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ABSTRACT

Process mining provides techniques to learnmodels from event data.
These models can be descriptive (e.g., Petri nets) or predictive (e.g.,
neural networks). The learned models offer operational support to
process owners by conformance checking, process enhancement, or
predictive monitoring. However, processes are frequently subject
to significant changes, making the learned models outdated and
less valuable over time. To tackle this problem, Process Concept
Drift (PCD) detection techniques are employed. By identifying
when the process changes occur, one can replace learned models by
relearning, updating, or discounting pre-drift knowledge. Various
techniques to detect PCDs have been proposed. However, each
technique’s evaluation focuses on different evaluation goals out of
accuracy, latency, versatility, scalability, parameter sensitivity, and
robustness. Furthermore, the employed evaluation techniques and
data sets differ. Since many techniques are not evaluated against
more than one other technique, this lack of comparability raises
one question: How do PCD detection techniques compare against
each other? With this paper, we propose, implement, and apply a
unified evaluation framework for PCD detection. We do this by
collecting evaluation goals and evaluation techniques together with
data sets. We derive a representative sample of techniques from
a taxonomy for PCD detection. The implemented techniques and
proposed evaluation framework are provided in a publicly available
repository. We present the results of our experimental evaluation
and observe that none of the implemented techniques works well
across all evaluation goals. However, the results indicate future
improvement points of algorithms and guide practitioners.
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1 INTRODUCTION

Processes are – either implicitly or explicitly – omnipresent in to-
day’s world. The use of administrative business processes [19], e.g.,
order-to-cash, or production processes [31, 45] is widespread in
companies. The execution of such processes leaves data traces in
the underlying databases of information systems supporting these
processes [62]. These data traces are extracted in the form of an
event log describing the process executions and their associated
data. Starting from an event log, one learns different models, e.g.,
predictive models [11] or process models [28]. Subsequently, these
models are used for the operational support of ongoing process
executions. Using predictive models, one may uncover ongoing
process executions leading to undesirable outcomes [26], long exe-
cution times [60], or problematic constraints [36]. Using a learned
process model, one may check for conformance of ongoing execu-
tions [14] or calculate performance metrics [10] to provide actions
for improved performance [51]. Such modern forms of operational
support use algorithms and concepts from process mining [62].

However, processes seldom remain stable. In fact, processes
are subject to significant changes caused by internal or external
sources [2]. Such significant changes are called Process Concept
Drifts (PCDs) [48]. Prominent examples are changes that were in-
voked by the past Covid epidemic or recent supply-chain shocks.
However, not only events of global reach invoke concept drift but
also local legislative changes, business realignments, or employee
turnover. Such drifts are consequential for operational support:
Learned and represented knowledge decays in value when not up-
dated [21]. With a drift in the process, the reality also drifts further
apart from the learned model, leading to inaccurate or even mis-
leading operational support. Therefore, PCDs need to be detected
such that a model can either be relearned, updated, or pre-drift
knowledge can be discounted [16, 32].

Detecting process concept drifts is a challenging problem: Only
the event data collected during the execution of the process are
available. First, a representation has to be found that sufficiently
encodes the structure of the process and will reflect significant
changes while only using the underlying event data. Second, a
concept drift detection algorithm has to be employed to this rep-
resentation, classifying the correct point in time as concept drift.
Several PCD techniques have been proposed in the context of pro-
cess mining [48]. However, consensus about the exact problem
definition and, therefore, targeted evaluation goals and employed
evaluation metrics are missing. Papers use a subset of evaluation
goals such as accuracy, latency, versatility, scalability, parameter



sensitivity, and robustness. Additionally, an experimental evalua-
tion of state-of-the-art PCD detection techniques is missing. The
different proposed PCD detection techniques cannot be compared
in a fair and systematic way. Therefore, guidance for two groups
of people is absent: On the one hand, researchers can not accu-
rately assess which state-of-the-art method is best suited for which
purposes, making a selection of evaluation baselines and contin-
ued research difficult. On the other hand, practitioners can not
accurately assess the best algorithm for their specific use case.

In this paper, we provide an evaluation framework and perform
an experimental evaluation of process concept drift techniques. Our
contributions are the following:
• We comprehensively collect evaluation goals and corresponding

evaluation techniques used throughout the literature to compare
PCD detection techniques.

• We provide a taxonomy of PCD detection techniques and select
a representative subset of techniques for our framework.

• We provide a unified framework to compare PCD techniques in
all relevant evaluation goals.

• We implemented the selected PCD detection and evaluation tech-
niques in a unified Python framework to ensure comparability
and present the results of this evaluation.
We introduce concept drift in process mining in Section 2 and

define the problem of PCD detection in Section 3. Section 4 provides
a taxonomy of PCD detection techniques and our representative
sample of algorithms. We derive and define our evaluation frame-
work in Section 5. We present and discuss our evaluation results in
Section 6 and conclude this paper in Section 7.

2 BACKGROUND

Process mining is an emerging discipline connecting data science
and process science. Starting from an event log extracted from an
information system, process mining techniques learn implicit or
explicit process models to provide descriptive [5], predictive [11,
43], or prescriptive [69] insights for the underlying process. These
techniques are typically used for operational support, with regular
deployment in industry. The general problem of concept drifts in
data is known for a long time [49], therefore, the problems of dealing
with concept drift affecting the accuracy of data-driven process
insights were already formulated more than a decade ago [64].

Since concept drift is not a problem exclusive to processes, many
algorithms have been proposed to detect drift in generic data se-
quences [32] influencing the development of PCD detection tech-
niques. Algorithms are classified into three categories: Error rate-
based [20], data distribution-based [25], and multiple hypothesis
test drift detection [4]. In error rate-based drift detection, a model
is learned on historical data and tested against new data points [7].
If the error is large enough, a drift is classified. The error depends
on the window size of included data points, therefore, adwin [6]
has been introduced to automate window size adaptation. In data
distribution-based drift detection, data populations of two different
windows are quantitatively compared [52, 54]. If the distributions
are significantly different, a concept drift is detected. As the name
indicates, multiple hypothesis testing drift detection techniques
perform several detections to get more support for classifications,
i.e., an ensemble classifier [18], or a hierarchical classifier [3].

The problem of detecting concept drifts in a process vs. detect-
ing concept drifts in a data stream is difficult for one reason: there
are no direct numerical representations of the actual (unknown)
process that could be compared. Starting from the underlying event
data, techniques, first, have to derive some features describing pro-
cess behavior and capturing first-order process dynamics. Second,
these features have to be summarized into one global process rep-
resentation. Third, process representations have to be investigated
for significant changes over time, i.e., second-order process dynamics.
The problem of deriving and constructing intermediate features
to derive numerical representation for nun-numerical phenomena
is analogously encountered in other areas, such as video concept
drift [58]. We use the three steps of process feature extraction, pro-
cess representation, and drift assessment to horizontally categorize
PCD detection techniques in Section 4 and derive a representative
sample of techniques to be used in our experimental evaluation.

Most of the introduced techniques focus on detecting concept
drifts in the structure of the process, i.e., the control flow. Several
papers address problems beyond control-flow concept drift detec-
tion. Adams et al. [2] introduce a framework extracting a time series
representation of other process dimensions (performance, data, or
resources) to detect and correlate concept drifts. Ostovar et al. [41]
introduce a technique to not only detect a concept drift but also
characterize the underlying change. Concept drift characterization
was also tackled by other researchers [50, 70].

Furthermore, different concept drifts types are considered in
the literature. The most prominent type is sudden drift, a drift that
occurs instantaneously. Several papers consider drift types such
as gradual drifts, recurring drifts, incremental drifts, or multi-order
drifts [35]. We limit our evaluation to sudden drifts for the following
reasons: Sudden drifts are the most studied drifts and the detection
of almost all other drift types can be reduced to the detection of
sudden drifts. Gradual and incremental drifts are detected by leaving
a gap in a time series and testing for sudden drifts [35]. Recurring
drifts can be detected by individually detecting and combining them
later. Furthermore, multi-order drifts are studied in a very limited
way and, therefore, excluded in our framework.

A unified framework to evaluate PCD techniques is so farmissing.
The comparative work on PCD detection techniques is, generally,
sparse. Sato et al. [48] provide an extensive literature review com-
paring and classifying different PCD detection techniques. However,
they do not quantitatively compare techniques. Ceravolo et al. [15]
present an evaluation specifically tailored to online PCD detection
techniques across multiple evaluation goals, namely memory con-
sumption, number of algorithm executions, latency, and detected
drifts. However, the focus on online settings neglects important
algorithm quality dimensions such as the versatility of the algo-
rithm, i.e., which change patterns can be detected, the sensitivity to
parameters and noise, and the scalability of the algorithms. Omori
et al. [39] compare two PCD detection techniques across multiple
dimensions and evaluate their applicability.

When looking at the evaluations of newly-introduced PCD de-
tection techniques, even a consensus on the evaluation goals and
metrics is missing: Each technique is evaluated according to an ad
hoc selection of evaluation goals. However, an evaluation across all
relevant evaluation goals is necessary to objectively compare PCD
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Table 1: Evaluation goals covered by different newly intro-

duced PCD detection techniques and evaluations.

Related work EG1 EG2 EG3 EG4 EG5 EG6
[34, 35, 42] ✓ ✓ ✓ ✓ ✓ ✓
[72] ✓ ✓ ✓ ✓ ✓
[30] ✓ ✓ ✓ ✓
[12, 50] ✓ ✓ ✓
[8, 33, 56, 57] ✓
[22] ✓ ✓ ✓ ✓
[9, 23, 61] ✓ ✓
[39] ✓ ✓ ✓
[1] ✓ ✓ ✓
[59] ✓ ✓
[70] ✓ ✓ ✓
[15, 71] ✓ ✓ ✓ ✓
[38] ✓ ✓ ✓
[24] ✓ ✓ ✓ ✓
[29] ✓ ✓ ✓ ✓ ✓
[13] ✓ ✓
[46] ✓ ✓ ✓∑︁

24 9 14 13 8 15

detection techniques. An evaluation goal is relevant if it was con-
sidered in a significant number of evaluations. We analyzed each
evaluation of a PCD detection technique for the targeted evaluation
goals. In total, we found six relevant evaluation goals:
Quality of Results:
EG1 Accuracy: Correspondence between detected and actual

change points
EG2 Latency: Closeness of detected to actual change points
EG3 Versatility: Coverage of different change patterns

Quality of Algorithm:
EG4 Scalability: Computation time
EG5 Parameter Sensitivity: Impact of algorithmic settings
EG6 Robustness: Impact of data quality issues on the results

Table 1 depicts the evaluation goals targeted by each evaluation of a
PCD detection technique. Since all evaluation goals show sufficient
support, we include all evaluation goals in our framework.

Different evaluation techniques are available for each evaluation
goal. We introduce these techniques along with our selection in
Section 5. However, we first provide a taxonomy of PCD detection
techniques to choose a representative set of techniques used for the
initial population of our framework in Section 4. Our taxonomy,
publicly available implementations, and selection are depicted in
Table 2. Other techniques, event logs, or evaluation goals can easily
be added to the publicly available implementation.

3 PRELIMINARIES

An event log contains the event data collected throughout the
execution of a process. Each event is associated with an activity
describing the executed action and a timestamp describing the
time of execution. Different events belonging to the same process
execution are grouped together through a common case.

Definition 1 (Event Logs). We denote the universe of event
identifiers with E, the universe of case identifiers with I, and the
universe of activities withA. Each event is associated with an activity
𝜋act : E → A and timestamp expressed as natural number 𝜋time :
E → N. Furthermore, each event is associated to a case 𝜋case : E → C.
An event log is a subset 𝐸 ⊆ E of events grouped as event sequences
per case 𝜋cases (𝐸) = {⟨𝑒1, . . . , 𝑒𝑛⟩ ∈ 𝐸∗ | ∃id∈I {𝑒1, . . . , 𝑒𝑛} = {𝑒 ∈
𝐸 | 𝜋case (𝑒) = id} ∧ 𝜋time (𝑒1) < · · · < 𝜋time (𝑒𝑛)}.

Each event log contains a ground truth of concept drifts in the
form of a subset of timestamps. This includes the empty set, i.e., no
concept drift being present.

Definition 2 (Process Concept Drifts). Let 𝐸 ⊆ E be an event
log. The ground truth of concept drifts contained within 𝐸 is denoted
with c(𝐸) ⊆ {𝜋time (𝑒) | 𝑒 ∈ 𝐸}.

An example would be a delivery process. In a pre-drift period, the
process exhibits sequential behavior for sending an order, i.e., first,
collecting the items and, subsequently, preparing the packages.
At some point in time, the process is subject to a concept drift:
preparing the packages and collecting the items are now concurrent.
This drift has consequences for operational support, e.g., remaining
time prediction might be significantly lower when factoring in
concurrency instead of sequentiality. In reality, we do not have
explicit process models to easily spot changes, we only have the
event log that records the sequence of activities for each customer.

A process concept drift detection technique maps an event log
to a set of hypothesized concept drift change points.

Definition 3 (Process Concept Drift Detection). Let 𝐸 ⊆
E be an event log. Let P be a parameter space and 𝑝 ∈ P be a
parameter setting of this space. A concept drift detection technique
d𝑝 (𝐸) ⊆ {𝜋time (𝑒) | 𝑒 ∈ 𝐸} proposes change points of concept drifts
that should correspond to the ground-truth concept drifts c(𝐸).

4 PROCESS CONCEPT DRIFT DETECTION

We give an overview of existing PCD approaches from which we
select a subset for our evaluation. We structure the existing works
using a taxonomy for process concept drift detection approaches. In
contrast to existing taxonomies on General Concept Drift Detection
(GCDD) such as [21], we particularly focus on the process aspect
with event data being the common input. Our taxonomy is based
on three main challenges every PCD approach must address:
(1) How is the information from a single process execution repre-

sented — that is, which process-centric features are extracted?
(2) Given the features, how is the status quo—namely, the process—

represented?
(3) Based on the representation, how are potential drifts assessed

(i.e., measure and quantify)?
Process features capture observed, usually local, behavior in sin-
gle process executions. Consequently, combining and aggregating
features extracted from multiple process executions constitutes
the process representation. This representation is used to assess if a
given set of process executions describes a changed process.

Compared to the classification used by Sato et al. in their detailed
overview work on PCD [48], we build on commonalities rather
than maximal differing characteristics. For example, since many
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Table 2: Classification of different PCD detection techniques according to our taxonomy. Techniques with publicly available

implementation are italicized. Techniques implemented and included in our experimental evaluation are bolded.

Process Change Assessment

Feature-centric Feature Space Description

Feature Population MV Feature Vector Series Process Model Process Model-free
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e
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l
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l

J-Measure, Window Count, Bose 2011 [8]
J-Measure, Window Count, Bose 2014 [9]

Kumar 2015 [61]
adwin j, adwin wc, Martjushev 2015 [38]

Accorsi 2011 [1]

Lakshmanan 2011 [27]Richter 2017 [46]
rinv, Zheng 2017 [72]
lcdd, Lin 2020 [29]

Yeshchenko 2021 [70, 71]

g
l
o
b
a
l

J-Measure, Window Count, Bose 2011 [8]

Hassani 2019 [22] Hompes 2015 [23]J-Measure, Window Count, Bose 2014 [9]
adwin j, adwin wc, Martjushev 2015 [38]

Ostovar 2016 [42]

M
u
l
t
i
p
l
e
A
c
t
.

l
o
c
.

emd, Brockhoff 2020 [12]
Liu 2018 [30] Luengo 2011 [33]

Stertz 2018 [56], 2019 [57] Carmona 2012 [13]
Tavares 2019 [59]

g
l
o
. prodrift, Maaradji 2015 [34], 2017 [35]

pgm, Seeliger 2017 [50]
Hassani 2019 [22]
Impedovo 2020 [24]

approaches use statistical hypothesis tests, they constitute a top-
level class in [48]. In contrast, we rather horizontally categorize
approaches considering the common challenges. We do not aim
to categorize the field of PCD as a whole but rather focus on the
evaluation of existing approaches in a restricted setting—that is,
offline, sudden drift detection. Therefore, our taxonomy focuses on
key algorithmic concepts.

Process Features. A major focus of existing works usually lies on
engineering robust but yet expressive process features. If certain
behavior such as long-term dependencies is not captured by the
features, certain changes can not be detected. However, complex
and intrinsically high-dimensional features suffer from the curse of
dimensionality and are less robust to noise.

On a high level, process features can be classified by their scope
and the required extraction context. Each of these dimensions are
shown in the rows of Table 2.

Regarding the feature scope, we further distinguish between
features that cover pairs of activities or longer subtraces. As can be
seen in the first two rows of Table 2, showing the classification of
existing works, most works consider relations over activity pairs
For example, such relations describe whether activities directly or
eventually follow each other [8, 9, 29, 71, 72].

The extraction context describes whether a feature can be ex-
tracted from a single case (local) or whether multiple cases must be
considered (global). While we can extract directly-follows relations
per case, measures such as the J-measure [8], which quantifies the
quality of a rule, require considering the entire event log. In the
extreme, multi-activity case, the trace variant itself becomes a lo-
cal feature [12], or a global symbolic representation is assigned to
a group of traces [34, 35]. We decided to consider the extraction
context as a separate aspect because it captures how much process
information is already contained in the process feature.

An interesting variant of global multi-activity features are pro-
cess models discovered or features extracted from sublogs. Adjacent
models in a multivariate model series are then, for example, com-
pared using graph edit distance [22]. Even though process models

play an important role in the domain of process mining, relatively
few works use features extracted from a process model but rather
directly use the low-level features (e.g, directly-follows relations)
that are also used by many discovery algorithms.

Process Representation and Drift Assessment. Complementary to
the feature extraction, we distinguish twomore classes in our taxon-
omy that focus on the remaining two aspects of process concept drift
detection–namely, process concept and drift detection. To eventually
detect concept drift, every method must have an internal represen-
tation of the current concept describing the status quo. Based on this
representation, potential drifts can be measured. We explicitly dis-
tinguish between drift assessment and localization. Many existing
works do not focus on end-to-end detection, eventually returning
the precise onsets of drifts, but rather return a series of drift severity
scores over time [8, 12, 27, 61]. Table 2 shows the aspects of process
representation and drift assessment in all the main forms observed
in the literature. Process representations can be feature-centric or
based on feature space descriptions. In the former case, the process
is directly characterized by aggregated features (e.g., a bag of fea-
tures). In contrast, some approaches describe the feature space. For
example, using traces as features, a discovered model abstracts from
the input and describes the space of accepted traces [30, 56, 57].
This might increase robustness w.r.t. noisy features but can also be
imprecise allowing for additional behavior.

The classification in Table 2 shows that current works most
frequently represent processes by means of feature populations
or series of feature vectors. While these representations are very
similar, the difference is that feature populations are unordered
describing longer process segments, often extracted from sliding
windows. Process model-based as well as feature space descriptive
approaches are less frequently used. The drift assessment is tightly
coupled with the representation. Confronted with new event data
(e.g., the next event, next case, or, when using sliding windows,
the process contained in the next window), it quantifies poten-
tial changes. While for feature populations established techniques

1859



such as (non-parametric) hypothesis tests exist, model-based rep-
resentations require solutions more specific for process mining.
For example, conformance-checking approaches measure differ-
ences and, consequently, changes between the model and the event
data [30, 56]. Approaches build on multivariate feature vector series
either employ existing detection techniques such as PELT [71] or
custom scoring functions [72]. The latter is also used for process
model-free feature space descriptions [13].

Comparing our proposed taxonomy to systematic reviews on
GCDDmethods such as [32], both distinguish similar means of data
representation and drift assessment. Works in both fields frequently
represent data by feature populations, probability distributions, or
models. Consequently, similar methods are used to measure drift—
namely, hypothesis tests, difference measures for probability distri-
butions, or error functions that quantify the quality of the currently
employed model. However, while [32] specifically emphasizes pro-
viding statistical bounds, and data modeling is considered optional;
works on PCD particularly focus on modeling the complex input
data. Therefore, our taxonomy puts an emphasis on the challenging
task of data—process—modeling. Despite this challenge, the broader
field of GCDD offers interesting new approaches—for example,
based on multiple hypothesis tests or ensemble models [18]—that
have not yet been investigated for PCD.

Given our classification of the process concept drift detection ap-
proaches, we selected the approaches for our evaluation according
to the following criteria: First, we aimed for good coverage of differ-
ent process features, representations, and drift assessment methods.
Second, the code should be available to verify the correctness of our
reference implementation. Furthermore, we focused on works for
offline drift detection. Therefore, the approaches using model-based
process representations were discarded because they considered a
streaming setup. Moreover, the works that employed a model-free
space description either focused on trace clustering [23, 33], or the
code was not available [13, 27]. Thus, they were not considered
in Section 6. Besides, we particularly included methods that were
used as benchmarks in other works. The final list of implemented
approaches includes [8, 9, 12, 29, 34, 35, 50, 72].

window count& j measure: Bose et al. [8, 9] propose activity
pair-based features called Window Count and J-Measure. For a pair
(𝑎, 𝑏) of activities and a trace,Window Count describes howmany
sequences of given length start with 𝑎 eventually followed by 𝑏.
Similarly, the J-Measure, introduced by Smyth and Goodman [53],
scores the quality of the rule: if 𝑎 happens, then 𝑏 will eventually
follow. The authors use a fixed-size sliding window and extract the
features either locally for each trace or globally from the entire
window. The resulting populations are then compared by means of
non-parametric two-sample hypothesis tests (Kolmogorov-Smirnov
or Mann-Whitney U-Test). The resulting p-values are manually
inspected for drifts.

adwin j & adwin wc: Martjushev et al. [38] identified the win-
dow size as one central weakness of window count & j measure.
To automate the visual inspection of the results and speed up the
algorithm they introduced an adaptive window size. They do so by
recursively applying hypothesis tests on smaller windows around
a low p-value, drilling down into the exact location of the drift.
For timeframes with very high p-values, the adaptive window size
grows, allowing them to skip large segments.

emd: Brockhoff et al. [12] also employ a sliding window. In their
work, each trace in a window directly corresponds to a feature,
which we consider a multi-activity, local feature. The process de-
scribed in a window is then represented as a distribution over trace
variants. In contrast to most works that represent processes by
means of feature populations, no hypothesis test is applied but
differences between distributions are measured using the Earth
Mover’s Distance. In doing this, a sequence of distances is com-
puted, and, finally, by manual inspection of the signal, the change
points are identified as local maxima in the graph.

pgm: Seeliger et al. [50] extract global process graph features
from process models discovered by the Heuristics Miner [68]. In
particular, the frequencies of edges and nodes in the process graphs
are considered. Applying an (adaptive) sliding window, a feature
population is extracted for each window. Adjacent windows are
then compared using a G-test. If the resulting p-values are below a
given threshold, a change point is reported.

prodrift: Maaradji et al. [34, 35] propose to convert traces
into so-called runs, which are partial orders of activities. A run is
constructed from a totally ordered trace by relaxing the ordering
of activities that were found to be concurrent. In their work, they
identify concurrency using 𝛼-relations [63]. To this end, multiple
traces must be considered, and therefore, we classify runs as global
feature over multiple activities. Applying a sliding window, they
extract a population of runs for each window. Eventually, these
populations are compared by means of Chi-Square tests.

rinv: Zheng et al. [72] detect drifts based on a boolean relation
matrix. For each case and each pair of activities, an entry in the
matrix is set if and only if the activities are directly following
each other in the case. Likewise, there are additional entries for
eventually-follows relationships. Zheng et al. call a relation stable
if it is either one or zero for a long period of time (i.e., a minimum
number of adjacent entries, i.e., cases that subsequently started).
Conceptually, we classify this representation as a series of feature
vectors over activity relations within a case. Since relation stability
is defined based on adjacent entries the order of the vectors matters.
To detect drifts, first, change point candidates, i.e., points with
stability change, are extracted. The change points candidates are
then clustered using DBSCAN. Finally, change points correspond
to cluster centroids with a minimal distance from each other.

lcdd Lin et al. [29] detect drifts based on changes in directly-
follows relations. To this end, they maintain two windows: a static
so-called complete window that does notmove and a sliding detection
window. When determining the size of the complete window, the
authors opt for local directly-follows completeness—that is, all
directly-follows relations of the currently active process are present.
They provide a statistical motivation for a baseline window size
and propose an iterative, adaptive approach that grows the window
if new relations are observed. If the two windows start to differ
w.r.t. a directly-follows relation, a drift is reported, and the complete
window is shifted. To increase robustness, they also propose that
changes must persist for an extended period of time.

Implicit/Embedded PCD Detection. The presented techniques of
our taxonomy explicitly detect concept drifts in processes. How-
ever, several other techniques perform an implicit or embedded
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concept drift detection as part of concept drift adaptation for predic-
tive process monitoring. In these approaches, the change is mostly
assessed through accuracy losses of employed machine learning
models [17, 37, 47]. Maisenbacher and Weidlich [37] investigate
different incremental learners, while Palm et al. [47] and Chamorro
et al. [17] focus on retraining strategies, i.e., which data to include.
Chamorro et al. furthermore, present a technique that, first, ex-
plicitly detects a concept drift using j-measure [8] and, second,
relearns a model with post-drift traces. All of the approaches use
multiple, local activities as part of their feature encoding.

5 EVALUATION FRAMEWORK

In this section, we introduce our evaluation framework for PCD
detection techniques. First, we discuss event logs and parameters
employed in our framework. Second, we provide an algorithm to
assign detected to ground-truth change points. Third, we investigate
the related work’s evaluation techniques for each evaluation goal
and formally define our chosen evaluation metrics.

5.1 Evaluation Data

Newly-introduced PCD approaches are often evaluated on differ-
ent event logs making approaches incomparable. We collect the
event logs employed in the evaluations of different PCD detec-
tion techniques. As missing adoption of event logs in other eval-
uations might point to issues of missing generalizability, we fil-
ter out event logs that have only been employed in one paper’s
evaluation [1, 22, 24, 30, 39–41, 57, 72]. The remaining event logs
are included in our framework if two requirements are met: First,
the event log needs to be publicly available. Second, there must
be a clearly defined ground truth of concept drifts. We depict an
overview in Table 3. All available real-life event logs have no com-
pletely known ground truth. With ground-truth concept drifts only
partly being known, using such event logs will introduce skewed
evaluation results: Unknown but present ground-truth drifts might
be detected by a PCD detection technique, however, this detection
would be classified as false positive. In the extreme case, an evalua-
tion would indicate a poor performance for a technique that can
detect any concept drift and a perfect performance for a technique
that is only able to detect the known ground-truth drifts. Therefore,
we do not include any real-life event logs.

To show the suitability of our event log selection for the intended
evaluation, we will introduce the necessary criteria of the event log
selection for each evaluation goal and show that our selection ful-
fills these. To evaluate accuracy, latency, and parameter sensitivity,
our event logs need to contain sufficiently many ground-truth drifts
such that our evaluation results can be attested with statistical sig-
nificance. Our set of logs contains 132 drifts, creating a foundation
to differentiate between PCD detection techniques. For versatility,
our event logs need to cover a balanced distribution over many
change types. In Figure 2, we depict the 16 change patterns [67]
included in our event log selection, along with the relative distri-
bution. For scalability, we need a sufficiently large number of data
points (events) in our selection. The event logs comprise 4508965
events. To assess robustness, the event log selection should contain
different explicitly quantified noise levels and different types of
noise. Our selection contains noise from adding unfitting events

Table 3: Assessment of event logs employed in evaluations.

Log Ground truth available? Publicly Available?
Bose 2011 [8] ✓ ✓

Ostovar 2016 [42] ✓ ✓
Ceravolo 2020 [15] ✓ ✓
Maaradji 2015 [34] ✓
[44, 55, 65, 66] ✓

and removing fitting events, both with different levels. Therefore,
the selection allows for the assessment of noise impact.

5.2 Parameter Choice

All considered algorithms require parameter choices. Therefore,
a strategy to select parameter values in our evaluation is needed.
Sampling all parameter values is not realistic as many parameters
have an infinite range. We follow the predominant strategy for
choosing parameter values: equidistant sampling in the parameter
space [24, 29, 34, 35, 42, 72]. For each of the approaches, we use a
parameter sample guided by the author’s recommended parameter
setting or by their parameter sets during evaluation. As not all
approaches are evaluated in this way, we need a default number of
parameter samples to include. On average, 7.35 parameter values
are sampled across evaluations of our employed techniques. If not
specified otherwise, we sample 7 values for a parameter using
an equidistant sampling. If there is more than one parameter, we
sample all parameter value combinations. Where necessary, we
employ a peak-finding algorithm to automate visual inspection.

5.3 Change Point Assignment

To classify detected concept drifts as true positives, detected and
ground-truth drifts need to be linked under consideration of two
questions: First, which time lag is acceptable for a detected drift
w.r.t. the ground-truth drift? Second, how to deal with multiple de-
tected change points around the same ground-truth change point?
We propose a bipartite matching of detected change points and
actual change points given some allowed lag. For an acceptable
lag window lag ∈ N, a parameter setting 𝑝 ∈ P, and an event log
𝐸 ⊆ E with ground-truth change points 𝑐 (𝐸), and detected change
points 𝑑𝑝 (𝐸), we define the assignments of detected to ground-
truth change points, 𝑎𝑠𝑠𝑖𝑔𝑛(𝑑𝑝 (𝐸), 𝑐 (𝐸), lag) ⊆ 𝑑𝑝 (𝐸) × 𝑐 (𝐸), as
those assignments induced by the linear program:

max
∑︂

𝑑∈𝑑𝑝 (𝐸)

∑︂
𝑐∈𝑐 (𝐸)

𝑥𝑑,𝑐

min
∑︂

𝑑∈𝑑𝑝 (𝐸)

∑︂
𝑐∈𝑐 (𝐸)

𝑥𝑑,𝑐 · (𝑑 − 𝑐 )2

s.t.
∑︂

𝑑∈𝑑𝑝 (𝐸)
𝑥𝑑,𝑐 ≤ 1 ∀𝑐 ∈ 𝑐 (𝐸 ) (1)∑︂

𝑐∈𝑐 (𝐸)
𝑥𝑑,𝑐 ≤ 1 ∀𝑑 ∈ 𝑑𝑝 (𝐸 ) (2)∑︂

𝑑∈𝑑𝑝 (𝐸)

∑︂
𝑐∈𝑐 (𝐸)

𝑥𝑑,𝑐 · |𝑑 − 𝑐 | ≤ lag ∀𝑑 ∈ 𝑑𝑝 (𝐸 ) (3)

𝑥𝑑,𝑐 ∈ {0, 1} ∀𝑑 ∈ 𝑑𝑝 (𝐸 ), 𝑐 ∈ 𝑐 (𝐸 )

The linear program assigns at most one detected concept drift to
a ground-truth drift and vice versa. In some use cases, it might be
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Figure 1: Different artifacts involved in calculating our eval-

uation metrics.

acceptable if a PCD detection technique generates multiple detected
concept drifts for the same ground-truth drift. Therefore, we, also,
provide a sensitivity analysis of constraint (1) in our evaluation.
We evaluate the relative change of evaluation results to quantify
how much the bipartite matching impacts the results.

5.4 Accuracy

Evaluation Techniques. Accuracy is measured through precision
and recall using true and false positives of a detection. All evalua-
tions agree on this process, individual techniques only differ in de-
termining true and false positives. Similar to our framework, several
approaches define a lag window assigning true positives [29, 35, 72].
Other approaches do not explicitly state that they use a lag win-
dow, but implicitly do so [8, 9, 12, 22, 24, 35, 39, 41, 50, 57, 70, 71].
Furthermore, one approach uses an infinite lag window, essentially
counting the number of detected drifts and comparing it to the
number of actual drifts [59]. However, this is a skewed measure as
it does not factor in actual timely proximity [48]. One technique
does not classify concept drifts themselves as true or false positives,
but events. These are assigned to distributions given by the detected
change points, using change points as indications that the detected
distribution changes [30]. This approach does not scale beyond two
alternating distributions since the assignment would be ambiguous.
Other approaches just perform a qualitative discussion of results,
not explicitly quantifying their accuracy [1, 23, 61].

Framework’s Evaluation. The bipartite matching employed by
our framework already yields true and false positives of the de-
tection: If a detected change point is assigned to a ground-truth
change point, it is a true positive. If it is not assigned, it is a false pos-
itive. Based on these assignments, we calculate precision and recall
and quantify the accuracy with the F1-score. We employ the same
technique as [29, 38, 72]. We retrieve multiple values to quantify
accuracy, one for each parameter setting of the parameter sample.
We use the maximal retrieved accuracy simulating the best-case
scenario of optimal parameter setting. Note that the sensitivity to
parameters is evaluated through another evaluation goal.

Definition 4 (Accuracy). Let 𝐸 ⊆ E be an event log, 𝑝 ∈ 𝑃 ⊆ P
a parameter of the parameter sample set 𝑃 and d be a PCD detec-
tion technique. Let lag ∈ N be an acceptable lag window. The pre-
cision of the detection is prec𝐸 (𝑑𝑝 ) =

|assign(𝑑𝑝 (𝐸),𝑐 (𝐸),lag) |
|dp (E) | , the recall

is recall𝐸 (d𝑝 ) = |assign(𝑑𝑝 (𝐸),𝑐 (𝐸),lag) |
|c (E) | . The accuracy of the detection is

quantified by F1𝐸 (dp) = 2 · prec𝐸 (d𝑝 ) ·recall𝐸 (d𝑝 )
prec𝐸 (d𝑝 )+recall𝐸 (d𝑝 ) . The accuracy of the

PCD detection technique is the maximal F1-score over the parameter
set, i.e., acc𝐸 (𝑑, 𝑃) = max𝑝∈𝑃 F1E (dp).

5.5 Latency

Evaluation Techniques. Latency is, generally, quantified as the
distance between the detected concept drift and the ground-truth
concept drift. In the literature, there are two main approaches to
quantifying the distance between detected and actual drift. First,
the distance is defined as the number of process executions oc-
curring between the change points of detected and actual change
drift [34, 35, 42]. While this seems counter-intuitive, this metric can
accurately quantify howmany end-to-end runs through the process
would be incorrectly classified. Second, the distance is defined as
the number of timesteps that lie between the detected and ground-
truth drift [46, 50, 72]. Therefore, it provides an average time lag
for a detection. These two measures are different quantifications of
the same distance. However, the first one provides more insights
into the information needs of an algorithm to detect a concept drift,
i.e., if we do not adapt, how many process executions are impacted?

Furthermore, some papers do not explicitly state the employed
technique to quantify latency [22, 30].

Framework’s Evaluation. The employed bipartite matching pro-
vides assignments of detected to ground-truth concept drifts. Based
on the assigned pairs, we calculate the number of process executions
starting between the drifts’ timesteps and quantify the detection la-
tency. This is similar to the latency evaluation technique employed
by [34, 35, 42]. Similar to accuracy, we choose the best value among
the possible parameter settings to provide the best-case scenario.

Definition 5 (Latency). Let 𝐸 ⊆ E be an event log, 𝑝 ∈ 𝑃 ⊆ P
a parameter of the parameter sample set 𝑃 and d be a PCD detec-
tion technique. Let lag ∈ N be an acceptable lag window. For a
timestamp 𝑡 ∈ {𝜋time (𝑒) | 𝑒 ∈ 𝐸}, the number of cases starting
before this timestamp is given by nex (𝑡) = |{⟨𝑒1, . . . , 𝑒𝑛⟩ ∈ 𝜋cases |
𝜋time (𝑒1) < 𝑡}|. The latency of a detection is defined by lat𝐸 (d𝑝 ) =

1
|assign(𝑑𝑝 (𝐸),𝑐 (𝐸),lag) |

∑︁
(𝑥,𝑦) ∈assign(𝑑𝑝 (𝐸 ),𝑐 (𝐸 ),lag) ) |nex (𝑥)−nex (𝑦) |. The

latency of the PCD detection technique is the minimal latency over
the parameter set lat𝐸 (𝑑, 𝑃) = min𝑝∈𝑃 lat𝐸 (𝑑𝑝 ). The relative latency
w.r.t. the acceptable lag window is defined by rlat𝐸 (𝑑, 𝑃)=1− lat𝐸 (𝑑,𝑃 )

lag .

There is a trade-off between latency and accuracy depending on
the lag window. A low lag value will exclude change points with
higher latency, lowering accuracy but improving latency. A high
lag value will include change points with higher latency, improving
accuracy but worsening latency. Therefore, approaches with higher
latency will achieve worse results w.r.t. the combined measures of
accuracy and latency, independent of the lag value.

5.6 Versatility

Evaluation Techniques. Versatility is evaluated by comparing the
performance of a PCD detection technique on drifts of different
change types. Many algorithms are evaluated using a comprehen-
sive set of event logs generated through systematically applying
process change patterns to a process [1, 13, 15, 29, 30, 34, 35, 42,
50, 59, 70–72]. Some approaches use a more restrictive technique,
comparing the performance of the PCD detection technique only
for a subset of change patterns [8, 9, 12, 33, 38] (not explicitly
targeting versatility). The omission of some change patterns will
arguably worsen the reliability of versatility results since important,
differentiating patterns between approaches might be left out.
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Figure 2: Different drift types contained in the collected data sets (BPMN diagrams) [67].

Framework’s Evaluation. The employed event logs all contain
ground-truth concept drifts (cf. Table 3). Two sets of event logs [15,
42] are created through the explicit application of change pat-
terns [67], i.e., also their underlying change type is known. We
use these two event log sets to evaluate versatility. We determine
which and howmany patterns can be detected by the PCD detection
technique, i.e., the recall given a concept drift type. We average over
all concept drift type’s scores to retrieve one number quantifying
versatility. To drill down on this measure, we show the individual
scores across the drift types providing insights into potential weak-
nesses. Like accuracy and latency, we choose the best value among
the parameter settings to show the best-case scenario.

Definition 6 (Versatility). Let 𝐸 ⊆ E be an event log, 𝑝 ∈
𝑃 ⊆ P a parameter of the parameter sample set 𝑃 , d be a PCD de-
tection technique, and lag ∈ N be an acceptable lag window. Let 𝑇 =

{1, . . . , 𝑛} with 𝑛 ∈ N be a set of concept drift types. 𝑐𝑖 (𝐸) ⊆ 𝑐 (𝐸) for
𝑖 ∈ 𝑇 such that 𝑐 𝑗 (𝐸) ∩ 𝑐𝑘 (𝐸) = ∅ ∀𝑗, 𝑘 ∈ 𝑇, 𝑖 ≠ 𝑗 are the sets of con-
cept drifts of type 𝑖 . 𝑎′

𝑖
(𝑑𝑝 , 𝐸) = {(𝑑, 𝑐) ∈ assign(𝑑𝑝 (𝐸), 𝑐 (𝐸), lag) |

𝑐 ∈ 𝑐𝑖 (𝐸)} is the subset of assigned concept drifts of type 𝑖 ∈ 𝑇 .
vers𝐸 (𝑑𝑝 ) = 1

|𝑇 |
∑︁
𝑖∈𝑇

|𝑎′
𝑖
(𝑑𝑝 ,𝐸) |
|𝑐𝑖 |

is the versatility of the detection. The
versatility of the PCD detection technique is the maximal versatility
over the parameter set vers𝐸 (𝑑, 𝑃) = max𝑝∈𝑃 vers𝐸 (𝑑𝑝 ).

The versatility is effectively quantified as the average recall for
each concept drift type. We can not incorporate precision since this
would require algorithms to provide the type of concept drift1. As,

1Some algorithms providing also the drift type have been proposed in the last years.
The term concept drift characterization summarizes these techniques. However, the
problem of concept drift detection itself does not require the characterization of the
drift. Therefore, we do not evaluate for accurate characterization.

in general, this information is not provided by PCD detection tech-
niques, we have to stick to recall. However, recall already provides
shows which drift types can be detected by a technique.

5.7 Scalability

Evaluation Techniques. The techniques evaluating a PCD detec-
tion technique’s scalability can be grouped into two categories:
evaluation against the algorithm itself and evaluation against other
algorithms. When evaluating the algorithm itself, authors use one
of three techniques: First, they provide the complexity of the al-
gorithm [22, 46, 71]. Second, they depict computation time sta-
tistics on certain event logs and conclude the scalability of the
algorithm [13, 34, 35, 42]. Third, they investigate the evolution of
computation times among differing parameter settings such as in-
put size or window size [38]. When evaluating an algorithm against
other algorithms, researchers use a set of event logs and compare
the computation times [15, 24, 29, 30, 72].

Framework’s Evaluation. We evaluate for scalability by compar-
ing the computation times per event. We do not compare com-
plexities for several reasons: First, PCD detection techniques often
combine many different sub-techniques whose complexity is de-
pendent on the chosen implementation. Second, many algorithms
neither provide their complexity nor any pseudocode from which
the complexity could be derived. Third, we are interested in the
applicability and, therefore, the scalability on typical event logs.
A complexity analysis would yield limited insights into the actual
applicability. We calculate the average computation time per event
across all event logs of our evaluation framework (cf. Table 3) to
provide realistic scalability metrics on typical event logs.
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5.8 Parameter Sensitivity

Evaluation Techniques. Evaluating parameter sensitivity across
the whole parameter space is often not possible (cf. Subsection 5.2).
In the related work, the parameter sensitivity is evaluated either
with a quantitative or qualitative approach: On the quantitative side,
parameter sensitivity is specified through an equidistant sampling
of parameter values and specifying the impact on accuracy [24, 29,
72] or accuracy and latency combined [34, 35, 42]. On the qualitative
side, a discussion about the impact of different parameter values
on the algorithm’s results is provided [1, 39].

Framework’s Evaluation. All quantitative evaluations in the intro-
duced PCD detection techniques agree on the evaluation technique
for parameter sensitivity: sampling an equidistant set of parameters
and employing the evaluation techniques used to quantify the qual-
ity of the algorithm before. Therefore, we use the parameter sample
discussed Subsection 5.2 and calculate the average performance.
We calculate the performance given a parameter setting by deter-
mining the harmonic mean of accuracy, latency, and versatility. We
determine the interquartile range, i.e., the difference between the
first and third quartile of the set of values, to quantify the spread
in the result’s quality in one single metric.

Definition 7. Let 𝐸 ⊆ E be an event log, 𝑝 ∈ 𝑃 ⊆ P a pa-
rameter of the parameter sample set 𝑃 and d be a PCD detection
technique. Let lag ∈ N be an acceptable lag window. IQR(𝑋 ) denotes
the interquartile range of a set 𝑋 ⊆ R. The parameter sensitivity is
quantified through the interquartile range of the harmonic mean of ac-
curacy, latency, and versatility over the parameter space 𝑠𝑒𝑛𝑠𝐸 (𝑑, 𝑃) =
IQR({ 3acc𝐸 (𝑑𝑝 ) ·rlat𝐸 (𝑑𝑝 ) ·vers𝐸 (𝑑𝑝 )

acc𝐸 (𝑑𝑝 ) ·rlat𝐸 (𝑑𝑝 )+acc𝐸 (𝑑𝑝 ) ·vers𝐸 (𝑑𝑝 )+rlat𝐸 (𝑑𝑝 ) ·vers𝐸 (𝑑𝑝 ) | 𝑝 ∈ 𝑃}).

5.9 Robustness

Evaluation Techniques. Noise is often present in real-life data.
Robustness describes the PCD detection technique’s ability to han-
dle such noise and, therefore, real-life event data. There are two
main evaluation techniques for robustness: Qualitatively assessing
the results achieved on real-life data sets and quantifying the im-
pact of artificially introduced noise on the detection results. Several
techniques are evaluated using a real-life event log and discussing
the detection results [9, 22–24, 29, 34, 35, 38, 42, 46, 61, 71]. Two
PCD detection techniques are evaluated by using event logs with
increasing noise levels, either removing events of randomly chosen
process executions [42] or by adding random, non-fitting events
to process executions [15]. The evaluation of Ostovar et al. [40] is
also notable: Even though the authors evaluate for process drift
characterization instead of process drift detection they evaluate
with artificially generated event logs of varying noise levels. One
evaluation provides a discussion about the ability to handle noise
between different tools [39].

Framework’s Evaluation. To quantify the robustness of an ap-
proach, we use two sets of event logs with artificially introduced
noise [15, 40]. One set defines noise as the absence of correct infor-
mation while the other set defines noise as the presence of incorrect
information. Analogously to parameter sensitivity, we determine
the average harmonic mean of accuracy, latency, and versatility
among event logs of different noise levels. We quantify the robust-
ness as the relative decline per percent of noise. The performance

Table 4: Evaluation results. The relative changes when al-

lowing multiple detected drifts per ground-truth drift are

depicted in parentheses.

Algorithm Accuracy Lat. Vers. Scalability P. Sensitivity Robustness
adwin j 0.75 (→) 66.72 0.5938 0.0044s 0.0482 (→) 0.9531(→)
emd 0.8333 (→) 43.9 0.875 0.0157s 0.017 (↓ 40%) 1.0026(→)
j-measure 0.7901 (→) 52.63 0.7708 0.0111s 0.1233 (↓ 1%) 1.05 (↑ 1%)
lcdd 0.6742 (↑ 2%) 26.0 0.7083 2.4593e-6s 0.2317 (↑ 13%) 0.9908 (↓ 3%)
pgm 0.7647 (→) 48.45 0.6563 4.977e-4s 0.0635 (→) 1.0465 (→)
prodrift 0.5965 (→) 18.29 0.3854 0.0042s 0.0198 (→) 0.6 (→)
rinv 0.8642 (→) 54.04 0.8542 5.8217e-5s 0.0747 (↑ 17%) 0.6 (→)
Window C. 0.7429 (→) 41.57 0.625 0.0111s 0.1092 (→) 1.0287 (→)

for the noiseless log is taken as a baseline. This is equivalent to
comparing areas under the curve for the baseline performance and
the performance evolution under increasing noise. If an approach’s
performance increases with noise, the robustness value might be
larger than 1. We use the maximum value achieved in the parameter
set to present the best case.

Definition 8 (Robustness). Let 𝐸0 ⊆ E be a noiseless event log.
noi : N × P(E) → P(E) induces noise of a certain percentage to an
event log. Let N ⊆ N be noise of varying percentage levels. Let 𝑝 ∈
𝑃 ⊆ P be a parameter of the parameter sample set 𝑃 and d be a PCD
detection technique. sort (𝑋 ) = {(𝑖, 𝑗) ∈ 𝑋×𝑋 | 𝑖< 𝑗 ∧¬∃𝑘∈𝑋 𝑖<𝑘< 𝑗}
provides a set of ascending tuples from 𝑋 ∈ N. The performance of a
detection technique for an event log 𝐸 and a parameter setting 𝑝 is de-
fined as per𝐸 (𝑑𝑝 ) =

3acc𝐸 (𝑑𝑝 ) ·rlat𝐸 (𝑑𝑝 ) ·vers𝐸 (𝑑𝑝 )
acc𝐸 (𝑑𝑝 ) ·rlat𝐸 (𝑑𝑝 )+acc𝐸 (𝑑𝑝 ) ·vers𝐸 (𝑑𝑝 )+rlat𝐸 (𝑑𝑝 ) ·vers𝐸 (𝑑𝑝 )

The baseline performance is defined as base𝐸0,𝑁 (𝑑𝑝 ) = per𝐸0
(𝑑𝑝 ) ·

max𝑛∈𝑁 𝑛. The relative performance is defined as relper𝐸0,𝑁
(𝑑𝑝 ) =∑︁

(𝑖, 𝑗 ) ∈sort (𝑁 )
1
2 (pernoi (𝐸0,𝑖 ) (𝑑𝑝 ) +pernoi (𝐸0, 𝑗 ) (𝑑𝑝 )) · ( 𝑗 − 𝑖). The ro-

bustness given a parameter setting p of PCD detection technique d is

defined as 𝑟𝑜𝑏𝐸 (𝑑𝑝 ) =
relper𝐸0,𝑁 (𝑑𝑝 )
base𝐸0,𝑁 (𝑑𝑝 ) . The robustness of the PCD detec-

tion technique is the maximum robustness over the whole parameter
set 𝑟𝑜𝑏𝐸 (𝑑, 𝑃) = max𝑝∈𝑃 𝑟𝑜𝑏𝐸 (𝑑𝑝 ).

6 EXPERIMENTAL EVALUATION

In this section, we present the results of applying our defined eval-
uation techniques on the selected PCD detection techniques using
the set of available event logs. In addition to the overall scores of
algorithms for each evaluation goal, we provide an in-depth visual-
ization of the results for each evaluation goal. The overall results
are depicted in Table 4.

Experimental Setting. We apply each of the selected PCD de-
tection techniques of Section 4 to the event logs introduced in
Table 3 using varying parameter settings as described in Subsec-
tion 5.2. We implemented the PCD detection techniques adwin j
& adwin wc [38], emd [12], j-measure [8, 9], lcdd [29], pgm [50],
prodrift [34, 35], rinv [72], and window count [8, 9]. The event
log sets adopted from [8, 15, 42] contain in total 90 event logs.
The parameter sampling strategy yields a total of 23670 algorithm
runs. The presented results are based on a lag window size of the
equivalent time of 200 process execution starts. The evaluation
framework along with the implemented algorithms is available on
GitHub2. The experiments ran for roughly 3 days on our employed

2https://github.com/cpitsch/cdrift-evaluation
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Figure 3: Precision, recall, and F1-score of algorithms aver-

aged over noiseless event logs and parameter settings.

machine3 using multiprocessing on 22 cores. The pre-computed
results of applying all techniques to the event logs are available in
tabular format in the GitHub repository. Using the provided script,
results for different lag window sizes can be computed and visu-
alized. In our experiments, adwin wc was not able to detect any
of the ground-truth concept drifts due to high p-values (𝑝 > 0.9)
when performing hypothesis testing. Since these values are way
off detecting any significant difference (usually 𝑝 < 0.05) between
distributions, we exclude the approach from our results.

6.1 Accuracy

The accuracy results are depicted in Figure 3. The best accuracy
score is achieved by rinv, closely followed by emd. The accuracy
is calculated as F1-score of precision and fitness. Therefore, we can
further analyze the F1-score by drilling down accuracy to precision
and recall. Some algorithms like adwin j or prodrift have a high
precision and low recall. Therefore, they detected comparably few
concept drifts, but the ones detected are actual ground-truth concept
drifts. In a setting where there is a very low tolerance for false
positives, these algorithms might be a reasonable choice. When the
main objective is catching as many ground-truth drifts as possible,
reasonable choices would be emd or rinv.

One surprising observation is the accuracy of adwin j compared
to j-measure: Since one is the application of adaptive window
size to the other algorithm, one would expect an improvement in
accuracy. This is, however, not the case. A potential reason might
be an overshooting window size. When there is a stable behavior,
the window size grows and drifts might be detected with a large
offset.

6.2 Latency

The latency results are depicted in Figure 4. The bar chart indicates
the average delay for each detected concept drift of an algorithm.
The delay is measured as the number of process executions that
lie in between the ground truth and the detected drift, i.e., that are
incorrectly classified. The lower the delay the better the algorithm
locates the change point. While some algorithms like adwin j ex-
hibit high delays with high variation, especially prodrift stands
out with low delays. The likely reasons for prodrifts superior
performance is the custom adaptive windowing strategy. By assess-
ing the statistical variation of runs within the windows, prodrift
changes the window size. This custom adaptive windowing per-
forms much better than adwin for adwin j, which exhibits the
3AMD Ryzen Threadripper 1920X, 126 GB RAM
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Figure 4: The average delay und stadard deviation of a de-

tected concept drift w.r.t. its actual location.

worst latency performance. In general, applying prodrifts adaptive
windowing might significantly increase other approaches’ perfor-
mances. However, given the limited accuracy of prodrift, one
should also examine the effects on other metrics.

6.3 Versatility

We depict the results of our versatility evaluation in Figure 5. The
visualization depicts a radar chart with the recall for different pro-
cess change patterns [67] for each algorithm. Each change pattern
is abbreviated with commonly used acronyms [41] illustrated in
Figure 2. The visualization offers a drill down into the different algo-
rithm’s abilities to detect different change patterns.While especially
emd is able to detect at least some concept drifts induced by every
change pattern, algorithms like prodrift, adwin j, and window
count are only able to detect certain subsets of change patterns.
Furthermore, no algorithm is perfectly able to detect changes from
parallel to sequential relationships between activities (pl). The most
severe systematic issue can be observed for cd (synchronizing two
parallel branches): Only emd is able to capture any drift of such a
type. emds superior versatility is linked to its analysis of the variant
distribution: Since variants describe all the end-to-end control-flow
behavior captured in the event logs, even long-term dependency
changes will be captured using variant analysis. Many of the ap-
proaches only use activity pair features (e.g. adwin j) or build
only on directly-follows relationships (𝛼-relations of prodrift)
that cannot capture complex long-term relationships. As emd is the
only technique fully employing variants (cf. Table 2) and also the
only technique that shows promising versatility, improvements in
versatility can likely be made by moving from pair-wise activity
features and features derived from directly-follows relationships
towards variant based features. Furthermore, some features can-
not detect frequency-related changes (fr) as they only incorporate
binary information about relationships, e.g., the directly-follows
relationships extracted by rinv and lcdd.

6.4 Scalability

The average computation time per event is depicted in Figure 6.
lcdd exhibits by far the best scalability with processing times per
event being only a few microseconds. rinv, the second technique
from the MV Feature Vector Series class, also shows promising
scalability, ranging within a few dozen microseconds per event.
Both techniques only operate on directly-follow relationships that
can be computed with a single pass over the data. However, as seen
in the versatility section, employing directly-follows relationships
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Figure 5: Recall of PCD detection techniques for different change patterns. The change patterns are illustrated in Figure 2.
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Figure 7: Performance (harmonic mean of accuracy, latency,

and versatility) across all event logs and parameter settings.

limits the versatility of a technique as some change patterns become
undetectable. There is a trade-off between versatility and scalability
considering emds long computation times. A new technique aiming
to strike both metrics could propose efficient variant incorporation.

6.5 Parameter Sensitivity

Figure 7 depicts boxplots of the achieved harmonic mean of ac-
curacy, latency, and versatility across a parameter set for each
algorithm. Algorithms not sensitive to the parameter choice should
exhibit low levels of variance. An ideal algorithm would score high
values of accuracy, latency, and versatility across all parameters.
While we can observe significant differences in parameter sensitiv-
ity, few overall trends for classes of algorithms are deductible. One
commonality is the superior parameter sensitivity of algorithms
with few parameters, especially if these parameters are window and
step size. emd and prodrift, both requiring only window and step
size, show little variance in their performance. lcdd on the contrary,
which requires two window sizes and a stable period, shows a large
variance across parameter settings. Many parameters increase the
number of possible parameter settings (cartesian product) and can,
therefore, lead to disadvantageous combinations. A technique with
few parameters seems to be preferable.

6.6 Robustness

We present the evolution of the performance (harmonic mean of
accuracy, latency, and versatility) for each algorithm and event log
with differing noise levels in Figure 8. The baseline, i.e., the perfor-
mance without noise, is indicated as a dashed line. We immediately
observe one interesting phenomenon: The performance of many
algorithms increases with the presence of noise whereas one would
intuitively expect a decrease. This might be explained through the
immanent assumption under which PCD detection techniques are
developed: The algorithms should work in a real-life, noisy environ-
ment. Therefore, researchers have chosen techniques that factor in
some kind of noise tolerance, e.g., hypothesis tests, earth mover’s
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(a) First set of logs with noise as additional, non-fitting events [42].
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(b) Second set of logs with noise as absence of fitting events [15].

Figure 8: The performance (harmonic mean of accuracy, latency, and versatility) under induced noise of different levels.

distance, or model discovery with integrated noise handling. As we
compare the areas below the curves, a robustness measure of more
than 1 indicates an increased performance with noise.

The two sets of logs are generated with two orthogonal defini-
tions of noise: The first set of logs with noise as additional, non-
fitting events and the second set of logs with noise as the absence
of fitting events. The first type of noise seems to be more conse-
quential for many approaches, especially for rinv. For rinv, these
non-fitting events disrupt the stable periods, leading to incorrect
classifications. The technique could benefit from a frequency-based
stable period that allows for some noise. Another possible improve-
ment might be the preprocessing of event data to generously delete
process executions with potentially faulty introduced events.

6.7 Overall Evaluation

We discuss the overall evaluation results depicted in Table 4 by, first,
investigating the effect of the bipartite matching from detected con-
cept drift to ground-truth concept drifts and, second, summarizing
the overall results. Table 4 displays the relative changes when drop-
ping the requirement that a ground-truth drift can only be assigned
to one detected drift. The results mostly stay the same. Only small
changes in the accuracy can be observed for lcdd. emd significantly
improves its already good sensitivity. It probably contains several
double detections for a parameter setting. In total, the employed
bipartite matching does not skew the results.

According to our evaluation, there is no PCD detection technique
that dominates all other techniques. However, our evaluation points
to several aspects that can strengthen a technique for different
evaluation goals. A suitable adaptive windowing (cf. prodrift)
can reduce latency while incorporating variant analysis makes all
change patterns detectable (cf. emd). While activity pair/directly-
follows-based features are linked to reduced versatility in terms of
frequency patterns and are susceptible to noise, they can enable very
fast computation (cf rinv, lcdd). The most promising direction for
further development of PCD detection techniques is variant-based
adaptations of MV Feature Vector Series techniques (rinv,lcdd)
and efficient emd adaptations. When considering the relationship
between the taxonomy of [32] and ours, i.e., the absence of multiple
hypothesis testing methods, another promising direction is the

development of ensemble techniques that cover different change
patterns, enabled by our evaluation.

7 CONCLUSION

This paper presented a general framework for the experimental
evaluation of PCD detection techniques. We collected common
PCD evaluation goals and summarized them in a framework with
one evaluation technique for each of these goals. We presented
the field of process concept drift detection and selected a repre-
sentative sample of publicly available detection techniques. The
application of our framework to PCD detection techniques maps
out strengths and weaknesses of different approaches and guides
researchers in developing and practitioners in choosing PCD de-
tection techniques. Furthermore, the framework can be extended
with additional PCD detection techniques and event logs. We pro-
vide several implications for the development of further techniques:
Adaptive windowing should be used to reduce latency, features
should be calculated based on variants to capture all control-flow
change patterns, and features should incorporate frequencies to
cover frequency-based change patterns and handle noise. Further-
more, multiple hypothesis test detection techniques (e.g. ensemble
classifiers) are a promising direction for further development. As
for practical implications, our evaluation has shown that several
techniques can cost-efficiently be deployed in practice, with low
computation times and good results. The techniques could be imple-
mented into model-learning pipelines to notify a necessary model
update without significant cost increases, such as process discovery
pipelines or predictive process monitoring pipelines.

A future line of research should address real-life event logs with
ground-truth concept drifts. For example, through extensive sur-
veys of process stakeholders or a broader socio-economic analysis,
a real-life event log could be annotated with a large set of ground-
truth event logs.
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