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Abstract: Cyber-physical systems connected to the internet are generating unprecedented volumes of data. Understand-
ing cyber-physical systems’ behavior using collected data is becoming increasingly important. Process-mining
techniques consider sequences of events and thus can be used to check and verify how such cyber-physical
systems operate. The data captured by cyber-physical systems are typically noisy and are not readily suit-
able for process mining. In this work, we present how a stream of connected-vehicle data can be trans-
formed into an event log suitable for process mining. By applying different process-discovery techniques,
we discover de-facto models that capture the behavior of an assistance system embedded in cars. We apply
conformance-checking techniques and consult domain experts to find the best de-facto model. In addition, we
apply conformance-checking methods to a preexisting, de-jure model that we transformed into a Petri net. We
compare both models and point out differences. In this process, we show how we overcome challenges and
highlight why applying process-mining techniques in the cyber-physical systems domain is valuable.

1 INTRODUCTION

Cyber-physical systems connect physical processes
with computations. Computers monitor and con-
trol processes and react to changes, usually in real-
time. Designing cyber-physical systems is challeng-
ing (Lee, 2008). The design process has become in-
creasingly complex requiring multiple human experts
from different fields to collaborate on designing to-
day’s systems. Such complex cyber-physical systems
are, for example, embedded in cars. These cars are
characterized by their continuous connectivity to sup-
port their many connected features, such as those re-
lated to autonomous driving, servicing, and energy
management systems in electric vehicles. As a result,
an abundance of data will be collected from these fea-
tures. Analyzing these features and their underlying
systems by using the connected-vehicle data plays a
crucial role in improving them. An example of such
a system is the hands-free driving assist system de-
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veloped by Ford, embedded in connected vehicles.
The system allows the vehicle to be driven hands-
free and without any human intervention in prede-
fined zones on a map as long as certain conditions
are not violated. Vehicles equipped with this feature
require connectivity and can receive over-the-air up-
dates as often as needed to improve the feature’s be-
havior based on its usage. Therefore, it is crucial to
develop techniques that explain the feature’s behavior
as dictated by the data and to understand the sequence
of events that led the feature controls to make a spe-
cific decision. Connected vehicles play a vital role
in acquiring the usage data for such a feature from
real-world scenarios. In this paper, we used test ve-
hicles to collect the vehicle data. A data stream is
recorded at a one-second rate and transmitted to the
cloud using the vehicle’s modem. Features of the
collected data include an anonymized vehicle identi-
fier, states and warnings of assistance systems, and
a vehicle’s speed. Besides checking if the system
works as intended, there is an additional need to un-
derstand how drivers use the hands-free driving fea-
ture. A possible option to check the behavior is using
process-mining techniques. However, the received
connected-car data are not suitable for process min-
ing since process-mining techniques require an event
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log as input. An event log consists of events that
have three mandatory attributes: case, activity, and
timestamp. Cases can be thought of as runs of a sys-
tem, activities as actions taking place in a system, and
timestamps mark when an event happened. In con-
trast to event logs, vehicle data does not contain these
attributes initially; therefore, the data must be trans-
formed. Process mining techniques can be grouped
into process discovery, conformance checking, and
process enhancement (van der Aalst, 2016). Process-
discovery techniques reveal a comprehensible pro-
cess model representing the event log’s underlying
process. Conformance-checking techniques quantify
how well a process model represents the behavior
contained in an event log. Process-enhancement tech-
niques show additional insights into a process, for in-
stance, the reasoning for decisions.

Process mining is typically applied in organiza-
tions to improve, e.g., financial or production pro-
cesses. However, these techniques can also be applied
in other areas, for example, smart home environments
or in the software domain (van Eck et al., 2016b; Ru-
bin et al., 2014; Astromskis et al., 2015; Maruster
et al., 2008). Applying process-mining techniques in
a car-related setting is interesting but challenging for
numerous reasons. First, data collection is suscepti-
ble to data quality issues and noise. At any instant
in time, thousands of vehicles send data under dif-
ferent conditions, such as software versions, sensors,
ages, and connectivity conditions. An example of in-
accurate information is GPS signals contradicting ve-
hicle speed or temperature measurements taken while
a vehicle is parked under the sun. Second, privacy
and security requirements must be met. The collected
data may contain information that could be used to
identify individuals directly or indirectly, and in some
cases, anonymization is performed on the vehicle by
altering the signals to ensure privacy is maintained.
Third, the contextualization of data is not trivial. The
recorded data may not be well interpretable without
additional context. For instance, when the speed of a
car is low, potential reasons can be road conditions or
a traffic jam. Without this contextualization, it is hard
to understand the behavior of drivers.

In this work, we accomplish multiple goals. First,
we transform connected-vehicle data to better suit
the process mining requirements. Transforming
connected-vehicle data into an event log requires sev-
eral steps. An overview of the steps is depicted in
Figure 1. In the remainder of this paper, we spec-
ify how we transformed connected-vehicle data into
an event log. Second, we transform a flowchart-like
behavioral model provided by domain experts into a
formal process model represented as a Petri net. Dur-

ing the equivalent behavioral transformation from the
provided model to a Petri net, we consult domain ex-
perts to ensure that all aspects are captured. Third,
we apply conformance checking on this de-jure model
using the transformed event log. Fourth, we discover
a model from the transformed event log that explains
the behavior well. In this process, we discover multi-
ple process models. To pick the best de-facto model,
we have to consider quality metrics and models’ un-
derstandability for domain experts. Fifth, we explain
the differences between the two models. By explain-
ing the differences, we consult domain experts and
pay attention to the data and algorithms we use.

In the remainder of this paper, we first introduce
basic concepts in Section 2. We show and discuss re-
lated work in Section 3. In Section 4, we provide in-
sights into how we transformed vehicles’ data into an
event log. In Section 5, we demonstrate how we cre-
ate the de-jure model from a preexisting description.
Moreover, we show how we pick the best de-facto
model discovered by process-mining techniques. In
Section 6, we point out differences between models
and discuss them. We summarize and discuss our
work in Section 7 and describe future work.

2 PRELIMINARIES

In this section, we formally introduce concepts that
are the basics of the techniques we introduce later.
Given a set X , a sequence σ ∈ X ∗ assigns an enumer-
ation to elements of the set, i.e., σ : {1, ...,n} → X .
We denote this with σ = ⟨σ1, ...σn⟩. In the remainder,
we refer with σi to the sequence’s i-th element.

We receive data recorded by vehicles. The data
of vehicles are recorded on US highways at a sample
rate of one second. The data contains information re-
lated to cars’ software and sensors. In the following,
we briefly explain the recorded data’s most important
features.

• Vehicle: Vehicle to which a datum belongs.

• Journey: A journey is created as soon as a record-
ing of a vehicle takes place. Moreover, journeys
are generated if highways are switched. Also,
they are generated if a vehicle drives in a rest area
or at a petrol station. This means that traveling
from place A to B can involve multiple journeys.
A journey is linked to a vehicle.

• Run: A run marks the beginning of hands-free
driving and its turn-off. Multiple runs can be con-
tained in one journey.

• Speed: Vehicle speed in km/h.
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Figure 1: Overview of transforming connected-vehicle data to an event log.

• State: States of traffic jam assist. We consider
four states: hands-free driving and states one, two,
and three.

• Warning: Different warnings are stored in this
feature. Ranging from no warning to warnings
one, two, and three.

• Timestamp: Local timestamp of vehicle for each
recording.

An example of such data is shown in Table 1. In the
following, we formally introduce vehicle data. Utime
is the universe of timestamps, Uvehicle is the universe
of vehicles, and U journey is the universe of journeys.
P is the set of states, and W is the set of warnings of
the assistance system. R≥0 is the set of real numbers
greater or equal to zero.
Definition 1 (Vehicle Data). Uvd is the uni-
verse of vehicle data instances, Uv−att is the
universe of attribute names of vehicle data
({vehicle, journey, run, speed, state, warning, time}⊆
Uv−att ), Uv−val is the universe of vehicle attribute val-
ues, and Uv−map = Uv−att ↛ Uv−val is the universe
of vehicle attribute value mappings. Vehicle data is a
tuple V = (D,πD) with D ⊆ Uvd as the set of vehicle
data instances, πD ∈ D → Umap, such that, ∀d ∈ D :
{vehicle, journey, run, speed, state, warning, time}⊆
dom(πD(d)) and the following holds:

• vehicle: πD(d)(vehicle) ∈ Uvehilce is the vehicle
of d

• journey: πD(d)( journey) ∈ U journey is the jour-
ney of d

• run: πD(d)(run) ∈ Urun is the run of d
• speed: πD(d)(speed) ∈ R≥0 is the speed of d
• state: πD(d)(state) ∈ P is the state of d
• warning: πD(d)(warning) ∈ W is the warning of

d
• time: πD(d)(time) ∈ Utime is the timestamp of d

We assume that in journeys, vehicle data in-
stances can be sorted by their timestamp from ear-
liest to latest. This attribute and its nature are cru-
cial for the later transformation. By referring to
RowID as a vehicle-data-instance identifier, the ex-
ample data set in Table 1 has the following journeys:
⟨1,2,3,4,5,6,7,8⟩,⟨9,10,11,12⟩. The runs given
these data are ⟨1,2,3,4⟩,⟨5,6,7⟩,⟨9,10,11,12⟩.

To later apply process-mining techniques, we
need an event log. An event log has three main at-
tributes: case identifiers, activity names, and times-
tamps. Ucase is the universe of case identifiers, Uact
is the universe of activity names. The following de-
fines an event log.

Definition 2 (Event Log). Uev is the universe of
events, Ue−att is the universe of event attribute names
({case, act, time} ⊆ Ue−att ), Ue−val is the universe
of event attribute values, and Ue−map = Ue−att ↛
Ue−val is the universe of event attribute value map-
pings. An event log is a tuple L = (E,πE) with
E ⊆ Uev as the set of events, πE ∈ E → Ue−map, such
that, ∀e ∈ E : {case, act, time} ⊆ dom(πE(e)) and
πE(e)(act) ∈ Uact is the activity of e, πE(e)(time) ∈
Utime is the timestamp of e, and πE(e)(case) ∈ Ucase
is the case of e.

Since we use conformance-checking techniques,
we point out the following works to get familiar with
the used techniques (Adriansyah et al., 2011; Adrian-
syah, 2014; Verbeek et al., 2001). Moreover, we use
Petri nets to represent processes. The work presented
in (van der Aalst, 2016; Reisig, 1985) provides an in-
troduction.

3 RELATED WORK

In this section, we show and comment on re-
lated work. First, we focus on process mining
in the Internet-of-Things (IoT), respectively, cyber-
physical system domain. Second, we mention some
case studies that created de-jure models and applied
conformance-checking techniques to these.

Applying process mining to data gathered by
cyber-physical systems, respectively, IoT devices, is
not new. In (Janiesch et al., 2020), challenges and op-
portunities of combining IoT data with business pro-
cess management are described. The first sketched
challenge is to bridge the gap between low-level sen-
sor data and event logs. The second named challenge
is to correlate activities with process instances. Also,
the work stresses designing trouble-free process mod-
els, for instance, by avoiding deadlocks and livelocks.
In addition, the authors propose to use online confor-
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Table 1: Example recording of vehicle data.

RowID Journey State Warning Timestamp
1 1 Hands-free No warning 2023-01-01 13:37:37
2 1 Hands-free No warning 2023-01-01 13:37:38
3 1 Hands-free Warning 1 2023-01-01 13:37:39
4 1 State 1 Warning 1 2023-01-01 13:37:40
5 1 Hands-free No warning 2023-01-01 13:37:41
6 1 Hands-free No warning 2023-01-01 13:37:42
7 1 State 1 No warning 2023-01-01 13:37:43
8 1 State 1 No warning 2023-01-01 13:37:44
9 2 Hands-free No warning 2023-01-02 20:08:02
10 2 Hands-free No warning 2023-01-02 20:08:03
11 2 Hands-free No warning 2023-01-02 20:08:04
12 2 State 2 No warning 2023-01-02 20:08:05

mance checking to check compliance rules during ex-
ecution. An example of tackling those challenges is
provided in (van Eck et al., 2016b). The authors seg-
ment sensor data in smaller time windows and com-
pute relevant features for each segment, for example,
the average value of an attribute. Based on these fea-
tures, the created segments are clustered. In the next
step, the clustered segments are labeled using domain
knowledge, and activities are created. In our work, we
do not rely on strict time windows. Nevertheless, we
use sensor recordings to create additional information
for each event, for instance, if it was recorded during
a traffic jam. In (Koschmider et al., 2020), a gen-
eral framework for discovering process models from
sensor data is presented. This framework considers a
sensor event log as input and proposes three steps to
transform these data into an event log. First, correlat-
ing sensor events to an activity instance. Second, dis-
covering process activities and their labels and sensor-
level process models. Third, abstracting the data to
represent the processes. We use a similar approach as
shown in Figure 1. In (Makke and Gusikhin, 2021),
parking space occupancy is monitored. To track the
occupancy of parking space, a Petri net is discovered
by applying process-mining techniques. Their model
can be changed if the environment changes, for in-
stance, when sensors fail.

In this work, we apply conformance-checking
techniques to check how well de-jure and de-facto
models represent reality. In other domains, for in-
stance, the healthcare domain, a de-jure model is cre-
ated from clinical guidelines and evaluated using con-
formance checking. Examples are (Xu et al., 2020;
Grüger et al., 2021; Benevento et al., 2023).

4 GENERATING EVENT DATA

In this section, we present in greater detail how we
transformed vehicles’ data into an event log. An
overview is shown in Figure 2. We sample the data
and filter out noisy instances as depicted in Figure 2.
Moreover, we enhance the data by creating new fea-
tures and merging journeys. After identifying activi-
ties and process instances, we receive an event log that
can be used as input for process-mining techniques.
The structure of this section is as follows. First, we re-
veal how we sample, filter, merge, and enhance data.
Second, we explain how we transformed the data into
an event log.

4.1 Sampling, Filtering, Merging, and
Enhancing Vehicles’ Data

As shown in Figure 2, the first step is sampling the
data. This effort has to consider erroneous data (neg-
ative odometer) and noisy data (temperature appears
warmer than it is). Since the size of the collected
data is large, it is difficult for most process-mining
tools to process data at such a large scale. Journeys
are randomly sampled from the collected data, and
only journeys with useful information are considered
to be part of the sampling pool, thus, minimizing the
amount of erroneous data. The sampled data contains
over 14 million instances, over 25,000 journeys, and
records from 100 vehicles. The second step is filter-
ing the data. Due to a large amount of data available,
we found the results more revealing if we only keep
journeys with hands-free engagements. Also, through
several iterations, we identified some erroneous data,
such as overlapping journeys. As pointed out previ-
ously, the data is sampled each second. As a result,
a data collection event that takes 500 seconds has to
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Data from software,
sensors, and more

JourneyID VehicleID Speed (km/h) Timestamp State …

MI6 007 110 1970-05-05 12:56:13 Hands-free …

MI6 007 400 2023-01-01 13:36:59 Hands-free …

MI6 007 123 2023-01-01 13:37:00 Hands-free …

MI7 007 120 2023-01-01 13:37:01 Hands-free …

Sampling, filtering, merging, 
and enhancing data

JourneyID VehicleID Speed (km/h) Timestamp State Acceleration (m/s²) …

MI6a 007 123 2023-01-01 13:37:00 Hands-free -0.83 …

MI6a 007 120 2023-01-01 13:37:01 Hands-free 0 …

CaseID VehicleID Activity Timestamp Ø Speed (km/h) Traffic jam Model …

001 007 Hands-free 2023-01-01 13:37:00 121.5 0 F-150 …

Identifying activities 
and process instances

Input for process
mining

Figure 2: More-detailed overview of transforming connected-vehicle data to an event log.

have 501 entries in the data. Since this assumption
does not always hold, we filter out journeys for which
this assumption is violated. Therefore, we created a
script that checks the data for flaws based on domain
knowledge.

The third step is merging data. As introduced ear-
lier, many triggers exist for creating a new journey. To
link hands-free driving sessions which are temporally
close to each other, we merge vehicle journeys of the
same car if they are less than five minutes apart.

The fourth step is data enrichment which can be
considered a feature-extraction phase. Consider ac-
celeration as an example. We derive the acceleration
from the recorded speed curve. For the last entry of a
journey, we denote an acceleration of 0. A more com-
plex data enhancement is performed when detecting
if a vehicle is in a traffic jam situation. To detect traf-
fic jams, we rely on two fundamental attributes: speed
and acceleration. Our idea is based on the assumption
that unusual acceleration and deceleration in combi-
nation with low speeds on highways in a short time
indicate traffic jams. Also, we introduce new states
and warnings which are beneficial for the later trans-
formation phase.

After preprocessing, the data contains roughly 2.6
million instances, over 3,100 journeys, and records
from 80 vehicles.

4.2 Transforming Vehicles’ Data

Using the preprocessed data, activities, and process
instances need to be identified. Since we aim to an-

alyze the hands-free driving system, activities have
to be related to this system. In this work, we rely
on domain knowledge and warnings and states of the
assist system. Using the previously mentioned fea-
tures, it is possible to create activities showing how
the hands-free-driving feature works and how drivers
interact with it. Different scopes for process instances
are possible, for example, whole journeys. However,
we decide to define process instances from starting
the hands-free driving system to turning it off — we
focus on runs. In the following, we present the formal
framework for our transformation. First, we intro-
duce maximal sequences. Second, we present how we
transform connected-vehicle data into an event log.

To create an event log from connected-vehicle
data, we have to create events. To create events,
we introduce maximal sequences of vehicle data. In
a normal sequence of vehicle data, all elements are
sorted from earliest to latest with one second in-
between — they are continuous. Also, they share
the same journey, run, warning, and state — they
are homogeneous. Maximal sequences of vehicle
data share these properties. Additionally, if a ve-
hicle data instance exists in the same journey and
run one second before or after a sequence, the
state or warning is different from those in the se-
quence — they are maximal. Given the data in Ta-
ble 1, the following maximal sequences are obtained:
⟨1,2⟩,⟨3,4⟩,⟨5,6⟩,⟨7⟩,⟨9,10,11⟩,⟨12⟩. The follow-
ing statements capture this.

Definition 3 (Maximal sequences). Let V = (D,πD)
be vehicle data. Maximal sequences are a tuple

Analyzing Cyber-Physical Systems in Cars: A Case Study

199



MV = (S,πS) with S ⊆ D∗ as the set of sequences
over vehicle data instances, πS ∈ S → Uv−map
such that, ∀s ∈ S : {run,state,warning, time} ⊆
dom(πS(s)) and πS(s)(run) = πD(d1)(run) ∈
Urun, πS(s)(state) = πD(d1)(state) ∈ P,
πS(s)(warning) = πD(d1)(warning) ∈ W, and
πS(s)(time) = πD(d1)(time) ∈ Utime, Moreover,
∀s = ⟨d1, ...,dn⟩ ∈ S, the following requirements are
fulfilled:

• continuous: πD(di)(time) + 1 = πD(di+1)(time)
for i ∈ {1, ...,n−1}

• homogeneous: πD(di)(att) = πD(d j)(att), att ∈
{journey, run, state, warning}, i, j ∈ {1, ...,n}

• maximal: Let A = { journey,run} ⊂ Uv−att
and B = {state,warning} ⊂ Uv−att be
sets of attributes. If there is a d0 ∈ D,
such that πD(d0)(time) + 1 = πD(d1)(time)
and πD(d0)(a) = πD(d1)(a), for all
a ∈ A, then there is a b ∈ B such that
πD(d0)(b) ̸= πD(d1)(b). If there is a dn+1 ∈ D,
such that πD(dn)(time)+1 = πD(dn+1)(time) and
πD(dn)(a)= πD(dn+1)(a), for all a∈A, then there
is a b ∈ B such that πD(dn)(b) ̸= πD(dn+1)(b).

After introducing maximal sequences, we still
need to create events, respectively, an event log from
the vehicle data. In general, we extract maximal se-
quences from the vehicle data. Then, we use these
sequences to create events. The case of an event is
determined by a sequence’s run, the timestamp by the
first element of a sequence, and the activity by ap-
plying domain knowledge captured with the function
map. In the following, we provide a closed expression
that captures this process.

Definition 4 (Transformation). Let MV = (S,πS) be
maximal sequences and L = (E,πE) be an event
log. Let map be a function that returns an activity
given a sequence, i.e., map : S → Uact . There ex-
ist a bijective function from S to E, trans : S → E
such that ∀s ∈ S, πS(s)(run) = πE(trans(s))(case),
map(s) = πE(trans(s))(activity), and πS(s)(time) =
πE(trans(s))(time).

By combining the above-introduced mechanisms,
we transform enriched connected-vehicle data into an
event log. For each run, we discover maximal se-
quences. Each maximal sequence is converted into an
event. We create an event log by mapping every max-
imal sequence contained in vehicles’ data to events.
As a result, using an event log, we can compare multi-
ple runs across vehicles. The received event log from
our data consists of over 16,000 cases and over 38,000
events.

5 OBTAINING SYSTEM MODELS

In this section, we demonstrate how we construct
the de-jure model based on a preexisting description.
In addition, using the transformed connected-vehicle
data, we discover the best de-facto model concern-
ing quality metrics and understandability for domain
experts. First, we introduce a behavioral model de-
signed by humans to show the system’s behavior and
its Petri net abstraction. Second, we apply process-
discovery techniques on the event log we received af-
ter applying the previously mentioned preprocessing
and transforming techniques.

5.1 Constructing the De-Jure Model

To implement the feature of hands-free driving, a be-
havioral model in the form of a flow chart was de-
signed by humans. A general view concerning the be-
havior of the hands-free driving feature is depicted in
Figure 3. In this work, we focus only on parts of the

Hands-Free Warning 1 Warning 2

Not Hands-
Free

Warning n
Trigger 1 Trigger 2 Trigger 3

Conflict resolution

Conflict resolution

Driver input

Trigger n+1

...

Trigger n

Figure 3: Flow chart showing the overall behavior of the
hands-free driving feature.

system. The parts include a small selection of con-
flict resolutions and warnings. We focus on conflicts
related to the absence of focus of a driver and three
warning types. The chart showing the selected fea-
ture’s behavior is depicted in Figure 4. The behavior

Hands-Free Warning 1 Warning 2

Not Hands-
Free

Warning 3
Eyes off Eyes off Eyes off

Eyes on

Eyes on

Driver input

Eyes off and invalid situation

Figure 4: Flow chart for the selected conflict resolution
strategies and warnings of the hands-free driving feature.

allowed by the model is as follows. Assume the start-
ing state is hands-free driving without interruption. If
the eyes are off the road, a first warning goes off. The
driver can resolve this conflict by looking back on the
road. A second warning appears if the conflict is not
resolved, meaning eyes are still not looking on the
road. Again, the situation can be solved by looking
back on the road. If that is not done, a third warning
happens. The system takes control of the car, includ-
ing decelerating, and this situation can only be solved
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by looking at the road. After a driver looks back on
the road, the assistance system enters a non-hands-
free-driving state. This takeover procedure can also
happen at any time if an invalid situation for the sys-
tem occurs and the eyes are not focused on the road.
If conflicts are resolved before a third warning, the car
continues driving hands-free without any warning.
The model is translated into a Petri net by also con-
sulting domain experts to check if the model and the
recorded behavior align with each other, i.e., apply-
ing conformance-checking techniques. To convert
this model into a Petri net, we assigned each state
a place and a marking, as shown in (Reisig, 1985).
The resulting Petri net is depicted in Figure 5. We
used τ-transitions since the reasons for starting the
takeover can not properly be defined using a single
transition and, therefore, can lead to an unreadable
model. Moreover, after consulting domain experts,
we introduced multiple transitions to reveal the input
that drivers do to turn the hands-free driving mode off.
By executing ”State 1,” ”State 2,” or ”State 3,” hands-
free driving is disabled. The first conflict state is en-
tered if the eyes are off, i.e., not focusing on the road.
The conflict can be resolved if a driver looks back on
the road, resulting in hands-free driving. The conflict
escalates to the next state if a driver still does not look
at the road. Again, the conflict can be resolved by
looking back on the road. If it is not resolved, ”Warn-
ing 3” happens, followed by ”State 3” and turning the
system off. This takeover procedure can also begin
in other states. Instead of modeling this procedure in
multiple states, we simplify the Petri net by using τ-
transitions, respectively, silent transitions. These tran-
sitions are represented as black-colored transitions in
Figure 5. In Petri nets, silent transitions provide a
flexible and expressive mechanism for modeling vari-
ous aspects of process behavior. They enable the rep-
resentation of internal actions, improving Petri nets’
modeling capabilities. Silent transitions, for exam-
ple, allow the synchronization of different parts of
the Petri net. They can be used to control the ex-
ecution of other transitions by requiring that certain
conditions or constraints be met before proceeding.
Silent transitions can act as synchronization points,
waiting for specific conditions to be met before allow-
ing subsequent transitions to fire. Using the formerly
created event log, we apply conformance-checking
techniques to this de-jure model. We load the de-
jure model and event log in ProM (van Dongen et al.,
2005). By using (Adriansyah et al., 2011), we ob-
serve a fitness score of 0.97, and by using (Adrian-
syah, 2014), we receive a precision score of 0.71 and
a generalization score of 1.

Warning 3

System
started

Eyes on

Warning 2

Takeover
warning

State 3

State 2

State 1

Warning 1

Eyes on

Takeover
warning

Takeover
warning

State 3

Figure 5: Petri net showing the behavior of the hands-free
driving system based on human design. After executing
”System started,” the vehicle is in the state of hands-free
driving.

5.2 Discovering the De-Facto Model

In contrast to constructing a Petri net from a preex-
isting description, we apply process-discovery tech-
niques to the former extracted event log (see Sec-
tion 4.2). We apply different process-discovery tech-
niques, each implemented in ProM (van Dongen
et al., 2005). Furthermore, we evaluate the models’
soundness, fitness, precision, and generalization ca-
pabilities using the implemented algorithms in ProM.
Concerning the region miner, a transition system was
mined by using the event name as a backward key
and a set abstraction of size one. Moreover, self-loops
were removed, and label-splitting was performed. As
denoted in Table 2, some algorithms lead to non-
workflow-net models or are unsound. These models
are not considered to be good candidates for explain-
ing the underlying behavior in the event log. Also,
as shown in Table 2, filtering influences fitness and
precision. More filtering leads to less fitting models,
but the models are more precise. The generalization
score is for every model the same. By considering
the scores and after consulting domain experts, the
model discovered by the region-based miner is cho-
sen as the best de-facto model. The model is depicted
in Figure 6. The model is not a directly-follows graph.
First, transition names appear multiple times. Second,
each state has a contextual meaning.
As shown in the model in Figure 5, after starting the
system, ”State 1,” ”State 2,” and ”State 3” can be exe-
cuted. Moreover, the first and second warnings can
be executed, as well as the procedure starting with
the third warning. Executing ”State 1,” ”State 2,”
or ”State 3” leads to the non-handsfree-driving state.
Firing any ”Warning 1” transition leads to the state in
which this warning is active. As described earlier, the
conflict can be resolved with ”Eyes on,” or the con-
flict can escalate with ”Warning 2.” However, there is
also the option of turning the hands-free driving sys-

Analyzing Cyber-Physical Systems in Cars: A Case Study

201



Table 2: Conformance checking results for de-jure model and different algorithms and filters. To check soundness, WOFLAN
is used (Verbeek et al., 2001). For fitness and alignments, (Adriansyah et al., 2011) is used. Concerning precision and
generalization, the work in (Adriansyah, 2014) is used.

Algorithm Filter parameter WF-net Sound Fitness Precision Generalization
Alpha - No - - - -
Alpha + - Yes No - - -
Alpha ++ - Yes No - - -
Region Miner - Yes Yes 0.99 0.78 1.00
Inductive Miner - Yes Yes 1.00 0.43 1.00
Inductive Miner Infrequent 0.2 Yes Yes 0.96 0.78 1.00
Inductive Miner Infrequent 0.4 Yes Yes 0.96 0.75 1.00
Inductive Miner Infrequent 0.6 Yes Yes 0.96 0.75 1.00
Inductive Miner Infrequent 0.8 Yes Yes 0.96 0.90 1.00
Directly-follows Miner - Yes Yes 1.00 0.77 1.00
Directly-follows Miner 0.8 (paths) Yes Yes 0.85 1.00 1.00
Directly-follows Miner 0.6 (paths) Yes Yes 0.85 1.00 1.00
Directly-follows Miner 0.4 (paths) Yes Yes 0.58 1.00 1.00
Directly-follows Miner 0.2 (paths) Yes Yes 0.58 1.00 1.00
De-Jure Model - Yes Yes 0.97 0.71 1.00

System
started

Warning 3

State 1

State 3

State 2

State 1

Warning 2

Warning 1 State 3

State 3

State 2

Warning 2 Eyes on

Eyes on

State 3 Warning 1

Warning 2

State 1

State 3

State 2

Figure 6: Petri net obtained by using the region-based
miner. The underlying transition system was built using the
event name as the backward key, set abstraction with size
one, and removal of self-loops. Also, label-splitting was
used.

tem off. By firing ”Warning 2,” all ways to deacti-
vate hands-free driving mode are executable; there-
fore, conflict resolution may not occur. If, at any
point, conflicts are resolved, the state is not the same
as after starting the system. The difference between
this conflict-resolved state and the initial hands-free
driving state is the possible execution of ”Warning 3.”
In the data, ”Warning 3” is executed only after the
system starts, without any conflict or conflict resolu-
tion. Therefore, this transition is only executable in
this position.

6 EVALUATION

In this section, we evaluate our results. In partic-
ular, we compare the conformance-checking results
of both models. Moreover, we discuss the differ-
ences between the models and highlight the reasons
for these.

As mentioned earlier, the fitness score of the de-
jure model is 0.97, with a precision score of 0.71 and a
generalization score of 1. For the de-facto model, the
fitness, precision, and generalization scores are 0.99,
0.78, and 1. While precision and generalization have
similar scores, the difference in fitness is caused by
different conflict-resolution strategies and by directly
firing ”Warning 2” before firing ”Warning 1.”

We presented the models to domain experts and
discussed the differences, The first deviation deals
with conflict resolution strategies. Applying process-
mining techniques to the data shows that the system
can be turned off during a conflict. This conflict
resolution strategy contrasts the designed way. De-
signed is the conflict resolution strategy by looking
back on the road. However, domain experts clari-
fied that turning the system off is possible but was
not captured in the state model we used for the de-
jure model. The second deviation is skipping ”Warn-
ing 1” and directly executing ”Warning 2.” Domain
experts clarified that logging can be too imprecise to
capture ”Warning 1.” Therefore, the first warning hap-
pens but is not captured. The third and last deviation
focus on the takeover procedure. The de-facto model
shows that this procedure can only happen if no other
event occurs after the system starts. The reason is the
underlying data. The procedure is executed after the
system starts and only appears once in the data. As
a result, this procedure can only be executed in the
model after the system has been started. In general,
the discovered process model captures more behavior
than was initially captured by humans. The reason is
that domain experts may skip notating some informa-
tion at this level of design and prioritize clarity of the
design by avoiding notation clutter. Although other
documents are available, they are closer to the imple-
mentation level and do not suit our purpose.
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7 DISCUSSION

In this section, we summarize our results and pro-
vide pointers for future work. In this work, we
demonstrated how to enrich and transform continuous
data recorded by cyber-physical systems into an event
log. We applied process-discovery and conformance-
checking techniques on the created event log, result-
ing in the best de-facto model for domain experts.
Furthermore, we transformed an existing model de-
scribing the hands-free driving system into a Petri
net. In addition, we applied conformance checking
on the de-jure model using the created event log. We
compared the models and explained their differences.
As denoted, the de-facto model shows more behavior
than the de-jure model, but domain experts explained
that.

In general, we demonstrated that applying process
mining in the cyber-physical systems domain is valu-
able. By applying conformance checking, we veri-
fied that the de-jure model is close to reality. In ad-
dition, by applying process-discovery techniques, we
revealed that drivers’ behavior differs from the behav-
ior that the initial behavioral model assumed. As a
result, we are confident that applying process-mining
to other systems is beneficial to understand if the de-
signed behavior matches reality and what the actual
behavior looks like. To the best of our knowledge, we
are the first that applied process-mining techniques on
connected-vehicle data.

Nevertheless, there are still open challenges and
pointers for future work. First, the de-facto model
depicts multiple decision points, for example, firing
”Warning 2” or ”Eyes on.” Thus, applying decision
mining to find out why specific actions are taken
seems interesting to understand the drivers’ behavior
better. The enhanced information may help to under-
stand the behavior better. Second, exploring how long
vehicles are in a particular state is interesting to get
insights into the features’ usage. Third, the takeover
procedure is more complex and consists of multiple
sub-processes. Modeling the procedure and prepro-
cessing the data to capture this procedure are interest-
ing to receive a complete picture of the interactions
between driver and car. Fourth, cars transmit an enor-
mous amount of data. The amount of received data
will increase in the future. Therefore, there is a need
to evaluate if our proposed approach can handle such
volumes. Also, applying the techniques in a stream-
ing setting seems beneficial, for example, to faster an-
alyze the system. Finally, we modeled one feature of
cars as one system. However, cars consist of multiple
systems that interact with each other. An approach
that reveals such interactions of systems is presented

in (van Eck et al., 2016a). Applying the idea of the
mentioned work in this car-related setting can lead to
more and deeper insights.
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