
Discovering Process Models that Support Desired Behavior and
Avoid Undesired Behavior

Ali Norouzifar
RWTH Aachen University

ali.norouzifar@pads.rwth-aachen.de

Wil van der Aalst
RWTH Aachen University

wvdaalst@pads.rwth-aachen.de

ABSTRACT
Process discovery is one of the primary process mining tasks and
starting point for process improvements using event data. Existing
process discovery techniques aim to find process models that best
describe the observed behavior. The focus can be on recall (i.e.,
replay fitness) or precision. Here, we take a different perspective.
We aim to discover a process model that allows for the good be-
havior observed, and does not allow for the bad behavior. In order
to do this, we assume that we have a desirable event log (𝐿+) and
an undesirable event log (𝐿−). For example, the desirable event log
consists of the cases that were handled within two weeks, and the
undesirable event log consists of the cases that took longer. Our
discovery approach explores the tradeoff between supporting the
cases in the desirable event log and avoiding the cases in the unde-
sirable event log. The proposed framework uses a new inductive
mining approach that has been implemented and tested on several
real-life event logs. Experimental results show that our approach
outperforms other approaches that use only the desirable event log
(𝐿+). This supports the intuitive understanding that problematic
cases can and should be used to improve processes.

CCS CONCEPTS
• Applied computing → Business process modeling;

KEYWORDS
Process mining, Process discovery, Desirable and undesirable be-
havior

ACM Reference Format:
Ali Norouzifar and Wil van der Aalst. 2023. Discovering Process Models
that Support Desired Behavior and Avoid Undesired Behavior. In The 38th
ACM/SIGAPP Symposium on Applied Computing (SAC ’23), March 27-March
31, 2023, Tallinn, Estonia. ACM, New York, NY, USA, 4 pages. https://doi.
org/10.1145/3555776.3577818

1 INTRODUCTION
Process discovery is the problem of discovering a process model
from an event log that aims to represent the real process. In many
applications, we have valuable information about both desirable
and undesirable behavior of processes. Some cases might be handled
differently in a process due to their characteristics [4]. For example,

cases with a long duration might have some undesirable charac-
teristics that cause the delay. Similarly, the outcome of the traces,
the existence of a specific activity, or a particular trace or event
attribute could categorize the traces into desirable and undesirable
traces. The focus of current discovery techniques is on discovering
a process model that replays a single event log and avoids the non-
observed behavior of the process. Ignoring the undesirable behavior
may lead to process models that allow for this and generalize in an
undesirable direction. In addition, this type of information helps to
support the desirable behavior since the discovery algorithm can
prioritize representing the specifically desirable behavior.

The Inductive Miner–bi (IMbi) algorithm introduced in this pa-
per uses the problematic traces to discover better process models
that are more specific to desirable traces and avoid undesirable
traces. The inductive miner algorithm is one of the state-of-the-art
discovery algorithms in the process mining field [8]. There are sev-
eral extensions that are proposed based on this algorithm [1, 9]. It
is not possible to directly adapt the inductive miner algorithm for
the purpose of this paper. In each recursion, the inductive miner
algorithm tries to find a cut that perfectly satisfies the cut type
definitions. Considering a desirable event log and an undesirable
event log, we need an algorithm to compare and rank different cuts
even if they have some deviations or some important relations are
missing.

2 MOTIVATING EXAMPLE
LetU𝐴 be the universe of activities. A trace𝜎 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩∈U∗

𝐴
is a finite sequence of activities. An event log 𝐿 ∈ B(U∗

𝐴
) is a mul-

tiset of traces. Consider 𝐿+ = [⟨𝑎,𝑏, 𝑐 ⟩40, ⟨𝑏,𝑑 ⟩40, ⟨𝑐,𝑏,𝑑 ⟩5, ⟨𝑏,𝑑, 𝑐 ⟩5,
⟨𝑎,𝑑, 𝑐,𝑏 ⟩5, ⟨𝑎, 𝑐,𝑑,𝑏 ⟩5] as a multiset of desirable traces and 𝐿− =

[⟨𝑏, 𝑐,𝑑 ⟩20, ⟨𝑏,𝑑, 𝑐 ⟩20, ⟨𝑎, 𝑐,𝑏,𝑑 ⟩20, ⟨𝑑,𝑏, 𝑐 ⟩20, ⟨𝑑, 𝑐,𝑏 ⟩20] as a multiset of
undesirable traces. The goal is to discover a Petri net model that
supports 𝐿+ and avoids 𝐿−. Figure 1a shows a process model that
is discovered considering only 𝐿+ using the Inductive Miner infre-
quent (IMf) [9] algorithm with 20% filtering. Ignoring the undesir-
able event log leads to this process model that perfectly fits both 𝐿+
and 𝐿−. Figure 1b shows a good discovered model considering both
𝐿+ and 𝐿−. This model avoids the behavior that is more specific to
the undesirable event log and supports the behavior that is more
specific to the desirable event log. In this paper, we also define novel
evaluation metrics to measure such improvements.

3 HOW TO EVALUATE THE DISCOVERED
MODELS?

Conformance checking is a type of process mining that aims to
check the quality of discovered models from different perspectives.
Fitness is designed to ensure the model can replay the event log

https://doi.org/10.1145/3555776.3577818
https://doi.org/10.1145/3555776.3577818

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia A. Norouzifar et al.

d

b

a

c

(a) A discovered model just using 𝐿+

d
a c

b

(b) A discovered model considering both 𝐿+ and 𝐿−

Figure 1: A motivating example

properly. Alignment fitness is widely accepted to measure the de-
viations between an event log and a process model [2]. Let U𝐿 be
the universe of event logs and U𝑀 be the universe of Petri net
models. Consider 𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 :U𝐿×U𝑀→[0, 1] as a function that cal-
culates the alignment fitness. Another measurement to evaluate
the fitness criterion is calculating the percentage of fitting traces.
We define 𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 :U𝐿×U𝑀→[0, 1] as a function that calculates this
value. Precision is designed to ensure that the model does not al-
low for many behaviors that are not observed in the event log.
𝑝𝑟𝑐 :U𝐿×U𝑀→[0, 1] is the function that calculates escaping edges
precision (ETC precision) [2]. The goal of this paper is to discover
a process model that supports 𝐿+ and avoids 𝐿−.

The goal of this paper is to discover a process model that supports
𝐿+ and avoids 𝐿−. We measure this goal using the following evalua-
tion metrics. 1−𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿,𝑀) = 𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿,𝑀) and 1−𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 (𝐿,𝑀) =
𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 (𝐿,𝑀) .

• alignment accuracy: 𝑎𝑐𝑐𝑎𝑙𝑖𝑔𝑛 :U𝐿×U𝐿×U𝑀→[−1,1] such that
𝑎𝑐𝑐𝑎𝑙𝑖𝑔𝑛 (𝐿+, 𝐿−, 𝑀)=𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿+, 𝑀) − 𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿−, 𝑀)

• trace accuracy: 𝑎𝑐𝑐𝑡𝑟𝑎𝑐𝑒 :U𝐿×U𝐿×U𝑀→[−1, 1] such that
𝑎𝑐𝑐𝑡𝑟𝑎𝑐𝑒 (𝐿+, 𝐿−, 𝑀)=𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 (𝐿+, 𝑀) − 𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 (𝐿−, 𝑀)

• alignment F1-score: 𝐹1𝑎𝑙𝑖𝑔𝑛 :U𝐿×U𝐿×U𝑀→[0, 1] such that

𝐹1𝑎𝑙𝑖𝑔𝑛 (𝐿+, 𝐿−, 𝑀)=
2×𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿+, 𝑀)×𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿−, 𝑀)
𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿+, 𝑀)+𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿−, 𝑀)

• trace F1-score: 𝐹1𝑡𝑟𝑎𝑐𝑒 :U𝐿×U𝐿×U𝑀→[0, 1] such that

𝐹1𝑡𝑟𝑎𝑐𝑒 (𝐿+, 𝐿−, 𝑀)= 2×𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 (𝐿
+, 𝑀)×𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 (𝐿−, 𝑀)

𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 (𝐿+, 𝑀) + 𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 (𝐿−, 𝑀)
The four introduced evaluation metrics measure the same goal

from different perspectives. Increasing alignment accuracy indi-
cates that the discovered model can differentiate better between
𝐿+ and 𝐿−. It is not acceptable to discover a model with a very
low 𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿+, 𝑀) but a high 𝑎𝑐𝑐𝑎𝑙𝑖𝑔𝑛 (𝐿+, 𝐿−, 𝑀) . To avoid sac-
rificing 𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿+, 𝑀) , we designed alignment F1-score to main-
tain a balance between increasing 𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿+, 𝑀) and increasing
𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿−, 𝑀) . Alignment accuracy takes only the average align-
ment fitness into account. Increasing alignment accuracy might
result in discovering a process model that enforces a subprocess
that is observed in neither 𝐿+ nor 𝐿−. This subprocess might pun-
ish 𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿−, 𝑀) more than 𝑓 𝑖𝑡𝑎𝑙𝑖𝑔𝑛 (𝐿+, 𝑀) but block the token
flow path. In order to avoid such models, we propose to consider
𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 (𝐿+, 𝑀) and 𝑓 𝑖𝑡𝑡𝑟𝑎𝑐𝑒 (𝐿−, 𝑀) to define similar evaluation met-
rics.

4 INDUCTIVE MINER–BI
Consider 𝐿+ as the event log contains desirable behavior and 𝐿− as
the event log contains undesirable behavior. The InductiveMiner–bi
(IMbi) algorithm constructs a process model recursively. The main
idea of IMbi is to consider both the desirable and the undesirable
event logs in each recursion. First, it checks whether there exists a
base case. If it fails to find a base case, then the algorithm tries to
find an optimal cut. In Fig. 2, the general approach in each recursion
is illustrated.

Cost
Calculation

Cost
Calculation O

ve
ra

ll
C

o
st

 C
a

lc
ul

at
io

n

𝐿+

𝐿−

𝒢(𝐿+)

𝒢(𝐿−)

𝑠𝑢𝑝

𝑟𝑎
𝑡𝑖
𝑜

𝐶

Figure 2: Finding the optimal cut in one recursion of IMbi

G is a function that extracts a directly-follows graph from an
event log, such that G(𝐿)=(Σ, 𝐸) , where

• Σ={𝑎∈𝜎 |𝜎 ∈ 𝐿} is the set of nodes.
• 𝐸=[(𝜎𝑖 , 𝜎𝑖+1) |𝜎∈𝐿

′
, 1≤𝑖< |𝜎 |] with 𝐿

′
= [⟨⊲⟩.𝜎 .⟨□⟩|𝜎 ∈ 𝐿] is

the multiset of edges. ⊲ is the special start activity and □ is
the special end activity.

G(𝐿+) and G(𝐿−) in Fig. 2 represent the extracted directly-follows
graphs from the desirable and undesirable event logs. The algorithm
explores G(𝐿+) and constructs the set of possible cuts 𝐶 . Each
cut 𝑐=(⊕, Σ1, Σ2)∈𝐶 divides the set of nodes into two disjoint sets,
i.e., Σ1 and Σ2, using a cut operator ⊕∈{→,×,∧,⟲}. → denotes
the sequential cut, × represents the exclusive cut, ∧ denotes the
concurrent cut and⟲ represents the loop cut.

Finding an optimal cut is not trivial. Figure 3 shows different
possible cut types and their specifications. The dashed lines are
optional relations. The red lines are the relations that are not al-
lowed. The solid black lines are the mandatory relations. Based on
the definitions [8], if one of the specifications of a cut type does not
hold, then it should be rejected. However, this decision does not
take the severity of the deviating or missing behaviors into account.
In addition, we cannot compare the quality of a cut based on the
desirable and undesirable event logs. To address this problem, we
need to define some cost functions to quantify and compare the
quality of the cuts. Considering a possible cut 𝑐∈𝐶 , 𝑑𝑒𝑣 ⊕

𝐺
(𝑐) counts

the number of deviating edges and𝑚𝑖𝑠⊕
𝐺
(𝑐, 𝑠𝑢𝑝) assigns a cost if

some edges are missing. 𝑠𝑢𝑝∈[0, 1] is a user-defined parameter to
specify how strict these cost values should be with respect to miss-
ing edges.𝑚𝑖𝑠⊕

𝐺
(𝑐, 𝑠𝑢𝑝) considers more cost with higher values of

𝑠𝑢𝑝 if some edges are missing. 𝑐𝑜𝑠𝑡⊕
𝐺
(𝑐, 𝑠𝑢𝑝)=𝑑𝑒𝑣⊕

𝐺
(𝑐)+𝑚𝑖𝑠⊕

𝐺
(𝑐, 𝑠𝑢𝑝)

assigns a cost to each cut 𝑐∈𝐶 .
𝑜𝑣_𝑐𝑜𝑠𝑡𝐺+,𝐺− :𝐶×[0, 1]×[0, 1]→R is a function that assigns an over-

all cost to each binary cut 𝑐 ∈ 𝐶 considering both 𝑐𝑜𝑠𝑡 ⊕
𝐺+ and 𝑐𝑜𝑠𝑡 ⊕𝐺− .

𝑟𝑎𝑡𝑖𝑜∈[0, 1] is a process discovery parameter that specifies the im-
portance of the undesirable event log.
𝑜𝑣_𝑐𝑜𝑠𝑡𝐺+,𝐺− (𝑐, 𝑠𝑢𝑝, 𝑟𝑎𝑡𝑖𝑜)=𝑐𝑜𝑠𝑡𝐺+ (𝑐, 𝑠𝑢𝑝) − 𝑟𝑎𝑡𝑖𝑜 ·𝑐𝑜𝑠𝑡𝐺− (𝑐, 𝑠𝑢𝑝)

Support Desirable Behavior & Avoid Undesired Behavior in Model Discovery SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

△

△

△

△

Σ1 Σ1

Σ1 Σ1

Σ2 Σ2

Σ2 Σ2

Sequence cut Exclusive choice cut

Parallel choice cut Loop cut

Figure 3: Specifications of different cut types (dashed lines are op-
tional, black lines are mandatory and red lines are deviating edges)

The best cut in each recursion is the cut with the minimum
𝑜𝑣_𝑐𝑜𝑠𝑡 , i.e.,

𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑢𝑡 = argmin
𝑐∈𝐶

{𝑜𝑣_𝑐𝑜𝑠𝑡𝐺+,𝐺− (𝑐, 𝑠𝑢𝑝, 𝑟𝑎𝑡𝑖𝑜) }

The algorithm continues with splitting the event logs based on
the selected optimal cut and then runs the next recursion.

5 EXPERIMENT
The IMbi framework implements the approach and the source code
is publicly available1. The BPIC 2017 event log is extracted from
a loan application process. There are three types of events in this
process: Application, Offer, and Workflow events. We considered
the event log consisting of only Application and Offer events. The
outcome of an application could be A_pending, A_cancelled, or
A_denied. Based on the observations, if activity “W_call incomplete
files" occurs in a trace, the chance of having A_pending state at
the end is higher. We divided the event log into 𝐿+17 and 𝐿

−
17 based

on the existence of activity “W_call incomplete files" in the traces.
Among 31509 traces, 15003 traces are in 𝐿+17, and 16506 traces are
in 𝐿−17. In 𝐿+17, 84% of the traces have A_pending, 6% of the traces
have A_cancelled , and 9% of the traces have A_denied as the final
state (few traces are incomplete). In 𝐿−17, 28% of the traces have
A_pending, 57% of the traces have A_cancelled, and 15% of the
traces have A_denied as the final state. The goal is to discover a
process model that supports traces in 𝐿+17 and avoids traces in 𝐿−17.

5.1 IMbi using Single Event Log
In this section, we show that the IMbi algorithm discovers accept-
able process models from a single event log (𝑟𝑎𝑡𝑖𝑜 = 0). Otherwise,
there is no guarantee that we can use this algorithm for our final
goal. We use the IMf algorithm as the baseline. In this section, the
infrequency filtering parameter of this algorithm is referred to as
𝑓 . We change 𝑓 in the range of [0, 1] and calculate the alignment
fitness and the precision for different discovered models. If we set
𝑟𝑎𝑡𝑖𝑜 = 0 in the IMbi algorithm, it means the undesirable event log
is ignored. We can discover different process models from only the
desirable event log by changing the 𝑠𝑢𝑝 parameter in the range of
[0, 1].

The alignment fitness and the precision of the discovered models
using the IMf algorithm are illustrated in Fig. 4a. The IMf algorithm,

1https://github.com/aliNorouzifar/InductiveMiner_bi.git

after searching for the base case in each recursion, tries to find
a cut that satisfies the cut type definitions. If this cut does not
exist, then it filters G(𝐿+) considering 𝑓 . The algorithm removes
infrequent directly-follows relations. Then, it tries to find a cut
again. Increasing 𝑓 in the IMf algorithm removes more infrequent
directly-follows relations from 𝐺 (𝐿+). The discovered model using
a high 𝑓 value, considers only the most frequent directly-follows
relations. This leads to a decrease in the alignment fitness value
and an increase in the precision value.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
f

0.0

0.2

0.4

0.6

0.8

1.0

ev
al

ua
tio

n
m

et
ric

s IMf-BPIC17

Fitness
Precision

(a) Discovered models from 𝐿+17 using IMf

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
sup

0.0

0.2

0.4

0.6

0.8

1.0

ev
al

ua
tio

n
m

et
ric

s IMbi-BPIC17

Fitness
Precision

(b) Discovered models from 𝐿+17 using IMbi

Figure 4: The fitness and precision of the discovered models from
𝐿+17 using IMf and IMbi (with 𝑟𝑎𝑡𝑖𝑜 = 0)

The alignment fitness and precision value of the discovered mod-
els using the IMbi algorithm are illustrated in Fig. 4b. 𝑠𝑢𝑝 parameter
is used in the process discovery algorithm to control the strictness
of the algorithm to assign some cost if a missing behavior exists. If
𝑠𝑢𝑝=0, it means that the algorithm only counts the deviating edges
in G(𝐿+) (red edges in Fig. 3). The discovered model may allow for
more behavior than the observed behavior. The algorithm does not
insist on the behavior that should be in G(𝐿+), but it is missing.
By increasing the 𝑠𝑢𝑝 parameter, the process discovery algorithm
considers some cost for the part of the behavior that is missing in
G(𝐿+). This leads to discovering process models that more specifi-
cally represent the observed behaviors. Generally, as we increase
the 𝑠𝑢𝑝 parameter, the alignment fitness value decreases, and the
precision value increases. Comparing the IMf and IMbi models
shows that the 𝑠𝑢𝑝 parameter in IMbi and 𝑓 parameter in IMbi
have a similar effect on the fitness and precision of the discovered
models. The fitness and precision value of the discovered models
using the IMbi algorithm are comparable to the discovered models
using the IMf algorithm.

5.2 IMbi using Desirable and Undesirable
Event Logs

The parameter 𝑟𝑎𝑡𝑖𝑜 is designed to control the involvement of the
undesirable event log in the model discovery. If 𝑟𝑎𝑡𝑖𝑜=0, it means
that the algorithm only considers the desirable event log, and if
𝑟𝑎𝑡𝑖𝑜=1, it means that in each recursion, the cost of a cut in G(𝐿+)
and G(𝐿−) has an equal weight. Increasing 𝑟𝑎𝑡𝑖𝑜 might lead to
selecting the cuts that are not the best considering only G(𝐿+), but
helps to support 𝐿+ and avoid 𝐿−. In this section, we select a 𝑠𝑢𝑝 pa-
rameter value based on the harmonic mean of the alignment fitness

https://github.com/aliNorouzifar/InductiveMiner_bi.git

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia A. Norouzifar et al.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ratio

0.0

0.2

0.4

0.6

0.8

1.0

ev
al

ua
tio

n
m

et
ric

s
IMbi-BPIC17

align. acc. align. F1 trace acc. trace F1 align. fit. L+ prc. L+

Figure 5: Evaluation metrics of the discovered models using IMbi
with 𝑠𝑢𝑝 = 0.3 (dashed lines are calculated for the baseline)

and precision. Then, we change the 𝑟𝑎𝑡𝑖𝑜 parameter in the range
of [0, 1] to show the effect on the evaluation metrics. In addition to
the introduced evaluation metrics, we show the alignment fitness
and precision corresponding to only the desirable event log.

For BPIC 2017, we select 𝑠𝑢𝑝=0.3, since the harmonic mean
of fitness and precision is the best based on Fig. 4b. In Fig. 5, the
calculated evaluation metrics are depicted. In this figure, the dashed
lines are calculated for the model discovered from 𝐿+17 using the IMf
algorithm with 𝑓 =0.3 as the baseline. The alignment accuracy of
the baseline model is around 0, and the trace accuracy is -0.07. The
discovered model cannot distinguish well between the desirable
event log and the undesirable event log. The evaluation metrics
for the discovered model using the IMbi algorithm with 𝑟𝑎𝑡𝑖𝑜 = 0
and 𝑠𝑢𝑝 = 0.3 is slightly better since it has a better trace accuracy,
but still has difficulties differentiating between the desirable and
undesirable event logs. Increasing the 𝑟𝑎𝑡𝑖𝑜 parameter shows that
the evaluation metrics improve when we consider the undesirable
event log in the process discovery. The main improvement in the
evaluation metrics is achieved after setting the 𝑟𝑎𝑡𝑖𝑜 parameter to
0.6. At 𝑟𝑎𝑡𝑖𝑜=0.6, all evaluation metrics except precision increase.
After 𝑟𝑎𝑡𝑖𝑜=0.8, the evaluation metrics decrease since the selected
cuts in the recursions are influenced by the undesirable event log,
and the low precision leads to the allowance for some undesirable
behaviors in the discovered models.

6 RELATED WORK
The focus of this paper is on discovering a process model that al-
lows for the desirable behavior and avoids the undesirable behavior
of a given process. This fresh look is different from the existing
works in the literature. In [7] and [3], the authors use artificial
negative events to improve the process discovery. The goal is to
maintain a balance between the allowed behavior by the model and
the observed behavior in the event log. Improving the precision,
generalization, and complexity of the process models are the out-
comes of their research. In [10], the discovery phase is considered
as a binary classification and the information about undesired be-
havior is used to improve the discovered models. Machine learning
evaluation metrics are used to evaluate these models. The focus
of [5] and [10] is on discovering models to classify the traces into
desirable and undesirable. In our paper, we formalized our approach
as a method to discover Petri net models that represent the process
and the designed evaluation metrics reflect the descriptive aspects
of the discovered process models. In [6], a methodology is proposed

to repair discovered models to allow for a part of the behavior that
has a positive impact on process KPIs.

7 CONCLUSION
The experiments show that the discovered models using our ap-
proach outperform other approaches that use only desirable event
logs. Based on the designed evaluation metrics, changing 𝑠𝑢𝑝 and
𝑟𝑎𝑡𝑖𝑜 parameters lead to good candidate models. For some parame-
ter configurations, the evaluation metrics could have some conflicts.
Selecting the best process model depends on the application. For
example, if we improve the alignment accuracy, it may have an
inverse effect on the trace accuracy. The discovery algorithm may
choose some cuts that are not good enough based on neither 𝐿+ nor
𝐿−, but punishing 𝐿− behavior may lead to this decision. Adding
some process knowledge to the discovery algorithm helps to avoid
bad decisions. For example, a set of rules extracted from process
knowledge can be used to guide the algorithm. IMbi has a high
computational cost due to the many possible candidate cuts that
needs to be improved in the next steps. Some differences between
𝐿+ and 𝐿− might not be in the process structures. Our algorithm
only takes the control flow into account and discovers a Petri net
that has a different structure in order to support the desirable event
log and avoid the undesirable event log.

ACKNOWLEDGMENTS
This research was supported by the research training group “Datan-
inja” (Trustworthy AI for Seamless Problem Solving: Next Genera-
tion Intelligence Joins Robust Data Analysis) funded by the German
federal state of North Rhine-Westphalia.

REFERENCES
[1] Dennis Brons, Roeland Scheepens, and Dirk Fahland. 2021. Striking a new balance

in accuracy and simplicity with the probabilistic inductive miner. In 2021 3rd
International Conference on Process Mining (ICPM). IEEE, 32–39.

[2] Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias Weidlich.
2018. Conformance Checking - Relating Processes and Models. Springer.

[3] Hernán Ponce De León, Lucio Nardelli, Josep Carmona, and Seppe KLM vanden
Broucke. 2018. Incorporating negative information to process discovery of
complex systems. Information Sciences 422 (2018), 480–496.

[4] Massimiliano De Leoni, Wil M. P. van der Aalst, andMarcus Dees. 2016. A general
process mining framework for correlating, predicting and clustering dynamic
behavior based on event logs. Information Systems 56 (2016), 235–257.

[5] Hugo De Oliveira, Vincent Augusto, Baptiste Jouaneton, Ludovic Lamarsalle,
Martin Prodel, and Xiaolan Xie. 2020. An optimization-based process mining
approach for explainable classification of timed event logs. In 2020 IEEE 16th
International Conference on Automation Science and Engineering (CASE). IEEE,
43–48.

[6] Marcus Dees, Massimiliano de Leoni, and Felix Mannhardt. 2017. Enhancing
process models to improve business performance: A methodology and case stud-
ies. In OTM Confederated International Conferences" On the Move to Meaningful
Internet Systems". Springer, 232–251.

[7] Stijn Goedertier, David Martens, Jan Vanthienen, and Bat Baesens. 2009. Robust
process discovery with artificial negative events. Journal of Machine Learning
Research 10 (2009), 1305–1340.

[8] Sander JJ Leemans, Dirk Fahland, and Wil M. P. van der Aalst. 2013. Discovering
block-structured process models from event logs-a constructive approach. In
International conference on applications and theory of Petri nets and concurrency.
Springer, 311–329.

[9] Sander JJ Leemans, Dirk Fahland, and Wil M. P. van der Aalst. 2013. Discovering
block-structured process models from event logs containing infrequent behaviour.
In International conference on business process management. Springer, 66–78.

[10] Tijs Slaats, Søren Debois, and Christoffer Olling Back. 2021. Weighing the Pros
and Cons: Process Discovery with Negative Examples. In International Conference
on Business Process Management. Springer, 47–64.

	Abstract
	1 Introduction
	2 Motivating Example
	3 How to evaluate the discovered models?
	4 Inductive Miner–bi
	5 Experiment
	5.1 IMbi using Single Event Log
	5.2 IMbi using Desirable and Undesirable Event Logs

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

