
Discovering Object-Centric
Process Simulation Models

Benedikt Knopp
Chair of Process and Data Science

RWTH Aachen University
Aachen, Germany

knopp@pads.rwth-aachen.de

Mahsa Pourbafrani
Chair of Process and Data Science

RWTH Aachen University
Aachen, Germany

mahsa.bafrani@pads.rwth-aachen.de

Wil M. P. van der Aalst
Chair of Process and Data Science

RWTH Aachen University
Aachen, Germany

wvdaalst@pads.rwth-aachen.de

Abstract—Process simulation assesses the impact of
changing environmental parameters on a process. To obtain
realistic simulation models, process mining techniques can
be deployed for a log-based discovery. Such discovery
techniques usually rely on a fixed case notion, falling short
in capturing the entangled nature of real organizational
processes as an interplay of objects and subprocesses. Yet
there is a need for such methods, given the requirement
for information systems to foresee and adapt to changing
environments in an online setting and in a holistic manner.
In this work, we approach this research need by elaborating
a method for simulation model discovery that is based on
the object-centricity paradigm. To implement object-centric
simulation, some intrinsic challenges have to be overcome.
These include, first, the parametrizable generation of sets
of objects having predefined interrelations that structure
possible behavior. Second, the generated objects have to be
synchronized and routed through a control-flow model. We
outline these challenges, describe our solution approach,
and evaluate the quality of both object generation and
behavior.

Index Terms—Process Mining, Process Simulation,
Object-Centricity, Digital Twins.

I. INTRODUCTION

Process simulation is a technique to assess the impact
of changing environmental parameters on the course of a
process. Process mining provides data-driven techniques
for simulation [1], to discover or improve simulation
models based on log evidence. Such techniques are well
matured for classical log formats [2], [3]. However, these
works have a representational bias by using a fixed case
notion to describe processes, neglecting the entangled
nature of business processes as an interplay of objects
of various types, such as resources or goods.

While notions and techniques such as Colored Petri
nets (CPNs) can be tailored toward simulation [4] and
are in fact able to capture object-centricity, there are, to
the best of our knowledge, no methods for automated
discovery of object-centric simulation models. A reason
could be that CPNs are very expressive, and lacking of

Funded under the Excellence Strategy of the Federal Government and the
Länder. Also, we thank the Alexander von Humboldt (AvH) Stiftung for
supporting our research.

Input OCEL

Object
Generator

Activity
Predictor

Simulated OCEL

Feature
Updater

mark

discover

train

extract train gene-
rate

OCPN

Object Graph

Simu-
lation
State

Simulator

record

simulate

Object Graph evaluate

evaluate

Object Component

Behavioral
Component

Fig. 1: Our approach for object-centric process simulation. An object component
generates objects, marking a control-flow driven by a behavioral component.

a lightweight interface to facilitate automated discovery
techniques. The object-centric paradigm in process min-
ing [5] provides such an interface, as well as log [6] and
control-flow standards [7] that could work as enablers.

We identify a need for simulation model discovery
techniques that respect the object-centric nature of pro-
cesses based on the following reasons. Firstly, there
is a requirement for information systems and business
processes to be able to foresee and adapt to changing
environments [8]. Secondly, there is a trend for infor-
mation systems to span holistically across organizations,
forming an organizational Digital Twin (DT) [9]. As
argued above, object-centricity is a suitable paradigm
for such holistic models, while the classical case notion
is insufficient. Thirdly, emergent DT technologies aim
to automatically recommend or even implement changes
in an organization’s environment. For this, such models
need simulation capabilities [8], [10]. In the online
nature of DTs, we also find a motivation for automated,
data-driven simulation techniques.

In this work, we present Object-Centric Process Sim-
ulation Models (OCPS). Our solution (Fig. 1) relies on
an object component with an object generator and an
intertwined behavioral component that routes generated
objects through a control-flow model. Both components
are derived from one input log in a semi-automated way.
As an interface to pose what-if questions, we provide the
possibility to parameterize the patterns of object interre-
lations in the object generator. The quality of generated
objects, generated behavior and performance aspects are

then compared against corresponding observations in the
input log.

We proceed as follows. In Sec. II, we introduce
background for object-centric logs and models. Sec. III
describes how the two components of our solution are
structured (Sec. III-A) and discovered (Sec. III-B). In
Sec. IV, we evaluate simulation runs on two data sets
concerning the quality of generated objects, behavior and
performance. In Sec. V, we discuss work related to data-
driven simulation model construction and object-centric
forward-looking techniques. We conclude in Sec. VI.

II. PRELIMINARIES

We make use of set and multiset notations as follows.
Let X be a set. P(X) is the power set of X . A multiset
over X is a function Y : X → N that assigns a
frequency to each x ∈ X . With B(X), we denote
the set of all multisets over X . We make use of the
alternative notation [x

Y (x1)
1 , ...] for a multiset Y , for

example [x3
1, x2] is a multiset Y over X = {x1, x2}

with Y (x1) = 3, Y (x2) = 1.
As indicated in Fig. 1, we rely on an input log based

on which we derive a simulation model centered around
a control-flow model. In the following, we describe both
the log and control-flow model. First, we introduce the
set of universes which logs, control-flow as well as the
later introduced framework components base upon.

Definition 1 (Universes) We make use of the following
universes and functions.

• Uei are event identifiers,
• Uact are activity names,
• Utime are totally ordered timestamps,
• Uot are object types,
• Uoi are object identifiers,
• type ∈ Uoi −→ Uot assigns an object type to each

object identifier,
• Uevent = Uei ×Uact ×Utime × (P(Uoi) \ {∅}) are

events.
• UF with time ∈ UF are features,
• UFval with Utime ⊆ UFval are feature values,
• Uasg = {γ ∈ UF ↛ UFval | time ∈ dom(γ)} are

feature value assignments.

Definition 2 (Event Log [6]) An object-centric event
log (OCEL), or short log, is a set of events L ⊂
Uevent such that for all e1 = (ei1, a1, tm1, b1), e2 =
(ei2, a2, tm2, b2) ∈ L : ei1 = ei2 =⇒ e1 = e2.
UOCEL is the universe of OCELs.

Tab. I depicts an exemplary log L0 as a collection
of events ordered by their time, each described by an
activity and a set of objects of types such as orders.

The behavior recorded in an OCEL can be modeled
by an object-centric Petri net (OCPN) [7].

Definition 3 (Object-Centric Petri Net) An object-
centric Petri net (OCPN) is a tuple ON = (N, pt ,Fvar)
where N = (P, T, F, l) is a labeled Petri net where
l ∈ T → Uact is a labeling function, pt ∈ P → Uot

maps places onto object types, and Fvar ⊆ F is the set
of variable arcs. Furthermore, for each t ∈ T,

• tpl(t) = {pt(p) | p ∈ •t ∪ t•} are the object types,
• tplv (t) = {pt(p) | p ∈ •t ∪ t • ∧

(
{(p, t), (t , p)} ∩

Fvar

)
̸= ∅} are the variable object types,

• tplnv (t) = {pt(p) | p ∈ •t ∪ t • ∧
(
{(p, t), (t , p)} ∩

F \ Fvar

)
̸= ∅} are the non-variable object types

at t.

ON is called well-formed if for each t ∈ T, tplnv (t) ∩
tplv (t) = ∅. With UOCPN , we denote the universe of
OCPNs. In the following, we assume each OCPN to be
well-formed.

A marked OCPN has a distribution of tokens across
its places. Tokens in an OCPN carry the identifier of a
typed object, and reside only in accordingly typed places.

Definition 4 (Marking) Let ON = (N, pt , Fvar) ∈
UOCPN with N = (P, T, F, l). QON = {(p, o) ∈
P×Uoi | type(o) = pt(p)} is the set of possible tokens.
M ∈ B(QON) is called a marking. A marked net is a
tuple (ON,M).

OCPNs can be discovered in a perfectly fitting manner
based on any given OCEL [7]. Fig. 2 (left) depicts
an exemplary marked net (ON0 ,M0), mined based on
L0, with M0 = [(x2, o1), ...]. Transitions t1, ..., t4 carry
labels, e.g. , l(t1) = place order. In the net, variable arcs
are printed in bold.

The execution semantics of OCPNs are similar to
those of standard Petri nets except that through variable
arcs, arbitrarily many tokens are bound.

Definition 5 (Binding) Let ON = (N, pt , Fvar) be
an OCPN with transitions T . B = {(t, b) ∈ T ×
(P(Uoi) \ {∅}) | ∪o∈b type(o) ⊆ tpl(t) ∧ ∀ot ∈
tplnv (t) : | {o ∈ b | type(o) = ot} | = 1} is the set
of possible bindings over ON. For a binding (t, b) ∈
B, cons(t , b) = [(p, o) ∈ QON | p ∈ •t∧ o ∈ b] are the
consumed, prod(t , b) = [(p, o) ∈ QON | p ∈ t • ∧ o ∈
b] are the produced tokens. (t, b) is enabled in marking
M ∈ B(QON) if cons(t , b) ≤ M . The occurrence of
an enabled binding (t, b) in M leads to a new marking
M ′ = M − cons(t , b) + prod(t , b).

For example, in Fig. 2 (left), transition t3 could
fire either with the occurrence of the enabled binding
(t3, {p1}) or with (t3, {p1, i1}).

Based on these concepts of object-centric logs and
Petri nets, we build our simulation framework.

TABLE I: An exemplary OCEL L0. Objects of the types orders, items and
packages interfere at various activites.

Event Activity Time orders items packages
e1 place order 10:00 o1 i1, i2 -
e2 pick item 10:30 o1 i1 -
e3 pick item 10:35 o1 i2 -
e4 ship package 13:30 - i1, i2 p1

e5 notify customer 13:30 o1 - -

𝑥3

Marked OCPN (𝑂𝑁0,𝑀0)

𝑦1

place order

𝑥1 𝑥2

pick item
ship

package

𝑦2

[(𝑦2,𝑖2)]

𝑦4

[(𝑥2,𝑜1)]

notify
customer

𝑧1 𝑧2

𝑦3

[(𝑧1,𝑝1)]

[(𝑦3,𝑖1)]

Object Graph 𝐺0

time: 10:30
#items: 2
#pick: 1

lastact: pick
…

time: 10:30
lastact: pick

…

time: 10:00
lastact: place
…

time: 13:30
#items: 2
lastact: -

…

items

orders

packages

𝑜1

𝑖2

𝑖1

𝑝1

𝑡1 𝑡3𝑡2 𝑡4

Fig. 2: A marked net (ON0 ,M0) capturing a control-flow state (left). Together
with an object graph G0 (right), a simulation state s0 = (M0, G0) is described.

III. APPROACH

For the creation of a simulation model, we identify
two main components, as outlined in Fig. 1.

1) Object Component: object graph and generator,
2) Behavioral Component: control-flow model,

stochastic models
Consider the exemplary log L0 in Tab. I, describing an
order management process. There are three object types,
namely orders, items and packages, interacting at various
activities. Our goal is to derive a simulation model from
such event logs (Fig. 1, left) which generates comparable
behavior, i.e. , a similar event log (Fig. 1, right). For this,
we need an object component to create sets of objects
that resemble the observed objects and their interplay.
The task of the behavioral component is to plausibly
route related objects through a control-flow model, i.e. ,
through an enriched object-centric Petri net.

A. Components

In the following, we formalize these two components.
After that, we propose an approach to discover the
components from an input log.

1) Object Component: In an input log, objects of
different types interfere at event horizons. For instance,
in L0, order o1 is associated with items i1, i2 at event
e1 (place order). We make two assumptions in order
to structure possible behavior and to facilitate object
generation. Firstly, such relations between objects are
fixed, for example, o1 is not placed again with different
items. Secondly, these relations constrain the possible
bindings in the process course: for example, o1 again
relates to i1 at e2 and i2 at e3. A possible abstraction of
such fixed and recurring relations is an object graph.

We introduce object graphs firstly with the goal of
capturing these object relations, and secondly to track
features at objects.

Definition 6 (Object Graph) An object graph is a tu-
ple G = (OI,R,Γ) with nodes OI ⊆ Uoi , undirected
edges R ⊆ {{o1, o2} | o1, o2 ∈ OI , o1 ̸= o2} and
features Γ ∈ OI → Uasg . UOG is the universe of all
object graphs.

An exemplary object graph G0 is depicted in Fig. 2
(right). G0 has feature assignments over the following
features: for each a ∈ Uact , the number of executions
per activity, #a (e.g., #pick for pick item); for each
ot ∈ Uot , the number of related objects of that type, #ot
(e.g., o1 is related to 2 items); also, the last performed
activity is tracked (lastact). For the sake of brevity, Fig. 2
shows only some of the assigned values.

To generate new object graphs, we first extract graphs
from the input log to use as a training basis for genera-
tion. To this end, we translate object interaction patterns
observed in the log to object relations. In L0, there
are various such patterns. For instance, at e1, order o1
interacts with two items i1 and i2, but only with one
item each at e2 and e3, and with none of them at e5.
Assume that o1 has an object relationship with i1 and
i2, as in G0. For simplification, we allow only the three
aforementioned cases: an object either interacts with the
whole of its related objects of a certain type, with exactly
one, or with none. The structure of an underlying OCPN
that complies with this requirement will feature suitable
arc multiplicities, as illustrated in Tab. II.

TABLE II: Object co-occurrence patterns and correlation with the net structure.

Event items related to o1 involved Arcs for item at transition
e1 i1, i2 (all related items) variable arc
e2 i1 (single) non-variable arc
e3 i2 (single) non-variable arc
e5 - (none) no arc

We also require that for each activity, there is an object
type, called the leading type, such that any activity oc-
currence includes exactly one object of that type, called
the leading object, around which these assumptions are
satisfied.

Definition 7 (Leading Types) Let L ∈ UOCEL with
activities AL = {a ∈ Uact | ∃ (ei, a, tm, b) ∈ L}.
Furthermore, let lead ∈ AL → Uot . lead is called a
leading type assignment for L, if for all (ei , a, tm, b) ∈
L : |{o ∈ b | type(o) = lead(a)}| = 1. In this
case, there is a unique function leadOI ∈ L → Uoi

where for all e = (ei , a, tm, b) ∈ L : leadOI (e) ∈ b
and type

(
leadOI(e)

)
= lead(a). leadOI is called the

leading object assignment corresponding to lead .

In Fig. 2 (left), the color of each transition reflects a
possible leading type for the corresponding log activity.
Object relationships then emerge by means of object co-
occurrences at events between the leading object and all
other involved objects (Fig. 2, right). In the following,
we assume that each event log has such a leading type

assignment. Based on that assignment, we extract an
object graph from the event log.

Definition 8 (Graph Extraction) Let L ∈ UOCEL

with objects OIL = {o ∈ Uoi | ∃ (ei, a, tm, b) ∈ L :
o ∈ b}. Let furthermore G = (OI , R,Γ) ∈ UOG . G is
called an object graph extraction from L, if OI = OIL
and there is a leading type assignment lead for L such
that for all o1, o2 ∈ OI , o1 ̸= o2 : {o1, o2} ∈ R iff
there is an e = (ei , a, tm, b) ∈ L with o1, o2 ∈ b and
leadOI (e) ∈ {o1, o2}.

For example, G0 from Fig. 2 is an object graph
extraction from L0 by the given leading type assignment.

As mentioned, we use such an extracted object graph
as a training basis for the generation of new graphs.
Before turning to generation and discovery procedures,
we complete the description of the desired target sim-
ulation models, using the above graph extraction as an
illustration for a simulation state. Also, we show how our
assumptions on leading types and co-occurence patterns
provide a structure to control object behavior.

2) Behavioral Component: A state of a simulation
run is composed of the marking of the control-flow
model (OCPN) and a corresponding graph capturing
properties of the objects residing in the net.

Definition 9 (Simulation State) Let ON ∈ UOCPN ,
M ∈ B(QON), and G = (OI , R,Γ) ∈ UOG such that
OI = { o ∈ Uoi | (p, o) ∈ M }. s = (M,G) is called a
simulation state over ON. We denote SON to be the set
of all simulation states over ON.

For example, M0 together with G0 as depicted in Fig. 2
constitutes the simulation state s0 = (M0, G0), reflecting
the state of the process after e1 and e2 occurred.

Next, we describe a simulation engine to transform
states. For this, we make use of activity predictors
to choose bindings, and feature updaters to transform
the state of the object graph. As a basis for choosing
bindings of multiple objects, we rely on predictions on
the level of single objects.

Definition 10 (Flat Activity Predictor) Let ON be an
OCPN with transitions T . A flat activity predictor over
ON is J ∈ Uasg → (T → [0, 1]), such that for all
γ ∈ Uasg ,

∑
t∈T J(γ)(t) ≤ 1.

Example. In the running example, one can choose
values for a flat predictor J0 that reflect the continuation
of the simulation state. For instance, we can chose
J0

(
(Γ(o1)

)
(t2) = 1, as the next activity for o1 surely

is pick item.
In general, we aim at discovering activity predictors

that capture the business logic as an interplay of features.
In the running example, for orders, one can predict pick
item as long as the number of executed pick activities

time: 10:30
#items: 2
#place: 1
#pick: 1
lastact: pick item
…

𝑥2

pick item

𝑦2

[(𝑦2,𝑖2)]

[(𝑥2,𝑜1)]

𝑦3

[(𝑦3,𝑖1)]

𝑥2

pick item

𝑦2

[(𝑥2,𝑜1)]

𝑦3

[(𝑦3,𝑖1),
(𝑦3,𝑖2)]

𝑖2

𝑜1

time: 10:00
#orders: 1
#place: 1
#pick: 0
lastact: place order
…

time: 10:35
#items: 2
#place: 1
#pick: 2
lastact: pick item
…

time: 10:32:30
#orders: 1
#place: 1
#pick: 1
lastact: pick item
…

Δ0

(𝑡2,{𝑜1,𝑖2)

𝑖2

𝑜1

𝑡2 𝑡2

Fig. 3: Transformations on parts of marking (left) and object graph (right) of s0
by means of a binding execution.

does not equal the number related objects of type items.
In the discovery section (Sec. III-B), we will describe
how a simple stochastic predictor to account for such a
business logic is extracted from a log.

Definition 11 (Feature Updater) Let ON be an OCPN
with transitions T . A feature updater is a function ∆ ∈
(T × Uasg) ↛ Uasg .

Example. We define a feature updater ∆0 that operates
as follows: If an object of type ot is bound at a transition
t with l(t) = a, the counter feature #a is incremented,
and we set lastact to a. Also, ∆0 defines a simple
timestamp update at t as the average delay from the last
activity lastact until a, over all observations on objects
of type ot in the input log L0.

Activity predictor and feature updater together with
an OCPN make a simulation model.

Definition 12 (Simulation Model) Let ON ∈ UOCPN .
OS = (ON , J,∆) where

• J is a flat activity predictor over ON,
• ∆ is a feature updater over ON,

is called an Object-Centric Process Simulation Model
(OCPS) over ON.

We put a simulation model into effect by repeat-
edly selecting and executing bindings. Given a state
s = (M,G) ∈ SON with G = (OI,R,Γ), J provides
predictions for all t ∈ T and single objects o ∈ OI based
on Γ. For each t ∈ T and O ⊆ OI , flat prediction values
can be aggregated to a joint prediction value J(t,O) by
taking the minimum flat prediction value.

Candidate bindings (t, O) are identified as follows.
Firstly, (t, O) should be enabled in (ON, M). Secondly,
according to our observations on object relations in
Tab. II, there should be exactly one leading object o ∈ O
with type(o) = lead(l(t)), such that the requirements
given in Tab. III are satisfied for all ot ∈ Uot \{type(o)},
depending on the arc type of ot at t.

TABLE III: We restrict the set of candidate bindings in an execution step.

Arcs for ot at t Bound objects of type ot in O
variable all neighbors of o of type ot

non-variable one neighbor of o of type ot
none none

A binding to be executed is selected based on the
following heuristics. (1) All candidate bindings (t, O)

according to above restrictions are identified. (2) The
bindings are iterated ascending by the time at which
they would be executed. Here, the maximum timestamp
of any object o ∈ O determines the execution time.
(3) A binding is picked for execution with the joint
probability J(t,O). Thus, the first such binding with a
positive outcome for execution selection terminates the
selection procedure.

Executing the selected binding results in a new mark-
ing M ′. The object graph G′ = (OI , R,Γ′) of the new
state is given by the feature updater ∆0. Fig. 3 illustrates
this simulation runtime by the realization of the binding
(t2, {o1, i2}) in the state s0.

B. Discovery

In the following, we describe an approach for dis-
covering the object component and the behavioral com-
ponent defined above. The approach described in this
section will yield, starting from an input log L, a
simulation model OS = (ON , J,∆) over an OCPN ON
as well as an initial simulation state s = (M,G).

For both components, we make use of flat logs per
object type. Such a flat log is derived from the input
OCEL by collecting all traces of individual objects of
that type [5]. As depicted in Tab. IV for type orders in
the running example, these logs are then enriched with
object features. As a design choice, we use counters
for activity executions and track the last activity, as
described in Sec. III-A1. Also, we fix a leading type
assignment on the input log and use the resulting number
of object relations per type as features, e.g. #items.
These features are added at case level (object relations
counter) or event level (activity counter, last activity)
to the flattened logs. Also, for the simulation of timing
behavior, we compute the delay in between events.

1) Object Component: For the object component, we
now derive requirements for an object graph generator
and then describe a generation procedure.

Object Graph Extraction. In the initial state of a
simulation, there should be an object graph that under
default parametrization is structurally comparable to the
object graph extracted from the input log. For this
extraction G′ = (OI ,R,Γ), we derive OI, R by Def. 8.
For the feature assignment Γ, we extract, for every
object, features from its initial event in the enriched
flattened log of the corresponding type. For instance, o1
in the running example initially has Γ(o1)(#items) =
2,Γ(o1)(time) = 10:00 etc. (cf. Tab. IV).

Object Relationship Multiplicity Distributions. In the
extracted object graph, objects of different types relate
to each other with different multiplicities, defining ob-
ject relationship multiplicity distributions (ORMDs). For
example, assume that some log (Fig. 4, left) has objects
of type orders relating to either 2, 3 or 4 items, each

Fig. 4: By means of the leading type assignment, an OCEL (left) exhibits patterns
of object relations (middle left). Based on the original or parametrized ORMDs,
an object generator (middle right) can generate new sets of objects (right).

Evolving Object Graph
Generation Step:

orders

itemspackages

𝒐𝟏

candidate action:
append(𝑖2 , 𝑝1)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 = min
𝑝𝑎𝑡ℎ ,𝑜𝑏𝑗

𝑙𝑜𝑐𝑎𝑙 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 ,𝑜𝑏𝑗 ,𝑝𝑎𝑡ℎ

𝒊𝟏 𝒊𝟐

𝒑𝟏 𝒑𝟐 candidate action:

emit(𝑖2 , 𝑝2)

candidate action:
close(𝑖2 , packages)

packages

Object Type Graph 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑐𝑙𝑜𝑠𝑒 =
1 - max

𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑒𝑚𝑖𝑡 ,

𝑎𝑝𝑝𝑒𝑛𝑑

{𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 }with respected ORMDs

o: i2
ot: 𝑖𝑡𝑒𝑚𝑠
ot′: 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠

Fig. 5: The generation procedure is guided by ORMDs (left). At each generation
step (right), new relations emerging from an action affect the ORMDs in the
evolving graph. Assessing the likelihood of that effect w.r.t. the given ORMD
defines the support of an action.

with a certain probability. These probabilities define the
ORMD items per order. ORMDs also emerge transitively
for greater depths, for instance, by counting the packages
per items per order at a depth of 2. An ORMD is then,
based on domain knowledge about the process, selected
or not selected to be respected during generation. Also,
to pose what-if scenarios, one may adapt these distri-
butions. The selected ORMDs then shape the evolving
object graph, as described in the following.

Object Graph Generation. To implement an object
generator that satisfies above requirements we proceed as
follows, by iteratively generating connected components
of objects as illustrated in Fig. 5. The procedure starts
with creating a seed object of an arbitrary type. In each
step, a random combination of an existing object o of
some type ot and an object type ot ′ is picked. Then,
either (1) o is appended (i.e. , a relation emerges) to an
existing object of type ot′; (2) a new object of type ot′

emits and is connected to o; or (3) o is closed towards
ot′, meaning that no more relations will emerge between
o and any object of type ot′. Each candidate action has
a support value which is used as a weight for sampling.

The support values are based on the ORMDs passed
as parameters. We illustrate the used distributions at
an object type graph (Fig. 5, left) that connects types
between which object relationships exist. Fig. 5 (right)
shows an exemplary intermediary generation step where
an item i2 is to be connected or not connected to
a package. Choosing a generative action, for example
appending i2 to the existing package p1, will create new
paths in the object graph, for instance, the paths (p1, i2)
and (o1, i2, p1). Each path may affect the respective
object relationship multiplicities in the evolving graph,

TABLE IV: L0 flattened on orders, yielding flat log Lorders
0 (1st - 3rd column), enriched with features (from 4th column).

orders activity time delay #items #place #pick #notify lastact
o1 place order 10:00 0:00 2 0 0 0 -
o1 pick item 10:30 0:30 2 1 0 0 place
o1 pick item 10:35 0:05 2 1 1 0 pick
o1 notify customer 13:30 2:55 2 1 2 0 pick

for instance, here the items per package at p1 are
incremented from 1 to 2. The parameter ORMD items
per package then defines a natural local support for
the appendix action at p1 via the path (p1, i2) as the
conditional probability of a package that has at least 1
item to have at least 2 items. The total support of the
action is computed as the minimal local support at any
respected ORMD that is affected by the action.

Feature Assignment. As object features Γ, we set the
counters of related objects of each type (cf. Sec. III-B1).
Also, arrival times are assigned in an iterative manner.
For this, we pick as a seed type the same object type
used as a seed type for the generation procedure. For
that type, absolute arrival rates from the input data and
fitted against an exponential distribution. Also, relative
arrival times between related object types are learned.
Then, for some object of the seed type, an arrival time
is sampled. The object graph is traversed breadth-first
and new objects are assigned an arrival time relative to
the type of the node on the prior depth level. If another
seed type object is encountered, it is assigned an arrival
time following the absolute rate of the seed type.

2) Behavioral Component: As a result of above gen-
eration, we obtain an object graph G, which is to be put
into action by a simulation model. Then, the simulation
model components (Def. 12) are discovered as follows.

Control-Flow. We use the inductive miner for the
discovery of Petri nets which are then merged to an
OCPN [7]. Note that discovering an OCPN this way
may violate our assumption of having only labeled
transitions. We drop this assumption as follows: next
activities are predicted as described in Sec. III-A2. Then,
the feasibility of predicted bindings at labeled transitions
is assessed modulo reachability of the labeled transition
via paths of silent transitions.

As a result of this step, we obtain an OCPN ON which
is marked with the objects found in G, yielding an initial
marking M and an initial simulation state s = (M,G).

Activity Predictor. The stochastic models are based
on flattened event logs enriched with our design-choice
features, as in Tab. IV. Concerning activity prediction,
the flat predictor J is a log frequency-based classifier
with the target variable activity. That is, for a feature
assignment γ, the probability J(γ)(t) is the relative
frequency of events in the enriched log that have both
target feature l(t) and the enrichment γ, modulo timing
information. If there is no event in that log having γ, we

consider the most proximate assignments γ′ with respect
to numerical features that are supported in the log.

Feature Updater. As described in Sec. III-A2, the
feature updater ∆ increments activity counters and tracks
the last performed activity. Also, timestamps are updated
based on the described activity-to-activity delay function.

Activity predictor and feature updater together
with the OCPN constitute our simulation model
OS = (ON , J ,∆). This model is then iteratively ap-
plied to the initial state s as described in Sec. III-A2.

Logging. Running the simulation, we build an event
log by mapping each executed binding naturally to an
event. To obtain the timestamp of an event occurrence,
we average the timestamps of all bound objects after
applying the delay function.

IV. EVALUATION

A tool that implements the approach, realizing all in-
dicated parametrization points, can be found on GitHub1.
Using the tool, we evaluated simulation runs2 based on
two datasets: an artificial log of an order management
process3 (OM) as well as an artificial procure-to-pay
process4 (P2P). The OM log was projected on the
object types orders (ord), items (itm) and packages (pck),
filtering out customers and products because they are less
interesting from a behavioral perspective. Also, orders
were filtered from all events involving a package. The
P2P log was projected to two activities and three object
types purchase order (ord), material (mat) and goods
receipt (gsr). We evaluated with regards to three aspects:
quality of generated objects, behavioral conformance
and timing behavior. OM was considered for all three
aspects. P2P was merely used for a study on object
quality.

A. Simulation Runs

Tab. V shows the number of objects per object types in
the input, namely in the object graph extractions G0, as
well as in various generated graphs. For both logs, object
graphs G1 were generated fitting all ORMDs of depth 1.
The graphs G2 were generated respecting some distribu-
tions of depth 2. For OM, Go

2 respects orders per items
per package and vice versa packages per items per order.
For P2P, Gp

2 respects purchase orders per materials per

1https://github.com/beneknopp/OCPS
2https://github.com/beneknopp/OCPS/tree/main/evaluation
3https://ocel-standard.org/
4https://github.com/ocpm/ocpa

https://github.com/beneknopp/OCPS
https://github.com/beneknopp/OCPS/tree/main/evaluation
https://ocel-standard.org/
https://github.com/ocpm/ocpa

TABLE V: For both datasets: the number of generated objects for each type.
(a) Number of objects per type for OM.

otype Go
0 Go

1 Go
2 Go

+

ord 2000 2002 2001 2003
itm 8159 8765 8745 11163
pck 1325 1324 1281 1668

(b) Number of objects per type for P2P.

otype Gp
0 Gp

1 Gp
2 Gp

full

ord 80 84 80 80
mat 414 450 497 410
gsr 80 82 80 80

gsr

mat

ord 1 1

1 1

n n

1 1

1 1

n n

1 1

1 1

n n

gsr

mat

ord gsr

mat

ord

Fig. 6: Different ORMDs based on different object type graphs were respected
for the generation of Gp

1 , G
p
2 , G

p
full (from left to right), having a great impact

on the graph quality.

goods receipt and vice versa. Thirdly, for OM, a graph
Go

+ was generated under adapted parametrization by
fitting the items per order against a normal distribution
and then increasing the average items per order by
1. For P2P, Gp

full was generated also to depth 1, but
with a different configuration concerning object type per
activity filtering and leading type assignment, as depicted
below in Tab. VI (leading types printed in italics).

TABLE VI: Input configuration for runs of the P2P log.

Activity Gp
1 , G

p
2 Gp

full

Create Purchase Order ord, mat ord, mat

Issue Goods Receipt gsr, mat ord, mat, gsr

B. Graph-Structural Conformance

We use a variant of the earth-movers distance (EMD)
for histogram comparison [11], to assess the similarity of
ORMDs. Tab. VIIa shows average EMD values between
the ORMDs of depths d = 1, 2, 3 found in the simulated
object graphs against those found in the extraction from
the input log. For OM, we did not evaluate Go

+, because
deviations between simulated and original distributions
are intended. At Go

1, G
o
2, one can see that respecting

ORMDs of greater depth (2 instead of 1) balances out
discrepancies between the different depths.

For P2P, the mere numbers of generated objects as
shown in Tab. Vb suggest a decent level of similarity to
the input objects. However, this is only a superficial sim-
ilarity, as the EMD values in Tab. VIIa show, especially
for Gp

1. The reason lies in disrespecting a transitive 1-to-
1 relationship (Fig. 6, left). For Gp

2, the corresponding
ORMDs of depth 2 are respected during generation
(middle), leading to a significantly better score, but also
introducing a trade-off with the satisfaction of direct
relationships towards material. By a suitable choice of
leading type assignment and included object types at

TABLE VII: Evaluation details concerning object graph quality and quality of
simulated behavior.
(a) EMD values of ORMDs in the generated object graphs against those in the original object graph extraction,
averaged over all paths between object types for various depths d.

OM P2P
d Go

1 Go
2 Gp

1 Gp
2 Gp

full

1 0.265 0.265 0.128 0.222 0.013
2 0.296 0.234 0.901 0.187 0.015
3 1.308 0.659 4.283 0.222 0.013

(b) EMD values of flat output logs against flat input logs for all object types.

OM
otype Go

0 Go
1 Go

2 Go
+

ord 0.180 0.165 0.165 0.265
itm 0.204 0.139 0.137 0.140
pck 0.009 0.005 0.003 0.003

(c) Cycle times mean / standard deviation for all object types, in days.

OM
otype L Go

0 Go
1 Go

+

ord 16.9 | 12.7 11.1 | 6.8 13.9 | 9.1 16.6 | 10.2
itm 15.2 | 12.7 12.2 | 7.2 14.7 | 9.3 16.5 | 10.7
pck 1.81 | 1.47 2.14 | 0.75 1.79 | 0.60 1.77 | 0.58

activities, the transitivity of the 1-to-1 relationship can
be turned into a local relationship (right). The resulting
graph Gp

full has the highest conformance.

C. Behavioral Conformance

We use a variant of the earth-movers distance (EMD)
to compare trace variant distributions [12]. Tab. VIIb
shows, for the OM log, such EMD values between the
simulated logs against the input logs. The scores are
comparable between the run using the original graph
and the runs using the three generated graphs. Especially
packages, on the one hand, show a behavior that is highly
similar to the original process. This is because that type
exhibits a rather sequential control-flow with few trace
variants. Note that also the parametrized run based on
Go

+ shows similarly high conformance for items and
packages. This is because, while the number of items
per order was increased indeed, this has little effect on
the behavior of each individual object of those types.

D. Timing Behavior

Tab. VIIc shows, for the OM log, mean and standard
deviation of cycle times over all objects of a type,
for some simulated runs and in the input log Lo. As
expected, orders in Go

+ have comparatively long cycles
due to more related items and thus more events per
object. In general, simulated cycle times tend to be
shorter than in the original process, while showing a
lower standard deviation. Note that our approach does
not respect timing and resource aspects such as con-
gestion [13] and availability or arrival calendars [14].
In the original OM process underlying the simulation,
such calendars are used. However, we see an adaption
of refined timing and resource modeling as future work.

In conclusion, our implementation succeeds in ade-
quately simulating observed behavior, especially with re-

gards to trace variants, and is also capable of generating
realistic sets of objects, given a suitable configuration of
the input log.

V. RELATED WORK

This paper is concerned with the data-driven pro-
cess simulation model construction in an object-centric
setting. General challenges in data-driven construction
methods are outlined in [15]. Many of these challenges,
such as resource scheduling, cannot be addressed in this
paper due to its proof-of-concept nature, but they apply
readily to our case. In [16], a comprehensive set of
metrics is provided to assess simulation model quality,
covering quality aspects we discussed as well as the time
and resource aspects we plan to address.

Simulation models can either be designed in a top-
bottom manner by manual configuration, or in a bottom-
up manner with the help of mining techniques. As a con-
tribution to the latter, this paper takes up work initiated
in [17], where a CPN is discovered from event data in a
fully automated way. More recently, a tool was proposed
[2] that covers many challenges beyond control-flow
discovery, such as distribution fitting and automated
accuracy optimization. Furthermore, the authors deploy
advanced resource availability modeling [14]. Another
work [3] provides a discovery tool with the additional
option of adapting the discovered process models. Future
work may take up these methods to further advance
object-centric simulation.

To the best of our knowledge, this is the first work
on fully automated, data-driven discovery as well as
execution of object-centric process simulation models.
However, there are initial works on predictive process
analytics [18], [19] and feature engineering [20] for that
setting. For their predictive models, [19] also choose as
features the notion of relations between object types. [18]
defines transitive object relations over several succeeding
events. In our work, we do not only make predictions for
single objects, but synchronize objects of multiple types.

VI. CONCLUSION AND FUTURE WORK

This paper describes a strategy for implementing
object-centric process simulation. We proposed a generic
approach for a log-based discovery of an object gen-
erator and a process simulation model with simple log
frequency-based statistical models to simulate behavior
for the generated objects.

By using log-to-log and graph-to-graph conformance
measures, we showed the quality of our approach and
identified recommendable strategies for the configuration
of the input to improve output quality. As the next step,
we aim at improving the quality of our framework by
advancing the deployed statistical models, timing and
resource modeling and object generation procedures, and
also with the help of case studies.

REFERENCES

[1] W. M. P. van der Aalst. Process mining: Data science in action.
Springer Berlin Heidelberg, 2016.

[2] M. Camargo, M. Dumas, and O. González-Rojas. Automated
discovery of business process simulation models from event logs.
Decision Support Systems, 134:113284, 2020.

[3] M. Pourbafrani, S. Jiao, and W. M. P. van der Aalst. Simpt:
process improvement using interactive simulation of time-aware
process trees. In International Conference on Research Chal-
lenges in Information Science, pages 588–594. Springer, 2021.

[4] K. Jensen and L. M. Kristensen. Colored petri nets: a graphi-
cal language for formal modeling and validation of concurrent
systems. Communications of the ACM, 58(6):61–70, 2015.

[5] W. M. P. van der Aalst. Object-centric process mining: Dealing
with divergence and convergence in event data. In Software En-
gineering and Formal Methods: 17th International Conference,
SEFM 2019, Oslo, Norway, September 18–20, 2019, Proceedings
17, pages 3–25. Springer, 2019.

[6] A. F. Ghahfarokhi, G. Park, A. Berti, and W. M. P. van der
Aalst. Ocel: A standard for object-centric event logs. In European
Conference on Advances in Databases and Information Systems,
pages 169–175. Springer, 2021.

[7] W. M. P. van der Aalst and A. Berti. Discovering object-centric
petri nets. Fundamenta informaticae, 175(1-4):1–40, 2020.

[8] I. Beerepoot et al. The biggest business process management
problems to solve before we die. Computers in Industry,
146:103837, 2023.

[9] R. Parmar, A. Leiponen, and L. D. Thomas. Building an
organizational digital twin. Business Horizons, 63(6):725–736,
2020.

[10] M. Dumas. Constructing digital twins for accurate and reliable
what-if business process analysis. In Problems@ BPM, pages
23–27, 2021.

[11] O. Pele and M. Werman. Fast and robust earth mover’s distances.
In 2009 IEEE 12th International Conference on Computer Vision,
pages 460–467. IEEE, September 2009.

[12] S. J. J. Leemans, A. F. Syring, and W. M. P. van der Aalst.
Earth movers’ stochastic conformance checking. In Business
Process Management Forum: BPM Forum 2019, pages 127–143.
Springer, 2019.

[13] A. Senderovich, J. C. Beck, A. Gal, and M. Weidlich. Congestion
graphs for automated time predictions. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages
4854–4861, 2019.

[14] B. Estrada-Torres, M. Camargo, M. Dumas, L. Garcı́a-Bañuelos,
I. Mahdy, and M. Yerokhin. Discovering business process
simulation models in the presence of multitasking and availability
constraints. Data Knowl. Eng., 134:101897, 2021.

[15] N. Martin, B. Depaire, and A. Caris. The use of process mining in
business process simulation model construction: structuring the
field. Business & Information Systems Engineering, 58:73–87,
2016.

[16] D. Chapela-Campa, I. Benchekroun, O. Baron, M. Dumas,
D. Krass, and A. Senderovich. Can I trust my simulation model?
measuring the quality of business process simulation models. In
Business Process Management - 21st International Conference,
BPM 2023, pages 20–37. Springer, 2023.

[17] A. Rozinat, R. S. Mans, M. Song, and W. M. P. van der Aalst.
Discovering simulation models. Information systems, 34(3):305–
327, 2009.

[18] R. Galanti, M. De Leoni, N. Navarin, and A. Marazzi. Object-
centric process predictive analytics. Expert Systems with Appli-
cations, 213:119173, 2023.

[19] W. Gherissi, J. El Haddad, and D. Grigori. Object-centric
predictive process monitoring. In International Conference on
Service-Oriented Computing, pages 27–39. Springer, 2022.

[20] J. N. Adams, G. Park, S. Levich, D. Schuster, and W. M. P.
van der Aalst. A framework for extracting and encoding features
from object-centric event data. In International Conference on
Service-Oriented Computing, pages 36–53. Springer, 2022.

	Introduction
	Preliminaries
	Approach
	Components
	Object Component
	Behavioral Component

	Discovery
	Object Component
	Behavioral Component

	Evaluation
	Simulation Runs
	Graph-Structural Conformance
	Behavioral Conformance
	Timing Behavior

	Related Work
	Conclusion and Future Work
	References

