
Object-Centric Process Mining: An Introduction

Wil M.P. van der Aalst[0000−0002−0955−6940]

Process and Data Science (PADS), RWTH Aachen University, Germany
wvdaalst@pads.rwth-aachen.de www.vdaalst.com

Abstract. Initially, the focus of process mining was on processes evolving around
a single type of objects, e.g., orders, order lines, payments, deliveries, or cus-
tomers. In this simplified setting, each event refers to precisely one object and the
automatically discovered process models describe the lifecycles of the selected
objects. Dozens of process-discovery and conformance-checking techniques have
been developed using this simplifying assumption. However, real-life processes
are more complex and involve objects of multiple types interacting through shared
activities. Object-centric process mining techniques start from event logs consist-
ing of events and objects without imposing the classical constraints, i.e., an event
may involve multiple objects of possibly different types. This paper introduces
object-centric event logs and shows that many of the existing process-discovery
and conformance-checking techniques can be adapted to this more holistic set-
ting. This provides many opportunities, as demonstrated by examples and the
tool support we developed.

Keywords: Object-Centric Process Mining · Process Discovery · Conformance
Checking · Event Data · Process Mining

1 Introduction

More than half of the Fortune 500 companies are already using process mining to an-
alyze and improve their business processes. Process mining starts from event logs ex-
tracted from data stored in information systems [1]. Some information systems record
explicit audit trails ready to be used for process mining. However, this is the excep-
tion. Taking a closer look at contemporary information systems shows that most center
around a database composed of dozens, hundreds, or even thousands of database tables.
Looking at these tables, one will witness that most of these tables contain timestamps
or dates, e.g., when the order was created, when the patient was admitted, when the data
were entered into the system, etc. Hence, event data are everywhere [5].

According to Gartner, there are now over 40 process mining vendors, e.g., Celo-
nis, Signavio (now part of SAP), ProcessGold (now part of UiPath), Fluxicon, Minit,
LanaLabs (now part of Appian), MyInvenio (now part of IBM), QPR, Apromore, Ev-
erflow, etc. [30].1 Most of these systems assume that each event refers to a single case
and has a timestamp and activity. This is also the standard assumption made in litera-
ture [1]. Also the official IEEE standard for storing event data, called XES (eXtensible
Event Stream) [28], makes this assumption.

1 See the website www.processmining.org for an up-to-date overview of existing tools.

2 Wil van der Aalst

It is very natural to assume that an event has indeed a timestamp and refers to an
activity: What happened and when did it happen? However, the assumption that each
event refers to precisely one case may cause problems [3]. Object-Centric Event Logs
(OCEL) aim to overcome this limitation [26]. In OCEL, an event may refer to any
number of objects (of different types) rather than a single case. Object-centric process
mining techniques may produce Petri nets with different types of objects [8] or artifact-
centric process models [21, 22, 35].

d

a a

b

c

d

a

e

a

b

d

e

f

b

c

f

ed

f

b

b

e

event

object

Fig. 1. An event may refer to any number of objects and the same object may be involved in
multiple events. The classical case notion assumes that each event refers to a single case. Object-
centric process mining drops this assumption to analyze and improve a much larger class of
processes.

Large-scale process mining users, vendors, and researchers acknowledge that the
case-notation is limiting the application of process mining. Also, the preprocessing of
raw data to create event data satisfying the requirements may take up to 80% of the
time. One can use the following metaphor to explain the problem. Existing techniques
use two-dimensional (2D) event logs and models. In object-centric process mining, we
use three-dimensional (3D) event logs and models (see Figure 1). The first two dimen-
sions are activities and time while considering only one type of objects. Object-centric
process mining adds a third dimension because multiple object types are considered and
one event may refer to any number of objects.

For people familiar with Colored Petri Nets (CPNs) [9, 29], it is fairly easy to imag-
ine a process model with multiple types of interacting objects. In a CPN tokens residing
in places may represent different types of objects (products, people, machines, storage
locations, etc.). Transitions in a CPN may connect places of different types and can thus
represent activities involving multiple types of objects. However, it is far from trivial to
discover such models. Traditional process mining approaches assume that each event

Object-Centric Process Mining: An Introduction 3

refers to a single case. As a result, cases can be considered independent of each other.
This leads to process models that describe the lifecycle of a case in isolation.

A range of process discovery approaches using the “single-case assumption” have
been proposed [4]. These can be grouped in “bottom-up” approaches like the Alpha al-
gorithm [1, 10, 13, 14, 16, 38, 41] and ‘top-down” approaches like the inductive mining
approaches [31–33]. See [12] for a recent survey of process discovery techniques.

There are many techniques for conformance checking, but most of these also make
the “single-case assumption”. The two most frequently used approaches are token-
based replay [37] and alignments [6, 17]. The approach in [24] is a notable exception
using so-called proclets [7]. Proclets and most of the artifact-centric approaches [22] as-
sume that process instances (case, artifact, proclet, etc.) are interacting. Object-centric
process mining assumes that events share objects, i.e., objects are not interacting as au-
tonomous entities, but may be involved in common events. This simplifies the problem
as is illustrated by the recently developed object-centric process mining techniques and
tools, the OCEL standard, and the simplicity of the definitions presented in this tutorial
paper.

The advantages of using object-centric process mining are threefold:

– Data extraction is only done once. There is no longer a need to pick a case notion
when extracting data. The extraction of objects and events does not depend on the
viewpoint.

– Relations between objects of possibly multiple types are captured and analyzed. In
traditional process mining (with a focus on individual cases), interactions between
objects are abstracted away.

– Object-centric process models provide a three-dimensional view of processes and
organizations. In one process model multiple object types and their relations are vi-
sualized. Moreover, by selecting subsets of object types and activities, it is possible
to change viewpoint and get new insights.

The goal of this paper is not to explain a specific process-discovery or conformance-
checking technique. Instead, we provide a tutorial-style introduction to the topic and
will show that there are a few general principles that allow lifting process mining tech-
niques from the “single-case” to the “multi-object” level. This paper is based on a tuto-
rial and keynote given in the context of 18th International Colloquium on Theoretical
Aspects of Computing (ICTAC 2021) in September 2021.

The remainder is organized as follows. Section 2 introduces the input needed for
object-centric process mining, followed by a brief introduction to process discovery
and conformance checking for event logs assuming a single case notion (Section 3).
Section 4 presents a baseline approach for object-centric process discovery building
upon existing techniques. The topic of object-centric conformance checking is covered
in Section 5. Process mining is not limited to process discovery and conformance check-
ing. Hence, Section 6 briefly discusses the impact of object-centricity on other types of
analysis. Section 7 discusses concerns related to the complexity caused by looking at
many object types and activities. Section 8 concludes the paper.

4 Wil van der Aalst

2 Object-Centric Event Data

Traditional process mining approaches assume that each event is related to precisely
one object (called case). This tutorial paper shows that relaxing this requirement allows
for a major step forward in data-driven process analytics. For example, we can now
look at processes and organizations from any angle using a single source of truth, i.e.,
there is no need to extract new data when changing the viewpoint of analysis. Looking
at different types of objects at the same time allows us to discover novel and valuable
insights that live at the intersection points of processes and departments. The transition
from traditional process mining to object-centric process mining is similar to moving
from 2D to 3D. Before we discuss novel 3D process mining techniques, this section
first introduces object-centric event logs, i.e., collections of related events and objects.

An event e can have any number of attributes. #x (e) is the value of attribute x for
event e. We require the following two attributes to be present for any event: activity
#act(e), and timestamp #time(e). An object o can also have any number of attributes,
but these may change over time. For example, object o represents a specific patient that
has a birth date that does not change, but also has an address, phone number, weight, and
blood pressure that may change. #t

x (o) is the value of attribute x for object o at time t.
There is a mandatory object attribute type with value #t

type(o) representing the type of
object. #t

type(o) does not change over time, so we can also write #type(o). There is a
many-to-many relation R between events and objects. (e, o) ∈ R if and only if object o
is involved in event e. To formalize object-centric event logs, we first introduce several
universes.

Definition 1 (Universes). Uev is the universe of events, Uobj is the universe of objects
(Uev ∩Uobj = ∅), Uact is the universe of activities, Utime is the universe of timestamps,
Utype is the universe of object types, Uatt = {act , time, type, . . .} is the universe of
attributes, Uval is the universe of values, and Umap = Uatt ̸→ Uval is the universe of
attribute-value mappings. We assume that Uact ∪ Utime ∪ Utype ⊆ Uval and ⊥ ̸∈ Uval .
For any f ∈ Umap , if x ̸∈ dom(f), we write f(x) = ⊥ to denote that there is no
attribute value.

Using these universes, we define an event log as follows.

Definition 2 (Event Log). An event log is a tuple L = (E,O,#, R) consisting of a
set of events E ⊆ Uev , a set of objects O ⊆ Uobj , a mapping # ∈ (E → Umap) ∪
(O → (Utime → Umap)), and a relation R ⊆ E × O, such that for all e ∈ E,
#(e)(act) ∈ Uact and #(e)(time) ∈ Utime , and for all o ∈ O and t, t′ ∈ Utime ,
#(o)(t)(type) = #(o)(t′)(type) ∈ Utype .

An event log consists of a set of events E and a set of objects O connected through
R. Events have an activity and a timestamp, and objects have a type. To make the
notation more intuitive, we use #x or #t

x to refer to attribute values. Formally: #x (e) =
#(e)(x) and #t

x (o) = #(o)(t)(x), e.g., #act(e) is the activity of event e, #time(e) is
the timestamp of event e, #t

type(o) is the type of object o at time t. Since the type of an
object cannot change, we can drop t and write #type(o).

Object-Centric Process Mining: An Introduction 5

Events are ordered by their timestamps. Without loss of generality, we can assume
that there is a total order on events, i.e., we assume an arbitrary (but fixed) order for
events that have the same timestamp.

Definition 3 (Event Order). Let L = (E,O,#, R) be an event log. ≺L⊂ E × E is a
total order such that for any pair of events e1, e2 ∈ E: e1 ≺L e2 implies e1 ̸= e2 and
#time(e1) ≤ #time(e2).

Figure 2 shows a visualization of an event log. The black circles represent events
labeled with the corresponding activity. Objects flow through the graph from start ▶ to
end ■ grouped and colored per object type. Exploiting the total order ≺L we can think of
objects as a “line” visiting different events, i.e., pick an object o and the corresponding
events visited by o form a sequence. Note that all objects entering an event are also
exiting an event and vice versa.

ot1

e2

ot2 ot3

o11

o11

o11

e7

e3

o12

e8

e4

o13

e9

a

b

a

b

a

b

c

e

d

e1

e5

e6

Fig. 2. A visualization of an event log L = (E,O,#, R) with nine events E = {e1, e2, . . . , e9},
ten objects O = {o11, o12, . . . , o31}, three object types (e.g., #type(o11) = ot1, #type(o21) =
ot2, and #type(o31) = ot3), and five activities a, b, c, d, and e. The connections show the
flow of objects. R = {(e1, o31), (e2, o11), (e2, o21), (e2, o22), (e3, o12), (e3, o23), (e4, o13),
(e4, o24), (e4, o25), (e4, o26), . . . , (e9, o26)} relates events and objects.

The formalization L = (E,O,#, R) abstracts from the way the information is
stored. A possible realization to store event data would be to have three database tables:

– An event table with one row per event and a column for each event attribute (e.g.,
activity and timestamp and optional attributes like costs), next to the event identifier
as the primary key.

– An object update table with one row per object update and a column for each
object attribute (including object type), next to the object identifier and timestamp
(the combination of the latter two is the primary key).

6 Wil van der Aalst

– A relation table connecting event identifiers and object identifiers.

The Object-Centric Event Log (OCEL) standard [26] provides two storage formats for
such data: JSON-OCEL and XML-OCEL (cf. ocel-standard.org). The only dif-
ference between our formalization and OCEL is that OCEL assumes that objects have
fixed attributes. The idea is that a new object is created if its attributes change. More-
over, OCEL types attributes, e.g., string, integer, float, and timestamp. In this paper, we
introduce object-centric process mining at a conceptual level, not assuming a particular
syntax. However, our tools use OCEL as a concrete storage format.

In the remainder, we will use the following functions to query event logs and to
extract the “path” of a particular object.

Definition 4 (Notations). For an event log L = (E,O,#, R), we introduce the follow-
ing notations.

– act(L) = {#act(e) | e ∈ E} is the set of activities,
– types(L) = {#type(o) | o ∈ O} is the set of object types,
– events(o) = {e ∈ E | (e, o) ∈ R} are the events containing object o ∈ O,
– objects(e) = {o ∈ O | (e, o) ∈ R} are the objects involved in event e ∈ E,
– seq(o) = ⟨e1, e2, . . . , en⟩ such that events(o) = {e1, e2, . . . , en} and ei ≺L ej

for any 1 ≤ i < j ≤ n is the sequence of events where object o ∈ O was involved
in,

– trace(o) = ⟨a1, a2, . . . , an⟩ such that seq(o) = ⟨e1, e2, . . . , en⟩ and ai = #act(ei)
for any 1 ≤ i ≤ n is the trace of object o ∈ O.

Let L = (E,O,#, R) correspond to the visualization in Figure 2. act(L) =
{a, b, c, d, e}, types(L) = {ot1, ot2, ot3}, events(o11) = {e2, e7}, events(o21) =
{e2, e5, e7}, events(o26) = {e4, e5, e6, e9}, objects(e1) = {o11, o21, o22}, objects(e4)
= {o13, o24, o25, o26}, seq(o11) = ⟨e2, e7⟩, seq(o21) = ⟨e2, e5, e7⟩, seq(o26) =
⟨e4, e5, e6, e9⟩, trace(o11) = ⟨a, b⟩, trace(o21) = ⟨a, d, b⟩, and trace(o26) = ⟨a, d, e,
b⟩. Functions seq and trace determine the path of an object: the former returns a se-
quence of events and the latter a sequence of activities.

3 Traditional Process Mining

As mentioned in the introduction, most process mining techniques assume that each
event corresponds to precisely one case. This implies that there is just one object type
case and relation R is a function. In terms of the visualization in Figure 2 this means
that every event has precisely one ingoing and one outgoing arc. This implies that an
event log can be seen as a multiset of traces where each trace is a sequence of activities
corresponding to a specific case.

Figure 3 visualizes the lifecycle of each object. There are ten objects O = {o11,
o12, . . . , o31} distributed over three object types. When we are forced to pick a single
case notion, we pick an object type and use the corresponding subset of sequences
depicted in Figure 3. Note that the same event may appear in different lifecycles leading
to the so-called convergence problem.

In this section, we show how to extract a classical event log from an object-centric
event log and discuss filtering, basic process discovery, and conformance checking start-
ing from a multiset of traces.

Object-Centric Process Mining: An Introduction 7

e2

o11

o11

o11

e7

a

b

e3

o12

e8

a

b

e4

o13

e9

a

b

ot3

c

e

d

e1

e5

e6

e2

ot2

e7

a

b

d
e5

e2

ot2

e7

a

b

d
e5

ot2

e3

e8

a

b
e

d
e5

e6

ot2

e4

e9

a

b

e

d
e5

e6

ot2

e4

e9

a

b

e

d
e5

e6

ot2

e4

e9

a

b

e

d
e5

e6

Fig. 3. A visualization of the lifecycle of each object based on Figure 2. Note that some events are
replicated, e.g. e4 appears four times, because objects(e4) = {o13, o24, o25, o26}. Due to the
total ordering of events, each object corresponds to a sequence of activities, e.g., trace(o11) =
⟨a, b⟩, trace(o21) = ⟨a, d, b⟩, and trace(o26) = ⟨a, d, e, b⟩.

3.1 Preliminaries

In the remainder, we use basic mathematical notations, including sequences, sets, mul-
tisets, and functions. σ = ⟨x1, x2, . . . , xn⟩ ∈ X∗ is a sequence of length n over a set
X . P(X) = {Y | Y ⊆ X} is the powerset of X , i.e., all subsets of X . f ∈ X ̸→ Y
is a partial function with domain dom(f) and range rng(f) = {f(x) | x ∈ dom(f)}.
f ∈ X → Y is a total function with domain dom(f) = X . B(X) = X → IN is the
set of all multisets over X . We use square brackets to denote concrete multisets, e.g.,
X = [a2, b7, c] ∈ B({a, b, c}) is a multiset with 10 elements such that X(a) = 2,
X(b) = 7, and X(c) = 1. As usual, multisets can be mapped to ordinary sets if needed.
Some examples assuming X = [a2, b7, c]: {x ∈ X} = {a, b, c}, X ∪ [c2, d5] =
[a2, b7, c3, d5], X ∩ [b2, c5, d3] = [b2, c], [f(x) | x ∈ X] = [(f(a))2, (f(b))7, f(c)],∑

x∈X f(x) = 2f(a) + 7f(b) + f(c).

3.2 Creating a Classical Event Log for a Specific Object Type

To relate object-centric event logs to classical case-centric event logs, we can simply
pick a single object type and then create a trace for each object using the function trace
introduced before. Note that multiple objects may have the same trace, therefore we get

8 Wil van der Aalst

a multiset of traces. Events need to be replicated if they refer to multiple objects of the
selected type. Consider, for example, Figure 3. The bottom six object lifecycles define
the simple event log [⟨a, d, b⟩2, ⟨a, d, e, b⟩4] when we consider only activities.

Definition 5 (Simple Event Log). For an event log L = (E,O,#, R) and object type
ot ∈ types(L), we create a simple event log Lot = [trace(o) | o ∈ O ∧ #type(o) =
ot] ∈ B(Uact

∗).

Lot is obtained by considering the activity paths of all objects of the selected type.
Again we use the event log L in Figure 2 to illustrate this. types(L) = {ot1, ot2, ot3}
Lot1 = [trace(o11), trace(o12), trace(o13)] = [⟨a, b⟩, ⟨a, b⟩, ⟨a, b⟩] = [⟨a, b⟩3]. Lot2 =
[trace(o21), . . . trace(o26)] = [⟨a, d, b⟩, . . . ⟨a, d, e, b⟩] = [⟨a, d, b⟩2, ⟨a, d, e, b⟩4]. Lot3

= [trace(o31)] = [⟨c, d, e⟩]. Note that in Lot2 event e5 is replicated six times and e6 is
replicated four times.

3.3 Activity and Variant-Based Filtering

A simple event log L ∈ B(Uact
∗) may contain frequent and infrequent behaviors. Pro-

cess mining may focus on the mainstream behavior or on exceptional behaviors. There-
fore, we need to be able to filter the event log. We may want to remove infrequent
activities or variants. To describe these two types of filtering, we introduce projection
and ranking functions.

Definition 6 (Projection Functions). Let L ∈ B(Uact
∗) be an event log, A ⊆ Uact a

set of activities, and V ⊆ Uact
∗ a set of variants (i.e. traces).

– L⇑V = [σ ∈ L | σ ∈ V] is the projection of L on V , and L⇑V = [σ ∈ L | σ ̸∈ V]
removes all variants in V .

– σ↑A projects a trace σ ∈ Uact
∗ on A, i.e., (σ · ⟨a⟩)↑A = σ↑A · ⟨a⟩ if a ∈ A, and

(σ · ⟨a⟩)↑A = σ↑A if a ̸∈ A. σ↑A removes all activities in A from trace σ ∈ Uact
∗,

i.e., σ↑A = σ↑(Uact \A).
– L↑A = [σ↑A | σ ∈ L] is the projection of L on A and L↑A = [σ↑A | σ ∈ L]

removes all A events.

Consider the example log L = [⟨a, b, c, d⟩10, ⟨a, c, b, d⟩5, ⟨a, e, d⟩3]. L⇑{⟨a, e, d⟩} =
[⟨a, e, d⟩3]. L⇑{⟨a, e, d⟩} = [⟨a, b, c, d⟩10, ⟨a, c, b, d⟩5]. L↑{a, d} = [⟨a, d⟩18]. L↑{a, d}
= [⟨b, c⟩10, ⟨c, b⟩5, ⟨e⟩3]. Next, we rank the activities and variants based on their fre-
quency.

Definition 7 (Ranking Functions). Let L ∈ B(Uact
∗) be an event log.

– afreqL(A) =
∑

σ∈L↑A |σ| counts the number of A ⊆ Uact events in event log L.
– vfreqL(V) = |L⇑V | counts the number of V ⊆ Uact

∗ traces in event log L.
– act(L) = ∪σ∈L{a ∈ σ} are the activities in L.
– var(L) = {σ ∈ L} are the variants in L.
– arank(L) = ⟨a1, a2, . . . , an⟩ ∈ Uact

∗ such that afreqL({ai}) ≥ afreqL({aj})
and ai ̸= aj , for any 1 ≤ i < j ≤ n and {a1, a2, . . . , an} = act(L).

Object-Centric Process Mining: An Introduction 9

– vrank(L) = ⟨σ1, σ2, . . . , σm⟩ ∈ (Uact
∗)∗ such that vfreqL({σi}) ≥ vfreqL({σj})

and σi ̸= σj , for any 1 ≤ i < j ≤ m and {σ1, σ2, . . . , σm} = var(L).

There may be activities and variants that have the same frequency. In this case,
we rank these in some fixed order, e.g., alphabetically. For event log L = [⟨a, b, c, d⟩10,
⟨a, c, b, d⟩5, ⟨a, e, d⟩3], we have arank(L) = ⟨a, d, b, c, e⟩ and vrank(L) = ⟨⟨a, b, c, d⟩,
⟨a, c, b, d⟩, ⟨a, e, d⟩⟩. The ranking of activities and variants can be used to select the
most frequent activities and variants covering a given percentage cov ∈ [0, 1] of the
events or traces in the event log.

Definition 8 (Filtering Functions). Let L ∈ B(Uact
∗) be an event log with arank(L) =

⟨a1, a2, . . . , an⟩ and vrank(L) = ⟨σ1, σ2, . . . , σm⟩. Given a threshold cov ∈ [0, 1], we
can filter the log as follows.

– afilterL(cov) = L↑{a1, a2, . . . , ak} where 1 ≤ k ≤ n is the smallest number such
that afreqL({a1, a2, . . . , ak}) ≥ cov × afreqL(act(L)).

– vfilterL(cov) = L⇑{σ1, σ2, . . . , σk} where 1 ≤ k ≤ m is the smallest number
such that vfreqL({σ1, σ2, . . . , σk}) ≥ cov × vfreqL(var(L)).

Again we use event log L = [⟨a, b, c, d⟩10, ⟨a, c, b, d⟩5, ⟨a, e, d⟩3] to illustrate the
two filtering functions. afilterL(0.5) = [⟨a, d⟩18] (covering 36 of 69 events, i.e., 52%),
afilterL(0.8) = [⟨a, b, c, d⟩10, ⟨a, c, b, d⟩5, ⟨a, d⟩3] (covering 66 of 69 events, i.e., 95%),
vfilterL(0.5) = [⟨a, b, c, d⟩10] (covering 10 of 18 traces, i.e., 55%), and vfilterL(0.8) =
[⟨a, b, c, d⟩10] (covering 15 of 18 traces, i.e., 83%).

Most process mining tools provide sliders to seamlessly simply models by leaving
out infrequent activities and/or variants.

3.4 Discovering a Directly-Follows Graph (DFG)

Dozens of process discovery techniques are able to learn process models from event
data based on the “multiset of traces” abstraction, i.e., event logs of the form L ∈
B(Uact

∗). These process models provide a representation describing a set of traces,
i.e., they describe behavior of the form B ⊆ Uact

∗. Examples include “bottom-up”
approaches like the Alpha algorithm [1, 10] producing Petri nets and ‘top-down” ap-
proaches like the inductive mining approaches [31–33] producing process trees. Both
Petri nets and process trees are able to describe concurrency and can be translated into
Business Process Model and Notation (BPMN) models [20, 36]. There are also ap-
proaches not able to uncover concurrency. These approaches typically produce Directly-
Follows Graphs (DFGs).

DFGs simply visualize the “directly-follows” relation between activities. This typi-
cally leads to underfitting process models [2]. When activities appear out of sequence,
loops are created, thus leading to Spaghetti-like diagrams suggesting repetitions that
are not supported by the data. However, DFGs are easy to compute, also in a distributed
manner, using a single pass through the event data [1]. This explains why they are
widely used.

10 Wil van der Aalst

Definition 9 (Directly Follows Graph). A Directly Follows Graph (DFG) G = (A,F)
is composed of a multiset of activities A ∈ B(Uact) and a set of weighted edges
F ∈ B((A ∪ {▶}) × (A ∪ {■})) such that {▶,■} ∩ A = ∅ and for any a ∈ A:
|[b | (b, a) ∈ F]| = |[b | (a, b) ∈ F]| = A(a) and there exists a path σ = ⟨▶, a1, . . . an,
■⟩ such that (ai, ai+1) ∈ F for 1 ≤ i < n and a ∈ {a1, . . . an}.

In a DFG G = (A,F), A represents the multiset of activities, i.e., A(a) denotes the
frequency of activity a ∈ A. Recall that B(Uact) = Uact → IN. F is also a multiset.
F (a, b) is the frequency of the connection between activities a and b. The process starts
with a symbolic activity ▶ and ends with a symbolic activity ■. Therefore, each regular
activity a ∈ A needs to be on a path from ▶ to ■. Finally, the frequency of activity
a should match the sum of the frequencies on the input arcs and should also match
the sum of the frequencies on the output arcs. This is expressed by the requirement
|[b | (b, a) ∈ F]| = |[b | (a, b) ∈ F]| = A(a) for any regular activity a. Note that this
implies that |[a | (▶, a) ∈ F]| = |[a | (a,■) ∈ F]| > 0, i.e., the frequencies of the
symbolic start and end match, because the rest of the graph is balanced.

Given an event log L, we can create the corresponding DFG G(L) = (A,F) as
follows.

Definition 10 (Directly Follows Graph for an Event Log). For a simple event log
L ∈ B(Uact

∗), the Directly Follows Graph (DFG) G(L) = (A,F) is composed of a
multiset of activities A =

⋃
σ∈L[a ∈ σ], a start activity ▶ ̸∈ A, an end activity ■ ̸∈ A,

a flow relation F = [(ai, ai+1) | σ = ⟨a1, a2, . . . , an⟩ ∈ L ∧ a0 = ▶ ∧ an+1 =
■ ∧ 0 ≤ i ≤ n].

It is easy to see that the construction in Definition 10 leads to a DFG satisfying the
requirements in Definition 9.

Figure 4 shows three DFGs based on the object-centric event log in Figure 2.
There is one DFG for each of the object types. Using Definition 5 the following three
simple event logs are created: Lot1 = [⟨a, b⟩3], Lot2 = [⟨a, d, b⟩2, ⟨a, d, e, b⟩4], and
Lot3 = [⟨c, d, e⟩]. Using Definition 10, a DFG is created for each of these logs. Got1 =
(Aot1 , Fot1) with Aot1 = [a3, b3] and Fot1 = [(▶, a)3, (a, b)3, (b,■)3] is the DFG
computed for object type ot1 . Got2 = (Aot2 , Fot2) with Aot2 = [a6, b6, d6, e4] and
Fot2 = [(▶, a)6, (a, d)6, (d, b)2, (d, e)4, (e, b)4, (b,■)6] is the DFG computed for ob-
ject type ot2 . Got3 = (Aot3 , Fot3) with Aot3 = [c, d, e] and Fot3 = [(▶, c), (c, d),
(d, e), (e,■)] is the DFG computed for object type ot3 .

Definition 11 (Accepting Traces of a DFG). Let G = (A,F) be a DFG. σ = ⟨a1, a2,
. . . , an⟩ is an accepting trace of G if (▶, a1) ∈ F , (an,■) ∈ F , and (ai, ai+1) ∈ F
for 1 ≤ i < n. lang(G) is the set of all accepting traces.

The three DFGs in Figure 4 are acyclic and therefore have a finite number of
accepting traces: lang(Got1) = {⟨a, b⟩}, lang(Got2) = {⟨a, d, b⟩, ⟨a, d, e, b⟩}, and
lang(Got3) = {⟨c, d, e⟩}. DFGs cannot capture concurrency. To illustrate this, we first
introduce accepting Petri nets.

Note that activity-based filtering using afilterL(cov) and variant-based filtering us-
ing vfilterL(cov) can be applied to the event log before computing the DFG. In our

Object-Centric Process Mining: An Introduction 11

ot1 ot2 ot3

6

4

a

b

a

b

c

e

d

d

e

Fig. 4. Three Directly Follows Graphs (DFG) based on the simple event logs Lot1 = [⟨a, b⟩3],
Lot2 = [⟨a, d, b⟩2, ⟨a, d, e, b⟩4], and Lot3 = [⟨c, d, e⟩].

formalization G = (A,F), the edges in a DFG have frequencies (F is a multiset). This
can also be used for filtering. However, frequencies do not affect the set of accepting
traces lang(G). Hence, they are also ignored for conformance checking. It is assumed
that the DFG only contains the relevant directly-follows relations.

3.5 Accepting Petri Net

There exist many different process modeling notations able to capture concurrency, e.g.,
UML activity diagram, UML statecharts, Petri nets, process algebras, BPMN (Business
Process Model and Notation) models, etc. The Petri net formalism provides a graphical
but also formal language and was the first formalism to adequately capture concurrency.
See [18, 19] for a more extensive introduction. Other notations, like BPMN and UML
activity diagrams, often have semantics involving “playing the token game” and build
on Petri net concepts.

Because traces in an event log have a clear start and end, we use accepting Petri
nets.

Definition 12 (Accepting Petri Net). An accepting Petri net is a triplet AN = (N,
Minit ,Mfinal) where N = (P, T, F, l) is a labeled Petri net, Minit ∈ B(P) is the
initial marking, and Mfinal ∈ B(P) is the final marking. A labeled Petri net is a tuple
N = (P, T, F, l) with P the set of places, T the set of transitions, P ∩ T = ∅, F ⊆
(P × T) ∪ (T × P) the flow relation, and l ∈ T ̸→ Uact a labeling function.

The left-hand side of Figure 5 shows an accepting Petri net AN 1. There are eight
places P = {p1, p2, p3, p4, p5, p6, p7, p8} (represented by circles) and six transitions
T = {t1, t2, t3, t4, t5, t6} (represented by squares). The flow relation F = {(p1, t1),
(t1, p2), (t1, p3), . . . , (t6, p8)} list the connections between places and transitions. The
labeling function is a partial function, i.e., there may be transitions without a label.
However, in AN 1 all transitions have a label: l(t1) = a, l(t2) = b, l(t3) = c, l(t4) = d,

12 Wil van der Aalst

l(t5) = e, and l(t6) = f . The accepting Petri net in Figure 5 has an initial marking
Minit = [p1] and a final marking Mfinal = [p8].

States in Petri nets are called markings and mark certain places with tokens (repre-
sented by black dots). Formally, a marking M is a multiset of places, i.e., M ∈ B(P).
Tokens in the initial marking are denoted using small triangles ▶ and tokens in the final
marking are denoted using small squares ■. A transition is called enabled if each of
the input places has a token. An enabled transition may fire (i.e., occur), thereby con-
suming a token from each input place and producing a token for each output place. In
the initial marking Minit = [p1], transition t1 can fire resulting in marking [p2, p3, p4].
In this marking, three transitions are enabled: t2, t3, and t4. Firing t4 results in mark-
ing [p2, p3, p7] enabling t2, t3, and t5. After also firing t2 and t3, we reach marking
[p5, p6, p7]. In this marking, there is a choice between t5 and t6. Firing t6 results in the
final marking Mfinal = [p8].

a

a

b c d e

f

p1

t1

p2 p3 p4

p5 p6 p7

t2 t3 t4 t5

t6

p8

b c d e

f

Fig. 5. Accepting Petri net AN 1 (left) and DFG G1 (right).

A firing sequence is a sequence of transition occurrences obtained by firing enabled
transitions and moving from one marking to the next. A complete firing sequence starts
in the initial marking and ends in the final marking. AN 1 in Figure 5 has infinitely
many complete firing sequences because of the loop involving t5 and t4. Examples
of such complete firing sequences are ⟨t1, t2, t3, t4, t6⟩, ⟨t1, t4, t3, t2, t5, t4, t6⟩, and
⟨t1, t3, t2, t4, t5, t4, t5, t4, t6⟩. Note that when starting in the initial marking Minit it is
possible to fire the transitions in the order indicated (i.e., the transition are enabled in
the intermediate markings) ending in the final marking Mfinal .

Definition 13 (Accepting Traces of an Accepting Petri Net). Let AN = (N,Minit ,
Mfinal) be an accepting Petri net with N = (P, T, F, l) and FS ⊆ T ∗ the set of all

Object-Centric Process Mining: An Introduction 13

complete firing sequences. lang(AN) = {l(σ) | σ ∈ FS} is the set of all accepting
traces.2

For AN 1 in Figure 5 there are infinitely many accepting traces lang(AN 1) =
{⟨a, b, c, d, f⟩, ⟨a, d, c, b, e, d, f⟩, ⟨a, c, b, d, e, d, e, d, f⟩, . . .}.

a

a

b c d

p1

t1

p2 p3 p4

p5 p6 p7

t2 t3 t4 t5

t6

p8

b c d

Fig. 6. Accepting Petri net AN 2 (left) and DFG G2 (right). Note that the accepting Petri net has
two silent transitions t5 and t6.

Accepting Petri net AN 2 in Figure 6 has the same network structure as AN 1 but a
different labeling function l2. dom(l2) = {t1, t2, t3, t4}, i.e., t5 and t6 do not have a
label and are called silent. This means that these transitions cannot be observed in the
corresponding accepting traces. lang(AN 2) = {⟨a, b, c, d⟩, ⟨a, d, c, b, d⟩, ⟨a, c, b, d, d,
d⟩, . . .}.

Figures 5 and 6 also show the corresponding DFGs: G1 and G2. Since DFGs cannot
express concurrency, it is impossible to create DFGs that have the same set of accepting
traces as the accepting Petri nets AN 1 and AN 2. Note that lang(AN 1) ⊂ lang(G1)
and lang(AN 2) ⊂ lang(G2) and the differences are significant. In AN 1 and AN 2

there is always one b and one c in each accepting trace. However, in G1 and G2 there
can be any number of b’s and c’s.

This explains why DFGs tend to be severely underfitting. Whenever activities do
not happen in a fixed sequence, loops are introduced. However, DFGs, in combination
with filtering, can be used to get a valuable first impression of the underlying process.

3.6 Conformance Checking

The goal of process discovery is to find a process model whose behavior is “close” to
the behavior seen in the event log. Conformance-checking techniques aim to measure

2 Note that labeling function l is applied to a sequence of transitions, i.e., l(⟨⟩) = ⟨⟩, l(⟨t⟩) =
⟨l(t)⟩ if t ∈ dom(l), l(⟨t⟩) = ⟨⟩ if t ̸∈ dom(l), and l(σ · ⟨t⟩) = l(σ) · l(⟨t⟩) for any σ ∈ T ∗.

14 Wil van der Aalst

the distance between an event log and a process model. These techniques can be used to
evaluate the quality of a discovered or hand-made process model. Here, we focus on the
simplified setting where we have an event log L ∈ B(Uact

∗) and a process model PM
having lang(PM) ∈ P(Uact

∗) as accepting traces. We have seen DFGs and accepting
Petri nets as examples. Despite the simplified setting, there are many challenges. Some
examples:

– A process model may serve different goals. Should the model summarize past
behavior, or is the model used for predictions and recommendations? Should the
model show all behavior or just dominant behavior?

– Different notations provide different representational biases and may make it im-
possible to express certain behaviors. For example, Figures 5 and 6 illustrate that
DFGs are unable to capture concurrent behavior.

– An event log contains just example behavior. Typically, a few trace variants are fre-
quent and many trace variants are infrequent. Even when the process is stable, two
event logs collected over different periods may have markedly different infrequent
trace variants. The fact that something was not observed in a particular period does
not mean it cannot happen or is not part of the process.

– Although event logs are multisets with frequent and infrequent traces, most process
discovery techniques aim to discover process models that are “binary”, i.e., a trace
is possible or not.

These challenges show that it is impossible to restrict conformance to a single mea-
sure. In [1], the following four quality dimensions to evaluate a process model PM in
the context of an event log L were identified.

– Recall, also called (replay) fitness, aims to quantify the fraction of observed behav-
ior that is allowed by the model.

– Precision aims to quantify the fraction of behavior allowed by the model that was
actually observed (i.e., avoid “underfitting” the event data).

– Generalization aims to quantify the probability that new unseen cases will fit the
model (i.e., avoid “overfitting” the event data).

– Simplicity refers to Occam’s Razor and can be made operational by quantifying the
complexity of the model (number of nodes, number of arcs, understandability, etc.).

In this paper, we do not focus on a single measure and use the following generic
definition.

Definition 14 (Conformance Measure). A conformance measure is a function conf ∈
B(Uact

∗) × P(Uact
∗) → [0, 1]. conf (L, lang(PM)) quantifies conformance for an

event log L ∈ B(Uact
∗) and a process model PM having lang(PM) ∈ P(Uact

∗) as
accepting traces (higher is better).

Let L ∈ B(Uact
∗) and lang(PM) ∈ P(Uact

∗). Some example measures are:

– Trace-based recall: conf 1(L, lang(PM)) = |[σ∈L|σ∈lang(PM)]|
|L| , i.e., the fraction

of observed traces that fit into the model.

Object-Centric Process Mining: An Introduction 15

– Trace-based precision: conf 2(L, lang(PM)) = |{σ∈lang(PM)|σ∈L}|
|lang(PM)| , i.e., the frac-

tion of modeled traces that were observed.
– DF-based recall: conf 3(L, lang(PM)) = |[(a,b)∈DFL|(a,b)∈DFPM]|

|DFL| with DFL =

[(ai, ai+1) ∈ Uact × Uact | σ = ⟨a1, a2, . . . , an⟩ ∈ L ∧ a0 = ▶ ∧ an+1 =
■ ∧ 0 ≤ i ≤ n] and DFPM = {(ai, ai+1) ∈ Uact ×Uact | σ = ⟨a1, a2, . . . , an⟩ ∈
lang(PM) ∧ a0 = ▶ ∧ an+1 = ■ ∧ 0 ≤ i ≤ n}, i.e., the fraction of observed
directly-follows relationships that also exist in the model.

– DF-based precision: conf 4(L, lang(PM)) = |{(a,b)∈DFPM |(a,b)∈DFL}|
|DFPM | , i.e., the

fraction of observed directly-follows relationships that also exist in the model.

The four conformance functions are just examples: conf 1 and conf 3 aim to measure
recall (i.e., the fraction of observed behavior that is allowed by the model) and conf 2
and conf 4 aim to measure precision (i.e., the fraction of behavior allowed by the model
that was actually observed). conf 1 and conf 2 consider complete traces and conf 3 and
conf 4 compare direct successions in model and log. Note that conf 2 is problematic
because conf 2(L, lang(PM)) = 0 if the model has a loop, no matter how large the
event log is.

There are dozens (if not hundreds) of process-discovery and conformance-checking
techniques, all assuming a simple event log based on a fixed case notion. A complete
overview is out of scope. The goal of this tutorial is to show that these techniques
can be lifted to object-centric process mining techniques. See [1] for a comprehensive
introduction into process discovery and conformance checking.

3.7 Convergence and Divergence

In Section 3.2, we showed that any object-centric event log L = (E,O,#, R) can
be converted to a simple event log Lot by projecting events onto a single object type
ot ∈ types(L). We often call this the flattening of an event log into an event log where
we again have precisely one case object per event. Figure 3 visualizes this process.

To better understand what happens with events during the flattening of an event log,
consider an arbitrary event e ∈ E with objects Oe = {o ∈ objects(e) | #type(o) = ot}
of type ot .

– If |Oe| = 0, then event e will not appear in Lot . This is referred to as the deficiency
problem. Potentially relevant events may disappear from the event log in this way.

– If |Oe| = 1, then event e appears precisely one in Lot . This case is easy to interpret.
– If |Oe| = k > 1, then event e appears k times in Lot , i.e., the same event is repli-

cated. This may lead to confusing diagnostics and is known as the convergence
problem. For example, based on Figure 4 one may think that a happened 6 times.
However, in reality it happened only 3 times. This shows that many Key Perfor-
mance Indicators (KPIs) computed based on the flatted event log will be misleading
(e.g., costs, rework, mean duration, etc.)

The divergence problem is caused by the fact that after flattening the event log, we
are unable to distinguish events referring to the same case and activity. Consider an
object o of the selected object type ot and o1 o2, and o3 three objects of another type

16 Wil van der Aalst

(not selected). Let events(o) = ⟨e1, e2, e3, e4, e5, e6, e7, e8⟩, events(o1) = ⟨e2, e3⟩,
events(o2) = ⟨e4, e7⟩, and events(o3) = ⟨e5, e6⟩, with #act(e1) = a, #act(e2) = b,
#act(e3) = c, #act(e4) = b, #act(e5) = b, #act(e6) = c, #act(e7) = c, and
#act(e8) = d. Hence, trace(o) = ⟨a, b, c, b, b, c, c, d⟩, trace(o1) = ⟨b, c⟩, trace(o2) =
⟨b, c⟩, and trace(o3) = ⟨b, c⟩. When considering only o of the selected object type ot , it
seems that activities b and c occur in random order (note that in trace(o), b is followed
by c and b and c is followed by b, c, and d). However, when considering o1 o2, and o3 it
becomes clear that b is always followed by c. This information gets lost on the flattened
event log. The divergence problem leads to misleading process models that do not show
the actual causalities. The resulting models often have loops because unrelated events
are connected.

These problems are omnipresent when dealing with real-world processes and infor-
mation systems. They illustrate the need for object-centric process mining.

4 Object-Centric Process Discovery

In Section 3, we showed that an object-centric event log L = (E,O,#, R) can be
converted into a collection of simple event logs. For each object type ot ∈ types(L),
one can create a traditional simple event log Lot = [trace(o) | o ∈ O ∧ #type(o) =
ot] ∈ B(Uact

∗). For each Lot we can create a process model, e.g., a DFG G = (A,F)
or an accepting Petri net AN = (N,Minit ,Mfinal). In this section, we show that these
models can be folded into object-centric process models.

Note that in prior work, an abundance of event-logging formats and models have
been proposed. Consider, for example, proclets [7], object-centric behavioral constraint
models [11, 34], composite state machines [21], and various flavors of artifact-centric
process models [23, 24, 35]. It is impossible to be complete here. Most of these models
and approaches turned out to be too complex to be practically feasible. Therefore, we
decided to resort to the simple representation proposed in [3] and standardized in the
form of OCEL (ocel-standard.org). Unlike many of the artifact- and proclet-
based approaches, we do not consider interacting entities (i.e., objects or artifact), but
shared events only, i.e., one event may refer to multiple objects. It turns out that this
approach helps to leverage existing techniques for process discovery and conformance
checking. This is illustrated in the remainder.

Before introducing the folding operation, we first introduce some functions that help
us to characterize the relationship between events, activities, objects, and object types.
A central element is the “mix” of object types involved in the occurrence of an activity.
Consider an activity meeting and three related object types person , room and project .
If a meeting activity occurs in mode [person5, room, project2], then this refers to an
event referring to activity meeting and 8 objects: 5 objects of type person , 1 object
of type room , and two objects of type project . We refer to such an event as activity
occurrence (meeting , [person5, room, project2]). Other examples of activity occur-
rences are (meeting , [person20, room, project]), (clean room, [person2, room]), and
(approve project , [person3, project]). Note that there may be many events with the
same activity occurrence. An event log can be transformed into a multiset of activ-

Object-Centric Process Mining: An Introduction 17

ity occurrences, e.g., occ(L) = [(meeting , [person5, room, project2])3, (clean room,
[person2, room])2, . . .].

Definition 15 (Activity Characteristics). For an event log L = (E,O,#, R) with ac-
tivities A = act(L) and object types OT = types(L) we define the following concepts
and functions:

– An execution mode m ∈ B(OT) is a multiset of object types and characterizes the
types of objects and their count involved in an event.

– An activity occurrence (a,m) ∈ A × B(OT) refers to an activity a executed in
mode m.

– aot(L) = {(#act(e),#type(o)) | e ∈ E ∧ o ∈ objects(e)} ⊆ A×OT is the set
of of all activity-object-type combinations in event log L.

– occ(L) = [(#act(e), [#type(o) | o ∈ objects(e)]) | e ∈ E] ∈ B(A × B(OT)) is
the multiset of activity occurrences present in event log L.

– modeL(a) = [m | (a′,m) ∈ occ(L) ∧ a′ = a] ∈ B(OT) is the multiset of
execution modes of a ∈ A.

– minL(a, ot) = minm∈modeL(a) m(ot) ∈ IN is the minimum number of ot ∈ OT
objects of involved when executing activity a ∈ A.

– maxL(a, ot) = maxm∈modeL(a) m(ot) ∈ IN is the maximum number of ot ∈ OT
objects of involved when executing activity a ∈ A.

– meanL(a, ot) =
∑

m∈modeL(a) m(ot)

|modeL(a)| is the mean number of ot ∈ OT objects in-
volved when executing activity a ∈ A.

To illustrate these measures, we use an example event log L = (E,O,#, R) with
22080 events and 11300 objects. A small fragment of the event log in tabular format
is shown in Figure 7. E = {e1, e2, . . . , e22080} are the 22080 events. Figure 7 shows
the properties and related objects of events e13226 until e13244, e.g., #act(e13233) =
place order and objects(e13233) = {991222, 884950, 884951, 884952}. There are three
object types order , item , and package: order numbers start with “99”, item numbers
start with “88”, and package numbers start with “66”. Figure 7 also shows the time-
stamp of each event and two additional attributes: price and weight .

Event e13233 represents an activity occurrence (place order , [order , item3]), i.e.,
one order and three items are involved in the execution of activity place order . Some
more examples: event e13226 represents an activity occurrence (pick item, [item]),
event e13231 represents an activity occurrence (package delivered , [item6, package]),
and event e13239 represents an activity occurrence (place order , [order , item5]). We
can also compute |modeL(a)| (number of a events), minL(a, ot) (the minimum num-
ber of ot objects involved in a events), meanL(a, ot) (the average number of ot objects
involved in a events), and maxL(a, ot) (the maximum number of ot objects involved in
a events). Table 1 shows the corresponding values for all activity/object-type combina-
tions. For example, minL(place order , item) = 1, meanL(place order , item) = 4.0,
maxL(place order , item) = 13, minL(create package, item) = 1, meanL(create
package, item) = 6.17, and maxL(create package, item) = 19.

After showing some descriptive statistics, we create three events logs using Defini-
tion 5: Lorder , Litem , and Lpackage . Recall that Lot = [trace(o) | o ∈ O ∧ #type(o) =
ot] ∈ B(Uact

∗).

18 Wil van der Aalst

ei

Fig. 7. Small fragment of a larger object-centric event log with 22080 events and 11300 objects
(200 orders, 8003 items, and 1297 packages).

Lorder = [⟨po, co, py⟩1565, ⟨po, co, pr , py⟩338, ⟨po, co, pr , pr , py⟩80, ⟨po, co, pr ,
pr , pr , py⟩15, ⟨po, co, pr , pr , pr , pr , py⟩2] when we use the short names introduced in
Table 1, e.g., pr refers to payment reminder and py refers to pay order . Figure 8 (left)
shows the DFG created for Lorder by applying Definition 10.

Litem = [⟨po, pi , cp, sp, pd⟩5231, ⟨po, is, ri , pi , cp, sp, pd⟩1330, ⟨po, pi , cp, sp, fd ,
pd⟩766, ⟨po, pi , cp, sp, fd , fd , pd⟩271, ⟨po, is, ri , pi , cp, sp, fd , pd⟩218, ⟨po, pi , cp, sp, fd ,
fd , fd , pd⟩68, ⟨po, is, ri , pi , cp, sp, fd , fd , pd⟩65, ⟨po, is, ri , pi , cp, sp, fd , fd , fd , pd⟩24,
⟨po, pi , cp, sp, fd , fd , fd , fd , fd , pd⟩12, ⟨po, pi , cp, sp, fd , fd , fd , fd , pd⟩10, ⟨po, is, ri , pi ,
cp, sp, fd , fd , fd , fd , pd⟩7, ⟨po, is, ri , pi , cp, sp, fd , fd , fd , fd , fd , pd⟩1]. The 8003 items
are distributed over 12 variants. Figure 8 (middle) shows the DFG created for Litem by
applying Definition 10.

Lpackage = [⟨cp, sp, pd⟩1060, ⟨cp, sp, fd , pd⟩161, ⟨cp, sp, fd , fd , pd⟩53, ⟨cp, sp, fd ,
fd , fd , pd⟩16, ⟨cp, sp, fd , fd , fd , fd , pd⟩5, ⟨cp, sp, fd , fd , fd , fd , fd , pd⟩2]. The 1279 pack-
ages are distributed over 12 variants. Figure 8 (left) shows the DFG created for Lpackage .

Next, we combine the information in Table 1 and the three DFGs in Figure 8 into the
Object-Centric Directly Follows Graph (OC-DFG) shown in Figure 9. The basic idea
is as follows: An OC-DFG can be seen as a set of “stacked” or “folded” DFGs. The
arcs and start and end activities always refer to a specific object type. The connections
are realized through shared activities. The activity frequencies correspond to the actual
frequencies. This helps to avoid the convergence and divergence problems mentioned
before. Before we describe how to create the OC-DFG in Figure 9, we first formalize
the concept of a OC-DFG.

Definition 16 (Object-Centric Directly Follows Graph). An Object-Centric Directly
Follows Graph (OC-DFG) OG = (A,OT , F,min,max) is composed of the following
elements:

– A ∈ B(Uact) is a multiset of activities,
– OT ⊆ Utype is a set of object types,
– A▶ = {▶ot | ot ∈ OT} and A■ = {■ot | ot ∈ OT} are artificial start and end

activities (one per object type) such that (A▶ ∪A■) ∩A = ∅,

Object-Centric Process Mining: An Introduction 19

Table 1. The characteristics of activities for the event log partially shown in Figure 7.

activity frequency object type
ot = order ot = item ot = package

a |m
od
e
L
(a
)|

m
in

L
(a
,o
t)

m
ea
n
L
(a
,o
t)

m
a
x
L
(a
,o
t)

m
in

L
(a
,o
t)

m
ea
n
L
(a
,o
t)

m
a
x
L
(a
,o
t)

m
in

L
(a
,o
t)

m
ea
n
L
(a
,o
t)

m
a
x
L
(a
,o
t)

confirm order (co) 2000 1 1 1 0 0 0 0 0 0
create package (cp) 1297 0 0 0 1 6.17 19 1 1 1
failed delivery (fd) 345 0 0 0 1 5.98 19 1 1 1

item out of stock (is) 1645 0 0 0 1 1 1 0 0 0
package delivered (pd) 1297 0 0 0 1 6.17 19 1 1 1

pay order (py) 2000 1 1 1 0 0 0 0 0 0
payment reminder (pr) 551 1 1 1 0 0 0 0 0 0

pick item (pi) 8003 0 0 0 1 1 1 0 0 0
place order (po) 2000 1 1 1 1 4.00 13 0 0 0
reorder item (ri) 1645 0 0 0 1 1 1 0 0 0
send package (sp) 1297 0 0 0 1 6.17 19 1 1 1

– F ∈ B(OT × (A ∪ A▶) × (A ∪ A■)) is a weighted set of edges labeled with the
corresponding object type,

– for any a ∈ A: there exists an object type ot ∈ OT and path σot = ⟨a1, . . . , an⟩
such that (ot , ai, ai+1) ∈ F for 1 ≤ i < n, a1 = ▶ot , an = ■ot , and a ∈ σot .

– |[b | (ot, b, a) ∈ F]| = |[b | (ot , a, b) ∈ F]| for any a ∈ A and ot ∈ OT ,
– aot(OG) = {(a, ot) ∈ A×OT | ∃b∈A (ot , b, a) ∈ F} is the set of activity-object-

type combinations,
– min ∈ aot(OG) → IN and max ∈ aot(OG) → IN ∪ {∞} define cardinality con-

straints, i.e., for (a, ot) ∈ aot(OG): min(a, ot) is a lower bound for the number
of ot objects involved in events corresponding to activity a, max (a, ot) is an upper
bound (of course min(a, ot) ≤ max (a, ot)).

Comparing Definition 16 (OC-DFG) with Definition 9 (DFG), shows the following.
Both are composed of nodes corresponding to activities and weighted edges connect-
ing these activities. However, in an OC-DFG there are separate edges and start and
end activities per object type. For each object type ot , ▶ot denotes the start of ot ob-
jects and ■ot the end. A(a) denote the real frequency of activity a. F (ot , a, b) denotes
how often an object of type ot “moved” from a to b. Since each edge refers to an ob-
ject type, we can talk about ot-paths σot = ⟨a1, . . . , an⟩ with (ot , ai, ai+1) ∈ F for
1 ≤ i < n connecting ▶ot = a1 to ■ot = an using only ot-edges. Each activity should
be on one of such paths. The requirement |[b | (ot, b, a) ∈ F]| = |[b | (ot , a, b) ∈ F]|
for any a ∈ A and ot ∈ OT states that the sum of the frequencies of the input
arcs of an activity a matches the sum of the frequencies of the output arcs of a for
each individual object type ot . Note that these numbers may be different from A(a)
and that |[b | (ot, b, a) ∈ F]| = |[b | (ot , a, b) ∈ F]| = 0 if (a, ot) ̸∈ aot(OG) and
|[b | (ot, b, a) ∈ F]| = |[b | (ot , a, b) ∈ F]| > 0 if (a, ot) ∈ aot(OG).

20 Wil van der Aalst

order item package

8003

popo

co = confirm order
cp = create package
fd = failed delivery
is = item out of stock
pd = package delivered
po = place order
pr = payment reminder
pi = pick item
py = pay order
ri = reorder item
sp = send package

6358

pi

1645

8003

is

1645

ri 1645

cp

8003

pd

sp

6561
fd

8003

1297

cp

1297

pd

sp

1060
fd

1297

2000

2000

py

co

1565
pr

2000

Fig. 8. Three DFGs created for the flattened event logs Lorder (left), Litem (middle), and Lpackage

(right).

There is the special case that min(a, ot) = max (a, ot) = 1, i.e., the number
of ot objects involved in events corresponding to activity a is precisely one. We call
these simple activity-object-type combinations, denoted by saot(OG) = {(a, ot) ∈
aot(OG) | min((a, ot) = max ((a, ot) = 1}. Note that for (a, ot) ∈ saot(OG):
|[b | (ot, b, a) ∈ F]| = |[b | (ot , a, b) ∈ F]| = A(a). This is similar to the requirement
in Definition 9 (DFG). In a normal DFG, the number of ot objects involved in events
corresponding to activity a is precisely one. Figure 9 uses single-headed arcs for simple
activity-object-type combinations. For other activity-object-type combinations, double-
headed arcs are used. The property is always attached to the incoming arc. To simplify
language, we refer to these as normal arcs (single-headed) and variable arcs (double-
headed). However, it is a property of the activity-object-type combination.

Definition 17 (Object-Centric Directly Follows Graph Discovery). Let L = (E,O,
#, R) be an object-centric event log. OG(L) = (A,OT , F,min,max) is the corre-
sponding Object-Centric Directly Follows Graph (OC-DFG) and is defined as follows:

– A = [#act(e) | e ∈ E] is the multiset of activities,
– OT = types(L) is the set of object types,
– F = [(ot , ai, ai+1) | o ∈ O ∧ ot = #type(o) ∧ trace(o) = ⟨a1, a2, . . . , an⟩ ∧
a0 = ▶ot ∧ an+1 = ■ot ∧ 0 ≤ i ≤ n] is the weighted set of edges labeled with
the corresponding object type,

– min ∈ aot(L) → IN and max ∈ aot(L) → IN such that for (a, ot) ∈ aot(L):
min(a, ot) = minL(a, ot) and max (a, ot) = maxL(a, ot) (see Definition 15).

Object-Centric Process Mining: An Introduction 21

order item package

8003

po

co = confirm order
cp = create package
fd = failed delivery
is = item out of stock
pd = package delivered
po = place order

6358

pi

1645

8003

is

1645

ri 1645

cp

pd

sp

fd

8003

py

co

1565
pr

2000

#551

#2000

#2000

#2000

#1645

#1645 #8003

#1279

#1297

#1297 #345

 1|4.00|13
min mean max

 1|6.17|19
min mean max

 1|5.98|19
min mean max

 1|6.17|19
min mean max

 1|6.17|19
min mean max

a
#1234

An activity and its true
frequency

a

pr = payment reminder
pi = pick item
py = pay order
ri = reorder item
sp = send package

An object flow arc (color
indicates type) and its

frequency

A normal arc indicating that
each occurrence of the

activity refers to exactly one
object of the corresponding

type

a
 1|2.75|50
min mean max

A variable arc indicating that
each occurrence of the

activity refers to a variable
number of objects of the

corresponding type

Fig. 9. An object-centric DFG based on the information in Table 1 and three DFGs in Figure 8.
The three colors refer to the three object types.

Applying Definition 17 to the event log L partially shown in Figure 7 (i.e., the event
log with 22080 events and 11300 objects) results in the OC-DFG shown in Figure 9.
Using the short names, we obtain OG(L) = (A,OT , F,min,max) with

– A = {(co, 2000), (cp, 1297), (fd , 345), (is, 1645), (pd , 1297), (po, 2000), (pr , 551),
(pi , 8003), (py , 2000), (ri , 1645), (sp, 1297)},

– OT = {order , item, package},
– F = [(order ,▶order , po)

2000, (item,▶item , po)8003, (package,▶package , cp)
1297,

(order , po, co)2000, (item, po, is)1645, (item, po, pi)6358, (package, cp, sp)1297,
(item, cp, sp)8003, . . . , (item, pd ,■item)8003, (package, pd ,■package)

1297]
– min = {((po, order), 1), ((co, order), 1), ((pr , order), 1), ((py , order), 1),
((po, item), 1), ((is, item), 1), ((ri , item), 1), ((pi , item), 1), ((cp, item), 1),
((sp, item), 1), ((fd , item), 1), ((pd , item), 1), ((cp, package), 1),
((sp, package), 1), ((fd , package), 1), ((pd , package), 1)}

– max = {((po, order), 1), ((co, order), 1), ((pr , order), 1), ((py , order), 1),
((po, item), 16), ((is, item), 1), ((ri , item), 1), ((pi , item), 1), ((cp, item), 19),
((sp, item), 19), ((fd , item), 19), ((pd , item), 19), ((cp, package), 1),
((sp, package), 1), ((fd , package), 1), ((pd , package), 1)}

Note that Definition 17 only computes cardinality constraints for activity-object-
type combinations. There are many ways to extend the model with more fine-grained
information. For example, Figure 9 also shows the mean number of ot ∈ OT objects of

22 Wil van der Aalst

involved when executing activity a ∈ A, i.e., the meanL(a, ot) =
∑

m∈modeL(a) m(ot)

|modeL(a)|
value already introduced in Definition 15.

Instead of cardinality constraints, it is also possible to define an allowed set of ex-
ecution modes. This allows us to relate the frequencies of different object types. For
example, the number of objects of one type matches the number of objects of another
type. In Definition 15, we already showed how such information can be extracted from
event logs.

order
co = confirm order
cp = create package
fd = failed delivery
is = item out of stock
pd = package delivered
po = place order
pr = payment reminder
pi = pick item
py = pay order
ri = reorder item
sp = send package

2000

2000

2551

2000

2000

2000

551

item

8003

1645

1645

1645

1645

1645 8003

8003

6358

8003

8003

8003

8003

2065
10067

8003

po

co

py

pr

po

pi

is

ri

cp

sp

pd

fd

1297

345

cp

sp

pd

fd

package

1297

1297

1297

1642

1297

8003

8003

2000 ≠ 8003 8003 ≠ 1297

8003 ≠ 1297

8003 ≠ 1297

2065 ≠ 345

Fig. 10. Three accepting Petri nets created for the flattened event logs Lorder (left), Litem (mid-
dle), and Lpackage (right). Note that the accepting Petri net in the middle has two silent activities.
The gray bidirectional arcs show disagreements between the different models and logs. For exam-
ple, activity po (place order) occurs 2000 times in Lorder (left) and 8003 times in Litem (middle),
and activity cp (create package) occurs 8003 times in Litem (middle) and 1287 times in Lpackage

(right). When folding the accepting Petri nets, these differences need to be addressed.

The same principles can be applied to other representations and discovery algo-
rithms. The only limitation is that activities have to be unique, i.e., it is not possible to
have models where two nodes (e.g., transitions in a Petri net) refer to the same activity.

We use the same event log to illustrate the folding of accepting Petri nets. Figure 10
shows three accepting Petri nets discovered for the three flattened event logs created
before: Lorder (left), Litem (middle), and Lpackage (right). Each transition is annotated
with the frequency in the corresponding flattened event log. The places indicate how
often a token was produced and later consumed in that place (i.e., the token-flow fre-
quency). Using exactly the same principles as before, we can fold the three accepting
Petri nets resulting in the Object-Centric Accepting Petri Net (OC-APN) shown in Fig-
ure 11.

The object-centric accepting Petri net is obtained as follows. The three accepting
Petri nets are joined, assuming that all places and arcs are disjoint. The only thing shared
are visible transitions with the same label. Silent transitions are never merged. Then the

Object-Centric Process Mining: An Introduction 23

order

2000

2000

2551

item

8003

1645

1645 8003

8003

8003

8003

10067

co

py

pr

po

pi

is

ri

cp

sp

pd

fd

package

1297

1297

#2000

 1|4.00|13
min mean max

#2000

#2000

#551

#1645

#1645

#1297

#1297

#1297

#345

 1|6.17|19
min mean max

 1|6.17|19
min mean max

 1|5.98|19
min mean max

 1|6.17|19
min mean max

#6358

#1645

1642

#8003

Fig. 11. An object-centric accepting Petri net based on the three accepting Petri nets in Figure 10.
The transitions are labeled with the correct frequencies, e.g., activity po (place order) occurs
2000 times and activity cp (create package) occurs 1297 times. The silent transitions do not need
to be merged and can therefore reuse the frequencies shown in Figure 10. All other transitions
have the frequency found in the original object-centric event log. The double-headed arcs indicate
that, when firing the transition, possibly a variable number of objects is consumed and produced
(i.e., not always precisely one). For transitions having double-headed arcs, additional statistics
are added, e.g., occurrences of po (place order) involve between 1 and 13 items with a mean of
4.00 and occurrences of cp (create package) involve between 1 and 19 items with a mean of 6.17.

actual frequencies are added. These are obtained from the original event log. Next all
activity-object-type combinations (a, ot) are inspected (as before). If the number of ot
objects is always precisely one for activity a, then we use normal arcs (single-headed).
If the number of ot objects is not always precisely one for activity a, then we use
variable arcs (double-headed) and also add additional information. Figure 11 shows the
minimum, mean, and maximum number of objects involved.

In Section 3.3, we introduced activity and variant-based filtering. These can be eas-
ily combined with the approach in this section. Moreover, it is also possible to filter
for particular activity-object-type combinations. For example, one could selectively re-
move item objects from the activities sp (send package) and fd (failed delivery), but
keep the item objects for activity pd (package delivered) to measure flow times.

Note that object-centric DFGs and object-centric accepting Petri net are just ex-
amples illustrating the basic principles of object-centric process discovery. This shows
that techniques for classical process discovery (using a single case notion) can be lifted
to multiple object types and a variable number of objects involved in the execution

24 Wil van der Aalst

of activities. This leads to a more holistic view avoiding convergence and divergence
problems discussed before.

5 Object-Centric Conformance Checking

Now we consider the situation where we have both an object-centric event log and an
object-centric process model. Without going onto details, we argue that we can use a
similar approach as for process discovery. We can project both the event log and the
process model on each of the object types and apply classical conformance-checking
techniques. On top of that, we need to check the cardinality constraints.

In Definition 14, we defined a conformance measure to be a function conf ∈
B(Uact

∗) × P(Uact
∗) → [0, 1]. conf (L, lang(PM)) quantifies conformance for an

event log L ∈ B(Uact
∗) and a process model PM having lang(PM) ∈ P(Uact

∗) as
accepting traces (higher is better). We provided examples such as trace-based recall,
trace-based precision, DF-based recall, and DF-based precision.

Given an object-centric process model PM , we assume it is possible to extract a pro-
cess model PM ot for each object type. This requires an unfolding of the object-centric
process model. For example, the object-centric accepting Petri net shown in Figure 11
is unfolded into the three accepting Petri nets in Figure 10. The object-centric DFG
shown in Figure 9 is unfolded into the three DFGs in Figure 8. Of course, we should
ignore the frequencies added to the process models during discovery. Frequencies only
come into play when a concrete event log is considered and are not part of the norma-
tive process model. However, cardinality constraints are part of the model. Figure 12
illustrates this. Note that the object-centric process model does not show frequencies.
The only annotations that are kept are the upper and lower bounds.

order item

co

py

pr

po

pi

is

ri

cp

sp

pd

fd

package

 1|13
min max

 1|19
min max

 1|19
min max

 1|19
min max

 1|19
min max

order

po

co

py

pr

item

po

pi

is

ri

cp

sp

pd

fd

cp

sp

pd

fd

package

Fig. 12. Unfolding an object-centric accepting Petri net into one accepting Petri net per object
type. Note the cardinality constraints, e.g., activity po always involves precisely one order object
and between 1 and 13 item objects, activity cp always involves precisely one package object
and between 1 and 19 item objects. These cannot be checked in the unfolded models, but can be
checked on the original event log.

Object-Centric Process Mining: An Introduction 25

Using the flattened event logs (Lot) and unfolded models (PM ot), we can apply
different conformance measures of the form conf (Lot , lang(PM ot)). These can be
considered separately or aggregated in an overall measure.

By checking conformance using a collection of flattened event logs and unfolded
models, we do not check the interactions between object types and also do not check
cardinalities. However, these can be checked directly on the object-centric event log.
Consider an event log L = (E,O,#, R) with activities A = act(L) and object types
OT = types(L). In Definition 15, we introduced occ(L) = [(#act(e), [#type(o) | o ∈
objects(e)]) | e ∈ E] as the multiset of activity occurrences present in event log L and
modeL(a) = [m | (a′,m) ∈ occ(L) ∧ a′ = a] as the multiset of execution modes of
a ∈ A.

Now assume that the process model PM defines a set of allowed activity occur-
rences aocc(PM) ⊆ A × B(OT). If (a,m) ∈ aocc(PM), then activity a can be
executed in mode m. To illustrate this consider the cardinality constraints in Figure 12
(left). In this example: aocc(PM) = {(po, [order , itemk]) | 1 ≤ k ≤ 13} ∪ {(cp,
[itemk, package]) | 1 ≤ k ≤ 19} ∪ {(sp, [itemk, package]) | 1 ≤ k ≤ 19} ∪ {(fd ,
[itemk, package]) | 1 ≤ k ≤ 19} ∪ {(pd , [itemk, package]) | 1 ≤ k ≤ 19} ∪
{(co, [order]), (pr , [order]), (py , [order]), (is, [item]), (ri , [item]), (pi , [item])}. This
shows that it is quite easy to add graphical annotations to object-centric process mod-
els describing the set of allowed activity occurrences. Activity-occurrence-based recall
computes the fraction of observed activity occurrences allowed according to the process
model.

Definition 18 (Checking Allowed Activity Occurrences). Let L = (E,O,#, R) be
an object-centric event log with an observed multiset of activity occurrences occ(L)
and PM an object-centric process model with aocc(PM) ⊆ A × B(OT) as the set
of allowed activity occurrences. conf occ(L,PM) = |[(a,m)∈occ(L)|(a,m)∈aocc(PM)]|

|occ(L)| is
activity-occurrence-based recall.

Note that conf occ(L,PM) ∈ [0, 1]. For the running example, conf occ(L,PM) =
1. However, if we make the cardinality constraints more strict (e.g., an order or package
contains at most 5 items), then conf occ(L,PM) < 1.

To summarize the above. Object-centric conformance checking takes as input an
object-centric event log and an object-centric process model. Then two complementary
checks are conducted: (1) for each object type, a flattened event log and unfolded model
are created that are checked using traditional conformance-checking techniques (see
Section 3.6) and (2) the observed multiset of activity occurrences occ(L) is compared
with the allowed set of activity occurrences aocc(PM). These checks can be used to
provide detailed diagnostics and can also be combined in an overall measure (e.g., a
weighted average).

6 Other Forms of Object-Centric Process Mining

Process mining is not limited to process discovery and conformance checking and in-
cludes a wide variety of topics ranging from data quality problems specific for event
data to action-oriented process mining where machine learning techniques are used to

26 Wil van der Aalst

predict problems and automatically take action. The broadness of the spectrum (in-
cluding connections to neighboring fields like simulation, data management, artificial
intelligence, and machine learning) also applies to object-centric process mining, as is
shown in Figure 13.

object-centric
event data

object-centric
process models

preprocessing
(e.g., clustering)

object-centric
process discovery

object-centric
conformance

checking

comparative /
perf.-oriented
process mining

predictive process
mining

prescriptive
process mining

diagnostics predictions actions

Fig. 13. Object-centric process mining is not limited to process discovery and conformance
checking.

The process mining tasks described in Figure 13 have been researched during the
past two decades. However, the focus was always on simple event logs, i.e., event logs
assuming a single case notion. Like for process discovery and conformance checking,
these tasks may become very challenging when dealing with multiple object types and
a variable number of objects involved in events. Although it is often possible to lift
existing approaches to the multi-object level (as was illustrated in the previous sections),
many new challenges emerge when we drop the assumption of having a single case
notion.

Consider, for example, the topic of trace clustering [27, 39, 40], which has been
investigated in-depth for simple event logs. The goal of trace clustering is to find groups
of cases that have similar characteristics. This can be used to partition the event log
into multiple smaller, more homogeneous, event logs. These can be used to discover
a collection of process models that are easier to analyze and interpret. These ideas
cannot be easily transferred to object-centric event logs. Of course, one can try to cluster
objects. However, objects share events and the log cannot be nicely partitioned based
on clustered objects.

The same challenges can be seen when considering predictive process mining and
prescriptive process mining. Often cases are assumed to be independent and this is
no longer possible. This also shows that traditional process mining approaches fail to
capture the interactions between different objects.

7 Handling Complexity

As mentioned in the introduction of this paper, the advantages of using object-centric
process mining are threefold: (1) data extraction is only done once, (2) relations be-

Object-Centric Process Mining: An Introduction 27

tween objects of possibly multiple types are captured and analyzed, and (3) a three-
dimensional view of processes and organizations comes into reach. However, because
data exaction is only done once, the complexity of input data is typically far more com-
plex than in traditional process mining. Traditionally, scoping is done before turning
the data from source systems (e.g., SAP’s 800.000 database tables) into an event log
with a single case notion. Moreover, sliders and filters need to be reinvented for the new
setting with multiple object types and events that refer to multiple objects.

An important tool to tackle complexity is the so-called Event-Type-Object-Type
(ETOT) matrix. Recall that act(L) = {#act(e) | e ∈ E} is the set of event types
(i.e., activities) and types(L) = {#type(o) | o ∈ O} is the set of object types. An
ETOT matrix determines which event-type and object-type combinations are in focus.
Given an event log and an ETOT matrix, we create an event log that retains only the
event types, object types, and relations selected.

Definition 19 (Event-Type-Object-Type Matrix). Let L = (E,O,#, R) be an event
log. An Event-Type-Object-Type (ETOT) matrix is a relation M ⊆ {(act(e),#type(o)) |
(e, o) ∈ R}. L↑M = (E′, O′,#′, R′) is the projected event log based on M with
E′ = {e ∈ E | act(e) ∈ {et | (et , ot) ∈ M}}, O′ = {o ∈ O | #type(o) ∈ {ot |
(et , ot) ∈ M}}, dom(#′) = E′ ∪ O′, #′(e) = #(e) for e ∈ E′, #′(o) = #(o) for
o ∈ O′, and R′ = {(e, o) ∈ R | (act(e),#type(o)) ∈ M}.

Table 2. The maximal Event-Type-Object-Type (ETOT) matrix based on the event log partially
shown in Figure 7.

event type object type
(activity) ot = order ot = item ot = package

confirm order (co) ✓
create package (cp) ✓ ✓
failed delivery (fd) ✓ ✓

item out of stock (is) ✓
package delivered (pd) ✓ ✓

pay order (py) ✓
payment reminder (pr) ✓

pick item (pi) ✓
place order (po) ✓ ✓
reorder item (ri) ✓
send package (sp) ✓ ✓

Note that an Event-Type-Object-Type (ETOT) matrix M can be visualized as a ma-
trix. This is illustrated in Table 2. The example ETOT matrix is maximal, i.e., M =
{(act(e),#type(o)) | (e, o) ∈ R}. Table 3 shows another ETOT matrix where many
event-type and object-type combinations have been removed. The corresponding dis-
covered object-centric accepting Petri net is shown in Figure 14. Note that the object
type package was completely removed. Also, activities such as payment reminder
were removed. The resulting process model is, therefore, much simpler.

28 Wil van der Aalst

Table 3. An Event-Type-Object-Type (ETOT) matrix M used to create an event log focusing on
a subset of event types and object types.

event type object type
(activity) ot = order ot = item ot = package

confirm order (co) ✓
create package (cp)
failed delivery (fd)

item out of stock (is) ✓
package delivered (pd) ✓

pay order (py) ✓
payment reminder (pr)

pick item (pi) ✓
place order (po) ✓ ✓
reorder item (ri) ✓
send package (sp)

Table 3 and Figure 14 show that it is easy to scope analysis; just select the event-
type and object-type combinations that need to be included. An ETOT matrix M can be
considered as an “analysis profile” or “view” on the processes and organization. These
may be predefined and reusable. Depending on the questions one has, one pick such a
predefined profile/view.

Selecting the ETOT matrix can be seen as a first step in the analysis process. How-
ever, one can consider further filter or projection steps based on picking subsets of
objects. It is recommended to include an object completely or not at all, otherwise, re-
sults are difficult to interpret. This leads to another subsequent log projection based on
a set of selected objects Osel .

Definition 20 (Object Selection). Let L = L′↑M = (E,O,#, R) be an event log ob-
tained by selecting event-type and object-type combinations as defined by ETOT matrix
M starting from event log L′. Let Osel ⊆ O be a set of selected objects. Projecting
L on these selected objects Osel yields L↑Osel = (E′, O′,#′, R′) with O′ = Osel ,
R′ = {(e, o) ∈ R | o ∈ O′}, E′ = {e | (e, o) ∈ R′}, dom(#′) = E′ ∪ O′,
#′(e) = #(e) for e ∈ E′, and #′(o) = #(o) for o ∈ O′.

Note that events without selected objects are removed in Definition 20. Object se-
lection can be used to implement sliders that seamlessly simplify process models. For
example, objects are sorted per object type based on the frequency of the correspond-
ing trace variant (note that each object defines a sequence of activities). If the slider is
set to, for example, 80%, then one can pick 80% of the objects per object type (start-
ing with the objects following the most frequent variant). Using L↑Osel as defined in
Definition 20, one obtains a new event log covering, by definition, 80% of all objects.
Such a slider has a clear interpretation and predictable effects. However, relationships
between objects are ignored. This can be problematic, as can be explained using our
running example.

Assume we have orders, items, and packages as objects. We select orders, items,
and packages based on the frequencies of the corresponding variants. This may result

Object-Centric Process Mining: An Introduction 29

order

2000

2000

item

8003

1645

1645 8003

8003 8003

co

py

po

pi

is

ri pd

#2000

 1|4.00|13
min mean max

#2000

#2000

#1645

#1645

#1297

 1|6.17|19
min mean max

#6358

#1645

#8003

2000

Fig. 14. An object-centric accepting Petri net based on event log L↑M created using the ETOT
matrix M in Table 3.

in “orphan objects”, e.g., orders without items, items without a corresponding order,
packages without items, or items without a corresponding package. This is caused by
the fact that dependencies between objects are ignored. One way to solve this is to use
the notion of leading objects. One starts with a set of leading objects, e.g., all orders fol-
lowing the five most frequent variants, and all transitively related objects are included.

Definition 21 (Object Selection Based on Leading Objects). Let L = L′↑M =
(E,O,#, R) be an event log obtained by selecting event-type and object-type com-
binations as defined by ETOT matrix M starting from event log L′. O2O = {(o1, o2) ∈
O × O | ∃e∈E {(e, o1), (e, o2)} ⊆ R}. O2O∗ is the transitive closure of relation
O2O . Let Olead ⊆ O be the selected set of leading objects. Osel = {o ∈ O |
∃o′∈Olead

(o′, o) ∈ O2O∗} is the set of objects transitively connected to at least one
leading object. Projecting L based on these objects connected to leading objects yields
again L↑Osel = (E′, O′,#′, R′) with O′ = Osel , R′ = {(e, o) ∈ R | o ∈ O′},
E′ = {e | (e, o) ∈ R′}, dom(#′) = E′ ∪ O′, #′(e) = #(e) for e ∈ E′, and
#′(o) = #(o) for o ∈ O′.

Definition 21 allows us to pick a set of orders as leading objects and include all
items included in these orders. It is also possible to select a set of packages and include
all corresponding items and orders. Note that due to the transitive closure, too many
objects may be included. Hence, further refinements or a well-chosen ETOT matrix

30 Wil van der Aalst

are needed to obtain the desired projected event log. However, Definition 20 and Def-
inition 21, in combination with the ETOT matrix, provide the basic tools that can be
used to implement sliders and filters. For example, we may want to create the process
model based on all orders with a value of more than e8000, having items that are haz-
ardous, shipped in packages with more than five items. Such questions require careful
definitions to avoid misleading interpretations. However, the data set used as input is
always the same. In traditional non-object-centric approaches, such selections are often
done before loading the event data in a process mining tool. As a result, transparency is
missing and analysts need to guess how the data was extracted. Therefore, using object-
centric process mining, we can handle complexity effectively. Moreover, we can also
create transparency based on a single source of truth.

8 Conclusion

Most process mining techniques and tools make the simplifying assumption that each
event refers to precisely one case. This allows for the partitioning of events over differ-
ent cases. Each case can be seen as a separate instance composed of a timed sequence
of activities. It is remarkable that this simple view on operational processes has enabled
so many organizations to improve their processes [25]. However, as the field of pro-
cess mining is maturing and applications become more challenging, this simplifying
assumption is no longer reasonable.

Object-centric process mining drops the “single case notion” assumption. An event
may refer to any number of objects and different types of objects are considered in an
integral manner. In this tutorial, we introduced object-centric event logs and two types
of object-centric process models: Object-Centric Directly-Follows Graphs (OC-DFGs)
and Object-Centric Accepting Petri Nets (OC-APNs). We presented a few baseline
process-discovery and conformance-checking techniques. The goal was not to present
specific techniques, but to introduce the challenges and show how existing techniques
can be leveraged. For example, techniques and implementations, see [8, 15], the OCEL
standard (ocel-standard.org), and the OCPM toolset. The insights provided are
also valuable when using existing process mining software not supporting object-centric
event logs. Also, practitioners should know about convergence and divergence prob-
lems, because these phenomena occur in almost any real-world process mining project.

Object-centric process mining is a new rapidly-growing subdiscipline with many
exciting research challenges. Things like filtering, clustering, prediction, etc. become
more challenging when considering object-centric event logs. However, the general
principles used for object-centric process discovery and conformance checking pre-
sented in this tutorial can also be applied to most other process mining tasks.

Acknowledgments
The author thanks the Alexander von Humboldt (AvH) Stiftung for supporting his re-
search. Funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Ex-
cellence Strategy, Internet of Production (390621612).

Object-Centric Process Mining: An Introduction 31

References

1. W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer-Verlag, Berlin,
2016.

2. W.M.P. van der Aalst. A Practitioner’s Guide to Process Mining: Limitations of the Directly-
Follows Graph. In International Conference on Enterprise Information Systems (Centeris
2019), volume 164 of Procedia Computer Science, pages 321–328. Elsevier, 2019.

3. W.M.P. van der Aalst. Object-Centric Process Mining: Dealing With Divergence and Con-
vergence in Event Data. In P.C. Ölveczky and G. Salaün, editors, Software Engineering and
Formal Methods (SEFM 2019), volume 11724 of Lecture Notes in Computer Science, pages
3–25. Springer-Verlag, Berlin, 2019.

4. W.M.P. van der Aalst. Foundations of Process Discovery. In W.M.P. van der Aalst and
J. Carmona, editors, Process Mining Handbook, volume 448 of Lecture Notes in Business
Information Processing, pages 37–75. Springer-Verlag, Berlin, 2022.

5. W.M.P. van der Aalst. Process Mining: A 360 Degrees Overview. In W.M.P. van der Aalst
and J. Carmona, editors, Process Mining Handbook, volume 448 of Lecture Notes in Business
Information Processing, pages 3–34. Springer-Verlag, Berlin, 2022.

6. W.M.P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying History on Process
Models for Conformance Checking and Performance Analysis. WIREs Data Mining and
Knowledge Discovery, 2(2):182–192, 2012.

7. W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Proclets: A Framework for
Lightweight Interacting Workflow Processes. International Journal of Cooperative Informa-
tion Systems, 10(4):443–482, 2001.

8. W.M.P. van der Aalst and A. Berti. Discovering Object-Centric Petri Nets. Fundamenta
Informaticae, 175(1-4):1–40, 2020.

9. W.M.P. van der Aalst and C. Stahl. Modeling Business Processes: A Petri Net Oriented
Approach. MIT Press, Cambridge, MA, 2011.

10. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, 2004.

11. A. Artale, A. Kovtunova, M. Montali, and W.M.P. van der Aalst. Modeling and Reasoning
over Declarative Data-Aware Processes with Object-Centric Behavioral Constraints. In T.T.
Hildebrandt, B.F. van Dongen, M. Röglinger, and J. Mendling, editors, International Con-
ference on Business Process Management (BPM 2019), volume 11675 of Lecture Notes in
Computer Science, pages 139–156. Springer-Verlag, Berlin, 2019.

12. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F.M. Maggi, A. Marrella, M. Mecella, and
A. Soo. Automated Discovery of Process Models from Event Logs: Review and Benchmark.
IEEE Transactions on Knowledge and Data Engineering, 31(4):686–705, 2019.

13. A. Augusto, R. Conforti, M. Marlon, M. La Rosa, and A. Polyvyanyy. Split Miner: Auto-
mated Discovery of Accurate and Simple Business Process Models from Event Logs. Knowl-
edge Information Systems, 59(2):251–284, 2019.

14. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on Regions of
Languages. In G. Alonso, P. Dadam, and M. Rosemann, editors, International Conference
on Business Process Management (BPM 2007), volume 4714 of Lecture Notes in Computer
Science, pages 375–383. Springer-Verlag, Berlin, 2007.

15. A. Berti and W.M.P. van der Aalst. Extracting Multiple Viewpoint Models from Relational
Databases. In P. Ceravolo, M. van Keulen, and M.T. Gomez Lopez, editors, Postproceedings
International Symposium on Data-driven Process Discovery and Analysis, volume 379 of
Lecture Notes in Business Information Processing, pages 24–51. Springer-Verlag, Berlin,
2020.

32 Wil van der Aalst

16. J. Carmona, J. Cortadella, and M. Kishinevsky. A Region-Based Algorithm for Discovering
Petri Nets from Event Logs. In Business Process Management (BPM 2008), pages 358–373,
2008.

17. J. Carmona, B. van Dongen, A. Solti, and M. Weidlich. Conformance Checking: Relating
Processes and Models. Springer-Verlag, Berlin, 2018.

18. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

19. J. Desel and W. Reisig. Place/Transition Nets. In W. Reisig and G. Rozenberg, editors,
Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Computer Science,
pages 122–173. Springer-Verlag, Berlin, 1998.

20. M. Dumas, M. La Rosa, J. Mendling, and H. Reijers. Fundamentals of Business Process
Management. Springer-Verlag, Berlin, 2018.

21. M.L. van Eck, N. Sidorova, and W.M.P. van der Aalst. Guided Interaction Exploration and
Performance Analysis in Artifact-Centric Process Models. Business and Information Systems
Engineering, 61(6):649–663, 2019.

22. D. Fahland. Describing Behavior of Processes with Many-to-Many Interactions. In S. Do-
natelli and S. Haar, editors, Applications and Theory of Petri Nets 2019, volume 11522 of
Lecture Notes in Computer Science, pages 3–24. Springer-Verlag, Berlin, 2019.

23. D. Fahland, M. De Leoni, B. van Dongen, and W.M.P. van der Aalst. Behavioral Confor-
mance of Artifact-Centric Process Models. In A. Abramowicz, editor, Business Information
Systems (BIS 2011), volume 87 of Lecture Notes in Business Information Processing, pages
37–49. Springer-Verlag, Berlin, 2011.

24. D. Fahland, M. de Leoni, B.F. van Dongen, and W.M.P. van der Aalst. Conformance Check-
ing of Interacting Processes with Overlapping Instances. In S. Rinderle, F. Toumani, and
K. Wolf, editors, Business Process Management (BPM 2011), volume 6896 of Lecture Notes
in Computer Science, pages 345–361. Springer-Verlag, Berlin, 2011.

25. G. Galic and M. Wolf. Global Process Mining Survey 2021: Delivering Value with Process
Analytics - Adoption and Success Factors of Process Mining. Deloitte, 2021.

26. A.F. Ghahfarokhi, G. Park, A. Berti, and W.M.P. van der Aalst. OCEL Standard. www.ocel-
standard.org, 2021.

27. G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering Expressive Process Models by
Clustering Log Traces. IEEE Transaction on Knowledge and Data Engineering, 18(8):1010–
1027, 2006.

28. IEEE Task Force on Process Mining. XES Standard Definition. www.xes-standard.org,
2016.

29. K. Jensen and L.M. Kristensen. Coloured Petri Nets. Springer-Verlag, Berlin, 2009.
30. M. Kerremans, T. Srivastava, and F. Choudhary. Gartner Market Guide for Process Mining,

Research Note G00737056. www.gartner.com, 2021.
31. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering Block-structured Process

Models from Event Logs: A Constructive Approach. In J.M. Colom and J. Desel, editors,
Applications and Theory of Petri Nets 2013, volume 7927 of Lecture Notes in Computer
Science, pages 311–329. Springer-Verlag, Berlin, 2013.

32. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering Block-Structured Pro-
cess Models from Event Logs Containing Infrequent Behaviour. In N. Lohmann, M. Song,
and P. Wohed, editors, Business Process Management Workshops, International Workshop
on Business Process Intelligence (BPI 2013), volume 171 of Lecture Notes in Business In-
formation Processing, pages 66–78. Springer-Verlag, Berlin, 2014.

33. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Scalable Process Discovery and
Conformance Checking. Software and Systems Modeling, 17(2):599–631, 2018.

Object-Centric Process Mining: An Introduction 33

34. G. Li, R. Medeiros de Carvalho, and W.M.P. van der Aalst. Automatic Discovery of Object-
Centric Behavioral Constraint Models. In W. Abramowicz, editor, Business Information
Systems (BIS 2017), volume 288 of Lecture Notes in Business Information Processing, pages
43–58. Springer-Verlag, Berlin, 2017.

35. X. Lu, M. Nagelkerke, D. van de Wiel, and D. Fahland. Discovering Interacting Artifacts
from ERP Systems. IEEE Transactions on Services Computing, 8(6):861–873, 2015.

36. OMG. Business Process Model and Notation (BPMN), Version 2.0.2. Object Management
Group, www.omg.org/spec/BPMN/, 2014.

37. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based on Moni-
toring Real Behavior. Information Systems, 33(1):64–95, 2008.

38. M. Solé and J. Carmona. Process Mining from a Basis of State Regions. In J. Lilius and
W. Penczek, editors, Applications and Theory of Petri Nets 2010, volume 6128 of Lecture
Notes in Computer Science, pages 226–245. Springer-Verlag, Berlin, 2010.

39. M. Song, C.W. Günther, and W.M.P. van der Aalst. Trace Clustering in Process Mining. In
D. Ardagna, editor, BPM 2008 Workshops, Proceedings of the Fourth Workshop on Busi-
ness Process Intelligence (BPI 2008), volume 17 of Lecture Notes in Business Information
Processing, pages 109–120. Springer-Verlag, Berlin, 2009.

40. J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens. Leveraging Process Discovery
With Trace Clustering and Text Mining for Intelligent Analysis of Incident Management
Processes. In IEEE Congress on Evolutionary Computation (CEC 2012), pages 1–8. IEEE
Computer Society, 2012.

41. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process Dis-
covery using Integer Linear Programming. Fundamenta Informaticae, 94:387–412, 2010.

