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Abstract. Simulation is a powerful tool to explore and analyze business
processes and their potential improvements. Recorded event data allow
for the generation of data-driven simulation models using process min-
ing. The accuracy of existing approaches, however, remains a challenge.
Various efforts are being made to improve the quality of the used data
and techniques, such as extracting detailed resource performance. One
of the least addressed challenges is the initial state of the simulation run.
Starting from a steady state has been considered in simulation in other
fields. In current process simulation approaches, the executions mostly
start from an empty state. This assumption leads to initialization bias,
or the startup problem, which has an impact on the early results and
limits the types of analysis that can be performed. In this paper, we
propose an approach to estimate a steady state of simulation models,
which enables the generation of more realistic simulation results. The
evaluation using real-world and synthetic event data shows the require-
ments for and advantages of starting from representative steady states
in process simulations.

Keywords: process mining · data-driven simulation · event logs · steady-
state simulation · discrete event simulation

1 Introduction

Process mining analyzes event data to provide insights into the processes, such
as running process models and their conformance and performance behavior.
Simulation models are used to generate future results and outcomes for pro-
cesses. The insights provided by process mining can be used to simulate how
the processes will continue and what the impact of the changes will be [1]. The
captured events including the process instances, performed actions, and their
timestamps, in event data, are the starting point for forming data-driven simu-
lation models. Simulation models should be able to reproduce the same outputs

⋆
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy–EXC-2023 Internet of Production – 390621612. We also thank
the Alexander von Humboldt (AvH) Stiftung for supporting our research. We thank Celonis for
supporting the project.

https://orcid.org/0000-0002-7883-1627
https://orcid.org/0009-0002-1906-0364
https://orcid.org/0000-0003-2227-9156
https://orcid.org/0000-0002-0955-6940


2 M.Pourbafrani et al.

as the input event data. However, due to various challenges such as data qual-
ity, models cannot fully capture the complexity of the real world, e.g., external
factors and resource behaviors.

One of the open challenges is the starting point of process simulation models.
Current data-driven process simulation approaches mostly start from an empty
state. As a result, if they manage to reach a steady state, it takes time, i.e.,
a warm-up period is required while simulating. The assumption of an empty
state at the start of the simulation can prevent accurate results from being
obtained. In particular, simulation may never reach a steady state in the case
of an unstable process with the incorrect start point. When analyzing event
data of processes, one typically considers only complete cases. If the period in
which event data are collected is of the same order of magnitude as the average
flow time (e.g., months), then this creates a misleadingly low load. However, it
is also difficult to use incomplete cases. Therefore, it is important to estimate
a representative steady state and start simulating from this point. Short-term
simulation and the accuracy of simulation results share common aspects, such as
loading a representative initial state and starting simulation from a non-trivial
initial state [15].

In this paper, we propose an approach to estimate steady states of processes
using their event logs, which can be loaded into the simulation as the starting
point. The simulation engine is considered a black box, since the focus is on
the illustration of the effect and necessity of having steady states in process
simulation models. We follow three main objectives while designing the approach:
(1) practical components of the approach should be general, not specific to any
simulation engine but applicable to common data-driven simulation approaches,
(2) the time patterns in event data should be captured while discovering steady
states, as there might not be a real steady state, e.g., concept drift, and (3)
practical component of the approach must be efficient since simulation results
might ultimately converge toward the same state as one that starts from a cold
start. We evaluated our approach in estimating steady states of processes for
simulation purposes using both real and synthetic logs.

Throughout the paper, a state of a process is an event log at a specific point
in time, including the events that started before but were not finished by that
time. A start state of a simulation is the state from which the execution will
start. A steady state is a state of a process that shows the common behavior
of the process w.r.t. different aspects, e.g., the number of cases in the process.
warm-up period refers to the period of time that a simulation started from a cold
start needs to reach a steady state of the process. The start state of a simulation
can be an empty state (also referred to as a cold start) or a given (discovered
using event data) state.

The remainder of the paper is as follows. The related work is introduced in
Section 2. We elaborate on the motivation using the running example in Section
3. Preliminaries are introduced in Section 4. We explain the approach in Section
5 and evaluate it in Section 6. Section 7 concludes this work.
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2 Related Work

Simulation of operational processes used to be a complex task for an expert due
to the design of the process model, estimating the parameters, and providing
simulation configurations [16]. The increasing availability of data and advances
in process mining have led to semi-automatic approaches, where parts of the
simulation model and parameters are mined and others are based on the user’s
input [1], e.g., [14]. This is the current setting in most academic and commercial
tools, e.g., Celonis3.

Most research efforts are currently focused on improving simulation quality,
which still struggles to represent reality enough to be widely applicable. There
are interactive approaches, such as [11], that propose using multiple metrics,
such as stochastic conformance checking, to measure the quality of simulation
results more accurately. Recent work, such as [6], focuses on the resource aspect
to generate a more accurate simulation by considering multitasking and resource
profiles. Another example is considering factors such as activities and external
delays in generating simulation models [3]. Techniques such as those described in
[2] employ hyper-parameterization to iteratively search for the set of parameters
w.r.t. more accurate simulation results. In [12], a survey of data-driven simulation
approaches in process mining w.r.t. user information and insights from event
data has been performed. It includes a review of current data-driven simulation
approaches in process mining, their challenges, and their limitations.

Aside from the current focuses and challenges in data-driven simulation ap-
proaches in process mining, steady states and starting points of simulations are
still open questions. For simulations, it is known that the ideal starting state
must be close to the steady state [7]. In [10], a survey of steady-state approaches
for the queuing system is proposed, where the focus is on statistical analysis
rather than data-driven approaches. Tail management is the default solution
for the warm-up issue, as it is general and simple. Most research efforts have
been focused on determining the length of the initial transient [5]. Determining
the warm-up period is also one of the most common techniques in simulations
for reaching a steady state of a system [9]. The general categorization of these
methods is graphical, statistical, and heuristic. For instance, one of the most
commonly used techniques to graphically specify the warm-up period is Welch’s
Method [8]. The presented approach in [13], which is based on time series analy-
sis, is also a sample of statistical analysis methods for determining the warm-up
period. An example of a heuristic technique is [4], where the rule is “truncate a
series of measurements until the first of the series is neither the maximum nor
the minimum of the remaining sets”. However, these approaches do not rely on
a system’s historical data.

There are approaches to use steady states in specific fields (e.g., [17]), but
they are also dependent on domain knowledge. The proposed techniques for es-
timating the steady state in general-purpose simulations are generally not based
on system data and neither consider the specific attributes, e.g., case attributes
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Fig. 1: Running example (a) and the number of cases in the process (b).

in the process context. The concept of starting business process simulation in
its current state for short-term simulation has been proposed in [15]. In this
setting, the current state is provided by the information system used. In [15],
YAWL provides this state, and simulation is used to do a “fast forward” in time.
In conclusion, process simulation approaches have mostly either not explicitly
considered the steady-state situation or have not used event logs. Our practical
components for a steady-state start can also be used for current state start and
are less restrictive.

3 Running Example

Consider the simple example of the registration process in an emergency room
department (Figure 1 (a)). Patients arrive and proceed to the registration desk,
where they queue until a staff member is free to process their case. The nurse
evaluates the severity and registers them, and indicates their next steps. In this
example, a patient (case) can be in three locations, either being processed in an
activity, traveling between activities or queuing if no nurse (resource) is free.

Before we start modifying the simulation to explore changes, we first simulate
the as-is situation to verify that our model correctly reflects reality. We compare
the simulation results by looking at the number of cases in the process, hence
the number of patients in the emergency arrival room. Figure 1(b) shows the
real numbers over time, compared to a cold start simulation, and a tail-managed
simulation, i.e., the initial simulation results are not considered (warm-up pe-
riod). A simulation starts in an empty state with no patients. As patients are
generated, the simulation fills up over time and eventually might reach equilib-
rium. The issue is that a hospital is never empty. This initial warm-up phase
biases the simulation toward wrong conclusions. The ideal solution would be to
start with the correct number of patients. The state-of-the-art solution is tail
management; a longer simulation where the beginning is discarded. However,
the discarded part represents misspent time and simulation resources. Further-
more, tail management raises the issue of determining the length of the warm-up
period and how to estimate the cut position [9].
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4 Preliminaries

In this section, we introduce process mining concepts, define an event log, and
continue by elaborating on the simulation concepts used in this paper.

Process Mining The executed activities for specific process instances at a specific
point in time are the events that are captured in the form of event logs in the
context of process mining. These events are recorded with associated information
in an event log.

Table 1: A part of the running example event log.

Event Case Patient Activity Resource Time

871 34 John Arrival N/A 11:42

872 78 Alex Registration Nessa 12:50

873 34 John Registration Max 12:55

874 90 Tim Arrival N/A 12:50

875 78 Alex Departure N/A 12:58

Table 1 is the hospital event log
for the running example with at-
tributes Case ID, Patient Name, Ac-
tivity, Resource, and Activity Com-
pletion Time. Each row represents a
unique event, and the columns con-
tain the associated information. We
define the used form of event log in Section 5.

State The state of a process is determined by variables that describe it at a
precise moment in time. We use event logs with a timestamp to describe the
state of a process. If there are no events in the state, it is an empty state. The
current state of a process is defined as the events that have begun but have not
yet been completed in the current moment of time. In the running example, the
state of the process at time t=12:00 includes two events with Event IDs, 872 and
873, where these two events and their corresponding attributes started before
time t and have not finished by that time. In Section 5, we define states formally
in Definition 2.

Fig. 2: Different simulation phases for an
example process.

Simulation The simulation engine is consid-
ered to receive a state and produce another
state, i.e., given an event log, generating an-
other event log. A simulation execution (called
simulation run) can be seen as a sequence of
states beginning at a starting state, where the
rules of the simulation engine define the suc-
cession of states. The starting state usually is
an empty state (the simulation is then called
a cold start simulation).

Simulations can reach such a steady state since the model remains fixed. In
some cases, simulations of real-world processes do not reach a steady state due to
internal and external factors, e.g., concept drift or human involvement. However,
the steady state of a simulation is a useful indicator of the process’s behavior.
Figure 2 depicts simulation phases over time in relation to the process’s real
state. In an ideal situation, the simulation will eventually reach a steady state,
however, in some cases, this may never happen.
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Fig. 3: The overview of the presented approach, including three main steps (top). The highlighted
part (bottom) indicates the common components in data-driven simulation approaches.

5 Approach

A high-level overview of our approach is presented in Figure 3. The selected part
(bottom) illustrates the common path in data-driven simulations of processes.
The process model and process aspects, e.g., resource schedules, are extracted
from the event log. The simulation model is then generated (designed) on the
basis of the provided insights and gets executed using a simulation engine, and
the generated event logs are captured. The simulated event logs are compared
with the original event log to indicate the accuracy of the simulation. This can be
done iteratively to find the parameters as proposed in [2]. To make our approach
for estimating a steady state of simulation models generic, we consider the sim-
ulation engine and highlighted part in Figure 3 to be regarded as data-driven
approaches in both academic and industrial tools.

Given an event log to create the simulation model, we first discover the miss-
ing attributes (1). Then, we use time-stratified sampling to create an event log
that approximates a steady state (2). Finally, we use our state loader component
(3), which allows us to load any event log into a simulation as a start state, to
start the simulation from a steady state, see Figure 3 (top).

Approach Settings and Assumption Note that the simulation approach and the
engine are considered black boxes. This allows us to adjust the approach for the
general setting and make it applicable to the existing data-driven simulations in
process mining. We only assume the simulation contains start and end times-
tamps. In our approach, we distinguish between the real queuing time, i.e., cases
waiting due to a lack of resources, and the traveling time between two activities.
Section 5.1 goes into more detail.

5.1 Event Log Completion

For an accurate steady-state estimation, we need a complete input event log with
event attributes. Event logs, on the other hand, are limited in size and prone
to errors and missing data. We use simulation models to complete an event
log. The mined simulation model can be used in two ways. First, it specifies
which attributes must be completed, i.e., which attributes in the simulation are
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Table 2: The preprocessed sample event log of the running example, which is completed with the
traveling and queuing time.

Event ... start Travel Queue Processing End

... ... ... ... ... ... ...

872 ... 11:35 11:37 11:45 12:20 12:50

873 ... 11:37 11:42 11:52 12:40 12:55

874 ... 12:50 12:50 12:50 12:50 12:50

... ... ... ... ... ...

relevant. Second, the simulation model can be used to quickly complete existing
event logs. Every attribute in the simulation is based on either a situation-
independent function (such as sampling from a probability distribution) or a
situation-dependent function (e.g., queuing time depending on the number of
cases queuing). For completion, we reused the situation-independent functions.
The situation-dependent functions imply that the simulation model creation has
completed the log, which we will also reuse. Table 2 demonstrates the event log
completion provided by two methods for our running example.

For our hospital example, the given event log only contained one timestamp,
complete timestamps. As our simulation distinguishes travel time, queue time,
and processing time (e.g., domain knowledge and user input), those attributes
need to be completed, so the position of cases can be identified for creating a
steady state. The simulation provides probability distributions for travel and
processing times (situation-independent), and assumes that the start time of
an event is the end time of the previous case event. Queue time (situation-
dependent) can be inferred as the remaining time. Through the reuse of the
simulation model, we thus complete our event log, as shown in Table 2.

Definition 1. (Completed Event Log) Let E be the universe of event iden-
tifiers, N be the universe of attribute names, and V be the universe of at-
tribute values. L = (E,N, f) is a completed event log, where E ⊆ E, N =
{cid, act, travel, queue, processing, start, end} ⊆ N , and f : E × N → V is a
function that retrieves values of event attributes. We denote L as the universe
of event logs. For an event e ∈ E and attribute n ∈ N , f(e, n) = ⊥, if attribute
n is undefined for event e.

In our case, a completed event log includes travel time, processing time,
queuing time, start time, and end time, Definition 1. Note that more attributes,
if presented in the event log, such as age of patients, treatments, or resources,
can also be included in the set of attributes.

5.2 Steady-State Estimation

In this section, we elaborate on our novel approach for estimating a steady state
of processes using their event logs for simulation purposes. We first define the
state notation and later apply the designed steps to estimate steady states. The
input is assumed to be the completed event log which notably contains start
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and end timestamps. The state of a process describes the process at a precise
moment in time, i.e., given an event log describing the execution over time of a
process, the state at any moment in time is the slice of the event log with events
currently in the process (Definition 2).

Definition 2. (State) Let T ∈ R+ ∪ {0} be the set of timestamps and L =
(E,N, f) be a completed event log. The state at time t ∈ T is the sub-event-log
with events active at time t, i.e., Lt = (Et, N, ft), where Et = {e ∈ E|f(e, start) ≤
t ≤ f(e, end)} and ∀e∈Et

∀n∈Nft(e, n) = f(e, n).

The state of the process at time t = 12 : 00 in Table 2 includes events 872 and
873. Six main steps are defined for estimating a steady state from an event log.
The steps for estimating a steady state from a completed event log are shown in
Figure 4, along with their relationships and dependencies.

Step 1 - Log Restriction The first step is for the user to limit the input event
log to be used for approximation. Only relevant parts should be considered,
and an unnecessarily long event log should be avoided for efficiency. This log
restriction is presented using Definition 3.

Definition 3. (Log Restriction) Let L = (E,N, f) be a completed event log
and [tstart, tend] ∈ T be a time duration. The restricted event log is L′ =
(E′, N, f ′), where E′ = {e ∈ E|f(e, start) ≥ tstart ∧ tend ≥ f(e, end)}) and
∀e∈Et∀n∈Nf ′(e, n) = f(e, n).

In the hospital example, having event logs from the last 10 years. The target
steady-state approximation is a steady state of the recent hospital process. How-
ever, the hospital has evolved over time, older data might represent the hospital
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when it was a different process. The user thereby provides his estimate of which
part of the recorded data is relevant through a time window parameter. If all
the data is relevant, smaller subsets can be used for efficiency nonetheless. Here,
we use the last three months, [23 May–23 July]. Note that the need to perform
these steps is determined by the duration of the event log and the user domain
knowledge.

Step 2 - State Selection Given that we have restricted the event log to parts
relevant to the current process, we further restrict it to the states relevant to the
simulation starting time, as presented in Definition 5. This allows us to account
for the potential patterns in the process. Definition 4 is used to return a set of
simulation timestamps in which the states are selected.

Definition 4. (Simulation Timestamps) Let [tstart, tend] be a time duration,
where tstart and tend ∈ T , tsim ∈ T be the simulation start timestamp, and
δ ∈ T be the duration of a pattern. Function tp ∈ T × T × T × T → P (T )
returns the set of simulation timestamps such that tp(tstart, tend, tsim, δ) = {t ∈
T |∃m∈N t = tsim +m.δ ∧ tstart ≤ t ≤ tend}

Definition 5. (State Selection) Let L′ be a restricted event log in time dura-
tion [tstart, tend] ∈ T , tsim ∈ T be the simulation start timestamp, δ ∈ T
be the duration of a pattern. L′

t is a selected state at time t ∈ TP , where
TP = tp(tstart, tend, tsim, δ). We denote ST =

⋃
t∈TP L′

t to be the set of the
selected states.

For instance, in the running example, consider that the simulation starts at
12:00 on Monday, July 24, and there is a weekly pattern within our previously
selected range of 3 months. The number and types of patients highly depend
on the time and weekday (proportionally more emergencies at night, alcohol
intoxication on the weekend, etc.). Mondays at noon are more similar to Mondays
at noon in different weeks than other moments. We therefore set a δ = 1 week
parameter. If no pattern is observed, all moments are equally relevant, and any
random δ can be used.

Step 3 - Recency Weight The relevance of the selected relevant states to
the process’s steady state is not equal. As the process evolves over time, older
states may be less informative than current ones. A recency weight function
that assigns a timestamp a relevance score based on how recently it occurred
in relation to the simulation start time is provided for the user as an estimate.
This step is considered to give the user the option to increase the influence of
the process’ more recent states on the simulation.

An estimate in the form of a recency weight function assigns an importance
score to a timestamp based on its recency relative to the simulation start time.
Based on that, we derive a weight function in Definition 6 for states (normalized
to sum to 1), which determines their impact on the average.
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Definition 6. (Recency Weight) Let r ∈ T → [0, 1] be the time recency weight
function that assigns a weight score depending on the distance to simulation start
time tsim, i.e., r(tsim − t) ∈ [0, 1], and TP be the set of simulation timestamps.
For any t ∈ TP , w(L, t) = r(tsim − t)/

∑
t′∈TP r(tsim − t′) is the normalized

state weight.

In the running example, we observe a slow and steady increase in the number
of patients. While the data from previous months is still relevant, the data from
this month should have more impact. For the state Lt, function r((tsim − t)) =
1/((tsim − t).weeks + (tend − tstart).weeks), tsim is the start of the simulation,
δ.weeks returns the number of weeks in a duration, and tstart, tend are the start
and end of the restricted event log. As a result, Monday, July 17, has a normalized
weight of 0.11; Monday, July 10, has a normalized weight of 0.10; and so on until
Monday, May 23, has a normalized weight of 0.06.

Step 4 - Weighted Sampled State With the selected states and their im-
portance, we can now build a representative average by sampling the states. We
bias the sampling by assigning a weight to each event in a state as the selection
probability using Definition 7.

Definition 7. (Weighted Sampled State) Let Lt = (Et, N, ft) be a selected state,
w be the state weight recency function, and ρ : 2E −→ 2E be a function that
randomly selects a subset of events, i.e., given E1 ⊆ Et, ρ(E1) ⊆ E1, where
each event has probability w(Lt) of getting selected. The weighted sample of Lt

is Ls
t = (ρ(Et), N, fs), where ∀e∈ρ(Et)∀n∈Nfs(e, n) = f(e, n).

In the example hospital, with the previously defined weight, around 11% of
events from Monday, July 17, 12:00 will be selected, and 6% of events from
Monday, May 23, 12:00.

Step 5 - Sample Shifting The selected events from the different states do
not form a state together, since they originate from different times. To build
one consistent state, we first shift their positions at the simulation start time
to be the same w.r.t. the sampled moment. Definition 8 is designed to shift the
samples.

Definition 8. (Sample Shifting) Let tsim ∈ T be the simulation start time
and Ls

t = (Es, N, fs) be the sampled state. The shifted sampled state to the
start of simulation is Ls

t−→tsim = (Es, N, f tsim
s ) such that for the two attributes

start, end ∈ N ,∀e∈Esf
tsim
s (e, start) = (tsim − fs(e, start)) + fs(e, start) and

f tsim
s (e, end) = (tsim−fs(e, end))+fs(e, end), for n /∈ {start, end}, f tsim

s (e, n) =
f(e, n).

In our example, Table 2, assume event 872 was selected within the state on
July 17 at 12:00 w.r.t. this state, and the patient was queuing for another 20
minutes. We shift the timestamps so that the event has now started queuing on
July 24 at 11:45 and will do so until July 24 at 12:20.
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Step 6 - Sample Merging We finally merge the samples into a new state
using Definition 9.

Definition 9. (Sample Merging) Let TP be the set of simulation timestamps.
LS =

⋃
t∈TP Ls

t−→tsim is the set of merged states.

In Definition 9, by merging the states, the tuple of merged events, attributes,
and functions of the states is created. For our running example, we created an
event log that is also a state, since all events are active at simulation time.
This event log is an average representation of Monday 12:00 from the last three
months, with a stronger influence from recent data.

5.3 State Loader

The final step loads a state as the starting state of the simulation. We omit
details, as this step depends strongly on the simulator. The intuition is that since
our events are all complete, we know their position w.r.t. the start timestamp
at each moment. For example, event 872 from Table 2 for a simulation starting
at 12:00 should be loaded into its activity with 20 minutes remaining. This can
be done by reusing the functions the simulation engine uses to advance cases
through the system.

6 Evaluation

To evaluate our approach, we designed a framework to compare the simulation
results in three different settings. The goal of the evaluation is to assess the
ability of our approach to capture the accurate steady states of processes using
both real and synthetic event logs, as well as the use of such an estimation
as a simulation starting point. We simulate the three scenarios for each event
log, starting from a cold start, using tail management, and starting from the
estimated steady state. The results enable us to compare and demonstrate the
impact of our approach in practice. Furthermore, we discuss and illustrate the
various situations in which steady-state estimation is applicable and should be
considered. As discussed in Section 5, the simulation engine and the quality
of the simulation results are not the focus of the evaluation. Owing to privacy
considerations, the public sharing of both the data and the implemented codes
within commercial tools are limited. Nonetheless, the evaluation details of the
presented datasets, including performance metrics, are reported in the evaluation
section.

Evaluated Event Logs The simulation models of the two real-world event logs
were created and validated jointly by process analysts and the companies. We
reuse them to show that our steady-state start presents a significant improve-
ment due to the slow convergence of the process in one situation, and that the
simulation with a steady state is not necessary given the process characteristics
in the other one. Our synthetic hospital model is designed to show a different
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Fig. 5: The comparisons of the simulated number of cases in the process for the medical company.

use case, instability, i.e., the incoming cases exceed the capacities of the process.
In this case, a steady-state start is an improvement and the only viable solution.

The number of cases in the process is the primary metric used to represent
simulations. We detail whether other metrics, such as case throughput time, are
affected in the various data sets. The longer the case throughput time, the more
effective the use of steady-state estimation is expected to be. If the throughput
time is short, the simulation with a cold start also reaches the steady state
quickly, and the tail-management strategies appear plausible.

6.1 Real-world Event Log

We tested our method on two real-world event logs with different characteristics,
such as different throughput time of cases within the process. Because of privacy
concerns, the event logs have been anonymized.

Medical Company Event Log The throughput time for a single case in the
medical company process is around 24 days. The process has a high case load
(10000–12000 cases at all times). Most of the time is spent traveling in between
activities, time that can be attributed to waiting for external processes (e.g.,
waiting for customer payment). Furthermore, the process is very stable, with a
consistent case load throughout the years. Figure 5 shows the results for the real
medical invoice process.

Cold start simulation performs poorly under these conditions. Due to the high
case load and long throughput times, the simulation converges slowly toward a
stable result. It takes 60 simulated days for the cold start simulation to stabilize.
The tail-managed simulation must thus simulate 60 additional days to eliminate
the warm-up phase. Also, the required warm-up time is only obvious in hindsight.
The common tail-managed simulation uses a warm-up time of 20%, which proves
insufficient. Our approach shows a striking improvement. Due to the stability of
the process, almost no warm-up is required. The simulation is immediately in a
state that is representative of the real process. Since a majority of the throughput
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time of cases is spent traveling between activities in the process, results of the
simulation other than process load are not impacted (for example, throughput
time), all simulations deliver the same results.

Sensitivity Analysis with 95 Confidence Interval and 50 Repetitions Each simu-
lation was performed 50 times. We compute the 95 confidence interval for each
moment by taking the 50 computed values for cases in the system. For each
simulation, we plot the lower and upper bounds as shown in Figure 6. Because
of the small size of the confidence interval in relation to the scale, the lower
and upper bounds are mostly indistinguishable. The simulations remain consis-
tent, and the current state start and steady-state start outperform the cold and
tail simulations significantly. Even the worst steady or current simulation out-
performs cold and tail simulations. Furthermore, the nontrivial state start adds
17.37 seconds of overhead. Event log completion, on the other hand, only needs
to be done once and can be reused for all simulations. 3.14 seconds is the worst
overhead for a nontrivial state start after completion.

Fig. 6: A sample lower and upper bounds for one of the simulations.

Car Production Event Log Figure 7 shows the results for a car production
company. The event log has a short duration (three months), and the process has
a throughput time of 2 hours. As such, the initial state loaded into the simulation
is processed after 2 hours. In such cases, a steady-state start is not required, but
the improvement can be seen by starting from a more realistic state compared
to the real process.

6.2 Running Example Event Log

We deliberately designed our running example process to have different charac-
teristics as a showcase. The process has a lower case load and short throughput
times (a few hours). However, the process is unstable. The amount of patients
slightly exceeds the capacities of the hospital’s registration process, resulting in
a slowly increasing queue. Patients spend the majority of their time queuing.

Figure 8 depicts the results for our hospital example. The cold start sim-
ulation starts in an unrealistically empty state. It never reaches the real data
because of the existing concept drift. Because the simulation starting from the
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Fig. 7: The number of cases in the car production process w.r.t. three designed simulation strategies.
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Fig. 8: The number of patients (cases) in the run-
ning example (hospital example) and three de-
signed simulation strategies.
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Fig. 9: The throughout time of cases in the run-
ning example (hospital example) process w.r.t.
three designed simulation strategies.

cold start will be inaccurate, the tail-managed simulation will be inefficient in
terms of providing more accurate simulation results. As such, it also never reaches
the real process load. Our steady-state estimation is a significant improvement.
Our simulation starts close to the real process and remains an improvement at
all times. Figure 9 graphs the throughput time, i.e., how long it takes patients
to complete the process. As this value depends on the queue time, and hence
the process load, the same problem with cold start simulation can be observed,
and the same improvement can be observed with steady-state start. All metrics
that do not depend on process load remained identical for all simulations.

In such scenarios, the cold start simulation is the worst case. By extension,
tail-managed simulation cannot solve this. Since the cold start simulation never
stops warming up, no amount of cut-off will improve the result. This problem
is solved by using a steady-state start. However, in our example, due to the
process’s instability, the approximated starting point is not as good as in the
previous examples. Yet, it remains vastly superior to an empty start. Our steady-
state start simulation is an accurate representation of the process. These results
extend to other metrics. Because patients spend the majority of their time queu-
ing, the number of patients correlates with the throughput time, resulting in the
same issues for cold start and tail-managed simulation.

In order to assess the performance of our approach in practice, we ran the
workflow several times. All simulations took approximately 30 seconds. The
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Fig. 10: The comparison of simulation results for three starting points in what-if analysis scenarios
for the running example (hospital).

steady-state estimation module takes about 2 seconds on average, and the state
loading module takes about 0.1 seconds.

What-if Simulation So far, we replicated the real data, and steady-state start
reduced warm-up time. For what-if simulations, our approach does not aim to
minimize warm-up, but make it a valuable part of the simulation instead. In a
cold start simulation, the warm-up indicates the states the system goes through
from an empty state until stabilization. Unless the system is actually regularly
empty, this is irrelevant. In a what-if simulation (the simulation is modified to
represent a change in the system), starting from an estimation of the new steady
state would optimize convergence. However, when starting from the steady-state
approximation of the current process, warm-up represents the transitory period
that changes create until a new equilibrium is found.

In our example, the hospital aims to stop the increase in queues. They assign
one additional nurse to registration, who assists patients in between activities.
The simulations for this situation are shown in Figure 10. Although cold start
simulation happens to converge quicker than steady-state start simulation, the
latter indicates that the changes would need two weeks to break down backlog
and reach the new equilibrium.

6.3 Discussion

Our goal was to demonstrate the significance of the starting point in process
simulations and propose a method to estimate it using event logs. This step in
the process simulation is either ignored, i.e., assumed to begin from an empty
state, or in practice employs a tail management strategy, i.e., simulating from
a cold start and disregarding the considered duration as a warm-up period.
Patterns are one of the crucial pieces of information that should be represented
in the simulation models and be reproducible, as they affect the extraction of
steady states. In the case of our running example, a few example patterns are
as follows. On the weekend, there are more cases of alcohol intoxication. In
the winter, there are more flu cases. During the night, the proportion of severe
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cases is higher. We considered the existence of patterns in our approach by state
selection to sample states. This allows us to include patterns in our steady states.

Our results show that simulating from steady states is effective, especially
when the process has a long throughput time as well as scenarios with a long
convergence time (high case load). We showed that the warm-up period for one
of the event logs would be 60 days of simulation to reach the steady state. For
unstable simulations (with no convergence), we are not aware of other general
purpose solutions. Our work is most similar to [15], in which the simulation be-
gins from the current state. Steady state includes more general process behavior
because it is sampled across the process rather than just the current moment,
e.g., the current state can be an anomaly in the process.

Estimating process states as a part of our approach is practical in different use
cases. Instead of having a lot of time-dependent parameters in the simulation,
chaining simulation models by using the end state of one simulation as the
start state of the next is one of the effective scenarios. The difference is that
only one method is required, and then any time-related change can easily be
expressed. This method also scales beautifully; new elements in the simulation
will be directly expressible in time.

Example of Mixed Models Using Steady States There are other scenarios in which
the extracted steady states are effective. Consider an x-ray machine breakdown,
creating an increasing queue. There are two potential replacements, one available
quickly but slowly, and one available in two weeks but efficiently. The current
simulation cannot compare these two solutions, as it can only simulate them
as if they have always existed. Our steady state can then be used to simulate
what would happen if we started from there. However, by chaining models, we
can start from the steady state, simulate the problem scenario, and then explore
the different solution scenarios. As an alternative, suppose we discover through
process mining that the first and second Mondays of each month are less efficient.
Adding parameters to every resource and arrival rate is cumbersome, but we can
very easily chain together simulations to express this.

7 Conclusion

In this paper, we proposed an approach for estimating the steady state start
point for the simulation of processes. The steady state estimator is innovative
and efficient in the context of data-driven process simulation. The approach is
designed to be independent of the simulator. The evaluation shows that it is
efficient, as it scales only with the number of sampled moments, and the number
of cases in the system. We extended it to include weights, for concept drift, as
well as a curated selection of existing patterns. Since the event log is directly
sampled, anything represented in the log is already included in the steady state.
The idea of using non-trivial starting states still holds much untapped potential.
As data collection, process mining and simulation models evolves and improve,
starting from the steady or current state will open more efficient and diverse
analysis potential.
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