
Polynomial-Time Conformance Checking for

Process Trees

Eduardo Goulart Rocha1,2(B)r0009´0000´1184´1188s and
Wil M.P. van der Aalst2,1r0000´0002´0955´6940s

1 Celonis Labs GmbH, Munich, Germany
2 Process and Data Science (PADS) Chair, RWTH Aachen University, Germany

e.goulartrocha@celonis.com wvdaalst@pads.rwth-aachen.de

Abstract. Conformance-checking is the �eld of process mining relating
modeled and observed behavior. State-of-the-art conformance checking
techniques do not scale for large process models and event logs, which
hampers its broader adoption.
In this paper, we present a polynomial-time method to compute the
markovian-based �tness and precision metrics for process trees. For that,
we �rst show that this is equivalent to the problem of computing the set
of substrings of length at most k of the model's language. Then, we show
how to exploit the tree structure to compute this set in a compositional
way. The experimental evaluation shows that the proposed method out-
performs state-of-the-art conformance-checking techniques by orders of
magnitude, while still providing quality guarantees.

Keywords: Process Mining · Conformance Checking · Process Trees.

1 Introduction

Conformance checking is the �eld of process mining relating desired and observed
behavior. Given an event log and a process model, conformance checking aims
at identifying and quantifying di�erences between the event log and the process
model. An important use-case for conformance checking is to assess the quality
of automatically discovered process models in the form of a single number evalu-
ation metric. For that, multiple conformance metrics with distinct runtime and
quality characteristics have been proposed in the literature [1, 8, 11]. Unfortu-
nately, most state-of-the-art methods still require a runtime that is exponential
on the number of activities or do not satisfy all the desired axioms for a confor-
mance metric [13].

A notable exception are the Projected Conformance Checking (PCC) �tness
and precision metrics [7], which provide strong runtime and quality guarantees
for certain classes of models (process trees with unique activities and no invisible
labels). Nevertheless, the PCC metrics require multiple passes over the event log,
which makes them expensive to compute for large datasets.

In this work, we focus on the problem of e�ciently computing conformance
metrics for process trees. Process trees are a well-established modeling formalism

2 Eduardo Goulart Rocha and Wil M.P. van der Aalst

in process mining because of its soundness guarantees and simple structure. For
instance, many state-of-the-art process discovery algorithms return process trees.
We provide two important contributions: First, we present a simpli�ed, yet more
expressive, de�nition of the k-th order markovian abstraction �rst presented
in [2]. Next, we show how to compute the k-th order markovian abstraction of
a process tree in polynomial time by exploiting the tree structure. The method
achieves an improvement of orders of magnitude in computation time for models
with a high degree of parallelism. Furthermore, the method scales linearly with
the size of the event log, making it suitable for very large event-logs.

The remainder of the paper is organized as follows: Section 2 presents basic
notations and concepts from automata theory, which are the backbone of the
presented technique, Section 3 presents the general framework for computing
the k-th order markovian abstraction of a process tree, Section 4 compares the
approach to other state-of-the-art methods, Section 5 presents related work in
the �eld. Finally, Section 6 concludes the paper with directions for future work.

2 Preliminaries

This section presents the basic concepts upon which the method is based. For
a given �nite alphabet Σ, Σk is the set of all �nite words of length k formed
with this alphabet and Σ˚ “

Ť

kě0 Σ
k. The projection of a word w P Σ˚ in

a set of symbols S Ď Σ is written wS . The concatenation of two words u, v is
written uv. Similarly, the concatenation of two languages U, V Ď Σ˚ is written
as UV “

Ť

uPU,vPV uv. Given a word w “ w1w2 ¨ ¨ ¨wn and 1 ď i ď j ď n,

wiÑj “ wiwi`1 ¨ ¨ ¨wj denotes a substring of w (written γ Ď w). We further

write pref kpwq, suff k
pwq, and subkpwq to denote the set of non-empty pre�xes,

su�xes, and substrings of w with length less than or equal to k. The de�nitions of
pref k, suff k, and subk are extended to languages too. Finally, the paper assumes
familiarity with basic algorithms of automata theory [5]. We provide common
notations for �nite automata below:

De�nition 1. (Labeled Directed Graph) A Labeled Directed Graph is a triple
G “ pV,Σ,Eq where V is the set of vertices, Σ is the set of labels and E Ď

V ˆΣ ˆV is the set of edges. Given an edge e “ pv, l, v1q, functions πsrcpeq “ v,
πtgtpeq “ v1, and πlpeq “ l return its source and target vertices and its label
respectively

For this paper, all considered graphs are labeled directed graphs. A path
p in the a graph is a sequence of edges p “ e1e2 ¨ ¨ ¨ en such that πtgtpeiq “

πsrcpei`1q @1 ď i ă n. We de�ne πlppq “ πlpe1qπlpe2q ¨ ¨ ¨πlpenq as the path's

labeling (“ ϵ if the path is empty). And πvpp, iq “

#

πsrcpe1q i “ 0

πtgtpeiq i ą 0
as the i-th

vertex visited by the path, where πvpp, 0q is the path's start vertex.

De�nition 2. (Nondeterministic Finite Automaton) Let ϵ be the empty
string. A Nondeterministic Finite Automaton (NFA) is a 5-tuple N “ pQ,Σ, δ, q0,

Polynominal-Time Conformance-Checking for Process Trees 3

F q, where Q is the set of states, Σ is the alphabet, δ : Q ˆ pΣ Y tϵuq Ñ PpQq is
the transition function, q0 is the initial state and F Ď Q is the set of �nal states.

Any NFA N “ pQ,Σ, δ, q0, F q is associated to a graph G “ pQ,Σ Y tϵu, Eq

where E “ tpq, l, q1q P Q ˆ pΣ Y tϵuq ˆ Q | q1 P δpq, lqu (called the NFA's
graph). Given q, q1 P Q, we de�ne qrwyq1 “ tp P E˚ | πlppq “ w ^ πvpp, 0q “

q ^ πvpp, |p|q “ q1u as all the paths from q to q1 labeled by w. If q “ q0, q1 P F ,
and qrwyq1 ‰ H, then N accepts w and p is an accepting path. The accepted
language of N is de�ned as LpNq “ tw P Σ˚ | DfPF s.t. q0rwyf‰Hu. Similarly,
we denote qrw1yq1rw2yq2 “ tp1p2 | p1 P qrw1yq1 ^p2 P q1rw2yq2u. Last, we de�ne
qrwy “ tq1 P Q | qrwyq1 ‰ Hu as the set of states reachable from q by replaying
w.

In an NFA N , a state is dead if it is not reachable from the start state and
it is a trap if there is no path q leading from the state to a �nal state. We say
that an NFA is trimmed if it has no dead or trap states. For any trimmed NFA,
any path p in its graph is such that πlppq is a substring of LpNq.

De�nition 3. (Deterministic Finite Automaton (DFA)) A Deterministic
Finite Automaton (DFA) is an NFA where δpq, ϵq “ H @q P Q and |δpq, lq| ď

1 @q P Q, l P Σ.

Every DFA has the property that two paths in its graph starting from the
same node are equal if and only if their labelings are the same, i.e. |qrwy| ď 1.
We will abuse notation and write qrwyq1 to refer to the single element of this set
(when it exists). Given an NFA N , there exists an unique (up to isomorphism)
DFA D with a minimal number of states such that LpNq “ LpDq that can be
obtained via determinization. This can be achieved via the powerset construction
followed by a minimization step [5]. In the worst case, D has exponentially many
more states than N . If the DFA's graph is acyclic, we call it a Deterministic
Acyclic Finite State Automaton (DAFSA). Given a �nite language L Ď Σ˚, it
is possible to construct a minimal DAFSA accepting L in linearithmic time [4].

While �nite automata can be used to represent any regular language, process
analysts need a compact and understandable modeling formalism. Among which,
process trees [3] stand out for their soundness guarantees and block structure.
Process trees are graphs with a tree structure. In a process tree, the leaf nodes
represent activities in Σ or skips (τ) and the internal nodes represent one of four
possible operators: exclusive (ˆ), sequence (Ñ), loop (ö), and parallel (^). The
tree's accepted language is de�ned recursively as follows:

De�nition 4. (Process Trees Semantics) Let� be the shu�e product of two

words, de�ned as:

#

w� ϵ “ ϵ� w “ twu w P Σ˚

xu� yv “ txupu� yvq Y tyupxu� vq x, y P Σ ^ u, v P Σ˚

For languages A,B, de�ne A�B “
Ť

waPA,wbPB wa�wb. Then, the accepted
language of a process tree is recursively de�ned as:

� Lpτq “ tϵu

4 Eduardo Goulart Rocha and Wil M.P. van der Aalst

� Lpaq “ tau

� LpˆpT1, ¨ ¨ ¨ , Tnqq “
Ťn

i“1 LpTiq

� LpÑpT1, ¨ ¨ ¨ , Tnqq “ LpT1qLpT2q ¨ ¨ ¨LpTnq

� LpöpT1, ¨ ¨ ¨ , Tnqq “ LpT1qpLpˆpT2, ¨ ¨ ¨ , TnqqLpT1qq˚

� Lp^pT1, ¨ ¨ ¨ , Tnqq “ LpT1q� LpT2q� ¨ ¨ ¨� LpTnq

Given a process tree T , there exists a unique minimal DFA D such that
LpT q “ LpDq [3]. However, the size of D might be exponential with the size of
T . This exponential blow-up is the bottleneck for most conformance checking
techniques, including the metrics based on the k-th order markovian abstraction
presented in [2]. This paper focuses on improving the runtime for computing the
k-th order markovian abstraction. For this, we use a slightly di�erent de�nition
than the one originally introduced in [2], based on the set of k-trimmed substrings
of a language:

De�nition 5. (K-Trimmed Substrings) Let Σ be an alphabet and k ě 2.
Given a word w P Σ˚, the set of k-trimmed substrings skpwq is de�ned as:

skpwq “

#

twu if |w| ď k

twiÑi`k´1 | 1 ď i ď |w| ´ k ` 1u otherwise

We extend the de�nition of sk to languages as skpLq “
Ť

wPL skpwq. Con-
sider languages X “ tabcu and Y “ ti, ijku (these will serve as a running ex-
ample for the remainder of the paper), then s1pXq “ ta, b, cu, s2pXq “ tab, bcu,
and skpXq “ tabcu for k ě 3 and s1pY q “ ti, j, ku, s2pY q “ ti, ij, jku, and
skpY q “ ti, ijku for k ě 3. The k-th order markovian abstraction (de�ned be-
low) is similar to the set of k-trimmed substrings, but with special start/end
markers (`{´) to track the language's pre�xes/su�xes.

De�nition 6. (The Modi�ed k-th Order Markovian Abstraction) Let Σ
be an alphabet, `{´ R Σ be special start/end markers, and k ě 2. Given a word
w P Σ˚, the k-order markovian abstraction of w is de�ned as follows:

mkpwq “ skp`w´q

Similarly, mk of a language L Ď Σ˚ is de�ned as
Ť

wPL mkpwq. In prin-
ciple, mk is de�ned for arbitrary languages, but throughout the rest of this
work we focus on computing mk for regular languages. We will always assume
that `,´ R Σ and write Σ˘ “ Σ Y t`,´u and `L´ “ t`uLt´u. For any
language L Ď Σ˚, mkpLq represents a �nite set of �nite words and thus can
be associated to a unique minimal DAFSA (written Mk

L). Figure 1a shows
the minimal DAFSAs M3

X and M3
Y accepting m3pXq “ t`ab, abc, bc´u and

m3pY q “ t`i´,`ij, ijk, jk´u respectively. In general, Mk
L has a very speci�c

structure, detailed below:

Proposition 1. (Basic Properties of Mk
L) Let Σ be an alphabet, L Ď Σ˚

be an arbitrary language, k ě 2, and Mk
L “ pQ,Σ, δ, q0, F q the minimal DAFSA

accepting mkpLq, then:

Polynominal-Time Conformance-Checking for Process Trees 5

-

+ a b

b ca
b c

-

+ i j

j ki
j k

-

(a) M3
X and M3

Y

+ a b

b ca
b c

-

+ i j

j k
i

j k

-

i

(b) M3
X d

˘ M3
Y

+ a b

b ca
b c

i j

j k
i

j k

-

+

(c) M3
X ö

˘ M3
Y

Fig. 1: M3
X and M3

Y for X “ tabcu and Y “ tijk, iu and their sequence and loop
concatenations. Start states are colored orange, �nal states are colored green,
dead states are gray, states in Q´ are hatched, and ϵ-transitions are represented
as dashed lines.

1. mkpLq Ď mkpΣ˚q “
`
Ť

0ďiăk´1 `Σi´
˘

Y p`Σk´1q Y pΣk´1´q Y Σk

2. Mk
L has only one �nal state, i.e. F “ tqfu

3. Mk
L has exactly one edge labeled +. This edge has q0 as its source and we

write q` to represent its target, i.e. δpq0,`q “ tq`u

4. All ´-labeled edges in Mk
L lead to its unique �nal state. We de�ne Q´ “

tq P Q | qf P δpq,´qu

5. For every γ P subkp`L´q, there exists a path p in Mk
L such that πlppq “ γ,

and for every path p in Mk
L, there exists γ P subkp`L´q such that γ “ πlppq.

6. For every path p in Mk
L, ` P πlpbq ðñ πlppq P pref kp`L´q. Similarly,

´ P πlppq ðñ πlppq P suff k
p`L´q

7. |Q| ď |Σ|k´1 ` 2

Finally, De�nition 7 presents the (modi�ed) markovian-based �tness and
precision metrics. The metrics return almost the same (but not the same) values
as the ones presented in [2], because the original de�nition counts words of length
smaller than k twice. However, monotonicity still holds for our de�nition of mk,
i.e. if A Ď B ñ mkpAq Ď mkpBq, such that the proofs of the axioms presented
in [2] are still valid.

De�nition 7. (Markovian-Based Fitness and Precision with the Bi-
nary Cost Function) Let L be an event log with language L Ď Σ˚, P be a
process model with language P Ď Σ˚, k ě 2, and #Lpγq the number of occur-

rences of substring γ in L. Then MAF kpL,P q “ 1 ´

ř

γPpmkpLqzmkpP qq
#Lpγq

ř

γPmkpLq
#Lpγq

and

MAP kpL,P q “ 1 ´
|mk

pP qzmk
pLq|

|mkpP q|
are the markovian-based �tness and precision

metrics respectively.

The metrics are the set di�erence of the languages' substrings. The �tness
metric is normalized by the substring frequency. Since that the current setting

6 Eduardo Goulart Rocha and Wil M.P. van der Aalst

does not consider any notion of trace frequency for process models, the precision
metric is normalized by 1{|mkpP q|. It is possible to obtain a variation of the
metric by changing the cost function (see [2]). The markovian-based �tness and
precision metrics were empirically shown to agree with other state-of-the-art
conformance metrics such as escaping edges and PCC. However, the original
method for computing mk requires the computation of the process model's DFA
and thus does not scale for larger models. In the next section, we show how to
computemk for process trees without computing its state space, hence improving
scalability.

3 General Framework

This section shows how to e�ciently compute mk for arbitrary process trees.
First, we present a method to compute sk for arbitrary regular languages. Next,
we show a compositional approach to compute mk for binary and uniquely-
labeled process trees which works by recursively computing mk for each tree
node from the mk of its child nodes. Last, we show how to generalize it for
arbitrary process trees.

3.1 Computing sk of a Regular Language

This section presents a method to compute skpLq from a DFA accepting L.

De�nition 8. (All-Substrings NFA) Given a trimmed DFA D “ pQ,Σ, δ, q0,

F q, its all-substrings NFA is de�ned as SubD “ pQY tq̂u, Σ, δ̂, q̂, QY tq̂uq, where

δ̂ is de�ned as follows:

δ̂pq, lq “

$

’

&

’

%

δpq, lq if l P Σ ^ q P Q

Q if l “ ϵ ^ q “ q̂

H otherwise

Notice that SubD accepts all substrings of DFA D. This can be used to
e�ciently compute sk as follows:

Lemma 1. (Computing sk) Let L Ď Σ˚ be a regular language and D “

pQ,Σ, δ, q0, F q a DFA accepting L. Then skpLq can be computed in Op|Q||Σ|kq.

Proof. We assume D to be trimmed, otherwise D can be trimmed in Op|Q|q.
We de�ne s“kpLq “

␣

w P skpLq | |w| “ k
(

and săkpLq “ skpLqzs“kpLq. Notice
that săkpLq can be computed in Op|Σ|k´1q time by running BFS from the start
node with a maximum depth of k ´ 1. We prove that LpSubDq X Σk “ s“kpLq:

pĎq Any w P LpSubDq X Σk is such that there exists an accepting path
p P q̂rϵyqirwyqi`k in SubD. And since D is trimmed, there exists u, v Ď Σ˚ such
that q0ruyqi ‰ H and qi`krvyf ‰ H, f P F . Hence, q0ruyqirwyqi`krvyf ‰ H ñ

uwv P L ñ w P s“kpLq.

Polynominal-Time Conformance-Checking for Process Trees 7

pĚq For any w P skpLq, Dt P L | t “ uwv, so p “ q0ruyqirwyqi`krvyqn is a path
in D. But this directly implies that there exists a unique path p P q̂rϵyqirwyqi`k

and that p is an accepting path of SubD. And since that w P Σk, then w P

pLpSubDq X Σkq.
The runtime bound is achieved by computing LpSubDq X Σk without deter-

minizing SubD. The product construction builds a DAFSA. It expands at most
|Σ|k nodes, where each node expansion has cost bound by |Q|. [\

3.2 Leaf And Exclusive Nodes

This section shows how to compute mk for leaf and exclusive nodes, which do
not require any special constructs:

Lemma 2. (Leaf Nodes) For a P ΣYtϵu, mkpaq “

$

’

&

’

%

t`´u k ě 2, a “ ϵ

t`a, a´u k “ 2, a P Σ

t`a´u k ą 2, a P Σ

Proof. Follows directly from De�nition 6. [\

Lemma 3. (Exclusive Node) Let A,B Ď Σ˚ be arbitrary languages. Then:

mkpA Y Bq “ mkpAq Y mkpBq

Proof. From De�nition 6, mkpAYBq “ skp`pAYBq´q “ skp`A´ Y `B´q “

skp`A´q Y skp`B´q “ mkpAq Y mkpBq. [\

3.3 Sequence Node

For the sequence node, mk is computed based on automata operations. For that,
we �rst de�ne the markovian sequence concatenation d˘ as follows:

De�nition 9. (Markovian Sequence Concatenation) Let A,B be arbitrary
languages with disjoint alphabets ΣA, ΣB, and Mk

A “ pQA, Σ
˘
A , δA, q0a, tqfauq

and Mk
B “ pQB , Σ

˘
B , δB , q0b, tqfbuq be the minimal DAFSAs accepting mkpAq

and mkpBq respectively. The markovian sequence concatenation Mk
A d˘ Mk

B

builds the DFA pQA Y QB , pΣA Y ΣBq˘, δ̂, q0a, tqfa, qfbuq where δ̂ is de�ned as
follows:

δ̂pq, lq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

δApq, lq q P QA, l P ΣA Y t`u

δBpq0b, lq q “ q0a, l P ΣB

δBpq`
b , lq q P Q´

A, l P ΣB Y t´u

δBpq, lq q P QB , l P Σ˘
B

H otherwise

Figure 1b shows M3
X d˘ M3

Y , which accepts t`ab, abc, bcij, bci´, ijk, jk´u.
Intuitively, the markovian sequence concatenation is merging the transition func-
tion of state q`

b into the transition functions of states inQ´
A. Notice that s

3pLpM3
X

d˘ M3
Y qq “ t`ab, abc, bci, cij, ci´, ijk, jk´u “ m3pXY q. Lemma 4 below for-

malizes this fact, which can be used to compute mk for the sequence node:

8 Eduardo Goulart Rocha and Wil M.P. van der Aalst

Lemma 4. (mk of Language Concatenation) Let A,B be arbitrary lan-
guages with disjoint alphabets ΣA, ΣB, and Mk

A “ pQA, Σ
˘
A , δA, q0a, tqfauq and

Mk
B “ pQB , Σ

˘
B , δB , q0b, tqfbuq the minimal DAFSAs accepting mkpAq and mkpBq

respectively. Then:

mkpABq “ skpLpMk
A d˘ Mk

Bqq

Proof. pĎq For any w P `AB´, there exists ŵa P A, ŵb P B such that w “

`ŵaŵb´. Then for any γ P skp`ŵaŵb´q one of the following holds:

γ “

$

’

&

’

%

γa γa Ď `ŵa

γb γb Ď ŵb´

γaγb γa P suff k
p`ŵaq, γb P pref kpŵb´q

For Case 1, the condition implies |γa| “ k and so γa P mkpAq. Let p be the
path in Mk

A accepting γa. Since that ´ R γa, and that only ´-labeled edges were
removed from Mk

A, then p is also an accepting path in Mk
A d˘ Mk

B .
Similarly for Case 2, |γb| “ k and γb P mkpBq. Let p “ q0brγbyqfb be the path

in Mk
B accepting γb. Then p̂ “ q0arγbyqfb is an accepting path in Mk

A d˘ Mk
B .

For Case 3, the condition implies |γa|, |γb| ă k, γa´ Ď `ŵa´ and `γb Ď

`ŵb´. And since |γa ´ |, | ` γb| ď k then there exists αa, βb such that αaγa´ P

skp`ŵa´q Ď mkpAq and `γbβb P skp`ŵb´q Ď mkpBq (Proposition 1-5), and so
pa “ q0arαayq̂arγayq´

a r´yqfa and pb “ q0br`yq`
b rγbyq̂brβbyqfb are accepting paths

inMk
A andMk

B . Then p “ q0arαayq̂arγayq´
a rγbyq̂brβby is a path inMk

Ad˘Mk
B such

that πlppq “ αaγβb, and since |γ| “ k, then γ P skpαaγβbq Ď skpLpMk
A d˘Mk

Bqq.
pĚq Notice that Mk

A d˘ Mk
B is acyclic. Therefore, for every accepting path

p in Mk
A d˘ Mk

B accepting πlppq “ w P LpMk
A d˘ Mk

Bq, there exists 0 ď j ď n
such that πspp, iq P QA @i ď j and πspp, iq P QB @i ą j. If j “ 0, then
w P skp`B´q and ` R w ñ w P subkpB´q. If j “ n, then w P skp`A´q and
´ R w ñ w P subkp`Aq. In both cases, |w| “ k, thus w P skp`AB´q.

If 0 ă j ă n, it holds that ej “ pqj´1, wj , qjq where qj´1 P Q´
A, wj P

ΣB , and qj P δBpq`
b , wjq. So w1Ñj´1´ P skp`A´q and `wjÑn P skp`B´q

(Proposition 1-6). Which implies that w is a substring of `AB´. Now if |w| ď

k, then `,´ P w, which implies that w P `AB´ and thus twu “ skpwq Ď

skp`AB´q. If |w| ą k, then it follows directly that skpwq Ď skp`AB´q. [\

Mk
A d˘ Mk

B is a DAFSA with |QA| ` |QB | P Op|ΣA Y ΣB |kq states. From
Lemma 1, it follows that mkpABq can be computed in Op|ΣA Y ΣB |2kq.

3.4 Loop Node

In Section 3.3, we have seen how to concatenate two DAFSAs to compute mk

for language concatenation. Similarly, we de�ne the loop concatenation as a
construct to compute mk for the loop node's language. We �rst de�ne an NFA
constructed from both markovians' DAFSAs and show how this relates to the
markovian of the loop node. Then, we show that determinizing this construct is
polynomial-time due to its speci�c structure, thus still being e�cient.

Polynominal-Time Conformance-Checking for Process Trees 9

De�nition 10. (Markovian Loop Concatenation) Let A,B be arbitrary
languages with disjoint alphabets ΣA and ΣB and Mk

A “ pQA, Σ
˘
A , δA, q0a, tqfauq

and Mk
B “ pQB , Σ

˘
B , δB , q0b, tqfbuq the minimal DAFSAs accepting mkpAq and

mkpBq respectively. The markovian loop concatentation Mk
A ö˘ Mk

B builds the

NFA N “ pQAYQB , pΣAYΣBq˘, δ̂, q0a, tqfa, qfbuq where δ̂ is de�ned as follows:

δ̂pq, lq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

δApq, lq q P QA, l P Σ˘
A

δBpq0b,`q q P Q´
A, l “ ϵ

δApq0a,`q q P Q´
B , l “ ϵ

δBpq, lq q P QB , l P ΣB Y t`u

δBpq0b, lq q “ q0a, l P ΣB

H otherwise

Figure 1c shows M3
X ö˘ M3

Y accepting t`ab, abc, bc´, bcij, bciab, ijk, jkabu.
Notice that s3pLpM3

X ö˘ M3
Y qq “ t`ab, abc, bc´, bci, cij, cia, iab, ijk, jka, kabu

“ m3pApBAq˚q. Lemma 5 below formalizes this fact, which can be used to
compute mk for loop nodes:

Lemma 5. (mk of the Loop Node) Let A,B be arbitrary languages with
disjoint alphabets ΣA and ΣB, and Mk

A “ pQA, Σ
˘
A , δA, q0a, tqfauq and Mk

B “

pQB , Σ
˘
B , δB , q0b, tqfbuq the minimal DAFSAs accepting mkpAq and mkpBq re-

spectively. Then:
mkpApBAq˚q “ skpLpMk

A ö˘ Mk
Bqq

Proof. We de�ne sets Â “ twa P A | |wa| ď k ´ 2u and B̂ “ twb P B | |wb| ď

k ´ 2u. The graph of Mk
A ö˘ Mk

B is such that, for every ŵa P Â, there exists

q´
a P Q´

A such that q`
a rŵayq´

a ‰ H (analogous for B̂).
pĎq For every w P `ApBAq˚´, then w “ `wa,1wb,1wa,2 ¨ ¨ ¨wa,n´ s.t. wa,i P

Â, @1 ď i ď n and wb,i P B̂, @1 ď i ă n. We distinguish between two cases:

Case 1: p|w| ď kq Then | ` wa,i ´ | ď k for every i ď n, which implies that
`wa,i´ P LpMk

Aq. Therefore, pa,i “ q0ar`yq`
a rwa,iyq

´
a,ir´yqfa in Mk

A is such that

q´
a,i P Q´

A. Similarly for B, for every 1 ď i ď n´1, pb,i “ q0br`yq`
b rwb,iyq

´
b,ir´yqfb

is such that q´
b,i P Q´

B . Thus, the set q0ar`yq`
a rwa,iyq

´
a,irϵyq

`
b rwb,iyq

´
b,ir´yqfb is

not empty and contains paths p̂ in Mk
A ö˘ Mk

B such that πlpp̂q “ `wa,iwb,i´.
This can be continued to �nd a path p in Mk

A ö˘ Mk
B such that πlppq “ w. And

since |w| ď k, then w P skpLpMk
A ö˘ Mk

Bqq.

Case 2: p|w| ą kq Then for every γ P skpwq, it holds:

γ P

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

suff k
p`AqB̂pÂB̂q˚pref kpA´q

suff k
p`AqpB̂Âq˚pref kpBq

suff k
pBqpÂB̂q˚pref kpA´q

suff k
pBqÂpB̂Âq˚pref kpBq

skp`A´q

skpBq

(1)

10 Eduardo Goulart Rocha and Wil M.P. van der Aalst

For the �rst 4 cases, it is possible to apply an argument similar to Case 1, observ-
ing that pre�xes/su�xes of A and B lead to q`

a {Q´
A and q`

b {Q´
B (Proposition 1-

6). For the �fth case, since that Mk
A is fully contained in Mk

A ö˘ Mk
B , then γ P

mkpAq Ď mkpLpMk
A ö˘ Mk

Bqq. For the sixth case, `,´ R γ which implies that
there exist path q0brγ1Ñ1yq̂1rγ2Ñkyqfb in Mk

B . And so q0arγ1Ñ1yq̂1rγ2Ñkyqfb ‰

H in the graph of Mk
A ö˘ Mk

B .

pĚq We �rst show that every w “ w1w2 ¨ ¨ ¨wn P LpMk
A ö˘ Mk

Bq is a substring
of `ApBAq˚´. For that, consider all accepting paths p in Mk

A ö˘ Mk
B . If p

only passes through edges in Mk
A, then πlppq P mkpAq Ď mkpApBAq˚q. Else, if

w1 P ΣB and p does not pass through an ϵ edge, then p P q0arw1yq̂rw2Ñnyqfb
in Mk

A ö˘ Mk
B and so q0brw1yq̂rw2Ñnyqfb is a path in Mk

B ñ w P mkpBq. And
since that p does not pass through an `{´-labeled edge (they were removed from
Mk

B), then |w| “ k, which implies w P mkpApBAq˚q. Else, if p passes through
an ϵ edge, then one of the following holds:

p P

$

’

’

’

&

’

’

’

%

q0arγa1
yq´

a rϵyq`
b rγb1yq´

b rϵyq`
a rγa2

y ¨ ¨ ¨ q`
a rγai

yqfa

q0arγa1
yq´

a rϵyq`
b rγb1yq´

b rϵyq`
a rγa2

y ¨ ¨ ¨ q`
b rγbiyqfb

q0arγb1yq´
b rϵyq`

a rγa1
yq´

a rϵyq`
b rγb2y ¨ ¨ ¨ q`

a rγai
yqfa

q0arγb1yq´
b rϵyq`

a rγa1yq´
a rϵyq`

b rγb2y ¨ ¨ ¨ q`
b rγbiyqfb

(2)

We only prove the �rst case (the other cases are analogous). For this case,
it holds that γa1 P suff k

p`Âq, γai P pref kpÂ´q and γaj P Â @1 ă j ă i and

γbj P B̂ @1 ď j ă i. This all implies that w P suff k
p`AqB̂pÂB̂q˚pref kpA´q

(notice the correspondence to the �rst case of (1)) and that w is a substring of
`ÂB̂pÂB̂q˚Â´ Ď `ApBAq˚´. Now if |w| “ k, then w P mkp`ApBAq˚´q. Else
if |w| ă k, then |γa1

| ă k ´ 1 ñ |γa1
´ | ă k and since that γa1

´ P mkpAq,
then ` P γa1 . Similarly, we derive that ´ P γai and thus w P `ÂpB̂Âq˚´ ñ w P

mkp`ApBAq˚´q. [\

Lemma 5 shows that skpLpMk
A ö˘ Mk

Bq “ mkpApBAq˚q. But Mk
A d˘ Mk

B

is an NFA and the algorithm from Lemma 1 requires a DFA as input. NFA
determinization is worst-case exponential in its size. The following lemma shows
that this does not happen for Mk

A ö˘ Mk
B due to its speci�c structure. The basic

idea is that the ϵ transitions are the only source of non-determinism and that
tokens of non-determinism "die" after at most k steps.

Lemma 6. (Determinizing the Markovian Loop Concatenation Does
Not Explode) Let A,B be arbitrary languages with disjoint alphabets ΣA, ΣB,
and Mk

A “ pQA, Σ
˘
A , δA, q0a, tqfauq and Mk

B “ pQB , Σ
˘
B , δB , q0b, tqfbuq the min-

imal DAFSAs accepting mkpAq and mkpBq respectively, QAB “ QA Y QB and
ΣAB “ ΣA Y ΣB. Then runtime to determinize Mk

A ö˘ Mk
B is in Opk|QAB |kq.

Proof. Start by noticing that all ϵ-edges in Mk
A ö˘ Mk

B lead to either q`
a or

q`
b . That means, that the ϵ-closure Ŝ of any state S Ď QAB reached dur-

ing the powerset construction is such that Ŝ Ď S Y tq`
a , q

`
b u. Furthermore,

the construction is such that for any reachable state q P QAB , and la P Σ˘
A ,

Polynominal-Time Conformance-Checking for Process Trees 11

if |δ̂pq, laq| ‰ H, then δ̂pq, laq Ď QA and similarly for every state q P QAB

and lb P ΣB , if |δ̂pq, lbq| ‰ H, then δ̂pq, lbq Ď QB . This implies that ev-
ery reachable state S in the powerset construction is such that either S Ď

QA or S Ď QB . Therefore, any path in the powerset construction is such
that πsppq “ pSa1,1Sa1,2 ¨ ¨ ¨Sa1,n1

qpSb1,1Sb1,2 ¨ ¨ ¨Sb1,m1
qpSa2,1Sa2,2 ¨ ¨ ¨Sa2,n2

q ¨ ¨ ¨ ,
where Sai,j Ď PpQAq, Sbi,j Ď PpQBq, and |Sai,1 | “ |Sbi,1 | “ 1.

Let qai,1
and qbi,1 be the single elements of Sai,1

and Sbi,1 . Now consider the
path Sai,1rwaySai,ni

, wa P pΣ˘
A q˚ in the powerset construction. Then Sai,ni

Ď

qai,1
rway Y

Ť

1ăiďn q
`
a rwiÑn

a y (in Mk
A). But since that Mk

A is a DAFSA with

maximum word length k, then q`
a rwiÑn

a y “ H if |wiÑn
a | ě k, which implies that

|Sa,n| ď k. A similar argument applies for wb P Σ˚
B . Therefore, the powerset

construction expands at most |QAB |k nodes, with each node expansion costing
at at most k, where |QAB | ď |ΣA|k´1 ` |ΣA|k´1 ` 2 (Proposition 1-7). [\

From Lemma 1, it follows that mk of the loop node can be computed in
Opk|Σ|k

2

q. This exponent seems very high at �rst, but in practice it does not
happen. This is related to the fact that if one of the subtrees does not accept
the empty word, then there is no real non-determinism in Mk

A ö˘ Mk
B .

3.5 Parallel Node

Finally, we consider the parallel node. Parallel nodes largely contribute to the
original method's ine�ciency because they inevitably lead to an explosion in the
state space's size. Before presenting the construction for the parallel node, we
must de�ne the parallel composition of two languages [5]:

De�nition 11. (Parallel Composition) Given languages A Ď Σ˚
A, B Ď Σ˚

B,
the parallel composition A ∥ B Ď pΣA Y ΣBq˚ is such that:

w P A ∥ B ðñ wΣA
P A ^ wΣB

P B

The parallel composition is closely related to the shu�e product. In fact, if
ΣAXΣB “ H, then A ∥ B “ A�B. Lemma 7 shows how to exploit this relation
to compute mk for parallel nodes:

Lemma 7. (mk of the Shu�e Product) Let A, B be arbitrary languages
such that ΣA X ΣB “ H, and ΣAB “ ΣA Y ΣB. Then:

mkpA�Bq “ subkpmkpAqq ∥ subkpmkpBqq ∥ mkpΣABq

which can be computed in Op|ΣAB |2kq.

Proof. Observe that ΣA X ΣB “ H ñ mkpA � Bq “ skp`pA � Bq´q “

skp`A´ ∥ `B´q and that subkpmkpAqq “ subkp`A´q (Proposition 1-5).
pĎq Consider w P `A´ ∥ `B´. Then for every γ P skpwq, it holds that

γΣ˘
A

Ď wΣ˘
A
. And since wΣ˘

A
P `A´ and |γ| ď k, then γΣ˘

A
P subkp`A´q.

12 Eduardo Goulart Rocha and Wil M.P. van der Aalst

Analogously, γΣ˘
B

P subkp`B´q. Finally, since γ “ γΣ˘
AB

and γ P skp`pA �

Bq´q Ď mkpΣ˚
ABq, then γ P subkp`A´q ∥ subkp`B´q ∥ mkpΣ˚

ABq.

pĚq For every γ P subkp`A´q ∥ subkp`B´q ∥ mkpΣ˚
ABq, there exists wa “

αaγΣ˘
A
βa P `A´ and wb “ αbγΣ˘

B
βb P `B´. Notice that ` is only present at

most once in γ and γ P γΣ˘
A

∥ γΣ˘
B
, therefore ` P αa ðñ ` P αb. Similarly,

´ P βa ðñ ´ P βb. Also notice that ` R αa, αb implies αa “ αb “ ϵ and
´ R βa, βb implies βa “ βb “ ϵ.

If ` P αa, then ` P αb ñ αa “ `α̂a, αb “ `α̂b and we de�ne α “ `α̂aα̂b.
Else, if ` R αa then α “ ϵ. Similarly, we de�ne β “ β̂aβ̂b´ or β “ ϵ. In all cases,
αγβ P `A´ ∥ `B´ ñ skpαγβq Ď skp`A´ ∥ `B´q. Notice that if |γ| “ k ñ

γ P skpαβγq. And that if |γ| ă k, then α “ β “ ϵ (since that γ P mkpΣ˚
ABq),

ñ γ P skpαγβq. Putting it together, γ P skpαγβq Ď skp`A´ ∥ `B´q.
For the runtime bound, notice that subkpmkpAqq and subkpmkpBqq can be

computed in Op|ΣAB |2kq and that the computation of the network automaton [5]
associated to subkpmkpAqq ∥ subkpmkpBqq ∥ mkpΣ˚

ABq, expands at most |ΣAB |k

states. [\

Total Runtime Boundary As shown above, computing mk for each tree node
is in Opk|Σ|k

2

q. For a process tree T containing n operator nodes, the runtime

to compute mkpT q is in Opkn|Σ|k
2

q. Oftentimes, n is linear with |Σ|.

3.6 Handling Arbitrary Process Trees

The previous sections have shown how to compute mk for binary process trees
with unique visible label nodes. Notice that any process tree can be transformed
into a binary tree accepting the same language (hence having the same mk). For
trees with repeated labels, the results below show that it su�ces to �rst map
each visible label node in the tree T to a unique label, and then map mkpLpT qq

back to the original labels.

Lemma 8. (mk of a Remapped Language) Let A Ď Σ˚
A and B Ď Σ˚

B be
arbitrary languages and λ : ΣB Ñ ΣA s.t. A “ λpBq, then skpAq “ λpskpBqq.

Proof. Notice that for all wa, wb such that wa “ λpwbq, then @iďj wiÑj
a P

skpwaq ðñ wiÑj
b P skpwbq.

pĎq For any wa P A, there exists wb P B s.t. wa “ λpwbq. For all γa P skpwaq,
γa “ wiÑj for some i ď j. Thus, γa “ λpwiÑj

b q and since |wa| “ |wb|, then

wiÑj
b P skpwbq ñ skpwaq Ď λpskpwbqq Ď λpskpBqq.

pĚq For any wb P B, there exists wa P A s.t. wa “ λpwbq. For all γb P skpwbq,
it holds that γb “ wiÑj

b for some i ď j. Thus, λpγbq “ wiÑj
a and since |wa| “ |wb|,

then wiÑj
a P skpwaq ñ skpAq Ě skpwaq Ě λpskpwbqq. [\

The result above can be extended tomk by de�ning λ˘ : Σ˘
B Ñ Σ˘

A such that

λ˘
plq “

#

λplq l P ΣB

l l P t`,´u
. Then `A´ “ λ˘p`B´q ñ mkpAq “ λ˘pmkpBqq.

This mapping function can always be constructed for a process tree as follows:

Polynominal-Time Conformance-Checking for Process Trees 13

Lemma 9. (mk of Arbitrary Process Trees) For an arbitrary process tree
TA with alphabet ΣA and visible label nodes N “ tn1, ¨ ¨ ¨niu. Given an alphabet
ΣB such that |ΣB | “ k and a bijective mapping r : N Ñ ΣB de�ning a map
λ : ΣB Ñ ΣA as λpbq “ Lpr´1pbqq, then the process tree T̂ obtained by relabeling
each visible node n of T with rpnq is such that LpT q “ λpLpT̂ qq.

Proof. It follows directly from De�nition 4 by noticing that λpABq “ λpAqλpBq

and λpA�Bq “ λpAq� λpBq. [\

The results from this Section show that it is possible to compute mk for
arbitrary process trees in polynomial time. It is also possible to compute mk for
event logs in linear time. Thus, the markovian conformance metrics (De�nition 7)
can also be computed in polynomial time.

4 Experimental Evaluation

This section compares the proposed method with the previous approach de-
scribed in [2] and state-of-the-art techniques in terms of runtime and the induced
metrics. For a fair comparison, all techniques are implemented in pure Python3.

4.1 E�ect of Parallelism

The �rst experiment measures the in�uence of parallelism in the runtime. For
that, we generate arti�cial process trees with a �xed number of activities (30)
and varying degrees of parallelism (0.2 to 0.5). For each con�guration, 50 process
trees are generated. For each tree, an event log consisting of 2000 distinct variants
is sampled and a small amount of noise is injected into the logs by adding,
removing, and swapping activities.

We compare the runtime to compute three types of conformance artifacts:
trace alignment (align), the model and log projections required by the PCC
framework (PCC), and the markovian abstraction. For the latter two metrics,
we vary their k parameter, indicating the projection size and substring size
respectively, from 2 to 4 and break down the runtime for each method by the
time taken to process the log and the model. For the markovian abstraction,
we compare the method originally presented in [2] (mk-orig) and the proposed
method (mk-opt). For each experiment run, we set a timeout of 20 minutes.

The results are summarized in Table 1. Trace alignment is by far the slowest
method, with an average execution time of over �ve minutes and multiple time-
outs. For comparison, none of the other methods timed out. PCC is arguably
the second-slowest method, being the slowest in all but two scenarios. mk-opt is
the fastest method in all scenarios.

For models with little parallelism, mk-orig and mk-opt perform similarly
well, with mk-opt being slightly faster. This is explained by the fact that these

3The datasets and experiment results can be found at:
github.com/EduardoGoulart1/e�cient-mk/

14 Eduardo Goulart Rocha and Wil M.P. van der Aalst

Table 1: The e�ect of parallelism on the runtime required to compute confor-
mance artifacts, broken down by log and model processing times (if applicable).
The number of timeouts (if any) is indicated in parenthesis.

k Method
Time(s) [Log | Model]

par=0.2 par=0.3 par=0.4 par=0.5

align 343.4 (14) 368.4 (10) 454.2 (10) 439.9 (18)

2
PCC 0.262 0.054 0.228 0.050 0.310 0.051 0.258 0.048

mk-orig
0.009

0.108
0.009

0.320
0.010

0.564
0.010

1.465

mk-opt 0.029 0.034 0.047 0.051

3
PCC 4.376 0.507 3.424 0.476 5.442 0.487 3.976 0.445

mk-orig
0.010

0.358
0.009

0.895
0.011

1.727
0.010

4.127

mk-opt 0.143 0.241 0.354 0.438

4
PCC 41.704 3.388 36.459 3.133 36.795 3.207 37.661 2.909

mk-orig
0.011

2.005
0.010

4.327
0.012

8.751
0.011

20.408

mk-opt 0.925 1.503 2.680 3.663

models have a small and linear state-space. However, increasing the amount of
parallelism from 0.2 to 0.5 causes a tenfold increase in the runtime for mk-orig,
while for mk-opt it increases by a factor of at most 4, to which we conclude
that mk-opt can better handle large models. In comparison, PCC is una�ected
by the degree of parallelism. Instead, its runtime is dominated by the event log
projections.

In general, the experiment shows the shortcomings of trace alignment and
the PCC framework in terms of runtime, especially considering large event logs.
It also shows that mk-orig struggles to process large models. mk-opt emerged as
the clear winner in terms of performance. For event logs, mk-opt can be up to
400 times faster than PCC. At the same time, computing mk for process models
takes roughly the same time as computing the tree projections.

4.2 Real Datasets

Next, we evaluate the markovian-based conformance metrics on two real-world
datasets: the Italian Road Fines event log, and the BPI Challenge 2015 event
log (BPIC-15). We �lter the BPIC-15 log for the municipality 1, subprocess 8,
and remove repeated activities. This preprocessing is needed as otherwise the
used process discovery methods would only return �ower constructs. For each
event log, we mine four process trees with the Inductive Miner infrequent variant
with noise thresholds of 02 and 05 (IMf02 and IMf05 respectively), the Inductive
Miner incomplete variant (IMc) and the �ower miner. We use alignment-based
trace �tness [1] (AL) as the ground-truth �tness measure and escaping edges pre-
cision [9] (ETC) as the ground truth precision measure. We vary the respective
k parameter of PCC, MAF, and MAP from 2 to 4. The results are summarized
in Table 2.

Polynominal-Time Conformance-Checking for Process Trees 15

The �rst thing to notice is that the basic property that language inclusion
implies �tness of 1.0 is ful�lled by metrics for the IMc and Flower models for
both datasets. Next, for both datasets, PCC and MAF generate the same �tness
rankings as the ground truth alignment-based �tness measure (AL) for all k-s. As
k increases, the di�erence in �tness between models IMf02 and IMf05 increases.

For the Road Fines datasets, all metrics induce di�erent precision rankings.
ETC is assigning a higher precision to the �ower model than to the IMc model.
For k “ 2, 3, PCC and MAP agree on their rankings, but assign IMc as being
more precise than IMf02. This is counter-intuitive since that the IMc model has
a lot more parallelism and self-loops. For k “ 4, PCC even assigns IMc as the
most precise model. For the BPIC 2015 datasets, all metrics agree on the model
rankings. However, the PCC metric will assign a relatively high precision for
models such as IMc and the Flower model.

In summary, the experiment shows that MAF and MAP induce similar �tness
and precision rankings as other state-of-the-art techniques. Notice that for both
datasets, as k increases, MAP tends towards zero. This is expected from the
de�nition of MAP, which does not consider any notion of substring frequency.

Table 2: Quality evaluation of �tness and precision metrics.

Miner
Road Fines BPIC 2015

IMf02 IMf05 IMc Flower IMf02 IMf05 IMc Flower

F
it
n
es
s

AL 0.982 0.784 1.0 1.0 0.899 0.773 1.0 1.0

PCC2 0.986 0.857 1.0 1.0 0.985 0.962 1.0 1.0
PCC3 0.976 0.755 1.0 1.0 0.977 0.937 1.0 1.0
PCC4 0.967 0.664 1.0 1.0 0.968 0.912 1.0 1.0
MAF2 0.965 0.953 1.0 1.0 0.881 0.737 1.0 1.0
MAF3 0.936 0.826 1.0 1.0 0.833 0.475 1.0 1.0
MAF4 0.899 0.745 1.0 1.0 0.805 0.422 1.0 1.0

P
re
ci
si
o
n

ETC 0.895 0.653 0.318 0.325 0.497 0.817 0.261 0.127
PCC2 0.946 0.949 0.931 0.593 0.735 0.924 0.660 0.635
PCC3 0.814 0.838 0.831 0.497 0.624 0.824 0.551 0.534
PCC4 0.658 0.703 0.718 0.423 0.529 0.722 0.462 0.451
MAP2 0.735 0.949 0.830 0.542 0.549 0.729 0.316 0.225
MAP3 0.277 0.389 0.353 0.134 0.115 0.411 0.047 0.020
MAP4 0.082 0.122 0.106 0.020 0.015 0.199 0.005 0.001

5 Related Work

Conformance checking is the �eld of process mining focused on comparing a
process' desired to its observed behavior. The process model describes the de-
sired behavior. It is often encoded as a Petri net or any equivalent model with
execution semantics (YAWL, Process Trees, etc.).

16 Eduardo Goulart Rocha and Wil M.P. van der Aalst

Conformance-checking is especially challenging because computing the pro-
cess model's behavior has often worst-case exponential time due to the state
explosion problem. Hence, most state-of-the-art methods such as token-based
replay [11], alignments [1], entropia [10], or Earth mover's distance [8] have
worst-case exponential time. This also includes the original method for comput-
ing markovian-based conformance metrics presented in [2].

A notable exception is the Projected Conformance Checking framework (PCC
framework) [7] which uses projections on subsets of activities to signi�cantly al-
leviate the state explosion problem. In fact, for certain classes of process trees the
runtime is polynomial. Nevertheless, PCC requires multiple passes over the event
log, which is impractical for large production datasets, as shown in Section 4.

The idea of exploiting the tree structure to speed up computations is not
new. In [12] a method is presented to approximate alignments by constructing
an equivalent optimization problem from the tree structure. In [14], a method
is presented to repair alignments for iterative scenarios, for the use-case where
alignments need to be computed for similar process trees. Our work di�ers from
them in which we provide a speed up in computation time without the need
to approximate. Finally, in [15] a method is presented to compute trace proba-
bilities by transforming the tree into a probabilistic context-free grammar, this
transformation is only possible because of the process tree' structure.

Last, sampling techniques [6] can be orthogonally applied to any confor-
mance method, including our technique. However, sampling only provides a lin-
ear speed-up and previously exponential techniques will remain exponential. In
production settings, where controllable runtime is important, exponential factors
are rarely a good idea.

6 Conclusion

This paper provides two important contributions. First, we presented an alterna-
tive de�nition of the markovian abstraction that can be more easily manipulated
using techniques from automata theory. Next, we showed how to exploit the tree-
structure of process trees to perform polynomial-time conformance checking with
guarantees. The experimental evaluation shows an improvement of multiple or-
ders of magnitude in the runtime compared to the original approach presented
in [2] and other state-of-the-art conformance checking techniques, while at the
same time still generating similar �tness and precision rankings. Most impor-
tantly, the runtime of the approach is bounded by a polynomial, making it more
controllable.

As future work, we plan to apply the proposed technique to optimization-
based discovery techniques such as the evolutionary tree miner [3], which requires
repetitive computation of conformance metrics. We also plan to explore the
stochastic perspective, by computing the probability of each substring in the
process tree's language, to address the problem of vanishing precision values for
MAP.

Polynominal-Time Conformance-Checking for Process Trees 17

Acknowledgements We thank the Alexander von Humboldt (AvH) Stiftung
for supporting our research.

References

1. Adriansyah, A., van Dongen, B., van der Aalst, W.: Conformance checking using
cost-based �tness analysis. In: 2011 IEEE 15th International Enterprise Distributed
Object Computing Conference. pp. 55�64 (2011)

2. Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., Rosa, M.L.: Measur-
ing �tness and precision of automatically discovered process models: A principled
and scalable approach. IEEE Transactions on Knowledge and Data Engineering
34(4), 1870�1888 (2022)

3. Buijs, J.: Flexible evolutionary algorithms for mining structured process models.
Technische Universiteit Eindhoven 57 (2014)

4. Daciuk, J., Mihov, S., Watson, B.W., Watson, R.E.: Incremental construction
of minimal acyclic �nite-state automata. Computational linguistics 26(1), 3�16
(2000)

5. Esparza, J., Blondin, M.: Automata Theory: An Algorithmic Approach. MIT Press
(2023)

6. Kabierski, M., van der Aa, H., Weidlich, M.: Estimating process conformance by
trace sampling and result approximation (09 2019)

7. Leemans, S.J.J., Fahland, D., van der Aalst, W.: Scalable process discovery and
conformance checking. Software and Systems Modeling 17, 599 � 631 (2016)

8. Leemans, S.J., van der Aalst, W.W., Brockho�, T., Polyvyanyy, A.: Stochastic
process mining: Earth movers' stochastic conformance. Information Systems 102,
101724 (2021)

9. Munoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance.
vol. 6336, pp. 211�226 (09 2010)

10. Polyvyanyy, A., Solti, A., Weidlich, M., Ciccio, C.D., Mendling, J.: Monotone pre-
cision and recall measures for comparing executions and speci�cations of dynamic
systems. ACM Trans. Softw. Eng. Methodol. 29(3) (jun 2020)

11. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on mon-
itoring real behavior. Information Systems 33(1), 64�95 (2008)

12. Schuster, D., van Zelst, S., van der Aalst, W.W.: Alignment Approximation for
Process Trees, pp. 247�259 (03 2021)

13. Syring, A.F., Tax, N., van der Aalst, W.W.: Evaluating conformance measures in
process mining using conformance propositions. Transactions on Petri Nets and
Other Models of Concurrency XIV pp. 192�221 (2019)

14. Vázquez-Barreiros, B., van Zelst, S., Buijs, J., Lama, M., Mucientes, M.: Repairing
alignments: Striking the right nerve. pp. 266�281 (06 2016)

15. Watanabe, A., Takahashi, Y., Ikeuchi, H., Matsuda, K.: Grammar-based process
model representation for probabilistic conformance checking. In: 2022 4th Interna-
tional Conference on Process Mining (ICPM). pp. 88�95. IEEE (2022)

