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Abstract. This paper presents a tool to Explore Process Discovery (EPD) results
using activity projection. Our EPD-Tool aims at exploring quality changes after
removing activities from an event log. The main idea is to create a projected
event log for every non-empty subset of activities and apply process discovery
and conformance checking on them. The tool has been implemented as a plugin
in ProM. First, EPD-Tool uses a process discovery algorithm to discover Petri net
models for each projected event log. Then, EPD-Tool uses a conformance check-
ing technique to compute conformance measures for each projected event log
and model pair (L,N), e.g., fitness, precision, and F1-score. Finally, a dendro-
gram is generated to visualize the relationship between each log-model pair, thus
enabling the systematic exploration of the different models using the dendrogram
to find the best-performing node, i.e., a best log-model pair. This method prior-
itizes activities and detects redundancy in the process, which contributes to pro-
cess enhancement. Conversely, critical activities are uncovered to help to shorten
the processing time or save the process cost. This paper presents the EPD-Tool
implementation and some example results.
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1 Introduction

After obtaining event logs from the underlying information systems, stakeholders can
use process mining techniques to uncover their actual processes, provide insights, diag-
nose problems, and automatically trigger corrective actions [15,16]. Process discovery
is a crucial step and the most challenging process mining task, since it aims to learn a
process model from example behavior recorded in an event log. Each event in such a
log refers to an activity, a well-defined step in some process, a process instance (case),
and a timestamp. Process models discovered from event data show the actual process,
e.g., the ordering of activities, frequencies, exceptional paths, and bottlenecks.

After obtaining a process model, we evaluate the quality of this model using sev-
eral measures. Two widely-used control-flow-based quality criteria are replay fitness 
and precision. Fitness indicates how well the model reflects the behavior of the log. 
Precision reflects whether the model allows for additional unobserved behavior that is
unlikely given the data.
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State-of-the-art process discovery technologies [1–6] focus on the entire event log,
and they ignore the impact of individual activity in the whole process. For instance, it is
hard to prioritize activities in an event log using a traditional process discovery method,
and the method of classifying which activities are redundant or critical is still missing.
Therefore, we propose Explorative Process Discovery using Activity Projections (EPD)
in this paper. This method uses activity-based projection to extract the sub-logs, and
discovers the process model after deleting any activity in the event log. Afterward, a
conformance checking technique records the changes in process model quality before
and after deleting an activity. According to the comparison, we can prioritize activi-
ties and judge whether the activity is redundant or critical. We fully implemented the
approach using the ProM [7] framework.

The remainder of the paper is structured as follows. In Sect. 2, we introduce basic
concepts. Section 3 describes the approach. Section 4 presents the implementation of
EPD-Tool and shows how to use this tool. Section 5 evaluates our approach using vari-
ous data sets. Section 6 concludes the paper.

2 Preliminaries

In this section, we introduce some basic concepts and notations related to our research.
The first and most important thing is the event log. Event logs serve as the starting point
for any process mining task. An event log is a multiset of traces that describe the life
cycle of cases in terms of the activities executed.

Definition 1 (Event Log). Let Uact be the activity universe, i.e., the set of all possible
activity attributes of events. A trace σ = 〈a1, a2, . . . , an〉 ∈ U∗

act is a sequence of
activities. An event log L ∈ B (U∗

act) is a multiset of traces. UL = B (U∗
act) is the

universe of event logs.

L1 = [〈a, b, c〉5, 〈a, b, c, d, d〉3, 〈a, d〉2] and L2 = [〈a, b, c, d〉5, 〈a, b, c, d, d〉3, 〈a, d〉2]
are two examples of an event log.

Definition 2 (Activity Projection). Let L ∈ UL be an event log and A ⊆ Uact be
a subset of activities. A projected event log is an event log where all activities not in
A are removed. The projection function is L�A= [σ�A |σ ∈ L] where σ�A is defined
recursively: (1) 〈〉�A= 〈〉 and (2) for σ ∈ L:

(〈a〉 · σ)�A=

{
σ�A if a /∈ A
〈a〉 · σ�A if a ∈ A (1)

where 〈a〉 · σ appends activity a to trace σ.
Consider L1 and L2 introduced before, given A1 = {b, c} and A2 = {a, d}, then

L1�A1= [〈b, c〉8, 〈〉2] and L2�A2= [〈a, d〉7, 〈a, d, d〉3].
Process discovery techniques aim to learn a formal process model based on example

behaviors in the event log [15,16]. There is a plethora of process modeling notations,
e.g., Business Process Model and Notation (BPMN) [8], Process Trees, etc. Most of
these modeling notations can be directly transformed into a Petri net [9], allowing for a
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Fig. 1. Labeled Petri net N1: A product repair process

range of analysis techniques including conformance checking and performance analy-
sis. Therefore, we focus on labeled accepting Petri nets, i.e., Petri nets where transitions
have activity labels and there is a well-defined initial and final marking. Note that we
also allow for silent activities, i.e., transitions that do not have a label and that cannot be
observed in the event log. This way, we can also model skipping and handle gateways
in BPM and operators in process trees. UN is the universe of labeled accepting Petri
nets. An example of a labeled Petri net is depicted in Fig. 1.

Our approach does not focus on any specific process discovery algorithm. Instead, it
can use any existing process discovery algorithm provided that it can be converted into
a labeled accepting Petri net. For instance, this paper uses Inductive Miner - infrequent
(IMi) [10]. IMi takes an event log as input and discovers a process tree as output which
could be transformed into a Petri net directly.

Definition 3 (Exploratory Process Discovery). disc : UL → UN is a function that
discovers a labeled accepting Petri net for any event log. Given an event log L ∈ UL,
we can discover a model N = disc (L). (L,N) is a log-model pair. Given a collection
of event log we can create a collection of log-model pairs.

For any log-model pair (L,N) conformance checking techniques are used to eval-
uate the quality of process models. In this paper, we use alignments [11] to compute
replay fitness and precision [12] of each log-model pair. The F1-score is based on these.

Definition 4 (Quality Measures). Let (L,N) ∈ UL × UN be a log-model pair.
Fit (L,N) ∈ [0, 1] measures fitness (indicating how well the model reproduces the
behavior of the log). Pre (L,N) ∈ [0, 1] measures precision (indicating to what degree
the model’s behavior is likely given the log). The harmonic mean of fitness and precision
F1 (L,N) ∈ [0, 1] is defined as follows: F1 (L,N) = 2 Fit(L,N)·Pre(L,N)

Fit(L,N)+Pre(L,N) .

Here we abstract from the exact computation of fitness and precision and use the
alignment-based fitness and precision values implemented in ProM [11,12].
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Fig. 2. Overview of explorative process discovery using activity projections.

3 Approach

Since traditional process discovery methods focus on the entire event log and ignore
the impact of each activity in the process, they cannot prioritize activities nor classify
which activities are redundant or critical. Thus, we propose our “Explorative Process
Discovery using Activity Projections” method to address this problem. The approach
consists of the following three phases, as Fig. 2 shows:

– Phase 1: Projection. Given an event log L ∈ UL containing n activities, for each
subset of activities Ak, where Ak ⊆ Uact and Ak �= ∅, we use activity projection
defined in Definition 2 to get a projected event log. Therefore, there are 2n − 1
sub-logs {L1, L2, · · · , L2n−1}.

– Phase 2: Exploration. For each projected event log Lk, we use Explorative Pro-
cess Discovery as in Definition 3 to discover a Petri net model disc(Lk) = Nk,
there will be 2n − 1 log-model pairs (L1, N1) , (L2, N2) , · · · , (L2n−1, N2n−1)
where (Lk, Nk) ∈ UL × UN . Then we use the quality measures described in Def-
inition 4 to compute fitness, precision, and harmonic mean for each pair (Lk, Nk):
Fit (Lk, Nk), Pre (Lk, Nk), and F1 (Lk, Nk).

– Phase 3: Visualization. Finally, we visualize the relationship between log-model
pairs in a dendrogram and color it using the quality measures to explore the impact
of removing a specific activity on the process model.

4 Implementation

The approach has been implemented as a plugin in the ProM framework, named “Explo-
rative Process Discovery using Activity Projections” in the package “ExplorativePro-
cessDiscovery”. To install EPD-Tool, simply download the latest ProM Nightly build
from https://promtools.org/, run the PackageManager, select the package “Explorative-
ProcessDiscovery”, and run ProM. Now the user can import any event log data and
apply the plugin “Explorative Process Discovery using Activity Projections”. Our tool
includes two versions of the function, “Full version” and “Lite version”. The main dif-
ference between them is that the Full version handles all projected event logs simul-
taneously, and the Lite version requires users to configure step-by-step to explore

https://promtools.org/
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Fig. 3. The main interface of the Full version. Each node corresponds to a log-model pair. Only
the connections that improve quality are shown.

the changes in model quality after removing any activity. Moreover, the Full version
includes a Pareto optimal model of all the results, while the Lite version does not. We
need these two versions because the Full version is time-consuming when processing
large [13] event logs, while the Lite version improves efficiency by discarding some
insignificant nodes.

4.1 Full Version Discovering Pareto Optimal Models

As Fig. 3 shows, we use a tree structure to show every projected event log simultane-
ously, and users can choose to color the dendrogram by fitness, precision, or F1-score
through the drop-down list on the upper right. The best route for removal is always
shown in this dendrogram. When a node is selected, it will display the connections to its
child nodes. For more details, there is a floating “Inspect” window which also includes
a “View” panel used to control the zoom function since the generated dendrograms are
usually quite large.

• Square box: Each node corresponds to each projected event log.
– Color: colors from blue to red; deep blue indicates low quality (fitness, preci-
sion, or harmonic mean), while the more red the color is, the better the quality
is.

– Bottom grey rectangle: the proportion of events left after projection; the longer
the length is, the higher the proportion is.

– Right yellow rectangle: the proportion of activities left after projection, the
longer the length, the higher the proportion.

– Red box: best node(s) with the highest quality.
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Fig. 4. Detailed information is provided when selecting an edge connecting two models.

– Blue box: worst node(s) with the lowest quality.
– Black box (optional): there may exist some log-model pairs that cannot proceed
with alignments under limited resources (both RAM and time).

– Green box (optional): all nodes will be colored green if they all have the same
best quality.

– Green border: the best node(s) will be marked with a green border.
• Line: connect related nodes, the width indicates the degree of quality improve-
ment/degradation after deleting the corresponding activity from the upper node to
the lower node.
– Red line: quality increased.
– Blue line: quality decreased.
– Green line: quality unchanged.
– Black line (optional): connected with a “Black box”.

By selecting an edge between each pair of nodes, users can collect more information
about this node pair, such as which activities are included in this subset, which element
was deleted from the parent node, and the performance change between this node pair.
Also, users can have an overview of the Petri net models of this node pair, as Fig. 4
shows. We aim to find a “sweet spot” among all projected event logs with the highest
fitness and precision. However, such a “sweet spot” is hard to obtain in some cases.
Therefore, the concept of Pareto optimality is used to guide the user.

Pareto Optimality. When multiple evaluation indicators exist, an object that is best on
all evaluation indicators does not always exist. The concept of Pareto optimality aims to
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Fig. 5. (a) The window of “Pareto optimality”. (b) Detailed information of selected “sweet spot”.

achieve a trade-off between those indicators, i.e., none of these indicators can be better
without making at least one worse.

For most event logs, there is no node with both the highest fitness and the highest
precision (except for nodes with only one activity). However, having a process with only
one activity makes little sense. Therefore, as Fig. 5(a) shows, in the “Pareto Optimal
Model”, the user can adjust the sliders to set the ratio of activities and events she wants
to keep. After this, the tool will extract and show the “sweet spots” based on the concept
of Pareto optimality, which contains the node with the highest fitness, the node with the
highest precision, and a set of nodes with a trade-off between fitness and precision.
Similarly, the specific information of each projected event log and the discovered Petri
net model are visualized by selecting the corresponding node, as Fig. 5(b) shows.

4.2 Lite Version for Guided Exploration

As mentioned above, the Full version will be time-consuming when faced with large
event logs, so we also provide a “Lite version” to improve the efficiency of the tool
in some cases. As shown in Fig. 6, the dendrogram has only one layer of sub-nodes
in this version. The user needs to configure to explore further sub-nodes step by step.
Therefore, further operations are introduced in the inspector of the Lite version, such as
“Go back”, “Go deeper”, and “Forward”.

• Go back: When the interface shows a deep layer, users can select “Go back” to
return to the previous layer.

• Go deeper: Select “Go deeper” after choosing any child node to explore the deep
layer of this child node. Note that it may take a while to display the results after
selecting. Because the Lite version calculates each layer of nodes separately by
selecting “Go deeper”.

• Forward: After selecting “Go back”, users have a chance to return to the deep layer
without recalculation by selecting “Forward”. This improves efficiency in some
cases because returning to the deep layer through “Go deeper” requires recalcu-
lation.
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Fig. 6. The main interface of the Lite version.

All other functions in the Lite version are the same as the Full version, including
viewing the detailed information of sub-nodes and checking the Petri net model. The
only difference is that the Lite version can record the best removals in a table, and the
exploration of Pareto optimality models is not supported.

5 Evaluation

In this section, we conduct experiments using two data sets “Repair1” and “Road Traffic
Fine Management Process” [14] to evaluate our approach. It includes two parts: (1)
evaluations of the general functions of our tool and (2) an explanation of why we need
a “Lite version” by comparing the time required by the two versions.

5.1 General Functions

First, for a general function of our tool, we can define an activity route or the priority
of activities. As shown in Fig. 7 and Fig. 8, we use F1-score as the evaluation crite-
ria. Here we call the best-performing sub-log the “sweet spot”. Each row from top to
bottom of these tables records the performance change after removing an activity from
the previous sweet spot. Colored cells indicate the sweet spot for the corresponding
layer, red means performance increased, and blue means performance decreased. Col-
umn “Removed” indicates the activities removed from the previous sweet spot to get
the current sweet spot. As a result, the priority of activities in “Repair” is {(Register,
Inform User), Restart Repair, Repair (Complex), Repair (Simple), Archive Repair, Ana-
lyze Defect, Test Repair}, which means the most frequent (stable) activity in “Repair”
is “Register” or “Inform User”, and if organizations want to reduce the process or detect

1 https://processmining.org/old-version/files/repairexample.zip.

https://processmining.org/old-version/files/repairexample.zip
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Fig. 7. The best route to remove problematic activities for the data set “Repair”.

Fig. 8. The best remove route for the data set “Road Traffic Fine Management Process”.

problems of this process, they should start from “Test Repair”. More specifically, the
infrequent (unstable) activities might be {Test Repair, Analyze Defect} because the per-
formance increased after removing these activities, and the performance will decrease
if we keep removing any other activities.

Similarly, the priority of activities in “Road Traffic Fine Management Process” is
{(Notify Result Appeal to Offender, Insert Fine Notification), Receive Result Appeal
from Prefecture, Insert Date Appeal to Prefecture, Send Fine, Create Fine, Appeal to
Judge, Send Appeal to Prefecture, Send for Credit Collection, Add penalty, Payment},
that means the most frequent (stable) activity in “Road Traffic Fine Management Pro-
cess” is “Notify Result Appeal to Offender” or “Insert Fine Notification”. If organiza-
tions want to reduce the process or detect problems in this process, they should start with
“Payment”, and the infrequent (unstable) activities might be {Payment, Add penalty,
Send for Credit Collection, Send Appeal to Prefecture, Appeal to Judge}.

Moreover, to describe the function of “Pareto optimality” more intuitively, we use
the data set “Repair” as a demonstration. As shown in Fig. 5(a), in Pareto optimality,
we set the activity and event thresholds to 60% and 80%, respectively, and extracted
4 “sweet spots”. Consider the “sweet spot” marked with a red circle, as detailed in
Fig. 5(b). After removing the activity Archive Repair, the model’s F1-score changes
from 0.85 to 0.9. This result indicates that “Archive Repair” might be an infrequent
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Table 1. Comparison of time cost between two versions.

Data size Time cost

Events Activities Full version Lite version

Repair 11,855 8 38.9s 7.2s

RTFMP 561,470 11 11,724.9s 161.0s

(unstable) activity in this process. Therefore, organizations can optimize the whole pro-
cess by focusing on this activity.

5.2 Scalability

To explain the necessity of the “Lite version” more clearly, we compare the time
required by the full and Lite versions to get the same result of priority and classification.
As Table 1 shows, for the Repair log, the processing time in the Lite version is around
one-tenth that in the Full version, and for RTFMP (Road Traffic Fine Management Pro-
cess), it decreased from more than 3 h to less than 3min. (Experiment conducted using
an 11th Gen Intel Core i7-1165G7 2.8GHz processor and 16GB RAM.) Although the
Lite version does not display all the results at once, it saves much time to observe the
impact of removing a specific activity. Additionally, users can still explore the priority
of activities step by step instead of just waiting.

6 Conclusion

This paper introduced a new tool for process discovery named the Explorative Process
Discovery tool using Activity Projections (EPD-Tool), which is implemented as a ProM
plugin. With this plugin, users can explore the impact of removing any activity from the
event log on the model. EPD-Tool provides users with insight to identify redundant
or critical activities. Therefore, they can optimize processes and reduce process costs
based on their expert knowledge. In the future, we plan to refine this tool to improve
efficiency and integrate more features to provide users with a deeper insight into the
event log incorporating performance related to time and resources (to find problematic
resources and time consuming activities). Moreover, there are ways to further improve
the scalability of the tool.
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