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Abstract. Computer-based scientific experiments are becoming increas-
ingly data-intensive. High-Performance Computing (HPC) clusters are
ideal for executing large scientific experiment workflows. Executing large
scientific workflows in an HPC cluster leads to complex flows of data
and control within the system, which are difficult to analyze. This paper
presents a case study where process mining is applied to logs extracted
from SLURM-based HPC clusters, in order to document the running
workflows and find the performance bottlenecks. The challenge lies in
correlating the jobs recorded in the system to enable the application
of mainstream process mining techniques. Users may submit jobs with
explicit or implicit interdependencies, leading to the consideration of dif-
ferent event correlation techniques. We present a log extraction technique
from SLURM clusters, completed with an experimental.

Keywords: High Performance Computing · SLURM · Scientific work-
flow · Process mining.

1 Introduction

A workflow is a description and automation of a process, in which data is pro-
cessed by different logical data processing activities according to a set of rules.
A scientific workflow is an ensemble of scientific experiments, described in terms
of scientific activities with data dependencies between them [2]. Scientific work-
flows allow scientists to model and express the entirety of data processing steps
and their dependencies. Fig. 1 shows an example of scientific workflows depicted
as a flow chart, where each task is associated with a command.

Modern scientific experiments generate and consume a vast amount of data,
making scientific workflows increasingly data-intensive. To process this massive
data in a reasonable time, scientists need to use parallel processing methods in
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phalia for supporting this work/project as part of the NHR funding. Also, we thank
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Fig. 1: An example of scientific workflows. The workflow is fed with a single input file, and starts
with a pre-processing job, followed by two larger parallel jobs which generating a set of output files
which are the inputs of the next steps and are eventually merged into a single output file.

the cloud or on an HPC cluster [5], which can provide the necessary computing
power for heavy tasks. However, executing scientific workflows on HPC clusters
is usually complex and time-consuming due to the large data involved [10]. This
paper aims to employ process mining techniques to improve the understanding
of the workflow execution process and identify optimization opportunities.

Over the past decades, there has been a growing interest in the field of process
mining [1]. Process mining aims to extract information about processes from
event logs, i.e., execution histories. This paper applies process mining to existing
scientific workflows with the following goals:

– Documentation of scientific workflows: reporting which commands are exe-
cuted and in which order. We pursue this goal by using process discovery
techniques, one of the main branches of process mining [1]: Process discov-
ery techniques assume that every record in the event log contains at least:
(i) a reference to the executed activity, (ii) a reference to the identifier that
associates an event to a particular execution of the process, and (iii) the
timestamp at which the event has occurred.

– Detection of bottlenecks affecting the execution of scientific workflows. We
enrich the process model discovered in the previous step with performance
results obtained .

While the techniques proposed in this paper can be applied to any workflow
system, to promote applicability we focus on the SLURM system governing the
RWTH HPC cluster, one of the most widely used platforms in the field.

The issue in examining the logs obtained from a given workflow system is the
absence of a clearly defined case identifier that groups events associated with the
same execution. In order to apply process mining on these logs, it is necessary to
study the correlation between tasks that are running on the HPC cluster. Fig. 2
shows an overall view of our approach. The RWTH HPC cluster is observed
periodically, and an input log is generated; then, based on the way the user
has executed their jobs on the SLURM [9], we propose two different approaches
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Fig. 2: An overall view of the proposed approach

to assign case IDs to events. Finally, we obtain an event log on which process
mining techniques can be applied.

The remainder of this paper is organized as follows. Sec. 2 reviews some
related works. Sec. 3 shows some technical notions on how the SLURM system
is implemented and which information is available to eventually form an event
log. Sec. 4 explains our approach to apply process mining techniques to the
scientific workflows running on SLURM-based HPC clusters. Sec. 5 introduces
some analyses of the event log extracted from the SLURM system of RWTH
Aachen University. Finally, Sec. 6 concludes the paper.

2 Related Work

Many studies have analyzed HPC behavior starting from data collected about
the running jobs. In [4], an extension of miniHPC is proposed, to enable job-level
monitoring to interpret anomalous behaviors such as load imbalance, CPU and
I/O anomalies, or memory leaks. A framework for monitoring, analyzing, and
predicting jobs running on PBS-based job scheduler HPCs is defined in [6]. The
monitoring module captures data about the topology of in-use nodes while a job
is running. This provides a deeper understanding of how the job is distributed
across the HPCs node network. In [3], a software stack for center-wide and job-
aware cluster monitoring to influence node performance is described.

Process mining techniques have been used to analyze scientific/business work-
flow logs. In [10,11], a technique to mine scientific workflows based on provenance
(i.e., the source of information involved in manipulating artifacts) is proposed.
In [8], Scientific Workflow Mining as a Service (SWMaaS) is presented to support
both intra-cloud and inter-cloud scientific workflow mining.

A limitation of [4,3,6,7] is that they examine the jobs regardless of their
interdependencies. Moreover, in [11,8], it is assumed that the data source already
contains all the necessary information to apply process mining, ignoring the
situations in which no case notion is defined. This paper aims to introduce event
correlation methods applicable to event data extracted from scientific workflows.
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Fig. 3: Life-cycle of the execution of a single job on SLURM: insertion (pending), execution (running),
and collection of the results (completed).

3 Preliminaries

We will focus on analyzing event data from the popular SLURM platform for
HPC computing. Hence, in this section, we present some technical notions. To
interact with SLURM, we have a set of possible commands. The most essential
commands are listed here [9]:

– srun: runs a single job. We need to create a srun script, which can then be
submitted on SLURM for real-time execution.

– sbatch: submits one or more srun commands for later execution on SLURM.

– squeue: reports the states of the running jobs. This command helps us to
extract a log for process mining purposes.

3.1 Execution of a Single Job on SLURM

Any script runs on SLURM as a job. As mentioned above, the execution of
a job on SLURM could be easily done with srun and sbatch containing one
single srun command. Understanding the sequential stages a job undergoes for
execution, and the data that can be extracted for each job running in the SLURM
queue is valuable [9].

Typically, jobs pass through several states in the course of their execution.
There are a total of 24 possible states for a job, of which three can be seen in
Fig. 3 [9].

– PENDING (PD): the job is waiting for resource allocation.

– RUNNING (R): the job is currently allocated.

– COMPLETING (CG): the job is in the process of completion.

The SLURM scheduling queue contains all the information about running
jobs. To view this information we use the squeue command. The most important
features of the jobs that have been used in our study are listed in Table 1.
These features could be extracted with the squeue -o "%a %i %E %o %t %g"

command on the SLURM system. This command shows the list of jobs in the
SLURM scheduling queue along with their account, job ID, declared dependency,
executed command, status, and project ID information [9].
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Fig. 4: Execution of a sequence of jobs without explicit interdependencies.

3.2 Execution of a Sequence of Jobs on SLURM

To explain how to run a series of jobs (sequence of scripts) on the SLURM
workflow system, we will go through an example. Consider a user who wants to
run four scripts on SLURM, pre-processing as the first one, then parallel-job1 and
parallel-job2, which can be executed in parallel but must be executed after the
pre-processing script (because they need the output from pre-processing). Finally,
the merge script needs the output of the two parallel jobs for its execution. The
user can run the sequences of jobs on SLURM in two ways: either manually
(without explicit interdependencies) or automatically (with interdependencies).

Execution of a Sequence of Jobs without Explicit Interdependen-
cies: In this case, the user runs the jobs manually—without declaring the inter-
dependencies between jobs—and after submitting each job waits for its execution
to be completed; then, executes the next job (Fig. 4). In this case, each job is
executed as independent, and only the user knows that some of these jobs are
logically dependent on each other.

Execution of a Sequence of Jobs with Explicit Interdependencies:
In this scenario, the user uses the SLURM dependency management system and
submits all jobs at once with correct inter-dependencies on the SLURM system,
as shown in Fig. 5. Here, the user uses the sbatch command. This command is
used to submit a job script for later execution using the --dependency option.
The script typically contains one or more srun commands to launch parallel
tasks. In this case, the user does not need to wait for the outputs of a single job,
but can wait for the execution of all the tasks and retrieve the final results at
completion (Fig. 5).

Table 1: Extracted features of running jobs on SLURM system [9].
Column title Description
ACCOUNT Account associated with the job.
JOBID An unique value as job identifier.

DEPENDENCY

Specify the dependencies of the job on other jobs. This job will not begin
execution until these dependent jobs are complete. In the case of a job that
cannot run due to job dependencies never being satisfied, the full original job
dependency specification will be reported. A value of NULL implies this job has
no dependencies.

COMMAND The command to be executed.

ST
Jobs typically pass through several states in the course of their execution. The
typical states are PENDING, RUNNING, SUSPENDED, COMPLETING,
and COMPLETED. ST is the compact state of the job.

GROUP Group name of the job. The project ID is reported as GROUP in SLURM.
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Fig. 5: Execution of a sequence of jobs with explicit interdependencies.

Fig. 6a shows the output of the squeue command where the user runs jobs
manually, and where the DEPENDENCY column in the PENDING state has
no values. Fig. 6b shows the output of the squeue command where the user has
declared explicit interdependencies between jobs. As one may see, the DEPEN-
DENCY column in the PENDING state has a non-empty value.

4 Approach

The input of most process mining algorithms is an event log, which contains
at least a case, an activity, and a timestamp as attributes for each event. The
majority of algorithms presume that the event data is fully accessible and has a
clearly defined case notion.

However, we cannot assume that we know the complete historical log, be-
cause of privacy issues and the required administrative privileges on the target
workflow system. Instead, we aim to observe it for a limited amount of time,
avoiding the aforementioned issues, as described in Sec. 4.1.

Moreover, since the SLURM log does not contain any explicit case notion,
in Sec. 4.2 we describe event correlation to assign a case to the different events
and allow for process mining analyses.

4.1 Register SLURM events

In order to extract an event log from the system, we perform the following
operations periodically (we refer to this as observing the system):

1. Connect to the access node of the SLURM system
2. Observe the status (e.g., PENDING, RUNNING, COMPLETING) of the

current jobs using the squeue SLURM command.
3. For each of the listed jobs (rows of the log file), one of the following situations

occurs:
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(a) Extracted SLURM log in the case of jobs ran
manually (no given interdependencies).

(b) Extracted SLURM log in the case of utilization of
WfMS (explicit interdependencies).

Fig. 6: A simplified example of log extracted from a SLURM system.

– The JOBID is new: register an event related to the creation of the job.
– The JOBID already exists, but the status has changed: register an event

related to the status change.
– The JOBID already exists, and the status has not changed: do nothing.

All the features mentioned in Table 1 are recorded for each job. Our log also
has a TIMESTAMP column that marks the time of observation of the event, and
the COMMAND values are mapped from the executed file path to the executed
file name (filtering on the last part of the path).

4.2 Event Correlation

Let us now obtain case IDs from SLURM. We extract a case ID with different
techniques, depending on whether the jobs were executed with or without explicit
interdependencies.

Case ID Extraction with Explicit Interdependencies: We utilize this
technique when the user has specified the inter-dependencies among jobs. This
declaration allows the inclusion of the DEPENDENCY column in the extracted
log, indicating the jobs on which the current job depends. Note that the DE-
PENDENCY column for the job lists only the dependencies that have not been
completed yet. Thus, the DEPENDENCY list would be naturally empty for a
job that is in the RUNNING state.

To implement this method, a Directed Acyclic Graph (DAG) is generated
for each chain of connected jobs in PENDING state by utilizing the JOBID,
and DEPENDENCY columns. The vertices are job IDs and the edges show
dependent job IDs, and then a unique case ID will be assigned to all of the
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ACCOUNT JOBID COMMAND DEPENDENCY TIME STATE CASE ID

1 userA JID1 pre-processing.sh (null) 13:35:00 PD JID4321

2 userA JID2 parallel-job1.sh afterok:JID1 (unfulfilled) 13:52:09 PD JID4321

3 userA JID3 parallel-job2.sh afterok:JID1 (unfulfilled) 13:52:11 PD JID4321

4 userA JID4 merge.sh afterok:JID2 (unfulfilled), 
afterok:JID3 (unfulfilled), 

13:54:13 PD JID4321

5 userB JID5 Import_input.sh (null) 14:12:12 PD JID765

6 userB JID6 Main_calcualtion.sh afterok:JID5 (unfulfilled) 14:51:30 PD JID765

7 userB JID7 Export_output.sh afterok:JID6 (unfulfilled) 14:54:12 PD JID765

8 userA JID8 pre-processing.sh (null) 14:56:15 PD JID111098

9 userA JID9 parallel-job2.sh afterok:JID8 (unfulfilled) 14:59:10 PD JID111098

10 userA JID10 parallel-job1.sh afterok:JID8 (unfulfilled) 15:10:10 PD JID111098

11 userA JID11 merge.sh afterok:JID9 (unfulfilled), 
afterok:JID10 (unfulfilled), 

16:05:17 PD JID111098

(a)

JID4321
JID111098

JID765

The number 2 refers to when we see JID4 is dependent on 
JID2 (row 4 in table) and when we see JID11 is dependent to 
JID8 (row 11 in table)

Import-input Main-calculation Export-output
1 1

Parallel-job1

Parallel-job2

MergePre-processing

2

2

2

2

(b)

Fig. 7: Case ID extraction with explicit interdependencies by studying JOBID and DEPENDENCY.

connected job IDs as shown in Fig. 7a. As shown in the table of Fig. 7a, JID2
and JID3 are dependent on JID1, and JID4 is dependent on JID2 and JID3.
This connection is exploited to assign case ID JID4321 (Fig. 7b, green column
of Fig. 7a). Different cases will be assigned to different discovered connected
components. For instance, JID111098 is assigned to another execution of the
same chain of commands as JID4321.

Case ID Extraction without Explicit Interdependencies: In this case,
we do not have explicitly defined job dependencies; therefore, we need to use the
attributes at the event level to determine correlations and dependencies between
the jobs. We use a combination of the following two attributes in order to define
the case identifier:

– The account executing the job: it is reported as ACCOUNT in SLURM.

– The group of the given job: the project ID is intended to group the jobs
belonging to the same project. The status should be empty or default if
the user does not call the command with the project ID. The project ID is
reported as GROUP in SLURM. So, whenever we execute the same scripts
several times, the project ID is reported as the same GROUP in SLURM.

We have a many-to-many relationship between accounts and groups. All the
jobs executed by an account under a given group are therefore related to the same
project. We can use ACCOUNT-GROUP as case ID; in this case, we are certain
that the jobs executed by the same user under the same project are all collected.
In this technique, we generate a unique case ID per each unique combination of
ACCOUNT and GROUP, as shown in Fig. 8a. The parallel relationship between
Parallel-job1 and Parallel-job2 has been discovered based on their occurrence in
rows 2, 4 and 8, 10, which show they can be executed in any order.

In this method, we may consider only the account instead of considering
the combination of group and account, but the advantage of considering also
the group is that the control flow of different projects of the same account is
not combined. This technique also has limitations, including adding loops for
commands, because we do not have a way to recognize that two consecutive
executions of the same command are related to different experiments. As a re-
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ACCOUNT JOBID COMMAND STATE TIME GROUP CASE ID

1 userA JID1 pre-processing.sh R 13:35:00 G1 userA-G1

2 userA JID2 parallel-job1.sh R 13:52:09 G1 userA-G1

3 userC JID3 pre-processing.sh R 13:52:11 G1 userC-G1

4 userA JID4 parallel-job2.sh R 13:54:13 G1 userA-G1

5 userB JID5 Import_input.sh R 14:12:12 G2 userB-G2

6 userA JID6 merge.sh R 14:51:30 G1 userA-G1

7 userB JID7 Main_calcualtion.sh R 14:54:12 G2 userB-G2

8 userC JID8 parallel-job2.sh R 14:56:15 G1 userC-G1

9 userB JID9 Export_output.sh R 14:59:10 G2 userB-G2

10 userC JID10 parallel-job1.sh R 15:10:10 G1 userC-G1

11 userC JID11 merge.sh R 16:05:17 G1 userC-G1

(a)

userA-G1

Parallel-job1

Parallel-job2

MergePre-processing

userC-G1

2

2

2

2

userB-G2

Import-input Main-calculation Export-output
1 1

(b)

Fig. 8: Case ID extraction without explicit interdependencies by studying ACCOUNT and GROUP.

Table 2: Some event log statistics extracted from the SLURM system. The system was observed in
a time interval from 2022-12-07 11:51:45 to 2022-12-09 10:49:07.

Number of events 81632
Number of unique submitted jobs 17997
Number of accounts 123
Percentage of accounts who submitted jobs with explicit interdependencies 0.06%
Percentage of jobs defined with explicit interdependencies 0.02%
Average number of allocated CPUs per job 13.71
Average amount of allocated RAM per job 5G

sult, the precision is significantly reduced, because many different behaviors and
command sequences are allowed by the resulting model.

5 Experiments

The HPC Monitoring Cockpit was applied to the SLURM system of the RWTH
Aachen University repeatedly, and an event log was obtained1. Some statistics
about the considered event log are contained in Table 2.

As the different accounts belong to different research areas (including physics,
chemistry, biology, and computer science) and executed purpose-specific scripts,
we could not produce models containing the flow of execution for all the ac-
counts. Instead, we focus on the process models that we can extract for a single
account. These process models show the scientific workflows executed by a single
user/research group. Moreover, the process model is annotated with performance
information on the arcs, allowing for the detection of paths with high execution
time (bottlenecks), and therefore fulfilling the second goal of finding root causes
of performance problems.

To highlight different execution paradigms, we focus on two accounts:

– jara0180 : contains computations performed on a funded research project
(Molecular dynamics simulations of P2X receptors).

1 RWTH HPC cluster: https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/. A sam-
ple event log can be downloaded at the address https://www.ocpm.info/hpc log.csv.

https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/
https://www.ocpm.info/hpc_log.csv
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Fitness value: 100%

jobscript_0006(14)

jobscript_0010(14) jobscript_0011(14)

jobscript_0007(14)

0s

22h

jobscript_0012(14) jobscript_0013(14)
23h 23h 1D

jobscript_0000(2) jobscript_0002(2) jobscript_0003(2)
6h 23h1D

jobscript_0001(2) jobscript_0004(2) jobscript_0005(2)
23h 23h

(a)

Fitness value: 98%

jobscript_0006
(1)

jobscript_0011
(1)

jobscript_0012
(1)

jobscript_0007
(1)

3h

jobscript_0010
(1)

jobscript_0000
(1)

jobscript_0001
(1)

jobscript_0002
(1)

jobscript_0003
(1)

jobscript_0004
(1)

jobscript_0005
(1)

0s

jobscript_0013
(1)

17h 11h 11h 11h

2h1h1h4h1h

3h

(b)

Fig. 9: The discovered process models for the account jara0180 considering (a) explicit and (b)
implicit interdependencies.

batch_training_different_loss_functions_script.sh (3)

batch_uncalibrated_prediction_different_loss_functions_ence.sh (2)

batch_training_different_loss_functions_script_small_data_sets.sh (1)

Fitness value: 100%

batch_training_ensemble_learning_script.sh (1)

(a)

batch_training_different_loss_functions_script.sh (3)

12h

Fitness value: 100%

batch_training_ensemble_learning_script.sh (1)

batch_training_different_loss_functions_script_small_data_sets.sh 

(1)

batch_uncalibrated_prediction_different_loss_functions_ence.sh (2)

0s2D

53m

35m

(b)

Fig. 10: The discovered models for the account thes1331 considering explicit (a) and implicit (b)
interdependencies.

– thes1331 : contains scientific experiments performed for an MSc thesis.

The executions carried out by jara0180 take advantage of explicit interdepen-
dencies (since HPC expertise is involved). Therefore, for jara0180 we were able
to develop a meaningful process model, as depicted in Fig. 9a. In this figure,
we observe two distinct chains of commands. The first chain comprises com-
mands from jobscript 0000 to jobscript 0005 , while the second chain includes
the remaining commands related to two different projects and corresponding to
30 distinct cases in the event log. We could still obtain a model from the data
(contained in Fig. 9b) without considering these interdependencies (considering
the ACCOUNT and GROUP values lead to two distinct cases). However, this
model is less precise because it relies solely on the temporal order of command
execution, where every event belongs to the same case in the event log.

The executions performed by thes1331 are defined without explicit interde-
pendencies. The case extraction approach, relying on explicit interdependencies,
leads to the assignment of a unique case ID to each execution (seven distinct
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cases). Consequently, the model depicted in Fig. 10a exhibits concurrency among
all the executed commands, rendering it highly imprecise. For thes1331, it is more
appropriate to focus on the models discovered without considering the explicit
interdependencies (contained in Fig. 10b), which shows the temporal order of
execution of the commands.

The discovered models provide valuable insights to users by visualizing the
control flow and execution frequency, enabling them to identify bottlenecks and
make informed decisions for further improvements. Based on Table 2, a mere
fraction of HPC users submits their jobs on HPC clusters with explicit inter-
dependencies. Such interdependencies are crucial for identifying connected jobs.
Without them, the resulting models are imprecise due to the following scenarios:
either every event belongs to a different case, or every event belongs to the same
case.

6 Conclusion

In this paper, we propose an approach to extract and analyze process mining
event logs of an HPC system (in particular, we focus on the SLURM system).
While this is not the first application of process mining to HPC systems, existing
techniques assume the case notion to be well-defined in the data source. This
assumption is not satisfied by mainstream systems, and we propose two differ-
ent case notions (using and not using explicit interdependencies). Moreover, we
propose the HPC Monitoring Cockpit as a tool to connect to the HPC system,
extract an event log, and perform a process mining analysis. The analyses allow
us to document the execution of scientific workflows for different accounts or
research groups utilizing process models that are annotated with performance
information (allowing us to detect bottlenecks). Therefore, we can respond to
our initial research questions by using process mining techniques.

Our event logs are extracted from information that is publicly available in
the SLURM system (including the command that is executed and the requested
environment, i.e., the number of CPUs, RAM, and disk space required). However,
we do not know the detailed content of the commands or have access to more
advanced profiling options. This would require collaboration with the specific
research groups operating in the HPC systems and availability to modify the
execution of scientific workflows to accommodate more detailed process mining
analyses.

Our process mining analyses rely on a single account or research groups. Since
the naming schema of the commands is quite arbitrary, we could not identify
shared logical steps (e.g., pre-processing, training of ML model, testing of the
model) between different accounts; therefore, we could not produce a generic
process model. This is indeed a limitation that could not be tackled without
properly naming the commands executed on SLURM and without having in-
sights about the commands.

Overall, our approach succeeds in extracting an event log for process min-
ing purposes from the SLURM HPC system, and we can respond to our basic
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analytical goals. However, given the arbitrary execution styles and naming con-
ventions, we could not produce more general analyses, which remain as a goal
for future work.

References

1. van der Aalst, W.M.P., Carmona, J. (eds.): Process Mining Handbook, Lecture
Notes in Business Information Processing, vol. 448. Springer (2022). https://doi.
org/10.1007/978-3-031-08848-3

2. Deelman, E., Gannon, D., Shields, M.S., Taylor, I.J.: Workflows and e-science:
An overview of workflow system features and capabilities. Future Gener. Comput.
Syst. 25(5), 528–540 (2009). https://doi.org/10.1016/j.future.2008.06.012
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