2015 (4TU Data Set) 10.4121/
uuid:31a308ef-c844-48da-948c-305d167a0ec1 (2015).
doi:10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.

[39] M. Dees, B. van Dongen, BPI Challenge 2016:
Clicks Logged In (4TU Data Set) 10.4121/uuid:

80

01345ac4-7d1d-426e-92b8-24933a079412 (2016).
doi:10.4121/uuid:01345ac4-7d1d-426e-92b8-24933a079412.

[40] W. van der Aalst, Benchmarking Logs to Test Scalabil-
ity of Process Discovery Algorithms (Event Data from
4TU.ResearchData), https://doi.org/10.4121/uuid:
1cc41f8a-3557-499a-8b34-880c1251bd6e (2017).

[41] W. van der Aalst, Testing Representational Biases (Event Data from
4TU.ResearchData), url = https://data.4tu.nl/articles/
dataset/Testing_Representational_Biases/12683159
(2017). doi:10.4121/uuid:25d6eef5-c427-42b5-ab38-5e512cca08a9.

[42] N. Tax, X. Lu, N. Sidorova, D. Fahland, W. van der Aalst, The Imprecisions
of Precision Measures in Process Mining, Information Processing Letters
135 (2018) 1–8.

[43] J. Carmona, M. de Leoni, B. Depaire, T. Jouck, Process Discovery
Contest 2016 (PDC2016), https://data.4tu.nl/articles/
dataset/Process_Discovery_Contest_2016/14625912
(2016). doi:10.4121/14625912.v1.

[44] J. Carmona, M. de Leoni, B. Depaire, T. Jouck, Process Discovery
Contest 2017 (PDC2017), https://data.4tu.nl/articles/
dataset/Process_Discovery_Contest_2017/14625948
(2017). doi:10.4121/14625948.v1.

[45] J. Carmona, M. de Leoni, B. Depaire, T. Jouck, Process Discovery
Contest 2019 (PDC2019), https://data.4tu.nl/articles/
dataset/Process_Discovery_Contest_2019/14625996
(2019). doi:10.4121/14625996.v1.

[46] B. van Dongen, A. de Medeiros, H. Verbeek, A. Weijters, W. van der Aalst,
The ProM Framework: A New Era in Process Mining Tool Support, in:
G. Ciardo, P. Darondeau (Eds.), Applications and Theory of Petri Nets
2005, 26th International Conference, ICATPN 2005, Miami, USA, June 20-
25, 2005, Proceedings, Vol. 3536 of Lecture Notes in Computer Science,
Springer, 2005, pp. 444–454. doi:10.1007/11494744 25.
URL https://doi.org/10.1007/11494744_25

81

[47] W. van der Aalst, B. van Dongen, C. Günther, A. Rozinat, E. Verbeek,
T. Weijters, ProM: The Process Mining Toolkit, in: Proceedings of the Busi-
ness Process Management Demonstration Track (BPMDemos 2009), Ulm,
Germany, September 8, 2009, Vol. 489 of CEUR Workshop Proceedings,
CEUR-WS.org, 2009.
URL http://ceur-ws.org/Vol-489/paper3.pdf

[48] T. Herrmann, M. Hoffmann, K. Loser, K. Moysich, Semistructured Models
are Surprisingly Useful for User-Centered Design, in: G. Michelis, A. Gi-
boin, L. Karsenty, R. Dieng (Eds.), Designing Cooperative Systems (Coop
2000), IOS Press, Amsterdam, 2000, pp. 159–174.

[49] T. Herrmann, K. Loser, Vagueness in Models of Socio-technical Systems,
Behaviour and Information Technology 18 (5) (1999) 313–323.

[50] M. Famelis, R. Salay, M. Chechik, Partial Models: Towards Modeling and
Reasoning with Uncertainty, in: International Conference on Software En-
gineering (ICSE 2012), IEEE Computer Society, 2012, pp. 573–583.

[51] R. Salay, M. Chechik, J. Horkoff, A. Sandro, Managing Requirements Un-
certainty with Partial Models, Requirements Engineering 18 (2) (2013) 107–
128.

[52] M. La Rosa, W. van der Aalst, M. Dumas, F. Milani, Business process vari-
ability modeling: A survey, ACM Computing Surveys 50 (1) (2017) 2:1–
2:45.

[53] J. Buijs, B. van Dongen, W. van der Aalst, Mining Configurable Process
Models from Collections of Event Logs, in: F. Daniel, J. Wang, B. Weber
(Eds.), International Conference on Business Process Management (BPM
2013), Vol. 8094 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2013, pp. 33–48.

[54] F. Gottschalk, W. van der Aalst, M. Jansen-Vullers, Mining Reference Pro-
cess Models and their Configurations, in: R. Meersman, Z. Tari, P. Herrero
(Eds.), Proceedings of the 3rd International Workshop on Enterprise Integra-
tion, Interoperability and Networking, EI2N08, OTM 2008 Workshops, Vol.
5333 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2008,
pp. 263–272.

82

[55] C. Li, M. Reichert, A. Wombacher, The MINADEPT Clustering Approach
for Discovering Reference Process Models Out of Process Variants, Interna-
tional Journal of Cooperative Information Systems 19 (3-4) (2010) 159–203.

[56] J. Carmona, J. Cortadella, Process Mining Meets Abstract Interpretation, in:
J. Balcazar (Ed.), ECML/PKDD 210, Vol. 6321 of Lecture Notes in Artificial
Intelligence, Springer-Verlag, Berlin, 2010, pp. 184–199.

[57] R. Bergenthum, Synthesizing Petri Nets from Hasse Diagrams, in: J. Car-
mona, G. Engels, A. Kumar (Eds.), International Conference on Business
Process Management (BPM 2017), Vol. 10445 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, 2017, pp. 59–76.

[58] S. Goedertier, D. Martens, J. Vanthienen, B. Baesens, Robust Process Dis-
covery with Artificial Negative Events, Journal of Machine Learning Re-
search 10 (2009) 1305–1340.

[59] B. Vazquez-Barreiros, M. Mucientes, M. Lama, ProDiGen: Mining Com-
plete, Precise and Minimal Structure Process Models with a Genetic Algo-
rithm, Information Sciences 294 (Supplement C) (2015) 315 – 333.

[60] D. Redlich, T. Molka, W. Gilani, G. Blair, A. Rashid, Constructs Competi-
tion Miner: Process Control-Flow Discovery of BP-Domain Constructs, in:
S. Sadiq, P. Soffer, H. Voelzer (Eds.), International Conference on Business
Process Management (BPM 2014), Vol. 8659 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2014, pp. 134–150.

[61] L. Mannel, W. van der Aalst, Finding Complex Process-Structures by Ex-
ploiting the Token-Game, in: S. Donatelli, S. Haar (Eds.), Applications and
Theory of Petri Nets 2019, Vol. 11522 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, 2019, pp. 258–278.

[62] L. Mannel, W. van der Aalst, Discovering Process Models with Long-Term
Dependencies While Providing Guarantees and Handling Infrequent Behav-
ior, in: L. Bernardinello, L. Petrucci (Eds.), Applications and Theory of Petri
Nets 2022, Vol. 13288 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 2022, pp. 303–324.

[63] A. Cecconi, G. De Giacomo, C. Di Ciccio, F. M. Maggi, J. Mendling, Mea-
suring the interestingness of temporal logic behavioral specifications in pro-

83

cess mining, Inf. Syst. 107 (2022) 101920. doi:10.1016/j.is.2021.101920.
URL https://doi.org/10.1016/j.is.2021.101920

[64] M. Westergaard, T. Slaats, Mixing paradigms for more comprehensible mod-
els, in: F. Daniel, J. Wang, B. Weber (Eds.), Business Process Management
- 11th International Conference, BPM 2013, Beijing, China, August 26-
30, 2013. Proceedings, Vol. 8094 of Lecture Notes in Computer Science,
Springer, 2013, pp. 283–290. doi:10.1007/978-3-642-40176-3 24.
URL https://doi.org/10.1007/978-3-642-40176-3_24

[65] F. M. Maggi, T. Slaats, H. A. Reijers, The automated discovery of hy-
brid processes, in: S. W. Sadiq, P. Soffer, H. Völzer (Eds.), Business Pro-
cess Management - 12th International Conference, BPM 2014, Haifa, Israel,
September 7-11, 2014. Proceedings, Vol. 8659 of Lecture Notes in Computer
Science, Springer, 2014, pp. 392–399. doi:10.1007/978-3-319-10172-9 27.
URL https://doi.org/10.1007/978-3-319-10172-9_27

[66] D. M. M. Schunselaar, T. Slaats, F. M. Maggi, H. A. Reijers, W. M. P. van der
Aalst, Mining hybrid business process models: A quest for better precision,
in: W. Abramowicz, A. Paschke (Eds.), Business Information Systems - 21st
International Conference, BIS 2018, Berlin, Germany, July 18-20, 2018,
Proceedings, Vol. 320 of Lecture Notes in Business Information Process-
ing, Springer, 2018, pp. 190–205. doi:10.1007/978-3-319-93931-5 14.
URL https://doi.org/10.1007/978-3-319-93931-5_14

[67] J. De Smedt, J. De Weerdt, J. Vanthienen, Fusion miner: Process discov-
ery for mixed-paradigm models, Decis. Support Syst. 77 (2015) 123–136.
doi:10.1016/j.dss.2015.06.002.
URL https://doi.org/10.1016/j.dss.2015.06.002

84

