
Object-Centric Alignments

Lukas Liss, Jan Niklas Adams, and Wil M.P. van der Aalst

Chair of Process and Data Science
RWTH Aachen University, Aachen, Germany

lukas.liss@rwth-aachen.de, {niklas.adams,wvdaalst}@pads.rwth-aachen.de

Abstract. Processes tend to interact with other processes and operate
on various objects of different types. These objects can influence each
other creating dependencies between sub-processes. Analyzing the con-
formance of such complex processes challenges traditional conformance-
checking approaches because they assume a single-case identifier for a
process. To create a single-case identifier one has to flatten complex pro-
cesses. This leads to information loss when separating the processes that
interact on some objects. This paper introduces an alignment approach
that operates directly on these object-centric processes. We introduce
alignments that can give behavior-based insights into how closely related
the event data generated by a process and the behavior specified by an
object-centric Petri net are. The contributions of this paper include a
definition for object-centric alignments, an algorithm to compute them,
a publicly available implementation, and a qualitative and quantitative
evaluation. The qualitative evaluation shows that object-centric align-
ments can give better insights into object-centric processes because they
correctly consider inter-object dependencies. Findings from the quanti-
tative evaluation show that the run-time grows exponentially with the
number of objects, the length of the process execution, and the cost of
the alignment. The evaluation results motivate future research to im-
prove the run-time and make object-centric alignments more applicable
for larger processes.

Keywords: Process mining · Object-centric process mining · Align-
ments.

1 Introduction

Process mining provides insights into processes by analyzing event data gener-
ated by these processes. When analyzing a process, one standard pipeline consists
of extracting data, discovering a process model, and checking the conformance
of the process with specifications [13]. This paper presents an approach to com-
pute alignments to check the conformance of object-centric processes for which
traditional conformance-checking methods fail to give correct insights.

Traditional process mining approaches depend on the assumption that a pro-
cess is defined by a single case notion meaning that all actions created for one
object define a process execution. Processes in the real world tend not to fit that
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Fig. 1. A process execution of our running examples. Events are associated with objects
of type package (prefix p) or item (prefix i). The process execution describes the partial
order of events induced by the individual objects.

Fig. 2. Top: De-jure model as an object-centric Petri net. Variable arcs in the model
are marked red. Bottom: The process execution of Figure 1 is flattened to the individual
objects and aligned to the de-jure model’s subnet of the object’s types.

assumption. An example of that is a typical supply chain process. Supply pro-
cesses are happening on raw materials, production processes on raw materials
and products, shipping processes on products and orders, and payment processes
operating on orders and customers. One execution of the supply chain is not de-
fined by a single object. Real-world processes consist of multiple sub-processes
operating on multiple object instances from various types. These sub-processes
can have synchronization points and long-term dependencies between different
objects.

Recently, approaches have been made to generalize the notion of a process
so that one can describe these complex processes. Those approaches fall under
the umbrella term of object-centric process mining [20]. Object-centric process
mining generalizes traditional process mining techniques such that one does not
follow one object through one process, but multiple objects through multiple,
connected sub-processes. This generalization increases the complexity. In tradi-
tional process mining, one execution of a process is called case and is defined
by a sequence of events [1]. An object-centric process execution is a graph de-
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scribing the partial order between events in different sub-processes [7]. So far, a
fitness notion based on replay has been proposed for object-centric conformance
checking, but the approach is constrained to replayable behavior[5]. However,
process owners are typically interested in aligning observed behavior to modeled
behavior, finding deviations in their execution of the process, i.e., using align-
ments [8]. The notion, calculation, implementation, and feasibility analysis for
alignments on object-centric process mining are, so far, missing.

The running example used in this paper describes a packaging process with
cross-object dependencies. In our example, one process execution refers to mul-
tiple items and one package. Figure 1 depicts a process execution as a graph of
events describing the partial order between item and package objects. Figure 2
shows an object-centric Petri net [4] of the packaging process. An object-centric
Petri net differs from traditional Petri nets by introducing place types and vari-
able arcs. Tokens are typed and places of one type can only hold tokens of the
same type. Variable arcs can consume an arbitrary amount of tokens. Places are
typed according to either item (green) or package (blue). We, furthermore, col-
ored transitions with the colors of the types that are involved in this transition
for clarity and highlighted the variable arcs with red. In the given process, the
path of the package depends on the path of items and vice-versa. The package
and the items can either be part of a sample order or a product order, but never
both, depending on whether receive sample order or receive product order fires.
Although the objects do not share any more events after the start, their allowed
behavior still depends on whether they belong to a sample or product order.

If a process owner would like to find deviations in their object-centric pro-
cesses today, they would need to flatten [2] the observed process executions and
apply traditional alignments to the object-centric Petri net’s subnets of the same
type. We show this for our example process execution of Figure 1 in Figure 2.
If flattened to one trace per object, the three resulting traces get aligned to
the type’s subnet in a way that is not possible in the composed model. As men-
tioned, activity receive sample order and receive product order can never happen
both in one process execution since the de-jure model forces a decision between
product orders and sample orders. But the flattened alignments do not agree on
which activity should happen. The alignment for p1 has receive product order in
the model part whereas the alignments for i1 and i2 have receive sample order
in their model part. As shown by the running example, computing alignments
on object-centric processes requires more than just finding alignments for each
object individually. Aligning the sub-processes for all objects by respecting their
object dependencies creates a computationally complex problem that we tackle
in this paper.

This paper presents four contributions to enable and investigate object-
centric alignments. First, we generalize the notion of an alignment to object-
centric processes. Second, we present an algorithm to compute optimal object-
centric alignments. Third, we implemented our algorithm and make it publicly
accessible as an open-source project1 based on the open-source object-centric

1 https://github.com/LukasLiss/object-centric-alignments
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process mining library opca [6]. Fourth, we evaluate the quality and the com-
putation time of object-centric alignments on real-world event data. Thereby,
we gain insights into the scalability and suitability of the approach.

This paper is structured in the following way. We present related work in
Section 2 and preliminaries in Section 3. Then, we define object-centric align-
ments in Section 4. Our algorithm to compute alignments consists of two parts:
constructing the synchronous product net (Section 5) and finding an optimal
alignment in the synchronous product net (Section 6). We present a qualitative
and quantitative evaluation in Section 7 and conclude the paper in Section 8.

2 Related Work

Process mining includes discovery, conformance checking, and enhancement of
business processes [1]. Our approach belongs to the category of conformance
checking, where behavior from the event log is compared to allowed behavior
that is specified by a de-jure model [13]. For traditional processes, there exists a
variety of conformance checking approaches [19]. The majority of them use either
a token-based replay [25] approach, or an alignment [8] approach. Both have been
used to derive quality metrics like precision [9] and fitness [10]. Unlike token-
based replay, alignments are independent of the structure of the de-jure model [8].
Like our calculation, the traditional alignment calculation defined by Adriansyah
et al. uses a two-step algorithm to compute alignments [8]. Adriansyah et al.’s
approach creates a synchronous product net such that finding optimal alignments
relates to finding a shortest path in that net. This is a well-studied problem that
can be solved with the Dijkstra [16] or A∗ [14] algorithm. Different ways to
speed up the calculation have been researched [18][27]. However, the alignment
algorithm assumes the process to have a single case identifier and can therefore
not be used for compositions of processes that operate on multiple objects.

Multiple extensions to the traditional alignment algorithm have been made
over the years that consider additional dimensions together with the workflow
dimension [11][12]. Thereby they use higher-order nets to represent the addi-
tional dimensions. The data and resource-aware conformance checking approach
from de Leoni et al. uses data Petri nets [23]. Felli et al. use data Petri nets
together with satisfiability modulo theories to compute data-aware alignments
[21]. Sommers et al. constructed a ν-Petri net to calculate resource-constrained
alignments [26]. But all of the approaches above assume the process to have a
single-case identifier.

There are approaches that lift this generalization and model processes as
interacting sub-processes. Multi-agent process models describe the behavior of
agents and their interaction by composing Petri nets [24]. Object-centric pro-
cess mining [2] extends the notion of processes so that they can interact and
operate on objects from different types. Adams et al. defined the notion of cases
and variants for object-centric processes [7] as event graphs instead of event
sequences. The defined process executions serve as input for our alignment cal-
culation. The other data type that we use as input is an object-centric Petri net
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[4] that can describe allowed behavior. Object-centric Petri nets can be discov-
ered from object-centric event logs using the discovery algorithm from van der
Aalst and Berti [4]. Precision and fitness metrics to evaluate the quality of a
model have, recently, been proposed [5]. However, techniques to check confor-
mance to a de-jure model and spot deviations, such as object-centric alignments,
are so far missing.

3 Preliminaries

Object-centric process mining deals with events that operate on a variety of
objects of different types. Events are activities that happen at a timestamp for
a number of objects of different types. Uevent is the Universe of event identi-
fiers. The universe Uact contains all visible activities. Utyp is the universe of all
object types. The universe of objects is Uobj . Each object has exactly one type
associated with it πtype : Uobj → Utyp. Utime is the universe of all timestamps.

Definition 1 (Event Log). L = (E,O,OT, πact, πobj , πtime, πtrace) is an event
log with:

– E ⊆ Uevent is a set of events, O ⊆ Uobj is a set of objects,
– OT = {πtype(o)|o ∈ O} is a set of object types,
– πact : E → Uact maps each event to an activity,
– πobj : E → P(Uobj) \ {∅} maps each event to at least one object,
– πtime : E → Utime maps each event to a timestamp, and
– πtrace : O → E∗ maps each object onto a sequence of events such that
πtrace(o) = 〈e1, ..., en〉 with
{e1, ..., en} = {e ∈ E|o ∈ πobj(e)} and ∀i∈{1,...,n−1} πtime(ei) ≤ πtime(ei+1)

Event logs can contain events from multiple process executions. When ana-
lyzing the behavior we want to extract one process execution.

Definition 2 (Process Execution). Let L = (E,O,OT, πact, πobj , πtime, πtrace)
be an object-centric event log. The object graph OGL=(O, I) with I={{o, o′}|
∃e∈E{o, o′} ⊆ πobj(e) ∧ o 6= o′} connects objects that share events. The con-
nected components con(L) = {X ⊆ O|X is a connected component in OGL} of
the object graph are sets of inter-dependent objects. Each set X ∈ con(L) de-
fines a process execution of L. A process execution is a graph PX = (EX , DX)
with nodes EX = {e ∈ E|X ∩ πobj(e) 6= ∅} and edges DX = {(e, e′) ∈ EX ×
EX |∃o∈X,1≤i<n〈e1, ..., en〉 = πtrace(o) ∧ e = ei ∧ e′ = ei+1}. The set px(L) =
{PX |X ∈ con(L)} contains all process executions of event log L.

Figure 1 shows the process execution of the running example. Object-centric
Petri nets describe object-centric behavior by using types like a colored Petri
net [22].
B(A) is used to represent all multisets for a set A. Given multiset M for set

A, the number of instances of element a ∈ A in M is M(a). We overload the
notation M = [ak|a ∈ A] to state that there are k instances of element a in
multiset M .
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Definition 3 (Object-centric Petri Net [4]). An object-centric Petri net is
a tuple ON = (N, pt, Fvar) where N = (P, T, F, l) is a labeled Petri net with
places P and transitions T. F ∈ B((P × T ) ∪ (T × P )) is the multiset of arcs
between places and transitions. Transitions are labeled with activities or τ by
l : T → Uact ∪ {τ} with invisible activity τ 6∈ Uact. pt : P → Utyp maps places to
object types and Fvar ≤ F is the sub-multiset of variable arcs.

Note that we label all transitions to activities or τ with function l. Other
common definitions for object-centric Petri nets define l as a partial function.
This can be translated into our definition by assuming l(t) = τ for all t without
a label. We define the following derived notations for object-centric Petri nets

– •t = {p ∈ P |(p, t) ∈ F} is the preset of transition t ∈ T .
– t• = {p ∈ P |(t, p) ∈ F} is the post set of transition t ∈ T .
– pl(t) = •t ∪ t• are the input and output places of t ∈ T , plvar(t) = {p ∈
P |{(p, t), (t, p)} ∩ Fvar 6= ∅} are places that are connected through variable
arcs and plnv(t) = {p ∈ P |{(p, t), (t, p)}∩ (F \Fvar) 6= ∅} are places that are
connected through non-variable arcs.

– tpl(t) = {pt(p)|p ∈ pl(t)}, tplvar(t) = {pt(p)|p ∈ plvar(t)}, and tplnv(t) =
{pt(p)|p ∈ plnv(t)} are object types related to transitions.

Figure 2 shows the object-centric Petri net for the running example. It has
two object types and variable arcs for transitions receive sample order and receive
products order.

Definition 4 (Well-Formed Object-Centric Petri Net [4]). Let ON =
(N, pt, Fvar) be an object-centric Petri net with N = (P, T, F, l). ON is well-
formed if for each transition t ∈ T : tplvar(t) ∩ tplnv(t) = ∅.

In a well-formed object-centric Petri net arcs, connected to the same tran-
sition and places with the same object type, are either all variable or none of
them is. We assume for the following that all the object-centric Petri nets we
use are well-formed. Similar to colored Petri nets, object-centric Petri nets use
the notion of markings and bindings to describe the semantics of a Petri net.

Definition 5 (Marking of object-centric Petri Net [4]). Let ON = (N, pt,
Fvar) be an object-centric Petri net with N = (P, T, F, l). QON = {(p, o) ∈
P × Uobj |pt(p) = πtype(o)} is the set of possible tokens. A marking M of ON is
a multiset of tokens M ∈ B(QON ).

A binding describes which transition fires and what object instances are
consumed and produced per object type.

Definition 6 (Binding of object-centric Petri Net [4]). Let ON = (N, pt,
Fvar) be an object-centric Petri net with N = (P, T, F, l). The set of all pos-
sible bindings is B = {(t, b) ∈ T × (Utype 6→ P(Uobj))|dom(b) = tpl(t) ∧
∀ot∈tplnv(t)∀p∈plnv(t),pt(p)=ot|b(ot)| = F (p, t)}. A binding (t, b) ∈ B corresponds
to firing transition t in Petri net ON. The object map b describes what object
instances are consumed and produced. The multiset of consumed tokens given
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binding (t, b) ∈ B is cons(t, b) = [(p, o) ∈ QON |p ∈ •t∧ o ∈ b(pt(p))]. The multi-
set of produced tokens given binding (t, b) ∈ B is prod(t, b) = [(p, o) ∈ QON |p ∈
t • ∧o ∈ b(pt(p))].

Binding (t, b) ∈ B is enabled in marking M ∈ B(QON ) if cons(t, b) ≤ M .
Applying binding (t, b) in marking M leads to new marking M ′ = M−cons(t, b)+
prod(t, b). We use the notation M

(t,b)−−−→M ′ for applying (t, b) in M . This implies
that (t, b) was enabled in M and M ′ is the result of applying (t, b) in M .

This notation can be extended to a sequence of bindings σ = 〈(t1, b1), (t2, b2), ...,

(tn, bn)〉 ∈ B∗ such that M0
(t1, b1)−−−−→ M1

(t2, b2)−−−−→ M2...
(tn, bn)−−−−−→ Mn. We use

the notation M
σ−→ M ′ to show that M ′ can be reached from M by applying

the bindings in σ after another. The transitions can be mapped to activities
using the label function l. This results in the visible binding sequence συ =
〈(l(t1), b1), (l(t2), b2), ..., (l(tn), bn)) where (l(ti), bi) is omitted if l(ti) = τ .

Definition 7 (Accepting object-centric Petri Net [4]). An accepting object-
centric Petri net is a tuple AN = (ON,Minit,Mfinal) where ON = (N, pt, Fvar)
is a well-formed object-centric Petri net. Minit ∈ B(QON ) and Mfinal ∈ B(QON )
indicate the initial and final markings of the net.

Accepting object-centric Petri nets accept some binding sequences and some
not. The set of all binding sequences that are accepted form a language.

Definition 8 (Language of an Accepting Petri Net [4]). The language

φ(AN) = {συ|Minit
σ−→ Mfinal} of an accepting object-centric Petri net AN =

(ON,Minit,Mfinal) contains all the visible binding sequences starting in Minit

and ending in Mfinal.

4 Alignment

Alignments show how process executions and the allowed behavior of a de-jure
model relate to each other. We use moves to represent whether something occurs
in the process execution, the de-jure model, or both of them. Note that we do
not allow alignments to alter the set of objects. We assume them to be fixed.

Definition 9 (Moves). Let L = (E,O,OT, πact, πobj , πtimes, πtrace) be an object-
centric event log and PX = (EX , DX) ∈ px(L) a process execution. Let AN =
(((P, T, F, l), pt, Fvar),Minit,Mfinal) be an accepting object-centric Petri net.
The set of all moves is moves(PX , AN) ⊆ ({πact(e)|e ∈ EX} ∪ {�})× P(O)×
(T∪{�})×P(O) with skip symbol�6∈ Uact∪T . A move (alog, olog, tmod, omod) ∈
moves(PX , AN) is one of the following three types:
Log move - for an e ∈ EX : alog = πact(e), olog = πobj(e), tmod =�, and
omod = ∅.
Model move - for a (t, b) ∈ σ with συ ∈ φ(AN): tmod = t, omod =

⋃
o∈range(b) o,

alog =�, and olog = ∅.
Synchronous move - for an e ∈ EX and a (t, b) ∈ σ with συ ∈ φ(AN): alog =
πact(e) = l(t), tmod = t, and olog = omod = πobj(e) =

⋃
o∈range(b) o.
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Each type of move is presented in Figure 3. For synchronous moves, the
activity and objects of the model and log part have to be exactly the same. For
log and model moves, only one part has an activity and objects while the other
parts are skipped. The skip symbol� represents that nothing happened in that
part. The upper part is the log part alog and olog. The lower block is the model
part that contains tmod, the activity l(tmod) it is labeled with, and omod.

Fig. 3. One synchronous move, one log move, and one model move for the running ex-
ample with the accepting object-centric Petri net in Figure 2 and the process execution
in Figure 1.

We define the following projections on moves.

Definition 10 (Move Projections).
Given a move m = (alog, olog, tmod, omod) ∈ moves(PX , AN) with process exe-
cution PX and accepting object-centric Petri Net AN = (((P, T, F, l), pt, Fvar),
Minit,Mfinal). We use the following projections to map moves to their attributes:
πla(m) = alog maps moves to their log activity.
πlo(m) = olog maps moves to their log objects.
πmt(m) = tmod maps moves to their model transition.
πma(m) = l(tmod) maps moves to the activity the transition is labeled with.
πmo(m) = omod maps moves to their model objects.

When reasoning about the model or log behavior individually, we want to
ignore skipped behavior in that part. An alignment, which we define in Defi-
nition 12, is a directed acyclic graph of moves. We need to reason about the
model and log behavior individually to define alignments. Therefore, we intro-
duce the following reductions that remove moves with skipped behavior in a
given part from a directed acyclic graph of moves while maintaining the partial
order defined by the acyclic graph.

Definition 11 (Reduction to Log and Model Part). Let MG = (M,C) be
a directed acyclic graph with vertices M ⊆ moves(PX , AN) and edges C ⊆M ×
M with process execution PX and accepting object-centric Petri Net AN . The
reduction to moves with visible activity in the log part is MG↓log = (M↓log, C↓log)
with:
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– M↓log = {m ∈M |πla(m) 6=�} synchronous and log moves.
– C↓log = {(m1,mn) ∈ M↓log ×M↓log|∃<m1,...,mn>∈M∗ ∀1≤i<n (mi,mi+1) ∈
C ∧∀1<i<n πla(mi) =�} edges between synchronous and log moves and new
edges where model moves were removed.

The reduction to moves with visible activity in the model part is MG↓mod =
(M↓mod, C↓mod) with:

– M↓mod = {m ∈M |πma(m) 6=�} synchronous and model moves
– C↓mod = {(m1,mn) ∈M↓mod×M↓mod|∃<m1,...,mn>∈M∗ ∀1≤i<n (mi,mi+1) ∈
C ∧∀1<i<n πma(mi) =�} edges between synchronous and model moves and
new edges where log moves were removed.

In Figure 4 both MG↓log and MG↓model are visualized for an arbitrary di-
rected acyclic graph of moves. MG↓log describes a directed acyclic graph after
removing all model moves and related edges. New edges are added when two
movements used to be connected via removed model moves in the movement
graph. MG↓model behaves simultaneously for the model part.

Fig. 4. Reductions MG↓log and MG↓model for a directed acyclic graph of moves.

An alignment is a directed acyclic graph of moves that requires the log part
to contain the process execution and the model part to be in the language of the
de-jure model.

Definition 12 (Alignment). Let L = (E,O,OT, πact, πobj , πtimes, πtrace) be
an object-centric event log and PX = (EX , DX) ∈ px(L) a process execution. Let
AN = (((P, T, F, l), pt, Fvar)Minit,Mfinal) be an accepting object-centric Petri
net. An alignment ALPX ,AN = (M,C) is a directed acyclic graph on M ⊆
moves(PX , AN) such that:
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The alignment contains the process execution behavior in the log parts: PX
is isomorphic to ALPX ,AN↓log with bijective function f : EX → M↓log such that
∀e∈EX

πact(e) = πla(f(e)) ∧ πobj(e) = πlo(f(e)).
The alignment contains behavior that is accepted by the Petri net in the model

parts: There exists a binding sequence σ = 〈(t1, b1), (t2, b2), ..., (tn, bn)〉 ∈ B∗ with
συ ∈ φ(AN) and a bijective function f ′ : B →M↓mod such that:

– ∀(t,b)∈σt = πmt(f
′(t, b)) ∧

⋃
o∈range(b) o = πmo(f

′(t, b))

– ∀m1,m2∈M↓mod
(m1,m2) ∈ C↓mod ⇒ ∃1≤i<j≤nm1 = f ′(ti, bi)∧m2 = f ′(tj , bj)

There can be multiple alignments for a process execution and an accepting
object-centric Petri net. al(PX , AN) is the set of all these alignments.

An alignment for the running example can be seen in Figure 5. The graph
of moves is directed and acyclic which creates a partial order of moves. When
reducing the graph to log and synchronous moves, it is isomorphic to the given
process execution in Figure 1. This ensures that the behavior of the given pro-
cess execution is contained in the alignment. The reduction to the model part
relates to a binding sequence that has to be in the language of the accepting
object-centric Petri net. This ensures that the model part describes behavior
that is accepted by the model. Note that an alignment does not put any other
requirement on the model part than to be allowed by the model. Therefore,
alignments can also contain model behavior that is very different from the pro-
cess execution. Those alignments will end up with more model and log moves
and fewer synchronous moves. Cost functions for moves allow us to search for
special behavior from the model that we want to align. Most of the time we are
looking for the allowed behavior that is the most similar to the given process
execution. That is what the standard cost function formalizes.

Definition 13 (Standard Cost of Move Function).
Let ALPX ,AN = (M,C) ∈ al(PX , AN) be an alignment with process execution
PX and accepting object-centric Petri Net AN . The cost function costmove :
moves(PX , AN)→ R is defined as:

costmove(m) =


0 if m is a synchronous move,

|πlo(m) ∪ πmo(m)| if m is a model or log move ∧ πma(m) 6= τ,

ε if πma(m) = τ ∧ alog =�,
+∞ else

With ε being a positive very small number. The cost of a complete alignment is
the sum over all alignment moves: costalignment(ALPX ,AN ) =

∑
m∈M costmove(m).

The cost of the alignment in Figure 5 is 6 because there are 3 model and 3 log
moves that have one object each. The lower the cost the better model and log
part match, because synchronous moves are cheaper than model and log moves.
We call one of the cheapest alignments an optimal alignment.

Definition 14 (Optimal Alignment). Let L be an object-centric event log
and PX ∈ px(L) be a process execution. Let AN be an accepting object-centric
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Petri net. An alignment ALPX ,AN = (M,C) ∈ al(PX , AN) is optimal if
∀a∈al(PX ,AN)costalignment(ALPX ,AN ) ≤ costalignment(a).

Note that there can still be multiple optimal alignments for a given process
execution and a de-jure Petri net as long as they are all equally similar to the
process execution.

Fig. 5. Alignment for process execution in Figure 1 and accepting object-centric Petri
net in Figure 2.

An optimal object-centric alignment for the running example can be seen
in Figure 5. The inter-object dependencies that are defined in the object-centric
Petri net in Figure 2 are respected by the object-centric alignment. For example,
the object-centric alignment agreed on one shared start activity for p1, i1, andi2
which keeps the alignment consistent with inter-object dependencies. This differ-
entiates object-centric alignments and traditional alignments which can violate
this requirement.

5 Object-Centric Synchronous Product Net

The first part of our approach to calculate optimal alignments is to create a
synchronous product net for a given process execution and an accepting object-
centric Petri net. That synchronous product net is designed to generate all pos-
sible alignments. Since alignments can have model, log, and synchronous moves,
the synchronous product net consists of three parts that directly relate to them.
In the synchronous product net in Figure 8 these parts are marked. First, we
construct the log part from the process execution. Then, we pre-process the de-
jure model to finally merge them together to the synchronous product net and
add the synchronous part.

5.1 Process Execution Net Construction

The process execution net will be the part of the synchronous product net that
guarantees that the process execution is contained in the alignment. The con-
struction of the process execution net relates to Petri net runs [15] and causal
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nets [3]. For each object, each edge in the process execution defines a precondi-
tion for an event. The process execution net in Figure 6, therefore, has a place
for each condition defined in the process execution.

Fig. 6. Process Execution Net

Because object-centric Petri nets are under-specified and we will merge the
created net with a given accepting object-centric Petri net, we can not use the
same objects and types for both, the log and model part. The process execution
contains directly follows relations on the level of object instances. For example,
the running example process execution in Figure 1 shows that on item i1 add
sample never happens, whereas on item i2 activity add sample happens twice.
Although they both have the same object type, the process execution differenti-
ates them. An accepting object-centric Petri net is under-specified in that regard
because it only differentiates places by type. Clearly, it is important to separate
the object instances because otherwise, deviations in one object instance could
compensate for a contrary deviation in another. For example, the missing add
sample activity on i1 could be compensated by the additional add sample ac-
tivity on i2 if one would not strictly separate which event happened on which
object instance. To enable an accepting object-centric Petri net to separate ob-
ject instances, we have to create a new individual type for each object instance
in the process execution. Since each object instance must have exactly one type,
we then need to replace the original object instances with new individual place-
holder object instances in the process execution net.

Definition 15 (Generation of new Objects and Types). Let L = (E,O,OT,
πact, πobj , πtimes, πtrace) be an object-centric event log and PX = (EX , DX) ∈
px(L) a process execution containing objects X. Let Onew(PX) ∈ Uobj with
Onew(PX) ∩ O = ∅ and |Onew(PX)| = |X| be a set of new object instances and
OTnew(PX) ∈ Utype with OTnew(PX)∩{πtype(o)|o ∈ X} = ∅ and |OTnew(PX)| =
|X| be a set of new types.

Let newobj : X → Onew(PX) be a bijective function that renames objects
from X to unused objects in Onew(PX). Let newtype : X → OTnew(PX) be a
bijective function that relates each object to its unique new type.

We define the following derivative concepts:
orob : Onew(PX)→ X with orob = new−1obj returns the original object.
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orty : OTnew(PX) → {πtype(o)|o ∈ X} with orty(ot) = πtype(new
−1
type(ot)) re-

turns the original type of the object that is associated with the given new type.

We create the process execution net with the new objects and types. The
conditions defined in the process execution are the directly follows relation per
object. For each condition, the Petri net contains a place. Also, start and end
places are added for each object. The transitions relate to the events of the
process execution.

Definition 16 (Process Execution Net). Let L = (E,O,OT, πact, πobj , πtime,
πtrace) be an object-centric event log. Let PX = (EX , DX) ∈ px(L) be a process
execution from the event log. The process execution net PXnet = (((P, T, F, l), pt,
Fvar),Minit,Mfinal) is an accepting object-centric Petri net with:

– P = {po;i|o ∈ X ∧ πtrace(o) = 〈e1, ..., en〉 ∧ 1 ≤ i ≤ n− 1}
∪ {po;s|o ∈ X} ∪ {po;e|o ∈ X}

– T = {te|e ∈ EX}
– F = [(te, po;i) ∈ T × P |πtrace(o) = 〈e1, ..., en〉 ∧ ∃1≤i≤n−1ei = e]
∪ [(po;i, te) ∈ P × T |πtrace(o) = 〈e1, ..., en〉 ∧ ∃1≤i≤n−1ei+1 = e]
∪ [(po;s, te) ∈ P × T |πtrace(o) = 〈e1, ..., en〉 ∧ e1 = e]
∪ [(te, po;e) ∈ T × P |πtrace(o) = 〈e1, ..., en〉 ∧ en = e]

– l(te) = πact(e); pt(po;i) = newtype(o); Fvar = ∅
– Minit = {(po;s, newobj(o))|o ∈ X}; Mfinal = {(po;e, o′)|newobj(o) ∈ X}

5.2 Pre-processing of the Object-Centric Petri Net

The de-jure behavior is already given as an accepting object-centric Petri net,
which is very close to what we need to create the synchronous product net. But
an accepting object-centric Petri net can have variable arcs. The Petri net of the
running example in Figure 2 has variable arcs for t1 and t2. For transitions with
variable arcs, we do not know beforehand how many objects they will use. This
becomes a problem when we try to find synchronous moves between the process
execution net and the de-jure net. A transition can only be synchronous if they
use the same object instances which implies that they use the same number
of object instances. Therefore we need to know beforehand how many object
instances a transition will use.

As mentioned in Section 4, we assume that the set of objects for the alignment
is immutable and defined by the process execution. For a predefined set of object
instances, the number of objects a variable arc can use is finite. Therefore, we can
replace transitions with variable arcs with a set of transitions without variable
arcs. For each combination of how many objects a variable arc could consume
we can add a new transition to the Petri net that uses exactly that number of
objects, but by replacing the variable arc with a number of non-variable arcs.
When doing this for the Petri net in Figure 2 the result will be the Petri net
without variable arcs in Figure 7.
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Definition 17 (Pre-processing of Accepting Object Centric Petri Net).
Let L = (E,O,OT, πact, πobj , πtimes, πtrace) be an object-centric event log and
PX = (EX , DX) ∈ px(L) a process execution. Let AN = (((P, T, F, l), pt, Fvar),
Minit,Mfinal) be an accepting object-centric Petri net. Let there be an arbitrary
but fixed order of types ot1, ..., otn ∈ OT . The pre-processed accepting object-
centric Petri net is DJnet = (((P ′, T ′, F ′, l′), pt′, F ′var)M

′
init,M

′
final) with:

– P ′ = P , pt′ = pt, F ′var = ∅,
– T ′ = {tc1,...,cn |t ∈ T ∧ ∀1≤i≤n0 ≤ ci ≤ |{o ∈ X|πtype(o) = oti}| if oti ∈
tplvar(t) otherwise ci = 0}

– F ′ = [(p, tc1,...,cn) ∈ P ′ × T ′|(p, t) ∈ F ∧ (p, t) 6∈ Fvar)]
∪[(tc1,...,cn , p) ∈ T ′ × P ′|(t, p) ∈ F ∧ (t, p) 6∈ Fvar)]
∪[(p, tc1,...,cn)k ∈ P ′ × T ′|(p, t) ∈ Fvar ∧ ∃1≤i≤npt(p) = oti ∧ ci = k]
∪[(tc1,...,cn , p)

k ∈ T ′ × P ′|(t, p) ∈ Fvar ∧ ∃1≤i≤npt(p) = oti ∧ ci = k]
– l′(tc1,...,cn) = l(t)
– M ′init = [(p, o) ∈ P ′ ×X|∀t∈T (t, p) 6∈ F ∧ pt(p) = πtype(o)]
– M ′final = [(p, o) ∈ P ′ ×X|∀t∈T (p, t) 6∈ F ∧ pt(p) = πtype(o)]

We call the pre-processed accepting object-centric Petri net a de-jure net.
The de-jure net of the running example can be seen in Figure 7.

Fig. 7. Preprocessed accepting object-centric Petri net without variable arcs

5.3 Creating the Synchronous Product Net

Now that we have two accepting object-centric Petri nets without variable arcs,
one describing the process execution, and one describing the de-jure behavior, we
can add them together to create the synchronous product net. The synchronous
product net should directly relate to possible alignments. In an alignment, either
the process execution and the de-jure parts advance forward separately or they
advance forward synchronously. For activities to happen in the process execution
and the de-jure part simultaneously, they have to be the same activity on the
same object instances. Object-centric Petri nets can only separate between object
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types and not between object instances. Therefore, we extend the object-centric
Petri net with ν-net requirements that can differentiate between object instances.
We decode log, model, and synchronous transitions with (tlog,�), (�, tmod), and
(tlog, tmod) as one can see in the synchronous product net in Figure 8.

Fig. 8. Synchronous product net for the process execution net in Figure 6 and accepting
object-centric Petri net in Figure 7

Definition 18 (Synchronous Product Net).
Let PXnet = (((PPX , TPX , FPX , lPX), ptPX , FvarPX

= ∅),MinitPX
,MfinalPX

)
be a process execution net. Let DJnet = (((PDJ , TDJ , FDJ , lDJ), ptDJ , FvarDJ

=
∅),MinitDJ

,MfinalDJ
be a de-jure net. Let V ar be a set of unused variable names.

Two transitions can be synchronous if they are labeled with the same activity
and consume the same multiset of tokens. This requires them to be related to the
same types and consume and produce the same number of tokens.
Tsyn = {(tPX , tDJ) ∈ TPX × TDJ |lPX(tPX) = l(DJ(tDJ) ∧ {orty(ty)|ty ∈
tpl(tPX)} = tpl(tDJ) ∧ ∀pPX∈•tPX ,pDJ∈•tDJ

(orty(ptPX(pPX)) = ptDJ(pDJ)) ⇒
FPX((pPX , tPX))=FDJ((pDJ , tDJ))) ∧ ∀pPX∈tPX•,pDJ∈tDJ•(orty(ptPX(pPX)) =
ptDJ(pDJ))⇒ (FPX((tPX , pPX))=FDJ((tDJ , pDJ)))} is the set of synchronous
transitions.
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The synchronous product net is the accepting object-centric ν-Petri net SPnet =
(ONSP ,MinitSP

,MfinalSP
, ν) with ONSP = (NSP , ptSP , FvarSP

= ∅) with NSP =
(PSP , TSP , FSP , lSP ) such that:

– PSP = PPX ∪ PDJ is the union of places and ptSP = ptPX ∪ ptDJ
– TSP ⊂ (T�PX×T

�
DJ) = {(tPX ,�)|tPX ∈ TPX}∪{(�, tDJ)|tDJ ∈ TDJ}∪Tsyn

is the union of transitions with additional synchronous transitions.

– FSP = [(pPX , (tPX ,�))|(pPX , tPX) ∈ FPX ]∪ [(pDJ , (�, tDJ))|(pDJ , tDJ) ∈
FDJ ]∪ [((tPX ,�), pPX)|(tPX , pPX) ∈ FPX ]∪ [((�, tDJ), pDJ)|(tDJ , pDJ) ∈
FDJ ] ∪ [(pPX , (tPX , tDJ))|(pPX , tPX) ∈ FPX ∧ (tPX , tDJ) ∈ TSP ]
∪ [(pDJ , (tPX , tDJ))|(pDJ , tDJ) ∈ FDJ ∧ (tPX , tDJ) ∈ TSP ]
∪ [((tPX , tDJ), pPX)|(tPX , pPX) ∈ FPX ∧ (tPX , tDJ) ∈ TSP ]
∪ [((tPX , tDJ), pDJ)|(tDJ , pDJ) ∈ FDJ ∧ (tPX , tDJ) ∈ TSP ]

– lSP = {((tPX ,�), a)|(tPX , a) ∈ lPX} ∪ {(�, tDJ), a)|(tDJ , a) ∈ lDJ} ∪
{((tPX , tDJ), a)|(tPX , a) ∈ lPX , (tDJ , a) ∈ lDJ}

– MinitSP
= MinitPX

∪MinitDJ
and MfinalSP

= MfinalPX
∪MfinalDJ

– ν : PSP × TSP 6→ V ar such that:
∀(tPX ,tDJ )∈TPX×TDJ

∀pPX∈•(tPX ,tDJ )∃(pDJ ,(tPX ,tDJ ))∈FSP

(pDJ ∈ PDJ ∧ pt(pDJ) = orty(pt(pPX)))⇒
(ν((pDJ , (tPX, tDJ))) = ν((pPX , (tPX , tDJ))))

In the process execution part, we use the orob function when comparing
objects from the model and log part. The ν net requirement function assigns
variables to the in-going arcs of the synchronous transition. For each in-going
arc from the process execution net, there has to be one arc from every place that
has the same original type, so that those arcs have the same unique variable
assigned by V ar. This requires the synchronous move to use the same object
instance in the process execution net and the de-jure net. The variables ensure
that transitions can only consume the same object instance for arcs with the
same variable. This refers to the original objects not the newly created ones in
the process execution net.

Definition 19 (Valid Binding in Synchronous Product Net). Let SPnet =
(((PSP , TSP , FSP , lSP ), ptSP , FvarSP

),MinitSP
,MfinalSP

, ν) be the synchronous
product net. Let SPnet\ν be the synchronous product net without ν. A binding
sequence σ = 〈(t1, b2), ..., (tn, bn)〉 ∈ B∗ is valid for SPnet if it is valid for SPnet\ν
and for every (ti, bi) ∈ σ with ti ∈ Tsny that is connected to an arc with a vari-
able assigned by ν it holds that arcs with the same variable consume the same
object:
∀pDJ∈PDJ ,pPX∈PPX ,{pDJ ,pPX}⊆•(ti)(ν((pPX , ti)) = ν((pDJ , ti)) ⇒ {orob(o)|o ∈
bi(pt((pPX , ti)))} ∩ b(pt((pDJ , ti))) 6= ∅).

The resulting synchronous Petri net for the running example can be seen in
Figure 8.
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6 Alignments from Synchronous Product Net

This section describes the second part of our approach to finding object-centric
alignments. As an input for this part, we have a synchronous product net in which
every transition relates to a move of an alignment. All binding sequences from the
initial marking to the final marking in the synchronous product net relate to an
alignment. In this section, we now want to find an optimal alignment given a cost
function for moves. Every binding in the synchronous product net directly relates
to a move. A binding defines the transition and the used objects. As described in
Section 5 the transitions already describe the type of move with (�, t) being a
model move, (t,�) being a log move, and (tPX , tDJ) being a synchronous move.
The activity is also defined by the transition from the binding. The objects used
in the binding are the objects of the move.

Therefore, searching for an optimal alignment relates to searching for an
optimal binding sequence from the initial to the final marking of the synchronous
product net. Interpreting markings as nodes and bindings as edges between
markings, we can set up the search space as a graph. The cost of the edges is
then the given cost function applied to the move that relates to the binding. This
is a well-defined search problem we can solve with standard search algorithms
for finding the cheapest or shortest path in a graph.

Definition 20 (Weighted State Space Graph).
Let SPnet = (((PSP , TSP , FSP , lSP ), ptSP , FvarSP

),MinitSP
,MfinalSP

, ν) be a
synchronous product net. Let BSP be all possible bindings in SPnet. The weighted
search space graph for that Petri net is Gwg = (Vwg, Ewg, wwg) with Vwg ⊆
B(QONSP

), Ewg ⊆ B(QONSP
)× B(QONSP

) and wwg : Ewg → R such that:

– Vwg = {M ∈ B(QONSP
)|∃σ∈B∗SP

MinitSP

σ−→ M} is the set of all reachable
markings in the synchronous product net.

– Ewg = {(M,M ′) ∈ B(QONSP
) × B(QONSP

)|∃(t,b) inBSP
M

(t, b)−−−→ M ′} con-
nects each marking to its directly reachable markings.

– wwg(M,M ′) = costmove(alog, olog, tmodel, omodel) where (t, b) ∈ BSP with

M
(t, b)−−−→M ′ and t = (tPX , tDJ) ∈ TSP so that:

• alog = lSP (tPX); tmodel = tDJ
• olog = range(b) if alog 6=� else olog = ∅
• omodel = range(b) if amodel 6=� else omodel = ∅

Theorem 1. Let PX be a process execution with a finite number of objects and
events and a let DJnet = (((PDJ , TDJ , FDJ , lDJ), ptDJ , FvarDJ

= ∅),MinitDJ
,

MfinalDJ
) be a de-jure net with a finite number of reachable markings from the

initial marking. The synchronous product net SPnet for PX and DJnet has a
finite number of reachable markings.

Proof (Finite Search Space). Let PX = (EX , DX) be a process execution with a
finite number of objects o = |X| and events e = |EX |. Let DJnet = (((PDJ , TDJ ,
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FDJ , lDJ), ptDJ , FvarDJ
= ∅),MinitDJ

,MfinalDJ
) be a de-jure model for the pro-

cess execution with a finite number of reachable markings mDJ = |{M |∃σ∈B∗DJ

MinitDJ (PX)
σ−→M}| with BDJ being the set of possible bindings in DJnet.

Step 1 of our method creates the process execution net PXnet = (((PPX , TPX ,
FPX , lPX), ptPX , FvarPX

),MinitPX
,MfinalPX

) from the process execution. Let
BPX be the set of all bindings in PXnet. At most one place is added per
event for each object together with one additional start place for each object.
Since the number of events and objects is finite the number of places in PXnet

is finite. Each transition produces as many tokens as it consumes because it
is connected to one output place for each input place. So the number of to-
kens stays consistent all the time. Therefore, the number of reachable markings
mPX = |{M |∃σ∈B∗PX

MinitPX

σ−→M}| ≤ (e+ 1)o in PXnet is finite.
Step 2 of our method preprocesses DJnet. Thereby, no places are added.

Transitions with variable arcs are replaced by a set of transitions that can only
reach markings the original transition was able to reach as well. Thus, the number
of reachable markings stays the same and is therefore finite.

In Step 3, DJnet and PXnet are merged together to form the synchronous
product net. No places are added and the synchronous transitions that are added,
do not add new reachable markings because there always exists one transition
from DJnet and one from PXnet that together have the same effect on the
markings of the net. Therefore, the number of markings in the synchronous
product net SPnet for PX and the preprocessed DJnet is the product of the
two nets: mSP = |{M |∃σ∈B∗SP

MinitSP

σ−→ M}| = mDJ ∗mPX with BSP being
the set of all possible bindings in SPnet. Since mDJ and mPX are finite, the
synchronous product net has a finite number of reachable markings.

As stated in Theorem 1 and shown in the finite search space proof, the
weighted search space graph is finite given that the event log and the de-jure
model have a finite size. For a finite weighted graph, it is decidable whether a
cheapest path exists, and if one exists, algorithms like the Dijkstra algorithm
[14] can find them. The only case in which there is no cheapest path is when
there is no path at all. This means that the synchronous product net cannot
reach the final state from the initial state. This can only occur if the de-jure
model has no option to complete for the set of objects of the process execution.
In other words, the de-jure model does not contain any allowed behavior related
to the process execution. In this case, there can be no alignment and the user
is informed that the de-jure model does not match the process execution. This
is similar to traditional alignments with a de-jure model that has no option to
complete. In the normal case where the de-jure model describes behavior related
to the given process execution, an optimal alignment is determined with the help
of the shortest path.

The resulting shortest path is a binding sequence from the initial to the final
marking. It relates directly to an object-centric alignment for the given process
execution and the de-jure model. Using the synchronous product net in Figure 8
the search for an optimal alignment results in the alignment in Figure 5. Thereby
respecting the inter-object dependencies between package and item. Also, object
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Fig. 9. A process execution from [17] and a variation of it that has some noise.

instances are correctly separated by the ν-net requirements, so that deviations
of different object instances can not compensate another. That can be seen in
Figure 5 where the missing add sample activity for i1 and the additional add
sample activity for i2 are both identified as deviations.

There can be multiple binding sequences with the same cost. It is guaranteed
that one of the cheapest is found, but if there are multiple binding sequences
with the same cost, it depends on the implementation which one is found.

7 Evaluation

We conducted an evaluation with real-world data from the BPI2017 challenge
[17]. The evaluation is split into a qualitative part and a quantitative evaluation
of the run time.

7.1 Qualitative

The purpose of the qualitative evaluation is to evaluate whether the proposed
approach does indeed give better insights into complex processes than exist-
ing approaches. In the following, we will compare the presented object-centric
alignment approach to traditional alignments [8] on a flattened event log [4].

We used data from BPI2017 [17] for our real-world evaluation. It is one of
the few publicly available event logs that can be turned into an object-centric
event log. The two object types of that process are application and offer. All
variants have exactly one application and at least one offer. An application can
be canceled or an offer is accepted.

For this evaluation, we selected only the 4 most dominant variants that made
up 19.6% of process executions. For simplicity and clarity, we removed the activ-
ities Submit, Complete, and Accept because they only appear in the beginning
before the processes for application and offer interact. We discovered the de-
jure Petri net from those 4 variants using the python library ocpa [6] which
implements the discovery approach from van der Aalst and Berti [4]. The im-
plementation of our approach also uses ocpa [6]. In the next step, we introduced
noise in the log by removing and replacing events in the given process execution.

The original accepted process execution and the process execution with noise
can be seen in Figure 9. In this example, the activity Cancel application is
removed from the application trace, as well as the activity Cancel offer. Instead
of Cancel offer the activity Accept offer was recorded for application 1. In the
trace of offer 1, nothing was changed. An error like that could be introduced
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Fig. 10. Traditional and object-centric alignments for the variant with noise and the
evaluation de-jure model.

to a real process by human mistakes. The change created multiple deviations
from the wanted behavior described by the de-jure model. For example, it is not
possible to accept an application without accepting an offer. This is an inter-
object dependency we would want alignments to detect. Also, the events Cancel
application and Cancel offer are now only recorded for an offer but are not
connected with an application. Therefore, this represents unwanted behavior as
well.

We applied the traditional alignment approach [8] after flattening [4] the
object-centric process execution and the object-centric Petri net. This results in
the two alignments. We also applied our object-centric alignment approach to
the described evaluation data. Both the traditional and object-centric alignment
can be seen in Figure 10.

Comparing those two, we can see big differences in the diagnostics. The
biggest difference is that the traditional alignment did not detect that appli-
cation 1 should not have been accepted. The reason for that is that with the
traditional approach, the alignment for application 1 is computed without any
knowledge about any offers. Therefore, it has to assume that activity Accept Of-
fer was a valid activity, where instead there was no matching offer to accept. This
missing information leads to the traditional alignment suggesting that activities
Validate and Pending are missing in the log, further supporting the understand-
ing that this application should have been accepted. Our approach considers
all dependencies between objects and therefore identifies Accept offer as a log
move. Moreover, the traditional alignment does not indicate any control flow
deviation for offer 1. This creates a contradiction between the alignment of offer
1 and application 1 because an application can not be accepted and canceled.
Contradictions like that can not occur in an object-centric alignment because
the whole process execution is considered at once.
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7.2 Quantitative

To evaluate the scalability of our approach, we performed a quantitative analysis
of the run time.

Evaluation Setup As the data source we used BPI2017 event data [17]. Only
the most frequent 50% of activities were used. All other activities were filtered
out. Afterward, the log consisted of 755 variants. We used a Petri net designed so
that the given log contains some dis-aligned process executions. The used Petri
net is available on GitHub1. It has 6 visible transitions and 4 silent transitions.
There are 10 places in the net. We aligned all the 755 variants with the model
and tracked their properties and the resulting alignment calculation time. The
raw results of that evaluation can be found at GitHub1. The evaluation was
performed on a 3.1 GHz Dual Core Intel Core i5 with 8GB of RAM.

Fig. 11. Execution time on a logarithmic scale over the number of events.

Results Within the 755 calculated alignments, the cost varied from 0 to a
maximum of 5. The number of events spanned 3 events up to 20 events with
the majority of process execution having 11 to 14 events. The object instances
involved started with 2 and went up to 7 instances. The distribution of these
attributes can be seen in Figure 11, Figure 12, and Figure 13. The shortest
calculation time was 0.007 seconds and the longest was 1051.8 seconds. One can
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see that near the limits of the value range for all attributes, there are fewer data
points, which makes the results for these values less resistant to outliers. We
computed the correlation coefficient for each pair of attributes. The number of
events and the number of objects show a positive correlation of 0.59 whereas the
number of events and the cost show a negative correlation of -0.38. Especially the
latter one is surprising because one would expect more deviations and therefore
a higher cost for process variants with more events.

We plotted the calculation time over the three dimensions number of events
(Figure 11), number of objects (Figure 12), and cost (Figure 13). To reduce the
effect of the negative correlation, we grouped the data points in Figure 13 by
their number of events. Note that the time scale for the time is logarithmic in
all three plots and, therefore, the linear increase represents exponential growth.
For all three dimensions, the calculation time grows exponentially.

Fig. 12. Execution time on a logarithmic scale over the number of objects.

This result can be explained by the structure of the search space. More
events increase the size of the process execution net and can also increase the
number of synchronous transitions in the synchronous product net. Thus there
are more possible markings which leads to a bigger search space. More objects
also increase the size of the process execution net and add a lot of parallel
behavior, thereby also increasing the search space. The run time of the Dijkstra
algorithm is on average exponential in the size of the search space [16]. Therefore,
the computation time grows exponentially for the number of events and objects.
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Fig. 13. Execution time on a logarithmic scale over alignment cost, grouped by the
number of events.

For an alignment with a higher cost, a bigger portion of the search space is
explored because Dijkstra explores all vertices that are reachable by a path that
is cheaper than the cheapest path to the final marking. As a result, the run-time
grows exponentially for the cost of the alignment.

8 Conclusion

This paper presented four contributions for conformance checking in object-
centric process mining. First, we defined object-centric alignments generalizing
traditional alignments to graphs of moves. Second, we provided an algorithm to
calculate optimal alignments on an object-centric log and Petri net. The two-step
approach creates a synchronous product net and searches for the optimal bind-
ing sequence from initial marking to final marking. Third, we implemented this
algorithm using the open-source library ocpa [6] and made it publicly available
on GitHub1. Finally, we performed an evaluation of the presented approach. The
qualitative evaluation shows the advantages of object-centric alignments for de-
viation diagnostics. Complex inter-object dependencies are lost when flattening
the event data, leading to contradictions in the alignment. Using object-centric
alignments, we preserve these dependencies and avoid contradictions. Our quan-
titative evaluation indicates an exponential computation time in the number of
object instances and cost of the alignment. This suggests, that an alignment
of a whole object-centric event log to a moderately fitting model might be too
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time-consuming. In those scenarios, one might use object-centric alignments to
get specific diagnostics for individual process executions or variants.

There are two directions for future work based on object-centric alignments.
On the one hand, one can investigate lifting restrictions of the current approach.
For example, the assumption of a fixed object set could be dropped, allowing
for the approach to introduce completely new objects that might be missing. On
the other hand, one can work towards decreasing the complexity and run time:
Heuristics, using the A∗ algorithm, and defining relaxations of the problem are
all promising directions to decrease the computation time.
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