
Enhancing the Applicability of the eST-Miner:
Efficient Precision-Guided Implicit Place Avoidance

1st Groß, Felix C.
Process and Data Science (PADS),

RWTH Aachen University
Aachen, Germany

felix.carl.gross@rwth-aachen.de

2nd Mannel, Lisa L.
Process and Data Science (PADS),

RWTH Aachen University
Aachen, Germany

mannel@pads.rwth-aachen.de

3rd van der Aalst, Wil M. P.
Process and Data Science (PADS),

RWTH Aachen University
Aachen, Germany

wvdaalst@pads.rwth-aachen.de

Abstract—In process discovery, we aim to find a model that
describes the underlying process best, given an event log. The
eST-Miner is a discovery technique inspired by language-based
regions. It discovers precise Petri nets containing exactly one
transition for each activity in the event log by efficiently travers-
ing the space of all possible places. It then expands the model
iteratively with places. The final model consists of the maximal
set of places considered fitting with respect to a user-definable
fraction of the behavior in the log evaluated by token-based
replay. Therefore, the eST-Miner can derive complex control-flow
structures that other approaches fail to discover and handle noise
and infrequent behavior. Although the eST-Miner discovers high-
quality models, its feasibility has previously been limited by its
runtime: When naively inserting places, the discovered models
contain many implicit places, i.e., places whose removal does
not change its language and is time-consuming. Therefore, we
propose an efficient strategy that avoids adding implicit places by
exploiting log information while including non-fitting log traces.
We extend the discovery with information on the precision of the
(expanding) model based on escaping edges. With our extensions,
the eST-Miner becomes a competitive choice among other process
discovery techniques. We demonstrate the effectiveness of our
heuristics using the eST-Miner as an exemplary use case and
run various experiments on real-life and artificial event logs.

Index Terms—Process Discovery, Petri nets, eST-Miner, Im-
plicit Places, ETC-Precision

I. INTRODUCTION AND RELATED WORK

More and more organizations support the execution of their
processes using information systems that capture behavior
in so-called event logs. For each event in the log, amongst
other attributes, we store a name identifying the executed step
(activity name), a case identifier that is necessary to distinguish
between different executions of the process (case ID), and the
time the event was observed (timestamp). Various algorithms
can utilize such data. Here, we focus on process discovery.
We aim to construct a Petri net that reflects the behavior of
the process that generated the log.

For several reasons, finding a process model for a given
event log is non-trivial. Too few events may have been
recorded to discover some of the structure of the process
correctly, or the log may contain infrequent behavior that
is different from the process’s nature. An optimal process

The authors gratefully acknowledge the financial
support by the Federal Ministry of Education and
Research (BMBF) for the joint project BridgingAI.
We thank the Alexander von Humboldt (AvH)
Stiftung for supporting our research.

discovery technique should discard such noise while still cap-
turing the critical behavior of the process. It should discover
process models that can replay the behavior in the event log
(fitness) while remaining uncomplicated enough to be under-
stood by a human (simplicity). The model should generalize
the example behavior (generalization) without allowing for
unrelated behavior (precision). It may be impossible to satisfy
all quality dimensions. Different process discovery techniques
favor certain quality aspects while neglecting others. Hence,
the resulting models may vary greatly depending on the
method used.

Many discovery algorithms abstract from the complete
information in the log or generate places heuristically to
decrease the computation time and complexity of the dis-
covered models. While this is desirable in many applied
settings, the resulting models often are underfitting and fail to
discover complex control-flow structures, such as long-term
dependencies. Examples are the Alpha Miner [1], Inductive
Miner [2], genetic algorithms [3], and Heuristic Miner [4]. The
Split Miner [5] combines several heuristics on directly-follows
relations of the event log to discover more precise process
models. In contrast to these approaches, algorithms based on
region theory [6, 7] discover models whose behavior is a
minimal superset of the behavior captured in the input event
log. On the downside, these approaches are time-consuming,
cannot handle noise, and tend to produce overly complex and
overfitting models.

In this work, we extend the eST-Miner [8], a process
discovery technique inspired by language-based regions. It
can derive complex structures (e.g., long-term dependencies)
many other algorithms fail to discover. Additionally, it can
handle infrequent behavior and noise. It efficiently traverses
the finite search space of all possible places resulting from
combining all uniquely labeled transitions. By naively adding
all (fractionally) fitting places, the final Petri net contains many
implicit places, i.e., places whose removal does not change its
language and, therefore making the model overly complex.
Different approaches exist to remove implicit places (see [9,
10]). Several extensions to the eST-Miner have been proposed
to improve its runtime. However, although it discovers high-
quality models, i.e., models that score well with respect to
selected fitness and precision metrics, its feasibility on real-life
data has so far been limited by the time-consuming Implicit
Place Removal (IPR) step.

https://orcid.org/0009-0009-4875-5932
https://orcid.org/0000-0001-6158-356X
https://orcid.org/0000-0002-0955-6940

This work addresses this issue by suggesting a precision-
based heuristic to avoid adding implicit places, the so-called
ETC-based composer. In contrast to other techniques, we
exploit log information and can handle noise and infrequent
behavior. We show how to incrementally update the precision
of the expanding model efficiently during the discovery based
on escaping edges [11]. This enables us to only add places that
increase its precision, i.e., non-implicit places. Furthermore,
we can identify places whose removal does not decrease
precision, i.e., implicit places. We illustrate the effects of the
proposed heuristics through experiments on real-life and artifi-
cial event logs. We show that we can significantly decrease the
computation time of the eST-Miner and its Delta variant [12]
while keeping the discovered models’ fitness and precision
high. Our experiments show that when using our heuristics,
we can now avoid implicit places up to 92% faster compared
to all other available IPR techniques. Thus, for the first time,
the eST-Miner becomes a competitive choice for discovering
process models on mid-sized real-life event logs (for a size
reference, see Fig. 4).

In Section II, we introduce basic definitions and notation
before briefly presenting the eST-Miner in Section III and our
extensions to it in Section IV. In Section V, we perform several
experiments whose results we discuss in Section VI. Finally,
we conclude the paper in Section VII.

II. PRELIMINARIES

A set, e.g., {a, b}, contains every element at most once,
while multisets allow containing elements more than once.
We write multisets as [a, a] = [a2]. For a set X , we denote
its powerset by P(X) and the set of all multisets over X
by M(X). Contrary to sets and multisets, the order of the
elements matters in sequences. We denote sequences over
some set X as ⟨a, b, c⟩. X∗ denotes the set of all possible
sequences over X , including the empty sequence ⟨⟩. We denote
the size of a set, multiset, or sequence X , i.e., the number of
elements in X , by |X|. For a sequence σ, we denote #σ(a)
as the frequency of an element a in σ. We denote the prefix
of length k of σ, with 0 ≤ k ≤ |σ|, by prefk(σ). We denote
the set of all (unique) prefixes of a (multi)set of sequences,
X , by Pref(X).

When defining event logs, we focus on discovering control-
flow and abstract from concrete timestamps and optional
attributes. We require each trace to begin with the designated
start activity ▶ and end with a designated end activity ■. Note
that we can transform any event log accordingly.

Definition 1 (Activity, Trace, Log). Let A be the universe of
all activities, let ▶∈ A be the designated start activity and
■ ∈ A the designated end activity. A trace σ is a sequence
⟨▶, a1, . . . , an,■⟩ ∈ A∗, such that ai ∈ A \ {▶,■} for all
1 ≤ i ≤ n. Let T be the universe of such traces. A log
L ∈ M(T) is a multiset of traces.

Given a set of activities, its characteristic function evaluates
to 1 for every element in the set and 0 otherwise.

Definition 2 (Characteristic Function). For a set of activities
A ⊆ A, we define the characteristic function

I : P(A)×A, I(A, a) =

{
1 a ∈ A

0 otherwise
.

There are many different representations of models. This
work focuses on Petri nets. The eST-Miner discovers Petri nets
without duplicate labels and silent transitions. We assume that
firing a transition corresponds to the execution of a (distinct)
activity and vice versa. Therefore, the set of transitions of
the discovered model and the set of all activities contained
in the given event log coincide, and we will be using these
terms interchangeably. We denote Petri nets that we discover
given an event log L over the set of activities A ⊆ A by
N = (A,P, ps, pt). We sometimes refer to N by its set of
intermediate places P only. We denote a place p = (I|O) by
its set of incoming transitions •p = I and its set of outgoing
transitions p• = O. Additionally, given an activity a ∈ A,
we refer to its set of incoming places by •Pa and its set of
outgoing places by a•P . If it is clear which Petri net we refer
to, we only write •a and a•, respectively. We require Petri
nets always to have a dedicated source place ps = (∅|▶) and
target place pt = (■|∅).

Definition 3 (Petri Net). Let A ⊆ A, with ▶,■ ∈ A be a finite
set of activities. We denote a Petri net by N = (A,P, ps, pt),
where P ⊆ {(I|O) | I ⊆ A \ {■} ∧ I ̸= ∅ ∧ O ⊆ A \ {▶}
∧ O ̸= ∅} is the set of intermediate places, ps = (∅|▶) the
source, and pt = (■|∅) the target place.

We determine the state of a Petri net by the distribution of
tokens over places, a marking. We consider mi = [ps] to be the
initial marking of a Petri net corresponding to the state before
the execution of the process. During its execution, a transition
a ∈ A is enabled if at least one token is in each place •a.
Then, it can fire, consuming a token from each place in •a
and producing one in each place in a•. After executing a valid
firing sequence, we obtain the final marking mf = [pt]. We
define the behavior of a Petri net as the execution of traces
such that all (intermediate) places are empty at the end of the
trace and never have a negative number of tokens.

There are different metrics to measure the quality of a
process model given an event log. The eST-Miner considers
place-wise fitness by playing the token game: We call an
intermediate place p ∈ P fitting, if a user-definable fraction
of traces in the log can be perfectly replayed on p, i.e.,
without causing missing or remaining tokens during or after
replay. Our approach to extending the eST-Miner is based
on ETC-precision [11], a commonly used precision metric. It
compares the state spaces of the log and model. An exhaustive
exploration of the model’s state space may be infeasible due
to the state space explosion problem. Thus, we restrict our
consideration of the model’s behavior to the one captured in
the log. Therefore, we look at the prefix automaton of a log
L, a Deterministic Finite Automaton (DFA) with one state
for every (unique) prefix of all of its traces derived using the
sequence, past, and infinite log abstraction as presented in [13].

start
▶

a
c d ■

b c e ■

Fig. 1: Prefix automaton for the log L = [⟨a, c, d⟩13, ⟨b, c, e⟩42]
annotated with frequencies.

Definition 4 (Prefix Automaton). Let L be an event log over
the set of activities A ⊆ A. The prefix automaton of L is the
DFA PAL = (S,A, t, si, F), with S = Pref(L) the (finite)
set of states, A the (finite) alphabet, t : S×A → S a transition
function, si = ⟨⟩ the initial state, and F = {σ ∈ L} the set
of final states. For a prefix σ′ ∈ S \L of a trace σ ∈ L, such
that σ′ ◦ ⟨a⟩ ∈ S for an a ∈ A, we have t(σ′, a) = σ′ ◦ ⟨a⟩.
Thus, PAL’s language equals L.

Figure 1 shows an example of a prefix automaton. To
compute precision, the log is replayed concurrently on the
intermediate model and the prefix automaton, comparing and
searching for discrepancies between the behavior allowed in
N and the observed behavior in L. Therefore, for each state
s of PAL corresponding to a prefix σ′ of a trace σ ∈ L, we
look at the set of enabled transitions in the model N after
executing σ′. These activities are allowed in s. Then, we look
at the activities executed after the prefix σ′ of some (possibly
different) trace in L, the reflected activities in s. Activities are
escaping in s if their execution is allowed but not reflected in
s.

III. EST-MINER

Over the past years, several variants of the eST-Miner have
been proposed. This section gives an overview of the core
idea of the eST-Miner [8] and other concepts relevant to the
context of this paper. For further details, we refer the reader
to the respective papers.

a) Efficient State Space Traversal: For an input event
log L over the set of activities A ⊆ A and a noise threshold
parameter τ ∈ [0, 1], the eST-Miner returns a Petri net N =
(A,P, ps, pt). Inspired by language-based regions, initially, the
Petri net contains exactly one transition for each activity in A
and a source and target place, i.e., P = ∅. In the searching
phase of the algorithm, we traverse the finite space of all
possible candidate places, only storing those that are fitting
with respect to at least a fraction of τ traces.

Since evaluating all possible places in a brute-force ap-
proach becomes infeasible with an increasing number of
activities in the log, the eST-Miner uses the results of the
place-wise fitness evaluation to skip large parts of the search
space containing non-fitting places. In [8], it is proposed to
organize the candidate places in a set of trees. This data
structure allows only keeping a limited number of places in
memory at any time and traversing the search-space efficiently
by pruning the so-called candidate tree (CT). We traverse the
CT using breadth-first search (BFS). Sometimes, we limit the
CT’s depth to d ∈ N. Then, all places in consideration have
at most d connecting, i.e., incoming and outgoing activities.
Excluding complex places located at deeper levels of the

candidate tree improves runtime significantly and achieves
a trade-off across all four quality dimensions. While some
complex process behavior may need such places to be ex-
pressed precisely, inserting them into the Petri net is usually
devastating to readability. In practical applications, simpler
places can usually approximate their constraints sufficiently.

The eST-Miner applies noise filtering on a place-wise level:
When evaluating the fitness of a place, certain traces are
temporarily ignored. Furthermore, varying τ gives us a tool
to discover models with different quality aspects.

Often, when combining the places evaluated individually
to be fitting with respect to some noise threshold during
the searching phase, the final Petri net may contain places
that contradict each other, leading to deadlocks. Thus, the
discovered models sometimes have low fitness. To tackle this
issue, the Delta variant [12] of the eST-Miner guarantees that
at least a fraction of τ traces of the input event log L is
replayable by the discovered Petri net. It only adds places
whose inclusion does not decrease the fraction of traces in
L perfectly fitting to the intermediate model by more than
δ ∈ [0, 1].

b) Implicit Place Removal: When naively adding all pos-
sible fitting places to the model, P may consist of thousands
of places, most of which are implicit. To improve the model’s
simplicity, depending on the choice of τ , the eST-Miner has
different approaches at its disposal: We can remove implicit
places using regions (region-IPR) if τ = 1, or resort to solving
an ILP (LP-IPR) regardless of the value of τ .

If τ = 1, we only include places that are perfectly fitting
with respect to L. Hence, we guarantee that L perfectly fits
N . Then, as proposed in [9], the so-called marking histories
of two places can be compared to determine whether one of
them is (going to become) implicit in the final model. For
a candidate place p, its marking history on some sequence σ
represents the number of tokens in p when firing its connected
transitions only during the replay of σ.

Definition 5 (Marking History).
For a place p = (I|O), with I ⊆ A and O ⊆ A, we
define its marking history on a trace σ = ⟨a1, . . . , an⟩ ∈ L
as Hσ(p) = ⟨hpref1(σ)(p), . . . , hprefn(σ)(p)⟩ ∈ Z∗, with

hprefk(σ)(p) =
∑
i∈I

#prefk(σ)(i)−
∑
o∈O

#prefk(σ)(o)

for all 1 ≤ k ≤ n.
Let σ1, . . . , σm be the trace variants of the event log L in an
arbitrary but fixed order. Then, we define the marking history
of p on L to be the concatenation of the marking histories of
all its trace variants: HL(p) = Hσ1

(p) ◦ . . . ◦Hσm
(p).

A place that always contains more tokens during replay than
others can be identified as implicit since removing it does not
reduce the constraints imposed on its connected transitions.
Implicit places can be avoided during the searching phase of
the algorithm (region-CIPR): Before adding a fitting place, its
marking history is compared to those of all other places in
P . Alternatively, the marking histories of all fitting places are
compared in post-processing (region-PPIPR).

fitting with respect to

SPECpp-Framework
Proposition

Fitness-Filter

ETC-Based Composer

evaluate

evaluate

intermediate
result

premature abort?

Post-Processing

start

Composition
Parameters

Petri net

precision increasesno increase in
precision

precision decreasesno decrease in precision

andfitting with respect to

Log

traverse the candidate tree fitness evaluation
marking histories

Evaluation

remove remaining implicit places
merge self-loop places

Fig. 2: Overview of the SPECpp-framework [14] including input,
output, and parameter use.

Region-IPR, as defined in [9], requires all log traces to fit
the model perfectly and can, therefore, not be used for τ < 1.
We then solve an ILP as suggested originally in [10] instead,
identifying and removing all implicit places of the model
based on its structure only (LP-IPR). We do not incorporate
any log information in the process. In [8], solving the ILP
once as an additional post-processing step (ILP-PPIPR) is
proposed. Alternatively, similar to the replay-based approach,
we can use the LP-based approach to remove implicit places
”concurrently” (LP-CIPR): Each time we add a place to P , we
solve the ILP and remove any places (newly) made implicit.

c) Implementation: We have integrated our approach
into the SPECpp-framework [14]. Figure 2 gives an overview
of the algorithmic framework. It aims to give developers
easy access to working on the eST-Miner. Although intended
to run independently, the SPECpp-framework also provides
an interactive ProM-plugin [15]. Apart from being able to
supervise the discovery of process models using the eST-
Miner and all its extensions, SPECpp iterates over the search
space in so-called PEC-cycles: First, we traverse the next
candidate place p of the CT (proposition). Next, we evaluate
the fitness of p. In case p is fitting, we forward it to our new
subroutine, the ETC-based composer, which avoids implicit
places using marking histories (evaluation/composition). In
post-processing, we remove any remaining implicit places and
merge places with the same non-looping connecting activities.

IV. ETC-BASED COMPOSER

This section introduces a heuristic extension to the eST-
Miner to avoid adding implicit places. In contrast to existing

IPR methods, it heavily relies on log information and can
handle Petri nets that cannot perfectly replay the input event
log. In each iteration of the discovery, we traverse the next
place of the CT, p, and evaluate its fitness. In case p is fitting
with respect to the input event log L over the set of activities
A ⊆ A and τ , we do not simply add it to the intermediate
model N = (A,P, ps, pt) but instead propose it to a new
subroutine called the ETC-based composer. It evaluates the
impact adding p has on the precision of N . We add p if it
increases precision. Otherwise, we consider it implicit and
discard it. If we add p, we revoke places we recognize as
implicit after inserting p, i.e., places p′ ∈ P whose removal
does not decrease precision. Figure 2 gives an overview of this
approach, indicating inputs, outputs, and parameter use.

Note that recalculating ETC-precision naively in each it-
eration is not feasible. Additionally, for τ < 1, we cannot
guarantee that all traces in L are perfectly replayable on N
at any time. We could discard all non-fitting log traces or
compute alignments as described in [11, 16]. However, we
want to be able to handle noise and infrequent behavior while
keeping the computation time reasonable. Thus, we show
how to efficiently approximate the precision of the expanding
model N by incorporating all log information.

a) Initialization: First, we construct the prefix automaton
of L, PAL. When calculating precision, we reuse the concept
of marking histories introduced in [9] to define the sets of
allowed, reflected, and escaping activities for each state s of
PAL. If all incoming places of an activity a contain at least
one token after replaying the prefix corresponding to s, a is
allowed in s. Then, we can check whether a is reflected by
looking at the (outgoing) transitions of s in PAL. If a is not
reflected in the log, a is escaping in s.

Definition 6 (Indicator Sets). Let L be an event log over the
set of activities A ⊆ A. Let PAL = (S,A, t, si, F) be the
prefix automaton of L. Let N = (A,P, ps, pt) be a Petri net.
For a state s ∈ S corresponding to a prefix σ′ of a trace
σ ∈ L, we define R(s) = {a ∈ A | s ◦ ⟨a⟩ ∈ S} as the set of
activities that are reflected in L in s, AP (s) = {a ∈ A | ∀p ∈
•Pa : hs(p) ≥ 1} as the set of activities that are allowed in
N in s, i.e., after executing σ′, and EP (s) = AP (s) \ R(s)
as the set of activities that are escaping in s.

To (re)compute precision, we use so-called activity map-
pings.

Definition 7 (Activity Mappings). Let L be the input event log
over the set of activities A ⊆ A. The activity mapping MA :
A 7→ N0 defines the (current) number of times an activity
a ∈ A is allowed and ME : A 7→ N0 the (current) number of
times a is escaping when replaying L.

Initially, at the start of the discovery, we have P = ∅. At
the beginning of each trace, PAL is in its initial state, and N
is in marking mi. All activities are allowed in N , but only the
starting activity ▶ is reflected in this state. In all other states
of L, all activities except for ▶ are allowed. We can check
whether they are reflected by looking at PAL.

Definition 8 (Initial Activity Mappings).
Let L = [σf1

1 , . . . , σfn
n] be the input event log over the set of

activities A ⊆ A. To obtain the initial activity mappings, we

set MA(▶) =
n∑

i=1

fi and ME(▶) = 0 for the starting activity,

and for all other activities a ∈ A \ {▶}, we set

MA(a) =

n∑
i=1

fi · |σi| and

ME(a) =

n∑
i=1

fi ·
|σi|−1∑
j=0

1− I(R(pref j(σi)), a).

Definition 9 (Precision). Let MA and ME be the current
activity mappings. We define the precision of the current
intermediate model N = (A,P, ps, pt) as

precision(P) = 1−

∑
a∈A

ME(a)∑
a∈A

MA(a)
.

b) Recalculating Precision Concurrently: After the ini-
tialization, in each call of the ETC-based composer, we receive
a fitting candidate place p = (I|O) as input. We have also
stored MA and ME resulting from the previous iterations.

Since the place p models conditions which constrain exe-
cuting its outgoing activities, by adding p to P , only those
activities may be allowed less often when replaying L. Anal-
ogously, by removing p from P , only activities o ∈ O may
be allowed more often during replay. Therefore, when adding
or removing p, we only need to reevaluate the entries MA(o)
and ME(o) for every activity o ∈ O to recalculate precision.

For an activity a ∈ A, we recalculate MA(a) and ME(a)
as follows:

Definition 10 (Recalculating Precision).
Let L = [σf1

1 , . . . , σfn
n] be the input event log over the set of

activities A ⊆ A, N = (A,P, ps, pt) the current intermediate
model, and MA and ME the current activity mappings. Let
p = (I|O), with I ⊆ A and O ⊆ A, be a place. Let P ′ be
the set of places obtained by either adding p, (P ′ = P ∪{p})
or removing p (P ′ = P \ {p}). In both cases, we update the
entries MA(o) and ME(o) for all activities o ∈ O as follows:

MA(o) =

n∑
i=1

fi ·
|σi|−1∑
j=0

I(AP ′(pref j(σi)), o) and

ME(o) =

n∑
i=1

fi ·
|σi|−1∑
j=0

I(EP ′(pref j(σi)), o).

Note that for all other activities a ∈ A\O, MA(a) and ME(a)
remain unchanged.

Thus, we recalculate the precision efficiently regarding
runtime and memory: When adding or removing a place
p = (I|O), we only need to update |O| entries of each
activity mapping. Therefore, for an activity o ∈ O, we traverse
(parts of) the marking histories of |•o| places on L. Note that
a marking history of a place p only depends on its set of

incoming and outgoing activities and the log. Therefore, we
can compute a marking history of each candidate place only
once when we propose it and keep the ones of all places in
P in memory.

For τ = 1, we thereby (re)calculate the same value as
returned by ETC-precision [11]. For τ < 1, some traces of L
may be unfitting. Then, we provide a reasonable approxima-
tion when updating the entries of the activity mappings for an
activity a ∈ A: By only looking at the marking histories of its
incoming places, e.g., HL(p), with p ∈ •a, at any time during
the replay of a trace σ ∈ L, we neglect any (earlier) missing
tokens in other places: We assume p’s input transitions fire
when their corresponding activities are executed. Furthermore,
we count missing tokens in p itself negatively.

c) Place Classification: Being able to efficiently recal-
culate the precision of the intermediate model P when adding
or removing a place allows us to avoid implicit places by
classifying the place p proposed to the ETC-based composer
as follows:

Definition 11 (Classification of Proposed Places). Let L be
the input event log over the set of activities A ⊆ A, let
N = (A,P, ps, pt) be the current intermediate model, and
MA and ME the current activity mappings. Let p = (I|O),
with I ⊆ A and O ⊆ A, be a candidate place proposed to
the ETC-based composer. Reevaluating precision(P ∪ {p})
according to Definition 10, we get the updated mappings
M ′

A : A → N0, and M ′
E : A → N0. Then, we have:

add(p) = ∃a ∈ A : M ′
E(a) < ME(a) and discard(p),

otherwise.

We consider p implicit if its addition to the intermediate
model does not constrain any escaping activities. Otherwise,
we add p by setting P := P ∪ {p} and update the activity
mappings accordingly. Then, we check all places p′ ∈ P \{p}
whose set of outgoing activities p′• intersects with the one of
the newly added place, p•, for implicitness.

Definition 12 (Classification of Potentially Implicit Places).
Let L be the input event log over the set of activities A ⊆
A, N = (A,P, ps, pt) the current intermediate model, and
MA and ME the current activity mappings. Let p = (I|O),
with I ⊆ A and O ⊆ A, be a candidate place proposed to
the ETC-based composer with add(p). Then, we look at the
set PpotImpl(p) = {(I ′|O′) ∈ P \ {p} | O ∩ O′ ̸= ∅}. For
every p′ ∈ PpotImpl(p), reevaluating precision(P \ {p′}),
we get M ′

A and M ′
E . Then, we have revoke(p′) = ∀a ∈ A :

M ′
A(a) = MA(a)∧M ′

E(a) = ME(a) and keep(p′) otherwise.

We recognize p′ as implicit if its removal from the interme-
diate model does not change its behavior regarding allowed
and escaping activities.

Additionally, we can abort the search prematurely once the
precision of our current model meets a user-definable threshold
ρ ∈ [0, 1]. By default, we set ρ to one. Then, aborting the
search prematurely has no impact on the discovered model.

d) Example: This section provides a complete example
of using the eST-Miner in combination with the ETC-based

ps

p6 p7

p2

p3

p8 p9

pt

▶

a

b

c

d

e

■

Fig. 3: Final result of example run when given L = [⟨▶
, a, c, d,■⟩13, ⟨▶, b, c, e,■⟩42] and τ = 1 as input.

name #activities #traces #variants ref.
HD2017 16 4580 226 [18]
RTFM 13 150370 231 [19]
Sepsis 18 1050 846 [20]
Repair 10 1104 77 [21]
Reviewing 16 100 96 [21]
Teleclaims 13 3512 12 [21]

Fig. 4: Event logs used in experiments.

composer to discover a model when given the event log
L = [⟨▶, a, c, d,■⟩13, ⟨▶, b, c, e,■⟩42] and τ = ρ = 1. In the
following, we refer to the place proposed in and the interme-
diate model after the i-th call of the ETC-based composer by
pi and P i, respectively.

At first, we have P 0 = ∅. The initial model consists of the
source and target places and one transition for each activity
in the event log. We build the initial prefix automaton (see
Fig. 1) and calculate the initial activity mappings according to
Definition 8. Thus, we have precision(P 0) ≈ 0.194. After the
fourth call, we have P 4 = {(▶|c), (a|d), (b|e), (c|■)}. Adding
p5 = (▶|■) to P 4 does not constrain any escaping activities.
Hence, we have discard(p5). Next, we add p6 = (▶|a, b)
and p7 = (a, b|c). Then, we have to check PpotImpl(p7) =
{(▶|c)}. Removing p1 = (▶|c) does not change the ac-
tivity mappings. Hence, we have revoke(p1). When adding
p8 = (c|d, e), we have to check the places indicating the long-
term dependencies for implicitness. However, removing either
of those places results in more allowed/escaping activities.
Hence, we have keep((a|d)) and keep((b|e)). Finally, we add
p9 = (d, e|■) and revoke the addition of p4 = (c|■). After the
ninth call, we reach optimal precision and prematurely abort
the search. Figure 3 shows the final model.

V. EVALUATION

In this section, we evaluate the process models discovered
by the eST-Miner using the ETC-based composer and compare
its performance to other IPR techniques.

We use the event logs listed in Fig. 4 for our experiments.
As real-life event data, we use the following three logs:
HD2017 contains the behavior of a ticketing management
process of the help desk of a software company. Event data
about managing road traffic fines is captured in RTFM. The
event log Sepsis contains event data of a hospital. Moreover,
we look at the artificial event logs Repair, Reviewing,
and Teleclaims used in [17]. We evaluate the discovered
models’ alignment-based fitness [22] and ETC-precision [11]
and quantify their simplicity by their number of arcs. Note that
unlike the approximation in precision calculated by the ETC-
based composer, the measured ETC-precision only considers

τ 1 0.9 0.8 0.7 0.6 0.5
HD2017 0/20 14/4390 32/5282 40/8125 43/8622 47/8642

RTFM 0/32 3/567 11/846 20/989 10/1352 5/2535

Sepsis 0/29 15/543 15/978 18/1521 33/2987 42/3614

Repair 0/21 5/59 4/63 5/104 7/127 8/252

Reviewing 0/88 0/88 0/88 0/88 0/88 2/681

Teleclaims 0/82 3/103 3/238 3/372 3/414 2/1035

Fig. 5: Number of remaining implicit places (RIP) in the models
discovered with the eST-Miner using the ETC-based composer and
total numbers of (fractionally) fitting places (TFP). Notation: RIP/TFP.

the traces of the event log perfectly fitting the process model.
We compare models by their F1-score, the harmonic mean of
their fitness and precision.

a) Suitability for Implicit Place Removal: In this sub-
section, we want to check the ETC-based composer’s suit-
ability to avoid implicit places. For this experiment, we vary
τ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}, set ρ = 1, and limit the depth
of the CT to d = 4. When allowing for greater depth, most
test runs using the standard eST-Miner (with LP-PPIPR) do
not finish within two hours.

Figure 5 shows the number of remaining implicit places
in the models discovered using the ETC-based composer.
For τ = 1, no implicit places remain. For τ < 1, only a
few implicit places are left, especially compared to the total
number of fitting places: Although there are only comparably
few perfectly fitting places for all logs, when lowering τ the
amount of (fractionally) fitting places increases, especially
when increasing d. For d = 4, there are up to multiple
thousand for the real-life event logs, and for the artificial
event logs, up to multiple hundred fractionally fitting places
for τ = 0.5. The few remaining implicit places can be removed
quickly in post-processing by solving an ILP.

Looking at the quality of the models, Fig. 6a and Fig. 6b
show that they score comparably regarding fitness and pre-
cision to those discovered using another IPR approach (ILP-
CIPR). This implies that we do not discard (significant) non-
implicit places either. Section VI a focuses on the simplicity
of models.

b) Comparison to Other Implicit Place Removal Tech-
niques: In this subsection, we compare our approach’s perfor-
mance to other techniques that remove/avoid implicit places
of the models discovered by the eST-Miner (LP-CIPR, LP-
PPIPR, replay-CIPR, and replay-PPIPR). We use the same
experimental setup as in the previous experiment.

For τ = 1, the set of fitting places is comparatively small.
Thus, we only have to spend little runtime to avoid/remove
them and observe that the runtime of all approaches, including
ours, is comparable. For τ < 1, recall that we cannot
reliably use the region-IPR approaches. The standard approach
(LP-PPIPR) is much slower than the other approaches: For
example, for τ ∈ {0.5, 0.6}, none of the test runs on the real-
life logs finishes within two hours. LP-CIPR is faster than
LP-PPIPR since it keeps the set of places of the intermediate
model small. However, using the ETC-based composer, on
average, Fig. 6d shows that we can discover models even
ten seconds (30%) faster on the real-life logs than when

HD2017 RTFM Sepsis
Repair Reviewing Teleclaims

0.50.60.70.80.91
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ

ab
so

lu
te

di
ff

er
en

ce
in

al
ig

nm
en

t-
ba

se
d

fit
ne

ss

(a) Difference in Fitness

0.50.60.70.80.91
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ

ab
so

lu
te

di
ff

er
en

ce
in

E
T

C
-p

re
ci

si
on

(b) Difference in Precision

0.50.60.70.80.91

−10

0

10

20

30

40

τ

ab
so

lu
te

di
ff

er
en

ce
in

nu
m

be
r

of
ar

cs

(c) Difference in Number of Arcs

0.50.60.70.80.91

0

10

20

30

40

τ

ab
so

lu
te

im
pr

ov
em

en
t

in
to

ta
l

ru
nt

im
e

(i
n

s)

(d) Improvements in Runtime
Fig. 6: Difference in Quality of resulting process models and improve-
ments in performance when using the ETC-based composer compared
to using LP-CIPR.

ps

p′2

p′3

pt

p6

p7 p8

p′9

p′′9

▶

a

b

c

d

e

■

Fig. 7: Overly complex model discovered alternatively to the model
in Fig. 3.

using LP-CIPR. Such improvements are highly relevant for
a discovery technique’s practical application. The speedup
for artificial event logs is only minor, but the runtime is
already low there. Crucially, we can abort the search prema-
turely in some instances, e.g., for the Teleclaims log and
τ ∈ {0.5, 0.6, 0.7, 0.8}, resulting in an improvement of two
seconds (81%) on average. There are even more significant
improvements compared to LP-CIPR, not only in cases where
we abort prematurely, when increasing the maximum depth of
the CT.

VI. DISCUSSION

This section discusses the problems of our approach, com-
pares the eST-Miner (with our extensions) to other discovery
techniques, and explores its limitations.

a) Challenges: Experiments show that, although free of
any implicit places (after applying post-processing), models
discovered using the ETC-based composer sometimes are
overly complex (see Fig. 6c). The reason for that is that the
choice of places kept in the final model heavily depends on
the proposal order of candidate places: Looking back at the
example in Section IV d, if we propose the fitting places in a
different order, we may discover the model shown in Fig. 7
which is overly complex compared to the one in Fig. 3 and
thus not desirable.

b) eST-Miner in Process Discovery: In this subsection,
we use the Delta variant of the eST-Miner [12] in combination
with the ETC-based composer. It not only proposes fewer

log E A H I S
HD2017 0.983 0.354 0.952 0.916 0.962
RTFM 0.966 - 0.974 0.895 0.979
Sepsis 0.731 - 0.829 0.724 -
Repair 0.826 0.310 0.757 0.820 0.848
Reviewing 0.809 0.877 0.999 0.877 0.959
Teleclaims 0.962 - 0.976 0.959 1
NPFS 0 0.5 0.444 0 0.391

Fig. 8: Comparison of the best F1-scores of the models discovered
by different process discovery techniques: eST-Miner (E), Alpha (A),
Heuristic (H), Inductive (I), and Split Miner (S). The bottom row
(NPFS) shows the fraction of models we discovered (per technique)
that do not have any possible firing sequence. Thus, not all discovered
models satisfy the requirements to compute alignment-based fitness
(within 2 hours).

places and therefore improves the simplicity of the discovered
models, but it also guarantees that they can perfectly replay at
least a fraction of τ traces. We perform a grid search across
the parameters τ and δ and limit d = 4. We select the best
model by choosing the simplest one among those that have
the highest F1-scores. We then compare its quality to the best
models discovered by varying the parameters of the Alpha,
Heuristic, Inductive, and Split Miner. We exclude algorithms
based on region theory from this comparison because they are
too time-consuming. Note that a detailed comparison of the
models’ quality is beyond the scope of this work, we focus
on improving performance.

When using the ETC-based composer, the discovery takes
at most 13 seconds for the Sepsis event log. For the artificial
logs, the discovery takes less than two seconds. Thus, we can
discover high-quality models within a competitive amount of
time: The Alpha, Heuristic, Inductive, and Split Miner only
take several seconds to discover process models on all tested
event logs. As stated above, algorithms based on region theory
are much more time-consuming.

Figure 8 shows the quality of the best models discovered
by each technique. In five out of six cases, the eST-Miner can
discover better models than the Inductive and Alpha Miners.
Although the quality of the best models discovered by the
eST-Miner is high, the Heuristic and Split Miner can discover
models that score slightly better concerning the F1-score in
most instances. However, unlike the eST-Miner, they fail to
provide guarantees: Many of the models we discovered do not
have any possible firing sequence (see Fig. 8). Furthermore,
they are more time-consuming to analyze algorithmically and
by humans because they contain many silent transitions. The
quality of the models discovered by the eST-Miner, particu-
larly precision, is possibly impacted by their representational
bias: In the absence of silent transitions and duplicate labels,
repetitions and skips are modeled by self-loops.

Figure 9 shows the model discovered by the eST-Miner on
the well-known RTFM event log. The eST-Miner balances well
between fitness and precision while being able to handle noise
and infrequent behavior. In [12], we show that for the Sepsis
event log, we can discover a model that contains complex
control-flow structures the inductive miner cannot discover.

Send
Fine

Insert Fine
Notification

Add
Penalty

Send for
Credit

Collection

PaymentCreate
Fine

Fig. 9: Best Model discovered by the Delta variant of the eST-Miner
on the RTFM event log. For reasons of simplicity, we have removed
all activities that are not part of any possible firing sequence.

However, due to the challenges pointed out in Sec. VI a, when
using the ETC-based composer, the model is of comparable
quality but more complex.

c) Limitations: The runtime of the eST-Miner heavily
depends on the size of the CT and, therefore, on the choice
of d and the number of activities contained in the event log.
Previously, when given τ = 0.5 and the Sepsis event log
as input, and when limiting the depth of the CT to a greater
depth than before (d = 7), we have been unable to discover
a process model within two hours using the eST-Miner and
the fastest available IPR technique (LP-CIPR). Now, using
the ETC-based composer, the discovery takes approximately
28 minutes. However, on a much bigger event log, e.g., the
one used in the BPI-challenge in 2019 [23], which contains
over 1.5 million events over 44 (unique) activities, we are still
unable to discover a process model efficiently when limiting
the depth of the CT to d = 4 for any value for τ < 1.

VII. CONCLUSION AND FUTURE WORK

The ETC-based composer recalculates the precision of the
expanding model during the discovery efficiently regarding
runtime and memory. This enables a place classification strat-
egy to avoid adding implicit places to the expanding model.
Additionally, we can abort the search once the precision of the
model reaches a user-definable threshold. In instances where
the eST-Miner has previously been unable to discover a model
within two hours, we can now discover models notably more
efficiently. Thus, the eST-Miner becomes a competitive choice
for process discovery on mid-sized real-life event logs. We can
discover high-quality models in a reasonable amount of time
while guaranteeing user-definable minimal fitness.

Apart from its ability to avoid implicit places, the ETC-
based composer extends the discovery with information on
precision which we can use in future work to extend the
eST-Miner further, e.g., by pruning the search space. Some
problems of our approach are yet to be solved: We need
to investigate why some implicit places remain undetected
when using the proposed heuristics if we consider non-fitting
log traces. Furthermore, we would like to explore different
(precision-guided) heuristics to change the search space’s
traversal order to improve the simplicity of the discovered
models and other quality aspects. Lastly, it could be worth
exploring whether efficiently (re)calculating precision while
incorporating non-fitting log traces, as presented in this work,
can be used for conformance checking or to improve other
process discovery techniques.

REFERENCES

[1] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. Knowl. Data
Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

[2] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discover-
ing block-structured process models from event logs - A constructive
approach,” in Petri NETS 2013, Proceedings, ser. LNCS, J. M. Colom
and J. Desel, Eds., vol. 7927. Springer, pp. 311–329.

[3] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der
Aalst, “Genetic process mining: an experimental evaluation,” Data Min.
Knowl. Discov., vol. 14, no. 2, pp. 245–304, 2007.

[4] A. J. M. M. Weijters and J. T. S. Ribeiro, “Flexible heuristics miner
(FHM),” in CIDM 2011, Proceedings. IEEE, pp. 310–317.

[5] A. Augusto, R. Conforti, M. Dumas, and M. L. Rosa, “Split miner:
Discovering accurate and simple business process models from event
logs,” in ICDM 2017, Proceedings, V. Raghavan, S. Aluru, G. Karypis,
L. Miele, and X. Wu, Eds. IEEE Computer Society, pp. 1–10.

[6] J. Carmona, J. Cortadella, and M. Kishinevsky, “A region-based al-
gorithm for discovering Petri nets from event logs,” in BPM 2008,
Proceedings, ser. LNCS, M. Dumas, M. Reichert, and M. Shan, Eds.,
vol. 5240. Springer, pp. 358–373.

[7] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and
A. Serebrenik, “Process discovery using integer linear programming,” in
Petri NETS 2008, Proceedings, ser. LNCS, K. M. van Hee and R. Valk,
Eds., vol. 5062. Springer, pp. 368–387.

[8] L. L. Mannel and W. M. P. van der Aalst, “Finding complex process-
structures by exploiting the token-game,” in PETRI NETS 2019, Pro-
ceedings, ser. LNCS, S. Donatelli and S. Haar, Eds., vol. 11522.
Springer, pp. 258–278.

[9] L. L. Mannel, R. Bergenthum, and W. M. P. van der Aalst, “Removing
implicit places using regions for process discovery,” in Petri NETS 2020,
ATAED Workshop Proceedings, ser. CEUR Workshop Proceedings,
W. M. P. van der Aalst, R. Bergenthum, and J. Carmona, Eds., vol.
2625. CEUR-WS.org, pp. 20–32.

[10] F. Garcı́a-Vallés and J. M. Colom, “Implicit places in net systems,” in
PNPM 1999. IEEE Computer Society, 1999, pp. 104–113.

[11] J. Munoz-Gama and J. Carmona, “A fresh look at precision in pro-
cess conformance,” in BPM 2010, Proceedings, ser. LNCS, R. Hull,
J. Mendling, and S. Tai, Eds., vol. 6336. Springer, 2010, pp. 211–226.

[12] L. L. Mannel and W. M. P. van der Aalst, “Discovering process models
with long-term dependencies while providing guarantees and handling
infrequent behavior,” in Petri NETS 2022, Proceedings, ser. LNCS,
L. Bernardinello and L. Petrucci, Eds., vol. 13288. Springer, pp. 303–
324.

[13] W. M. P. van der Aalst, V. A. Rubin, H. M. W. Verbeek, B. F. van
Dongen, E. Kindler, and C. W. Günther, “Process mining: a two-step
approach to balance between underfitting and overfitting,” Softw. Syst.
Model., vol. 9, no. 1, pp. 87–111, 2010.

[14] L. Tacke genannt Unterberg, “SPECpp-Framework,” URL: https://
github.com/leahuh/specpp, (Accessed: 2023-09-03).

[15] H. Verbeek, J. Buijs, B. Dongen, and W. Aalst, “ProM 6: The Process
Mining Toolkit,” in Proc. of BPM Demonstration Track 2010, ser. CEUR
Workshop Proceedings, M. L. Rosa, Ed., vol. 615, 2010, pp. 34–39.

[16] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and
W. M. P. van der Aalst, “Alignment based precision checking,” in BPM
2012 Workshops, Revised Papers, ser. LNBIP, M. L. Rosa and P. Soffer,
Eds., vol. 132. Springer, pp. 137–149.

[17] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second
Edition. Springer, 2016.

[18] M. Polato, “Dataset belonging to the help desk log of an Italian
Company,” 7 2017.

[19] M. de Leoni and F. Mannhardt, “Road traffic fine management process,”
02 2015.

[20] F. Mannhardt, “Sepsis cases - event log,” 01 2016.
[21] W. van der Aalst, “Event logs and models used in process mining: Data

science in action (2016),” URL: https://processmining.org/old-version/
event-book.html, (Accessed: 2023-09-03).

[22] W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen,
“Replaying history on process models for conformance checking and
performance analysis,” WIREs Data Mining Knowl. Discov., vol. 2, no. 2,
pp. 182–192, 2012.

[23] B. van Dongen, “Bpi challenge 2019,” 2019.

https://github.com/leahuh/specpp
https://github.com/leahuh/specpp
https://processmining.org/old-version/event-book.html
https://processmining.org/old-version/event-book.html

	Introduction and Related Work
	Preliminaries
	eST-Miner
	ETC-Based Composer
	Evaluation
	Discussion
	Conclusion and Future Work
	References

