
Grouping Local Process Models

Viki Peeva and Wil M.P. van der Aalst

Chair of Process and Data Science (PADS)
RWTH Aachen University, Aachen, Germany
{peeva, wvdaalst}@pads.rwth-aachen.de

Abstract. In recent years, process mining emerged as a proven technol-
ogy to analyze and improve operational processes. An expanding range
of organizations using process mining in their daily operation brings a
broader spectrum of processes to be analyzed. Some of these processes
are highly unstructured, making it difficult for traditional process dis-
covery approaches to discover a start-to-end model describing the entire
process. Therefore, the subdiscipline of Local Process Model (LPM) dis-
covery tries to build a set of LPMs, i.e., smaller models that explain
sub-behaviors of the process. However, like other pattern mining ap-
proaches, LPM discovery algorithms also face the problems of model
explosion and model repetition, i.e., the algorithms may create hundreds
if not thousands of models, and subsets of them are close in structure or
behavior. This work proposes a three-step pipeline for grouping similar
LPMs using various process model similarity measures. We demonstrate
the usefulness of grouping through a real-life case study, and analyze the
impact of different measures, the gravity of repetition in the discovered
LPMs, and how it improves after grouping on multiple real event logs.

Keywords: Local process models · Model grouping · Model clustering
· Model similarity · Process model comparison.

1 Introduction

Process mining is a scientific discipline for discovering, monitoring, and improv-
ing processes via readily-available data from different data management systems.
The three main pillars of process mining are process discovery, conformance
checking, and process enhancement [1]. As the interest in process mining grows,
new applications pose new challenges. One such challenge is discovering a single
start-to-end model for highly unstructured processes ([19, Figure 7]). To resolve
this problem, one usually focuses on frequent behavior because of the 80/20 rule
of data variability. However, in some domains, especially ones covering human
behavior, the rule does not hold and better solutions are needed. A relatively
new field is Local Process Model (LPM) discovery [19], where the idea is to
build smaller process models explaining fragments of the behavior instead of one
overall model. Yet, current LPM discovery approaches return hundreds or thou-
sands of models for one event log (model explosion), with highly similar models
repeating between them (model repetition) as shown in Figure 1. Although this

ar
X

iv
:2

31
1.

03
04

0v
1

 [
cs

.L
G

]
 6

 N
ov

 2
02

3

2 Viki Peeva and Wil M.P. van der Aalst

O SELECTED O CREATED O SENT

O SELECTED O CREATED

O CREATED O SENT

(a) Three highest ranked LPMs discov-
ered by [19].

O SELECTED O CREATED O SENT

O SELECTED

O SENT

O CREATED

O SELECTED

O SENT

O CREATED

(b) Three highest ranked LPMs discov-
ered by [16].

Fig. 1: LPMs discovered using [19] and [16] on the filtered and transformed
BPIC2012 event log for resource 10939 as explained in [19].

is desirable in some use cases [7,14], it does not help with a better understanding
of highly variable processes.

To alleviate this problem, in this work, we propose a pipeline that groups
similar LPMs, and for each group, one representative LPM is chosen. By doing
so, highly similar models that describe small differences in behavior are grouped
together, allowing analysts to focus on the bigger picture by examining a smaller
diverse set of LPMs and only dive deeper into the differences when necessary.
More specifically, we start with an LPM discovery approach that returns a set
of LPMs. These LPMs are then clustered such that model similarity, using dif-
ferent process model similarity measures, is measured, and for each cluster, a
representative LPM is chosen. We evaluate the proposed approach on multi-
ple event logs by comparing model diversity between the originally returned
set of LPMs and the representative set obtained after grouping. Additionally,
we demonstrate the benefit of clustering LPMs by inspecting a smaller set of
models on the BPIC2012-res10939 event log.

The rest of the paper is structured as follows. In Section 2, we introduce
the needed preliminaries to follow the rest of the paper. Section 3 introduces
what LPMs are and in Section 4 we present different process model similarity
measures. We explain the framework in Section 5 and we present the obtained
results in Section 6. We conclude the paper with final remarks in Section 7.

2 Preliminaries

2.1 General

We define sets (X = {a, b}), multisets (M = [a2, b3]), sequences (σ = ⟨a, b, c⟩),
and tuples (t = (a, b, c)) as usual. Given a set X, P(X) is the power set of X, X∗

represents the set of all sequences over X, and M(X) is the set of all multisets
over X. We use σ(i) to denote the i-th element of the sequence σ and M(a) = 2
to denote that item a appears twice in the multiset M .

We use f(X) = {f(x)|x ∈ X} (and f(σ) = ⟨f(σ(1)), f(σ(2)), ..., f(σ(n))⟩)
to apply the function f to every element in the set X (the sequence σ) and f↾X
(respectively σ↾X) to denote the projection of the function f (respectively the
sequence σ) on the set X.

Grouping Local Process Models 3

2.2 Process Mining

Normally, the collected data used for process analysis is transformed in the form
of event logs. Hence, in Definition 1, we formally define traces and event logs.
Note that although traces are usually defined as sequences of events, in this
work, we are only interested in the activity executed by each event.

Definition 1 (Trace, Event Log). Given the universe of activities A, we
define ρ ∈ A∗ as a trace, and L ∈ M(A∗) as an event log.

In Definition 2, we define labeled Petri nets. Note that a transition t ∈ T with
l(t) = τ is called silent and that there may be duplicate transitions t1, t2 ∈ T
such that l(t1) = l(t2).

Definition 2 (Labeled Petri net). A labeled Petri net N = (P, T, F, l) is a
tuple, where P is a set of places and T is a set of transitions such that P ∩T = ∅.
F ⊆ (P × T) ∪ (T × P) is the flow relation, and l : T → A ∪ {τ} the labeling
function.

Now, given a node x ∈ P ∪ T , we define the preset of x as •x = {y ∈
P ∪ T |(y, x) ∈ F} and the postset of x as x• = {y ∈ P ∪ T |(x, y) ∈ F}.

To attach behavior to labeled Petri nets we use a marking and the firing rule.
A markingM denotes the state of a Petri net as a multiset of places (M ∈ M(P))
and the firing rule allows for changes between states (i.e., markings). Given a
marking M , a transition t is enabled in the marking M if and only if •t ⊆ M . If
a transition t is enabled in the marking M , it can fire and change the state of

the net to a new marking M ′ = (M \ •t) ∪ t•. We write M
t−→ M ′. A sequence

of transitions σ = ⟨t1, . . . , tn⟩ ∈ T ∗ is enabled in M and by firing it marking
M ′ is reached if and only if there exist M0, M1, . . . , Mn such that M0 = M ,

Mn = M ′, and Mi−1
ti−→ Mi for 1 ≤ i ≤ n. We write M

σ−→ M ′.
Now, we formally define an accepting Petri net in Definition 3 and the set of

all its firing sequences in Definition 4.

Definition 3 (Accepting Labeled Petri Net). An accepting labeled Petri
net is a triple (N,Mi,Mf) such that N = (P, T, F, l) is a labeled Petri net,
Mi ∈ M(P) is the initial marking, and Mf ∈ M(P) is the final marking.

Definition 4 (Complete Firing Sequences). Let AN = (N,Mi,Mf) be an

accepting Petri net, F(AN) = {σ ∈ T ∗|Mi
σ−→ Mf} is the set of complete firing

sequences for AN.

3 Local Process Models

In contrast to process discovery, whose task is to discover one model that explains
the traces of an event log from start to end, LPM discovery tries to mine a set of
models each matching some particular sub-behavior represented by subsequences
in the event log.

4 Viki Peeva and Wil M.P. van der Aalst

LPMs were first introduced in [19] as a replacement for process discovery of
highly unstructured processes. However, afterward, the use cases where LPMs are
used expanded (e.g., [6,7,10,12–14,17]) and multiple approaches and extensions
for LPM discovery followed [3, 5, 16].

All existing approaches [3, 16, 19], with the exception of [5], suffer from the
model explosion problem. The approach in [5] first finds common subsequences
and then discovers models on them. This, however, makes it predisposed to
similar problems as the traditional process discovery approaches and restricts
the set of LPMs use-case scenarios the approach can be applied to. Still, as
everyone else, they are prone to the model repetition problem. The approach
in [19] incrementally extends process trees by adding new nodes, in [3] two
existing LPMs (represented with process trees) differing only in one node are
joined together to create a larger LPM. In the new model, the differing nodes are
added as children to one of the process tree operators. Finally, in [16], LPMs are
created by joining place nets together. This makes it clear that all approaches
would build highly similar, i.e., repetitive models. Additionally, if one focuses
on frequent behavior, the highly similar models would all explain highly similar
behavior making highly-ranked models contain clusters of repetitive models. The
implementations of [19] and [16] offer a rudimentary grouping of the models.
However, it becomes evident this is not sufficient when one considers human
analysts manually inspecting and analyzing hundred of LPMs. Therefore, with
this work, we try to alleviate this shortcoming of LPM discovery approaches.

In this work, we focus on LPMs discovered with [16]. Therefore, although
LPMs can, in general, be represented by any modeling language (Petri nets,
process trees, BPMNs, etc.), in this work we restrict to a subclass of accepting
labeled Petri nets. We show a few example LPMs in Figure 1b and we give a
formal definition in Definition 5. We use Tin = {t ∈ T | • t = ∅} to denote the
transitions that have an empty preset and we call them unrestricted transitions.
We define the set of complete valid firing sequences of such LPMs in Definition 6
by restricting that each place in the net can receive at most one token from
unrestricted transitions.

Definition 5 (Local Process Models). A Local Process Model (LPM) is an
accepting labeled Petri net lpm = (Nlpm,Mi,Mf) such that Nlpm = (P, T, F, l) is
a labeled Petri net that satisfies the following restrictions:

1. ∀x,x′∈P∪T ∃⟨x1,...,xn⟩(x = x1∧x′ = xn∧∀1≤i<n((xi, xi+1) ∈ F)∨ (xi+1, xi) ∈
F)), i.e., there is only one connected component, and

2. ∀p∈P (•p ̸= ∅ ∧ p• ̸= ∅), i.e., each place has at least one incoming and one
outgoing arc,

and Mi ∈ M(P) and Mf ∈ M(P) are the initial and final marking. We use
ULPM to denote the universe of such LPMs.

Definition 6 (Local Process Model Behavior). Given an LPM lpm =
(Nlpm,Mi,Mf) such that Nlpm = (P, T, F, l), we define FLPM(lpm) = {σ ∈
F(lpm)|∀1≤i<j≤|σ|(σ(i) ∈ Tin ∧ σ(j) ∈ Tin =⇒ σ(i) • ∩σ(j)• = ∅)} to be all
valid complete firing sequences of lpm.

Grouping Local Process Models 5

The language of an LPM lpm is obtained by projecting all valid complete
firing sequences on the transition labels and removing τ -skips, i.e., L(lpm) =
{l(σ)↾A |σ ∈ FLPM(lpm)}. We use Ln(lpm) = {l(σ)↾A |σ ∈ FLPM(lpm) ∧ |σ| ≤ n}
to denote the language restricting to complete firing sequences of length at most
n. We can use the language to measure conformance with respect to an event log
L and rank the LPMs. The ranking can take into consideration different quality
measures, such as fitness, precision, and simplicity. We write rankL ∈ ULPM ̸→ N
to denote a ranking function, and Urank to denote the universe of all such ranking
functions.

We later use these definitions to extract features from the LPMs and formalize
the different similarity measures.

4 Process Model Similarity Measures

To get an overview of existing similarity measures, we considered multiple sur-
vey papers [4, 8, 9, 18, 20]. Although there can be small differences in how they
categorize different similarity measures, all of them agree, the basic split is into
measures that compare the structure of the process model and those that com-
pare the behavior. Subsequently, one can consider the level of abstraction used,
e.g., complete language versus weak order relations. Therefore, we choose five
representative similarity measures. Before introducing the specific measures, we
first define what a similarity measure is in Definition 7.

Definition 7 (Similarity Measure). A similarity measure simname ∈
ULPM × ULPM → [0, 1] is a function that calculates the similarity between two
LPMs. We use ‘name‘ to distinguish a specific measure, and Usim to denote the
universe of all similarity measures.

To introduce the similarity measures, we assume we are given two LPMs
lpmA = (NA

lpm, [], []) s.t. NA
lpm = (PA, TA, FA, lA) and lpmB = (NB

lpm, [], []) s.t.

NB
lpm = (PB , TB , FB , lB). In the following, we illustrate the measures we use in

this work with the help of lpmA and lpmB .
Transition label comparison is the most simple measure we investigate. The

measure calculates the transition label overlap between the models.

simtransition(lpmA, lpmB) =
2 ∗ |lA(TA) ∩ lB(TB)|
|lA(TA)|+ |lB(TB)|

Node comparison is somewhat more complex, in that it includes place over-
lap as well. We use this measure to represent structural measures using abstrac-
tion. The measure calculates the similarity between two models by combining
transition label comparison and place matching between the nets. We assign

to each pair of places a matching gain g(p1, p2) = 1
2 ∗ 2∗|lA(•p1)∩lB(•p2)|

|lA(•p1)|+|lB(•p2)| + 1
2 ∗

2∗|lA(p1•)∩lB(p2•)|
|lA(p1•)|+|lB(p2•)| and we use the Hungarian algorithm [11] to solve the assign-

ment problem. We use Gplaces to represent the gain of the optimal assignment.

6 Viki Peeva and Wil M.P. van der Aalst

Then, we define the measure as

simnode(lpmA, lpmB) =
2 ∗ |lA(TA) ∩ lB(TB)|+ 2 ∗Gplaces

|lA(TA)|+ |lB(TB)|+ |PA|+ |PB |

Eventually-follow graph similarity is a behavioral abstraction measure that
measures the overlap of the eventually-follows relation in the languages of the
two models. We calculate it as

simn
efg(lpmA, lpmB) =

2 ∗ |EFn
A ∩ EFn

B |
|EFn

A|+ |EFn
B |

such that EFn
A = {(a, b)|∃ρ∈Ln(lpmA)(∃1≤i<j≤|ρ|(a = ρi ∧ b = ρj))} and EFn

B is
defined correspondingly.

Full trace matching comparison represents the more sophisticated behavioral
measures. We define it as

simn
full(lpmA, lpmB) =

2 ∗Gtraces

|Ln(lpmA)|+ |Ln(lpmB)|

where Gtraces represents the gain of the optimal trace assignment. To calculate
the gain between two traces we invert the normalized Levenshtein distance.

Finally graph edit model comparison represents sophisticated structural mea-
sures. It calculates model similarity by using the graph edit distance (ged) as
defined in [2], where the node substitution cost is 1 if the nodes differ in type,
i.e., one is a place and the other transitions, or if the compared nodes are dif-
ferently labeled transitions. The node substitution cost between two places is
calculated as 1 − g(p1, p2), where g(p1, p2) is the gain defined as before. The
edge substitution cost takes the average of the node substitution cost between
the source and sink nodes of the two edges. To convert the ged to a similarity
measure, we use the formula below.

simged(lpmA, lpmB) = 1− ged(lpmA, lpmB)

In the remainder, we also use the term distance measure, which we always
consider to be the inverse of the similarity, i.e., distname(lpmA, lpmB) = 1 −
simname(lpmA, lpmB) for any name ∈ {transition,node, efg, full, ged}

5 Method to Group LPMs

In this work, we propose a three-step pipeline that starts with an event log and a
multitude of process model comparison measures and ends with groups of similar
LPMs, as shown in Figure 2. The first step is discovering LPMs (Step 1), which
can also be omitted, starting the pipeline with a set of LPMs instead. Then, the
models are clustered such that the similarity between them is determined by the
previously defined process model similarity measures (Step 2). Finally, for each
cluster, we choose a representative model (Step 3).

Grouping Local Process Models 7

event log
ba

x

y

ba
x

y

an b

a
n

b

local process model
discovery

ba
x

y

ba
x

y

similarity measures Clustering

ba
x

y

ba
x

y

an b

a
n

b

clusters

x

x

x

cluster representa�ves

Step 1

Step 2

Step 3

local process models

selec�ng cluster
representa�ves

Fig. 2: Illustration of the proposed three-step pipeline.

5.1 Local Process Model Discovery (Step 1)

In the first step, we focus on discovering a set of LPMs LPML given an event log
L. Although multiple approaches are available, in this work, we use the approach
presented in [16]. The produced models are ranked from highest to lowest using
a rank function rankL as previously defined.

5.2 Clustering (Step 2)

In the clustering step, we accept a set of LPMs and a similarity measure and re-
turn a set of clusters. We define the universe of LPM cluster sets in Definition 8,
and a clustering algorithm in Definition 9.

Definition 8 (Universe of Local Process Model Cluster Sets). We de-
fine U⊓ = {XLPM ⊆ P(LPML)|LPML ⊆ ULPM∧∅ ̸∈ XLPM∧

⋃
XLPM = LPML}

to be the universe of LPM cluster sets.

Definition 9 (Clustering Algorithm). We define clust ∈ P(ULPM) ×
Usim ̸→ U⊓ to be a clustering algorithm. To denote a clustering algorithm given
some set of parameters P , we write clustP .

The goal of the clustering algorithm is to return the LPMs in homogeneous
groups, such that the similarity is high within the individual groups and low be-
tween them. One clustering algorithm can produce different cluster sets for the
same model set based on the parameters P . In our work, we focus on hierarchical
clustering and consider distance threshold and linkage as possible parameters.
In particular, we use linkage to determine how the distance between two clusters
containing multiple models is calculated and the distance threshold to determine
the maximum merging distance. For the traditional hierarchical clustering algo-
rithm, we use the returned clusters in ⊓LPML

= clustP (LPML, simname) for an
LPM set LPML discovered on an event log L and a similarity measure simname

8 Viki Peeva and Wil M.P. van der Aalst

are pairwise disjoint, i.e., ∀LPMi,LPMj∈⊓LPML
LPMi∩LPMj = ∅. We overload the

notation ⊓LPML
(lpm) to denote the cluster in the cluster set ⊓LPML

in which
the LPM lpm belongs. That is, it holds lpm ∈ ⊓LPML

(lpm) ∈ ⊓LPML
.

5.3 Choosing Cluster Representatives (Step 3)

In Step 3, we take a set of LPMs LPML ⊆ ULPM discovered on an event log
L in Step 1, and a computed cluster set ⊓LPML

= clust(LPML, simname) from
Step 2. We return an LPM set ⊓repr

LPML
in which we keep only one representative

LPM per cluster. In this work, we choose representative models either by tak-
ing the highest-ranked LPM in each cluster considering some ranking function
rankL ∈ Urank or the LPM with the minimal mean distance to all other LPMs
in the cluster. In Definition 10, we formally define representative projection as a
function that maps a set of LPMs to one model.

Definition 10 (Representative projection). A representative projection
repr ∈ P(ULPM) ̸→ ULPM is a function that takes an LPM set LPML and
returns one representative LPM. We use reprrank and reprdist to denote the rep-
resentation projections based on the highest ranking and minimal mean distance
respectively.

Now, for the set of LPMs LPML ⊆ ULPM, we create the set ⊓reprx
LPML

=
{reprx(LPMi)|LPMi = ⊓LPML

(lpm) ∧ lpm ∈ LPML} and we call it the cluster
representatives, where x ∈ {rank, dist}. This way, we significantly reduce the
number of LPMs from the original set LPML, but still keep the essence of the
entire set.

6 Evaluation Results

The evaluation is performed on six LPM sets, discovered on real event logs.
In Table 1, we give a summary of the LPM sets and the corresponding event
logs used in the experiments. For clustering, we use the agglomerative clustering
algorithm of the scikit-learn package [15]. For all experiments, we use the
complete linkage and iterate the distance thresholds between 0.1 and 1.0. For
each combination of an LPM set, similarity measure, and clustering algorithm
parameter, we rerun the clustering 100 times, resulting in 30000 experiments.
Whenever single values are shown, the most compact clustering according to the
silhouette score was taken unless otherwise specified. All used cluster represen-
tatives we calculated using reprdist.

Due to space limitations, in the remainder, we only show the results of some
of the experiments. All analogous graphs (on other LPM sets, measures, repre-
sentative choosing strategies, or parameters), together with all resources needed
to replicate the experiments, can be found on https://github.com/VikiPeeva/

CombiningLPMDandPMSM.

Grouping Local Process Models 9

Table 1: Local process model sets used in the evaluation
Event Log LPM set Number of models

BPI Challenge 2012 LPMBPIC2012 1096

BPI Challenge 2012 - resource 10939 LPMBPIC2012-res10939 4496

BPI Challenge 2017 LPMBPIC2017 600

Sepsis LPMSepsis 601

Road Traffic Fine Management LPMRTFM 1694

Hospital Billing LPMHB 2051

6.1 Case Study

We focus on the BPIC2012-res10939 event log in this part of the evaluation.
In [19], Tax et al. showed how we can use LPMs to see different frequently ap-
pearing behavioral patterns that could not be seen on the start-to-end model be-
cause of too unstructured behavior. However, as shown in Figure 1, the highest-
ranked models for both [19] and [16] focus on different behavioral variants of
O SELECTED, O CREATED, and O SENT. Such repetition appears for lower-
ranked models as well. In Figure 3, we show the three highest-ranked representa-
tive LPMs after grouping the original set of LPMs. It is clear that the behavioral
span of these three models is significantly larger than the behavior described by
the three highest-ranked original models discovered by both Peeva et al. and Tax
et al (see Figure 1). If we map back the ranks of the three representative models
to the original set, one would have to consider 1, 17, and 20 higher ranked, but
at the same time, more repetitive models before reaching them.

O_SELECTED

O_CREATED

O_SENT

O_SELECTED

A_ACCEPTED

A_FINALIZED

O_CREATED

O_SENT

A_CANCELLED

O_SELECTED

W_Valideren aanvraag

Fig. 3: The three highest-ranked representative LPMs for BPIC2012-res10939.

6.2 Local Process Model Diversity Analysis

In Section 5, we introduced how to reduce a set of LPMs LPM to a subset of
representative models ⊓repr

LPM given a cluster set ⊓LPM. In this part, we show
how significant is the decrease from the original to the representative set for the
most compact clusterings, and whether the set of n highest-ranked LPMs in the

10 Viki Peeva and Wil M.P. van der Aalst

representative set is more diverse than the set of n highest-ranked LPMs in the
original set.

We start by considering the 5, 10, 20, 50, 100, and 500 highest-ranked LPMs

obtained on each of the event logs, that is, the sets LPM
(5)
L , LPM

(10)
L , LPM

(20)
L ,

LPM
(50)
L , LPM

(100)
L , and LPM

(500)
L , where L represents the event logs in Table 1.

In Figure 4, we illustrate the decrease in the number of LPMs discovered on the
BPIC2012-res10939 and Sepsis event logs for the different similarity measures.

The number n, denoting the n highest-ranked models in the original set LPM
(n)
L ,

is shown on the x-axis and the number of representative models in ⊓reprdist

LPM
(n)
L

, is

on the y-axis. It is clear that according to all similarity measures, the most
compact clusterings of the LPMs for the Sepsis event log tend to have more
clusters. Meaning, the original set already contains more diverse LPMs, and cor-
respondingly the decrease in the number of models is lower. On the contrary,
when considering the BPIC2012-res10939 event log, it is noticeable that there is
a mismatch between what different similarity measures consider compact group-
ing. The node measure prefers a few clusters, while the full measure favors much
more clusters. Nevertheless, in both cases, the most conservative reduction still
reduces the number of models by at least half. Additionally, it is worth mention-
ing that although these computations are done for the most compact clusterings
in our experiments, in general, the number of clusters is something that can be
controlled.

Fig. 4: The number of models in the original set (x-axis) versus the number of
representative models after clustering (y-axis).

In the second part, we compare the mean distance between all pairs of the n

highest-ranked models in the original sets LPM
(n)
L , versus the mean distance

between all pairs of the n highest-ranked models in the representative sets

(⊓reprdist
LPML

)
(n)

for n = {5, 10, 50, 100}. Figure 5 shows the differences between

LPM
(10)
L and (⊓reprdist

LPML
)
(10)

for each of the event logs and the efg measure. It
is clear that in all cases the mean distance of the representative set is higher
than the mean distance on the original set, meaning the set is more diverse. The
highest increase can be noticed for the BPIC2017 event log and the smallest
for the BPIC2012-res10939 event log. The distance increase happens for almost

Grouping Local Process Models 11

all n, measure and event log combinations, while for a few no significant change
could be noticed.

0.53

0.74

0.36

0.73

0.12

0.69

0.64

0.79

0.4

0.77

0.54

0.71

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

RTFM

Sepsis

BPIC2012-res10939

BPIC2012

BPIC2017

HB

Original set distance Representation set distance

Fig. 5: The mean distance between all pairs of LPMs in the original set LPM
(10)
L

versus the cluster representative set (⊓reprdist
LPML

)
(10)

and the efg measure.

7 Conclusion

In this paper, we used process model similarity measures to group similar LPMs
together. We proposed a three-step approach consisting of LPM discovery, clus-
tering, and choosing LPM cluster representatives. In the evaluation, we showed
how grouping similar LPMs together improves process understandability on a
real-life case study and we showcased LPM repetition decrease and diversity
improvement on six real event logs.

There are numerous possibilites for future work. Currently, we experimented
only on one LPM discovery approach, hence, we can expand this work by consid-
ering LPMs discovered with different algorithms. To further advance the method,
one can also organize the LPMs in each cluster set in hierarchies for more struc-
tured navigation between the models. Additionally, the framework could be ex-
tended with new similarity measures and different clustering algorithms. Finally,
a natural extension would be to test whether LPMs can be used to compare pro-
cess model similarity measures in an unsupervised manner.

Acknowledgment

We thank the Alexander von Humboldt (AvH) Stiftung for supporting our re-
search. The authors gratefully acknowledge the financial support by the Federal
Ministry of Education and Research (BMBF) for the joint project AIStudy-
Buddy (grant no. 16DHBKI016).

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition

12 Viki Peeva and Wil M.P. van der Aalst

2. Abu-Aisheh, Z., Raveaux, R., Ramel, J., Martineau, P.: An exact graph edit dis-
tance algorithm for solving pattern recognition problems. In: ICPRAM 2015. vol. 1,
pp. 271–278

3. Acheli, M., Grigori, D., Weidlich, M.: Efficient discovery of compact maximal be-
havioral patterns from event logs. In: CAiSE 2019

4. Becker, M., Laue, R.: A comparative survey of business process similarity measures.
Comput. Ind. 63(2), 148–167

5. Brunings, M., Fahland, D., Verbeek, E.: Discover context-rich local process models
(extended abstract). In: ICPM-D 2022

6. Deeva, G., Weerdt, J.D.: Understanding automated feedback in learning processes
by mining local patterns. In: BPM 2018 International Workshops. vol. 342, pp.
56–68

7. Delcoucq, L., Lecron, F., Fortemps, P., van der Aalst, W.M.P.: Resource-centric
process mining: clustering using local process models. In: SAC ’20: The 35th
ACM/SIGAPP Symposium on Applied Computing, online event, [Brno, Czech
Republic], March 30 - April 3, 2020. pp. 45–52

8. Dijkman, R.M., van Dongen, B.F., Dumas, M., Garćıa-Bañuelos, L., Kunze, M.,
Leopold, H., Mendling, J., Uba, R., Weidlich, M., Weske, M., Yan, Z.: A short sur-
vey on process model similarity. In: Seminal Contributions to Information Systems
Engineering, 25 Years of CAiSE, pp. 421–427

9. Dumas, M., Garćıa-Bañuelos, L., Dijkman, R.M.: Similarity search of business
process models. IEEE Data Eng. Bull. 32(3), 23–28

10. Kirchner, K., Markovic, P.: Unveiling hidden patterns in flexible medical treatment
processes - A process mining case study. In: ICDSST 2018. vol. 313, pp. 169–180

11. Kuhn, H.W.: The hungarian method for the assignment problem. In: 50 Years of
Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art,
pp. 29–47

12. Leemans, S.J.J., Tax, N., ter Hofstede, A.H.M.: Indulpet miner: Combining dis-
covery algorithms. In: OTM 2018. vol. 11229, pp. 97–115

13. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint,
P.J.: Guided process discovery - A pattern-based approach. Inf. Syst. 76, 1–18

14. Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction
and local process models. In: RADAR+EMISA 2017. vol. 1859, pp. 55–63

15. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830

16. Peeva, V., Mannel, L.L., van der Aalst, W.M.P.: From place nets to local process
models. In: PETRI NETS 2022

17. Pijnenborg, P., Verhoeven, R., Firat, M., Laarhoven, H.v., Genga, L.: Towards
evidence-based analysis of palliative treatments for stomach and esophageal cancer
patients: a process mining approach. In: ICPM 2021. pp. 136–143

18. Schoknecht, A., Thaler, T., Fettke, P., Oberweis, A., Laue, R.: Similarity of business
process models - A state-of-the-art analysis. ACM Comput. Surv. 50(4), 52:1–52:33

19. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process
models. J. Innov. Digit. Ecosyst. 3(2), 183–196

20. Thaler, T., Schoknecht, A., Fettke, P., Oberweis, A., Laue, R.: A comparative
analysis of business process model similarity measures. In: BPM 2016 International
Workshops. vol. 281, pp. 310–322

