TraVaG: Differentially Private Trace Variant
Generation Using GANs

Majid Rafiei 2/ 8 Frederik Wangelik =/ , Mahsa Pourbafrani , and Wil M.P.
van der Aalst

Chair of Process and Data Science, RWTH Aachen University, Aachen, Germany

Abstract. Process mining is rapidly growing in the industry. Conse-
quently, privacy concerns regarding sensitive and private information in-
cluded in event data, used by process mining algorithms, are becoming
increasingly relevant. State-of-the-art research mainly focuses on provid-
ing privacy guarantees, e.g., differential privacy, for trace variants that
are used by the main process mining techniques, e.g., process discov-
ery. However, privacy preservation techniques for releasing trace variants
still do not fulfill all the requirements of industry-scale usage. Moreover,
providing privacy guarantees when there exists a high rate of infrequent
trace variants is still a challenge. In this paper, we introduce TraVaG as a
new approach for releasing differentially private trace variants based on
Generative Adversarial Networks (GANs) that provides industry-scale
benefits and enhances the level of privacy guarantees when there exists
a high ratio of infrequent variants. Moreover, TraVaG overcomes short-
comings of conventional privacy preservation techniques such as bound-
ing the length of variants and introducing fake variants. Experimental
results on real-life event data show that our approach outperforms state-
of-the-art techniques in terms of privacy guarantees, plain data utility
preservation, and result utility preservation.

Keywords: Process Mining - Event Data - Differential Privacy - GANs
- Machine Learning - Autoencoder

1 Introduction

Process mining is a family of data-driven techniques for business process discov-
ery, analysis, and improvement. Process mining techniques require event data,
which are widely available in most information systems, including ERP, SCM,
and CRM systems. During the last decade, process mining has been successfully
deployed in many industries, and it has become a crucial success factor for any
type of business. Similar to any data-driven technique in the larger area of data
science, concerns about the privacy of people whose data are processed by pro-
cess mining algorithms are developing as the amount of event data and their
usage rise. Thus, privacy regulations, e.g., GDPR [10], restrict data storage and
process, which motivates the development of privacy preservation techniques.
Modern privacy preservation methods are mostly based on Differential Pri-
vacy (DP), which provides a privacy definition by introducing noise into data.

https://orcid.org/0000-0001-7161-6927
mailto:majid.rafiei@pads.rwth-aachen.de
https://orcid.org/0000-0001-6320-2302
https://orcid.org/0000-0002-7883-1627
https://orcid.org/0000-0002-0955-6940

2 M. Rafiei et al.

Table 1: A simple event log from the healthcare context, including trace variants and their frequen-
cies.

Trace Variant Frequency
(register, visit, blood-test, visit, release) 15
(register, blood-test, visit, release) 12
(register, visit, hospitalization, surgery, release) 5
(register, visit, blood-test, blood-test, release) 2

This is because of its significant properties, including its ability to ensure math-
ematically proven privacy and protect against PSO (predicate-singling-out) at-
tacks [5]. The purpose of DP-based approaches is to inject noise into the released
output in order to conceal the involvement of an individual. State-of-the-art re-
search in process mining leveraging privacy preservation techniques based on DP
focuses on releasing distributions of trace variants, which serve as the foundation
for core process mining techniques such as process discovery and conformance
checking [1]. A trace variant refers to a complete sequence of activities performed
for an individual that is considered to be sensitive and private information. In
the healthcare context, for instance, a trace variant shows a complete sequence of
treatment-related activities performed for a patient that is private information
itself and can also be exploited to conclude other sensitive information, e.g., the
disease of the patient. Table [I] shows a small sample of a trace variant distri-
bution in the healthcare context. Note that in a trace variant distribution, each
trace variant is associated with an individual, a so-called case. Moreover, each
case has precisely one trace variant.

To achieve DP for trace variants, conventional so-called prefiz-based ap-
proaches inject noise drawn from a Laplacian distribution into the variant dis-
tribution obtained from an event log [11}21]. These approaches need to generate
all possible unique variants based on a set of activities to provide differential
privacy for the original distribution of variants. Since the set of possible variants
that can be generated given a set of activities is infinite, prefix-based techniques
need to limit the length of generated sequences. Also, to limit the search space,
these approaches typically include a pruning parameter to exclude less frequent
prefixes. Such a process to obtain DP has a high computational complexity and
results in the following drawbacks: (1) introducing fake variants, (2) removing
frequent true variants, and (3) having limited length for generated variants.

Several approaches have been proposed to partially or entirely address the
aforementioned drawbacks. A method, called SaCoFa [11], aims to mitigate draw-
backs (1) and (2) by gaining knowledge regarding the underlying process seman-
tics from the original event data. However, the privacy quantification of all extra
queries to gain knowledge regarding the underlying semantics is not discussed.
Moreover, the third drawback still remains since this work itself is a prefix-
based approach. In [9] and a technique called Libra [§], which is based on [9],
trace variants are converted to a DAFSA (Deterministic Acyclic Finite State
Automata) representation to avoid such drawbacks. However, Libra introduces
a clipping parameter for removing infrequent variants. This clipping parameter
grows based on the number of unique trace variants and the strength of privacy
guarantees. Thus, depending on the number of unique trace variants and privacy

TraVaG: Differentially Private Trace Variant Generation Using GANs 3

parameters, Libra may even remove all the variants and return empty outputs. A
recent work called TraVaS [25] proposes an approach based on differentially pri-
vate partition selection strategies to overcome the above-mentioned drawbacks.
Similar to Libra, TraVaS also removes infrequent trace variants. However, in
TraVaS, the threshold for removing infrequent variants is only dependent on the
input privacy parameters and does not grow with the number of unique variants
or the size of event data. Yet, for small event data with a high rate of unique
trace variants, TraVaS may not be able to provide strong privacy guarantees.

In this paper, we introduce TraVaG to generate differentially private trace
variants from an original variant distribution by means of GANs (Generative
Adversarial Networks) [13]. The main idea of TraVaG is to privately learn im-
portant event data characteristics. The trained GAN enables the generation of
new synthetic anonymized variants that are statistically similar to the original
data. Trained generative models work without data access. Thus, as long as the
statistical characteristics of the original data do not significantly change, one
does not need to apply DP directly to the original event data. For industry-scale
big event data, this property can considerably improve the computational com-
plexities |22]. Moreover, TraVaG is based on DP-SGD (Differentially Private -
Stochastic Gradient Descent) [2] optimization techniques that avoid threshold-
ing on training data or released network outputs. Hence, TraVaG can generate
infinite and arbitrarily large anonymized synthetic trace variants even if the
original variant frequencies are comparably small. Moreover, our experiments
on real-life event logs demonstrate a better performance of TraVaG compared
to state-of-the-art techniques in terms of data utility preservation for the same
privacy guarantees.

The remainder of this paper is structured as follows. In Section [2| we provide
a summary of related work. Preliminaries are provided in Section [3] In Section
we present the details of TraVaG. Section [5| discusses the experimental results
based on real-life event logs, and Section [f] concludes the paper.

2 Related Work

Privacy-preserving process mining is recently growing in importance. Several
techniques have been proposed to address privacy issues in process mining. In the
following, we provide a summary of the work focusing on releasing differentially
private event data and generating differentially private event data.

2.1 Releasing Differentially Private Event Data

In [21], the authors apply an (e,d)-DP mechanism to event logs to privatize
directly-follows relations and trace variants. The underlying principle uses a com-
bination of an (¢, 0)-DP noise generator and an iterative query engine that allows
an anonymized publication of trace variants with an upper bound on their length.
In [11], SaCoFa has been introduced as an extension of [21], where the goal is
to optimize the query structures with the help of underlying semantics. All the

4 M. Rafiei et al.

aforementioned techniques follow the so-called prefix-based approach that suf-
fers from the drawbacks explained in Section [I] To deal with such drawbacks,
in 9], the authors introduced an approach that transforms a trace variant distri-
bution into a DAFSA representation. This approach aims to keep all the original
trace variants that may result in high noise injection during the anonymization
process. Libra [8] is a recent work that employs the approach proposed in [9]
and aims to increase utility using subsampling and composing privatized sub-
samples to release differentially private event data. TraVaS [25] introduces a
novel approach based on differentially private partition selection to address the
mentioned drawbacks in Section [

2.2 Generating Differentially Private Synthetic Data

Although DP-based generative Artificial Neural Networks (ANNs) have been
quite extensively researched in the major field of data science and machine learn-
ing, they have not been used in the context of process mining. Thus, we mainly
focus on some of the work outside the domain of process mining. In [4], the
authors adopted a so-called variational autoencoder, DP-VAE, which assumes
that the mapping from real data to the Gaussian distribution can be efficiently
learned. A different direction was then chosen by [12], where the authors used
a Wasserstein GAN (WGAN) to generate differentially private mixed-type syn-
thetic outputs employing a Wasserstein-distance-based loss function. Finally,
in [27], the concepts of WGAN and DP-VAE were combined to first learn a pri-
vate data encoding and then generate respective encoded data. We adapted this
principle for our work to cope with the large dimensionality of event data.

Research in non-private generative models for process mining, primarily fo-
cuses on exploiting ANNs and GANs to predict the next state of processes such
as |17], and [19]. Note that the approach in [17] only provides synthetic event
data without any privacy guarantees.

3 Preliminaries

We start the preliminaries by introducing basic notations and mathematical
concepts. Let A be a set. B(A) is the set of all multisets over A. Given B; and
By as two multisets, By W By is the sum over multisets, e.g., [a?, b%] & [b?, c?] =
[a%,b5, c?]. We define a finite sequence over A of length n as o=(a1,as,...,a,)
where o(i)=a,€A for all i€{1,2,...,n}. The set of all finite sequences over A is
denoted with A*.

3.1 Event Log

Process mining techniques employ event data that are typically collections of
unique events recorded per activity execution and characterized by their at-
tributes, e.g., activity and timestamp. Events in an event log have to be unique.
A trace is a single process execution represented as a sequence of events belong-
ing to a case (individual) and having a fixed ordering based on timestamps. An

TraVaG: Differentially Private Trace Variant Generation Using GANs 5

event cannot appear in more than one trace or multiple times in one trace. Our
work focuses on the control-flow aspect of an event log that only considers the
activity attribute of events in a trace, so-called a trace variant. Thus, we define
a simple event log based on activity sequences, so-called trace variants.

Definition 1 (Simple Event Log). Let A be the universe of activities. A simple
event log L is defined as a multiset of trace variants A*, i.e., L € B(A"). L denotes
the universe of simple event logs.

In a simple event log representing a distribution of trace variants, one case,
which refers to an individual, cannot contribute to more than one trace variant.

3.2 Differential Privacy (DP)

The main idea of DP is to inject noise into the original data in such a way
that an observer who sees the randomized output cannot with certainty tell if
the information of a specific individual is included in the data [7]. Considering
simple event logs, as our sensitive event data, we define differential privacy in
Definition 2

Definition 2 ((€,0)-DP for Event Logs). Let L1 and Lo be two neighboring
event logs that differ only in a single entry, i.e., Lo=L1W[o]| for any c€A*. Also, let
€€R~o and §€R~g be two privacy parameters. A randomized mechanism M. s:L—L
provides (€,8)-DP if for all SCB(A*): PriM.cs(L1) € S| < e xPr[M.s(L2) € S]+4.

In Definition [2] € specifies the probability ratio, and § allows for a linear
violation. In the strict case of 6 = 0, M offers e-DP. The randomness of re-
spective mechanisms is typically ensured by the noise drawn from a probability
distribution that perturbs original variant-frequency tuples and results in non-
deterministic outputs. The smaller the privacy parameters are set, the more
noise is injected into the mechanism outputs, entailing a decreasing likelihood
of tracing back the instance existence based on outputs.

3.3 Generative Adversarial Networks (GANs)

A generative adversarial network (GAN) represents a special type of ANN com-
pound to synthesize similar data to its original input. It comprises two separate
ANNs, a generator and a discriminator [13]. The training principle follows a
two-player game: a generator tries to fool the discriminator by generating au-
thentic fake data while a discriminator tries to distinguish between real and fake
results. A generator gen : Z™ — R™ and a discriminator dis : R™ — {0,1} can
be described as highly parametrizable functions. Here, a generator gen is seeded
with random multivariate Gaussian noise z € Z™ of user-defined dimension m
that is translated into a synthetic desired output. A discriminator dis aims to
determine whether its input originates from the generator’s output. In a simple
form, it outputs a binary decision variable, where 0 means the input is fake and
1 means the input is original data. In our work, we apply a GAN architecture
to synthesize event data.

6 M. Rafiei et al.

3.4 Autoencoder

An autoencoder is a certain type of ANN structure used to learn efficient encod-
ings of unlabeled data [15]. The respective encoding is validated and optimized
by attempting to regenerate the input from the encoding by decoding. The au-
toencoder learns the encoding for a set of data to typically provide dimensionality
reduction. As a result, an autoencoder always consists of two separate ANNs,
an encoder enc : R® — R? and a decoder dec : R — R™. These components
allow for transforming high-dimensional data x € R™ to a compact representa-
tion within the so-called latent space R? and vice versa (typically d < n). The
specific mappings of enc and dec are characterized by the network’s weights and
learned from the data during the training phase. For our work, we employ an
autoencoder structure to achieve a compressed encoding of input event data.

4 TraVaG

As presented in Section [2] DP-based generative networks have been extensively
researched outside of the process mining context. Typical approaches either
adopt variational autoencoder architectures that leverage both encoder and de-
coder components or GAN architectures employing a discriminator and a gen-
erator part. When transferring these ideas to event data, one crucial aspect is
the high-dimensional structure that turns out to be challenging during training,
particularly if strong DP is added. Thus, we follow the approach of the novel
work [27] and [14] that combines the compression functionality of autoencoders
with the flexibility of GANs and demonstrated superior performance for gen-
eral high-dimensional mix-type input data [27]. Instead of directly generating
new event logs, we first learn a compressed encoding and then train a GAN
to reproduce data within the encoded latent space. Final datasets are obtained
by decoding back the dimension-reduced intermediate format. This principle
mitigates the complication of GANs when extracting statistical properties from
feature-rich data that is limited in size. Particularly, sparse features can be com-
pressed without significant loss of information, while generator networks improve
their learning performance due to the lower dimension. Moreover, no Gaussian
Mixture distribution is enforced on the latent space, as is the case for typical
generative stand-alone autoencoder methods [4].

4.1 The TraVaG Framework

Different components and the workflow of our framework are shown in Figure
We start with preprocessing a simple event log that contains variant distributions
in the form of variant-frequency pairs. There are two common possibilities. The
first option considers the activities within variants and extracts all subsequences
of direct neighbors, i.e., Directly-Follows Relations (DFRs). These DFRs are
then mapped to a binary or number space and either fed into a GAN as a
single feature or as two features along with their frequencies. A downside of this

TraVaG: Differentially Private Trace Variant Generation Using GANs 7

N
‘ u Autoencoder Training

GAN Training

Event Log Dim — Reduce Dim — Reduce
Encoder Latent Space Decoder g7,
enc() dec() @ dec(gen(z)) € R" »
7 enc:R" - R? dec:R? - R" z
Variant One- B Variant One- =
Hot Encoding Autoencoder Hot Decoder p
X1,) X € R® gen(z) € RY ;

Gaussian Noise } Generator GAN Training
z~N } Network u

Application

gen()
gen: 2 SRe Anonymized
Event Log
Discriminator dec(gen(z)) € R*
Network fé\ (gen@)
dis| VY
0 A4 Privately Training 4 (@)
A4

dis: R™ - {0,1}
GAN

Fig. 1: A simplified workflow diagram of the TraVaG training and application processes.

method is that the generator serves as a sequence constructor which allows the
creation of artificial variants in the postprocessing phase where all generated
activity pairs are linked back together. To avoid creating fake trace variants, we
choose the second option, where only complete variants are considered as inputs.
Therefore, a simple event log L with n variants and m cases is binary-encoded as
follows. Within a m x n matrix, each variant represents a binary feature column
and each case denotes a row instance that contains 1 at the respective variant
column and 0 elsewhere (sparse matrix). Analogously, this transformation can
be inverted back to the original data space. Thus, TraVaG never produces fake
trace variants. Also, one-hot encoding does not influence the data statistics and
hence does not incur any privacy costs. We refer to this preprocessing procedure
as one-hot encoding and one-hot decoding.

We perform two main training phases including autoencoder training (blue
parts) and GANs training (purple parts). Since the focus of this work is on
the privacy aspect, we describe the privately trained components in more de-
tail. A detailed algorithmic explanation of the training components including
the structure of the networks, parameter tuning, activation functions, loss mea-
sures, and optimizations is provided in our supplementary documentEl After the
preprocessing, the sparse binary variant vectors i . ..x,, €R" are forwarded to
the autoencoder training phase, including an encoder and a decoder component.
These components allow for transforming high-dimensional data z;ER™ to a
compact representation within the so-called latent space R? and vice versa, s.t.,
d < n. The dimension d is a hyperparameter of the autoencoder and needs to be
selected w.r.t. the GANs configuration. Since the encoder does not participate
in the process of training the GAN or synthesizing new event data, it does not
need to be optimized privately . The decoder is strongly involved in the

1 https://github.com/wangelik/TraVaG/blob/main/supplementary/TraVaG.pdf

https://github.com/wangelik/TraVaG/blob/main/supplementary/TraVaG.pdf

8 M. Rafiei et al.

anonymization process and is released to the public. Thus, the training of the
decoder is performed privately by means of DP-SGD (see Section [4.2)).

The same one-hot encoded data ...z, € R"™ are used to train a GAN
consisting of two feed-forward ANNSs; a generator gen : 22 — R? and a discrim-
inator dis : R™ — {0,1}. The goal of the generator gen is to construct synthetic
data within the output space R? that are similar to the compressed variants. It
is seeded with random multivariate Gaussian noise z of a user-defined dimen-
sion. The discriminator dis aims at determining whether its input originates
from the decompressed generator output dec(gen(.)) or from the original data
source z;,1 < i < m. Both components are parameterized by their network
weights and trained iteratively to outplay each other. Whereas the generator
attempts to find latent space outputs that are hard to distinguish from real en-
coded data by the discriminator, the latter tries to expose these synthetic data
records. Eventually, this principle enables the generator to learn and capture the
statistical properties of the input variant distribution through the lenses of the
autoencoder. Note that due to the integrated autoencoder, the generator only
targets the latent space R? which is much easier to achieve than constructing
data in R™. Also, it averts to access the real confidential data space and does
not need to be trained with DP as opposed to the discriminator that is again
privately optimized with DP-SGD algorithms [27].

Once both the autoencoder and GAN are trained, one can generate new syn-
thetic anonymized event data (orange parts). The underlying mechanism equals
the training step of the generator. Starting with a random Gaussian noise sample
z, this noise becomes digested by the generator, yielding gen(z). From the latent
space, the decoder then maps gen(z) to dec(gen(z)). Finally, the synthetic one-
hot encoded result is transformed back to the variant universe. One compelling
advantage of TraVaG lies in the underlying data format. Since the feature space
represents the different variants of the original data, TraVaG considers them as
given and only has to learn their distribution during training. When applied, the
framework reconstructs an anonymized version of this distribution over multiple
runs without introducing new variants. The more synthetic data are created,
the better the consolidated TraVaG output, i.e., new anonymized variants bet-
ter approximate the original variant distribution. Note that this process does
not converge to the true variant frequencies, but to the TraVaG-internal learned
anonymous version. Thus, it is recommended to run TraVaG at least as often as
the number of cases in the original event log. In case smaller privatized datasets
are needed, the output can be down-sampled during postprocessing rounds.

4.2 Differentially Private - Stochastic Gradient Descent (DP-SGD)

To render SGD differentially private, Abadi et al. [2] proposed the following two
steps. Given a dataset X = {z; € R" | 1 <i <m}, f as aloss function, and 6 as
the model parameter. First, the gradient g; = Vy fo(x;) of each data sample x;
is clipped at some real value C € R+ to ensure its L?-norm of the gradient does

TraVaG: Differentially Private Trace Variant Generation Using GANs 9

not exceed the clipping value. For our work, we refer to the following clipping
functiOIﬁ clip(g;, C) = g; - min (1, C/||g;||2)-

Then, as Equation [I] shows, multivariate Gaussian noise parametrized by a
noise multiplier @ € R is added to the clipped gradient vectors before averaging
over the batch B C X. We further denote the identity matrix as I and the
Gaussian distribution of unspecified dimension as N.

95 + 151 (Zcp clin(Ve fo (i), C) + N (0, C*9%1)) (1)
The noisy-clipped-averaged gradient gg is now differentially private and can
be used for conventional descent steps: 8 <— 8 — 1 - g, where 7 is the so-called
learning rate. Note that clipping the individual gradients as in Equation [I] can
also be replaced by instead clipping gradients of groups of more data points, so-
called microbatches |22]. Instead of the common DP parameters € and ¢, DP-SGD
uses the related noise multiplier @. When translating between these two types of
settings, novel research has demonstrated a tighter privacy bound if the batch
sampling process for B is conducted according to a specific procedure |2]. This
procedure independently selects each data point of X with a fixed probability g,
the so-called sampling rate, in each step.

4.3 Privacy Accounting

To evaluate the exact privacy guarantee provided by DP-SGD algorithms, we
employ the so-called Renyi Differential Privacy (RDP) 23], a different notion of
DP typically used for private optimization. RDP is defined based on the concept
of Renyi divergence. Given two probability distributions P and @, the Renyi

divergence of order « is defined as follows: D, (P||Q) := -5 log Eznq (gg;)a

Definition 3 ((«a,¢)-RDP for Event Logs). Let L1 and La be two neighboring
event logs that differ only in a single entry, e.g., La=L1W[o] for any c€A*. Given
a > 1 and € € Rso, a randomized mechanism Maq,e:L—L provides (o, €)-RDP if
Do(M(Ly)|[|M(L2)) < e.

To obtain the final (¢, §)-DP parameters, we employ the following two propo-
sitions on the composition of («, €)-RDP mechanisms and the conversion of («, €)-
RDP parameters to (¢, 6)-DP parameters.

Proposition 1 (Composition of RDP [23]). If M1 and M2 are two (o, €1)-
RDP and (a,€2)-RDP mechanisms for o > 1, respectively. Then, the composition of
M1 and Ms satisfies (o, €1 + €2)-RDP.

Proposition 2 (RDP Parameter Conversion [23]). If a mechanism M satis-
fies (o, €)-RDP with o > 1, then for all § > 0, M satisfies (e+(log1/d)/(c—1),5)-DP.

During an iterative application of Gaussian mechanisms, as is the case in DP-
SGD, the Renyi divergence allows more tightly capturing of the corresponding
privacy loss than standard (e, d)-DP. To compute the final (¢, §)-DP parameters
from multiple runs of DP-SGD, the following three steps are followed.

2 Note that also other clipping strategies exist, as highlighted in |22].

10 M. Rafiei et al.

1. Subsampled RDP. Given a sampling rate ¢ and noise multiplier ¢, the RDP
privacy parameters for one iteration of DP-SGD can be derived as a non-explicit
integral function of o > 1 [23]. This function is standardized in many privacy-
related optimization packages and will be referred to as RDP1(q, ®) [2].

2. RDP Composition. Since DP-SGD is most likely to run iteratively, we need to
compose Step 1 over all executions according to Proposition[I] Hence, the resulting
RDP parameters of T iterations are obtained by computing RDPr(q,®,T) :=
RDP1(q,®) - T.

3. Conversion to (¢,0)-DP. After retrieving an expression for the overall RDP
privacy parameters with RDPr, we need to convert the respective («, €) tuple to a
(e,0) guarantee according to Proposition [2| Since the € parameter of RDP is also
a function of a, Step 3 involves optimizing for « to achieve a minimal € and §.

We apply this procedure to obtain the respective privacy guarantees (e, d)-
DP on both the autoencoder and the GAN-based discriminator of TraVaG. The
resulting values are then combined into a final privacy cost by the composition
theorem of DP [7]. According to the composition theorem, different (e, d)-DP
mechanisms can be easily combined into more complex algorithms at the cost
of a directly measurable cumulative privacy loss, and the result still promises
(e,0)-DP independent of the exact form of composition or query structure.

5 Experiments

We evaluate the performance of TraVaG on real-life event logs. We select two
event logs of varying sizes and trace uniqueness. As we discussed in Section
and stated in other research such as [21], |11], and [8] infrequent variants are
challenging to privatize. Thus, trace uniqueness is an important analysis crite-
rion. The Sepsis log describes hospital processes for Sepsis patients and contains
many rare traces [20]. In contrast, BPIC13 has significantly more cases at a four
times smaller trace uniqueness [6]. BPIC13 describes an incident and problem
management system called VINST. Both logs are realistic examples of confiden-
tial human-centered information where the case identifiers refer to individuals.
Table [2[shows detailed log statistics.

We perform our evaluation for a wide range of the main privacy param-
eters €€{0.01,0.1,1,2} and §€{107¢,1075,107%,1072,0.01}. These ranges are
selected in accordance with typical values employed at industrial applications
as well as state-of-the-art DP research [8}[11,21}|26]. We particularly note that
extreme settings such as € = 2,6 = 0.5 are not chosen due to practical relevance,
but to demonstrate how the anonymization methods behave when starting from
a weak- or non-private environment. Due to the probabilistic nature of (e, d)-
DP, we run the TraVaG generator 100 times on all input event logs and all

Table 2: General statistics of the event logs used in our experiments.
Event Log|#Events|#Cases|# Activities|# Variants| Trace Uniqueness
Sepsis 15214 1050 16 846 80%
BPIC13 | 65533 | 7554 4 1511 20%

TraVaG: Differentially Private Trace Variant Generation Using GANs 11

privacy parameters and report the average values. We compare our results with
TraVa$S [25] as a state-of-the-art technique and the original prefix-based frame-
work called benchmark |21|E| The sequence cutoff for the benchmark method
is set to the length that covers 80% of variants in each log, and the remaining
pruning parameter is adjusted such that on average anonymized logs contain a
comparable number of variants with the given original log. The ANNs of TraVaG
are configured by a semi-automated tuning approach w.r.t the different input
logs. Whereas most design decisions and hyperparameters are tweaked accord-
ing to results of manual tests as well as research experience, the settings: batch
size (B), number of iterations (I) and noise multiplier ($) are automatically
optimized via a grid-search [18] for fixed privacy levels. A detailed list of the de-
rived settings for each event log, the concrete network designs, and configuration
values are available on GitHub[]

5.1 Evaluation Measures

Suitable evaluation measures are required to assess the performance of an (e, §)-
DP mechanism in terms of data (result) utility preservation. The data utility
perspective measures the similarity between two logs independent of future ap-
plications. For evaluating data utility we employ the following measures: relative
log similarity [24,25] and absolute log difference |25]. Relative log similarity mea-
sures the earth mover’s distance between two trace variant distributions, where
the normalized Levenshtein string edit distance is used as a similarity function
between trace variants. This measure quantifies the degree to which the variant
distribution of an anonymized log matches the original variant distribution on
a scale from 0 to 1. Absolute log difference accounts for the situations where
distribution-based measures provide misleading expressiveness [25]. Exemplary
cases are event logs possessing similar variant distributions, but significantly dif-
ferent sizes. To calculate an absolute log difference value, we use the approach
introduced in [25], where input logs are converted to a bipartite graph of variants
as vertices. Then, a cost network flow problem is solved by setting demands and
supplies to the absolute variant frequencies and utilizing a Levenshtein distance
between variants as an edge cost. Thus, the result of this measure shows the min-
imal number of Levenshtein operations to transform variants of an anonymized
log into variants of the original log. Details of the exact algorithms are availableﬂ

We additionally evaluate the performance of TraVaG in terms of result utility
preservation for process discovery as a specific application of trace variant distri-
bution. In this respect, we use the inductive miner infrequent [16] with a default
noise threshold of 20% to discover process models from the privatized event logs

3 Note that in |25], TraVaS was already compared with SaCoFa [11| and benchmark |21] and showed
better performance. Here, the benchmark method is included for easier comparison. Moreover,
Libra [8] does not take € as an input parameter but computes it based on a as an RDP parameter
and its sampling strategy. This makes the comparison based on exact ¢ and § parameters very
difficult. Nevertheless, an important observation in contrast to TraVaG is that Libra returns an
empty log for event logs with many infrequent variants, such as Sepsis when § < 1072.

4 https://github.com/wangelik/TraVaG/blob/main/supplementary/TraVaG.pdf
5 https://github.com/wangelik/TraVaG/blob/main/supplementary/metrics.pdf

https://github.com/wangelik/TraVaG/blob/main/supplementary/TraVaG.pdf
https://github.com/wangelik/TraVaG/blob/main/supplementary/metrics.pdf

12 M. Rafiei et al.

TraVaG Travas Benchmark

... . - ...

10

08 2
o7§
us“‘

0527 n

—04 &
ﬂ = .-. N
-02

001 0001 00001 1e05 1le-06

°

001 0001 00001 1e05 1e-06

5 5
Aosolute Log Difrence

2

<

10¢

001 0001 00001 1e05 le-06 0001 00001 1e05 1e-06

001 0001 00001 1e05 1e-06
Delta

Fig. 2: The relative log similarity and absolute log difference results of anonymized BPIC13 logs
generated by TraVaG, TraVaS, and the benchmark method. Each value represents the mean of 100
generations for TraVaG and 10 algorithm runs for TraVaS and the benchmark method.

for all (e, d) settings under investigation. Then, we compare the models with the
original event log to obtain token-based replay fitness and precision scores [1].

5.2 Data Utility Analysis

In this subsection, the results of the two aforementioned data utility metrics
are presented for both real-life event logs. Figure 2] shows the average results
on BPICI13 in a six-fold heatmap. The gray fields at the TraVaS and bench-
mark methods denote an unsuccessful algorithm execution. For § < 1073, the
thresholding of TraVaS becomes too strict and removes many variants in the
anonymized outputs. On the contrary, the benchmark method introduces artifi-
cial variants and noise to an extent that is unfeasible to average within reason-
able time and accuracy. In opposition, TraVaG successfully manages to generate
anonymized outputs for § < 1073, More importantly, both results of relative log
similarity and absolute log difference do not illustrate clear decreasing trends on
lower ¢ within the investigated parameter range. We explain this expected ob-
servation by the fact that TraVaG avoids any pruning mechanism on its output
and implements less §-dependent Gaussian noise via RDP into the gradients (see
Section and [23]).

Whereas the absolute log difference results maintain a rather stable output
for the different (e, d) values, the TraVaG relative log similarity presents a strong
positive e-dependency. As a result, the absolute statistics (absolute Levenshtein
distances and absolute frequencies) of the anonymized event data seem to be
more similar to the original logs as the variant distributions. A rationale for
this discrepancy lies in the still comparably small dataset with 7554 instances
over 1511 variants (features). By construction, TraVaG accomplishes reproduc-
ing equally sized event logs containing many original variants but fails to pick
up some characteristics of the underlying distribution once the input data or the

TraVaG: Differentially Private Trace Variant Generation Using GANs 13

TraVaG Travas Benchmark

0001 00001 1e-05 1le06

10¢

001 0001 00001 1e-05 1e-06 001 0001 0.0001 le-05 001 0001 00001 1e-05 1le-06

Delta

Fig. 3: The relative log similarity and absolute log difference results of anonymized Sepsis logs
generated by TraVaG, TraVaS, and the benchmark method. Each value represents the mean of 100
generations for TraVaG and 10 algorithm runs for TraVaS and the benchmark method.

training iterations are limited. Hence, we expect this diverging trend to diminish
with increasing training data.

The data utility results for the Sepsis log are presented in Figure [3] With
only 1050 instances at 846 variants (features), this dataset is even smaller and
thus more difficult to train for TraVaG than BPIC13. As a result, we observe
similar, but more pronounced behavior of relative log similarity and absolute
log difference metrics compared to Figure[2] An extreme example are the results
at € = 0.01,5 < 1072, where the introduced gradient noise turned out as too
intense for the generative model to converge under the given training data size.
For the remaining privacy settings, TraVaG again outperforms its competitors
at the absolute log statistics while the relative log similarity performs slightly
better than TraVaS and at the same order as the benchmark results for € > 0.1.

5.3 Process Discovery Analysis

Figure[dillustrates the result utility analysis of TraVaG, TraVasS, and the bench-
mark on BPIC13. As discussed in Subsection TraVaG successfully manages
to produce results for § < 10~ where the other methods are not applicable. Ex-
cept for the three outliers at ¢ = 0.1, both fitness and precision show a stable dis-
tribution without considerable dependence on the different privacy parameters.
In accordance with Figure [2| we thus conclude that the absolute log difference
provides a better proxy for process-discovery-based performance of TraVaG than
relative log similarity. Similarly, the strong scores on both metrics demonstrate
a sufficient replay behavior between the model obtained from an anonymized log
and the original log. Whereas fitness denotes that the process model still captures
most of the real underlying event data, precision depicts only a small fraction of
model decisions, not being included in the anonymized event log. Consequently,
TraVaG accomplishes learning the most important facets of the BPIC13 variant
distribution for the discovery algorithm to produce a fitted model. When com-

14 M. Rafiei et al.

TravaG Travas Benchmark
- 1.00

-0.98
-0.96

-0.94

Epsilon
Fitness

-0.92

-0.90

-0.88

-0.86

- 0.90

-0.85

-0.80

075

on

LoroZ

Epsilon
Pre

-0.65

-0.60

-0.55

-0.50

001 0001 00001 le-05 1e06 001 0001 00001 1e05 1e-06 - 00001 1e-05 1e-06
Delta Delta Delta

Fig. 4: The fitness and precision results of anonymized BPIC13 event logs generated by TraVaG,
TraVa$S, and the benchmark method. Each value represents the mean of 100 generations for TraVaG
and 10 algorithm runs for TraVaS and the benchmark method.

TraVaG TraVas Benchmark

-0.60

001 0001 00001 1le05 1e06 001 0001 00001 1e05 1e-06 001 0001 00001 1e-05 1e-06
Delta

Delta Delta

Fig.5: The fitness and precision results of anonymized Sepsis event logs generated using TraVaG,
TraVa$S, and the benchmark method. Each value represents the mean of 100 generations for TraVaG
and 10 algorithm runs for TraVaS and the benchmark method.

pared to the alternative methods, TraVaG achieves comparable scores as TraVaS
and again outperforms the benchmark.

The result utility evaluation of the high trace-unique Sepsis log is presented
in Figure[5] With respect to fitness, TraVaG shows similar values as TraVaS but
a slight under-performance compared to the benchmark method. The main cause
for this observation again refers to the infrequent variants and the small log size.
While TraVaS maintains a strong d-related threshold and TraVaG copes with the
limited training data, the benchmark method introduces many artificial variants
but tends to match the frequent traces. As a result, the discovered process models
are able to replay most of the original behavior in contrast to TraVaG and
TraVaS results. According to the aforementioned explanation, precision reflects
an inverted trend. Here, the larger models of the benchmark method contain

TraVaG: Differentially Private Trace Variant Generation Using GANs 15

many possible decision paths that are nonexistent in the underlying event log. For
TraVaS and TraVaG, we thus achieve more precise anonymized process models.

6 Conclusion

TraVaG has shown that training a differentially private combination of autoen-
coders and GANs to synthesize anonymized event data from an underlying
original variant distribution outperforms current state-of-the-art selection-based
variant anonymization techniques and prefix-based approaches. Particularly, for
strong privacy at the low § range. Moreover, TraVaG has the unique advan-
tages of outstanding resource-efficient execution, the absence of distorting noise
thresholds, a general acceptance of continuous data streams, and no fake variant
generation. In combination, these characteristics allow TraVaG to efficiently op-
erate with infrequent variant data in the low § regime without real competitors.
Nevertheless, we note that the framework comprises a more complex training
procedure and privacy budget accounting than approaches that directly digest
DP parameters, such as TraVaS [25]. We have to follow the one-way procedure
to first obtain RDP parameters (e,) from noise multiplier @, sampling rate g,
iterations T and then convert (e,) to (¢,6). Note that a similar procedure is
followed by other techniques that are based on RDP, such as Libra [§]. Con-
sequently, specific privacy levels can only be ensured by repeatedly analyzing
different TraVaG network settings until a successful match is found. This hyper-
parameter dependence could be studied in more detail and even coupled with a
fully automated tuning strategy in future work.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

2. Abadi, M., Chu, A., Goodfellow, I.J., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016. pp. 308-318. ACM (2016)

3. Acs, G., Melis, L., Castelluccia, C., Cristofaro, E.D.: Differentially private mixture
of generative neural networks. IEEE Trans. Knowl. Data Eng. 31(6) (2019)

4. Chen, Q., Xiang, C., Xue, M., Li, B., Borisov, N., Kaafar, D., Zhu, H.: Differentially
private data generative models. CoRR abs/1812.02274 (2018)

5. Cohen, A., Nissim, K.: Towards formalizing the gdpr’s notion of singling out. Proc.
Natl. Acad. Sci. USA 117(15), 8344-8352 (2020)

6. van Dongen, B.F., Weber, B., Ferreira, D.R., Weerdt, J.D.: BPI challenge 2013.
In: Proceedings of the 3rd Business Process Intelligence Challenge (2013)

7. Dwork, C.: Differential privacy: A survey of results. In: Theory and Applications of
Models of Computation, 5th International Conference, TAMC 2008, Xi’an, China,
April 25-29, 2008. Proceedings. vol. 4978, pp. 1-19. Springer (2008)

8. Elkoumy, G., Dumas, M.: Libra: High-utility anonymization of event logs for pro-
cess mining via subsampling. In: 4th International Conference on Process Mining,
ICPM. IEEE (2022)

16

10.
. Fahrenkrog-Petersen, S.A., Kabierski, M., Rosel, F., van der Aa, H., Weidlich, M.:

12.

13.

14.

15.

16.

17.

18.
19.
20.

21.

22.
23.

24.

25.

26.

27.

M. Rafiei et al.

Elkoumy, G., Pankova, A., Dumas, M.: Mine me but don’t single me out: Differ-
entially private event logs for process mining. In: 3rd International Conference on
Process Mining, ICPM 2021,. pp. 80-87. IEEE (2021)
EU: EU General Data Protection. OJ L 119(1) (2016)

Sacofa: Semantics-aware control-flow anonymization for process mining. In: 3rd
International Conference on Process Mining, ICPM 2021, Eindhoven, The Nether-
lands, October 31 - Nov. 4, 2021. pp. 72-79. IEEE (2021)

Frigerio, L., de Oliveira, A.S., Gomez, L., Duverger, P.: Differentially private gen-
erative adversarial networks for time dummy-series, continuous, and discrete open
data. In: ICT Systems Security and Privacy Protection - 34th IFIP TC 11 Inter-
national Conference, SEC 2019. vol. 562. Springer (2019)

Goodfellow, 1.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A.C., Bengio, Y.: Generative adversarial networks. Commun. ACM
63(11), 139-144 (2020)

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems (2017)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International
Conference on Learning Representations, Conference Track Proceedings (2014)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from incomplete event logs. In: Application and Theory of Petri
Nets and Concurrency - 35th International Conference, PETRI NETS 2014, Tunis,
Tunisia, June 23-27, 2014. Proceedings. vol. 8489, pp. 91-110. Springer (2014)

Li, K., Yang, S., Sullivan, T.M., Burd, R.S., Marsic, I.: Generating privacy-
preserving process data with deep generative models. CoRR abs/2203.07949
2022

£iashzhynskyi, P., Liashchynskyi, P.: Grid search, random search, genetic algo-
rithm: A big comparison for NAS. CoRR abs/1912.06059 (2019)

Lu, Y., Chen, Q., Poon, S.K.: A deep learning approach for repairing missing
activity labels in event logs for process mining. Inf. 13(5), 234 (2022)
Mannhardt, F.: Sepsis cases (2016). https://doi.org/10.4121/UUID:915D2BFB-
TE84-49AD-A286-DC35F063A460

Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-
preserving process mining - differential privacy for event logs. Bus. Inf. Syst. Eng.
61(5), 595-614 (2019)

McMahan, H.B., Andrew, G.: A general approach to adding differential privacy to
iterative training procedures. CoRR abs/1812.06210 (2018)

Mironov, I.: Rényi differential privacy. In: 30th IEEE Computer Security Founda-
tions Symposium, CSF 2017. pp. 263-275. IEEE Computer Society (2017)

Rafiei, M., van der Aalst, W.M.P.: Towards quantifying privacy in process mining.
In: Process Mining Workshops - ICPM 2020 International Workshops. vol. 406, pp.
385-397. Springer (2020)

Rafiei, M., Wangelik, F., van der Aalst, W.M.P.: TraVaS: differentially private
trace variant selection for process mining. In: Process Mining Workshops - ICPM
2022 International Workshops. Springer (2022)

Tang, J., Korolova, A., Bai, X., Wang, X., Wang, X.: Privacy loss in apple’s imple-
mentation of differential privacy on macos 10.12. CoRR abs/1709.02753 (2017)
Tantipongpipat, U.T., Waites, C., Boob, D., Siva, A.A., Cummings, R.: Differ-
entially private synthetic mixed-type data generation for unsupervised learning.
Intell. Decis. Technol. 15(4), 779-807 (2021)

https://doi.org/10.4121/UUID:915D2BFB-7E84-49AD-A286-DC35F063A460
https://doi.org/10.4121/UUID:915D2BFB-7E84-49AD-A286-DC35F063A460

	TraVaG: Differentially Private Trace Variant Generation Using GANs

