
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Tuning Machine Learning to Address
Process Mining Requirements
PAOLO CERAVOLO1(Member, IEEE), SYLVIO BARBON JUNIOR2, ERNESTO
DAMIANI3(Senior member, IEEE) , AND WIL VAN DER AALST.4(Senior member, IEEE)
1Computer Science Department, University of Milan, Italy
2Department of Engineering and Architecture, University of Trieste, Italy
3Department of Electrical Engineering and Computer Science, Khalifa University, UAE
4Chair of Process and Data Science, RWTH Aachen University, Germany

Corresponding author: Sylvio Barbon Junior (e-mail: sylvio.barbonjunior@units.it).

ABSTRACT Machine learning models are routinely integrated into process mining pipelines to carry out
tasks like data transformation, noise reduction, anomaly detection, classification, and prediction. Often, the
design of such models is based on some ad-hoc assumptions about the corresponding data distributions,
which are not necessarily in accordance with the non-parametric distributions typically observed with
process data. Moreover, the learning procedure they follow ignores the constraints concurrency imposes
on process data. Data encoding is a key element to smooth the mismatch between these assumptions but its
potential is poorly exploited. In this paper, we argue that a deeper understanding of the challenges associated
with training machine learning models on process data is essential for establishing a robust integration of
process mining and machine learning. Our analysis aims to lay the groundwork for a methodology that
aligns machine learning with process mining requirements. We encourage further research in this direction
to advance the field and effectively address these critical issues.

INDEX TERMS Process Mining, Machine Learning, Non-parametric distribution, Concurrency, Non-
stationary, Zero-shot learning, Encoding, Training

I. INTRODUCTION

Process Mining (PM) is an established discipline rooted in
data mining and business process management. The use of
traditional PM tasks such as process discovery and confor-
mance checking is now commonplace in many organiza-
tions [1, 2]. The benefits of integrating PM with traditional
process monitoring, bringing automation, transparency and
efficiency to the forefront, are now widely recognized [3].
However, the last decade has witnessed a surge of new in-
sights from the field of artificial intelligence that has captured
the attention of the PM research community (Imran et al.,
2023). Figure 1 illustrates the key steps in applying data
science to PM. Data from the event logs of information
systems is extracted and prepared for process discovery and
conformance checking, the combined output of these tasks is
used for predictive monitoring and action-oriented decision
making. Artificial intelligence enhances these processes by
facilitating various downstream operations. Currently, there
is a notable focus on leveraging Large Language Models
(LLM) to seamlessly interface PM algorithms with natural
language [4, 5, 6]. As illustrated in point (3) of Figure 1. But

in today’s practice, is ad-hoc Machine Learning (ML) models
that are routinely integrated into PM pipelines, performing
various tasks that are today part of PM libraries [7]. Figure 1
point (1) highlights data transformation, noise reduction, and
feature engineering. Figure 1 point (2) mentions prediction,
simulation, and recommendation. Our focus in this paper is
on consistent procedures to train ML models for their ad-hoc
integration into PM pipelines.

For example, ML is playing a key role in the interface
between PM and sensor platforms. Advances in sensing tech-
nologies have made it possible to deploy distributed mon-
itoring platforms capable of detecting fine-grained events.
The granularity gap between these events and the activities
considered by classic PM analysis has often been bridged
using ML models [8, 9] that compute virtual activity logs,
a problem which is also known as log lifting [10]. ML has
been proposed as a key technology to strengthen existing
techniques, for example, using trace clustering to reduce the
diversity that a process discovery algorithm must handle in
analyzing an event log [11, 12, 13, 14], to simplify the discov-
ered models [15, 16, 17], or to support real-time analysis on

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Act

Predict

Extract

Discover

Check

Process
Mining

What is really going on?

Where are our execution gaps?

What should we change?

Natural Language
Interface

Predict, Simulate,
Recommend

Transform, Reduce, Learn1

2

3

FIGURE 1. The PM tasks and their relation to ML

event streams [18, 19, 20]. ML is adopted to apply predictive
models to the executing cases of a process. This research
area, known as predictive process monitoring, exploits event
log data to foresee future events, remaining time, or the
outcome of cases, in support of decision making [21, 22, 23].
Root cause analysis [24] and data explainability [25] are
other tasks that can be applied to event log data using
ML techniques, in order to improve our understanding of
a business process. ML models have also been used in
addition to (or in lieu of) classic linear programming [26]
to optimize business processes’ resource consumption and
to provide insights to process re-design [27]. Computational
support for PM appears to align with that of ML models from
a technological standpoint [28, 29, 30]. This convergence
might suggest a straightforward integration of these fields.

However, in practice, this integration is far from straight-
forward. When mapping PM tasks to ML tasks, it becomes
imperative to construct training functions and select hyper-
parameters guided by business process-specific assumptions.
Many of these assumptions stem from the inherent charac-
teristics of human social systems. For instance, it is widely
recognized that process variants follow non-parametric dis-
tributions [31]. In contrast, ML models often benefit from
data normality, and skewed data distributions can introduce
bias into their predictions.

Furthermore, the conventional ML perspective on event
log data often oversimplifies the reality. Properly encoding
the procedural nature of event log traces poses significant
challenges. Frequently, the sequence of executed events is
represented solely by a fixed-length prefix. Even more in-
tricate is the encoding of concurrency and the interactions
that govern events within a business process. The process of
encoding event log data into a feature space compatible with
ML algorithms is a pivotal design choice. It has profound
implications for sample complexity, data distribution, and
the relevance of features for analysis purposes. This includes
tasks like detecting concept drift and supporting zero-shot
learning [32].

Today, much of the research on integrating ML with PM
focuses on developing ML models to attain high performance
in specific business process management scenarios. Less

attention has been paid to designing a general methodology
to select and adapt ML models based on the nature of the PM
problem, taking into account the specific properties of the
process data. We argue that, when using ML models in PM
pipelines, it is important to prevent any mismatch between the
assumptions on input data underlying the ML models and the
information captured the event logs used to feed them [33].
Arbitrarily selecting algorithms leads to unfair evaluation and
sub-optimal solutions. For example, a given model cannot
be compared with another if their implementations consider
different feature spaces [34]. It is also important to make sure
that ML models are exposed to process-specific information,
such as the processes’ control-flow constraints. In this paper,
we attempt to identify some of the causes of this mismatch
and suggest how to remove them, with the aim of fostering
research on a sound methodology to address the integration
between PM and ML.

We believe that an effort on these aspects must be jointly
made by the PM and ML research communities. This call to
collaboration is valid in general but particularly in business
process management, where data analysis has to leave the
safe harbor of experimental science to sail into the open sea
of decision science. In this paper, we discuss the challenges in
a specific direction, i.e., from PM to ML. More specifically,
in Section II we discuss the issues leading to the PM-to-
ML mismatch. In Section III we introduce some basic PM
notions. In Section IV we link them to ML principles. Section
V clarifies the discussion by presenting a couple of samples.
Section VI proposes research lines for advancing in the di-
rection of a general methodology that integrates ML models
into PM pipelines. Section VII closes the paper.

II. THE ISSUES LANDSCAPE
An important issue underlying our discussion is how to
account for the specificity of process data in ML model se-
lection and (hyper-) parameter tuning. Of course, processing
event logs presents all the usual challenges of data prepro-
cessing and preparation. We will not discuss standard data
preprocessing techniques such as outlier removal [35, 36],
noise filtering [37, 38], and missing entry recovery [39],
as these can be addressed by current statistical techniques.
Rather, we will focus on issues specific to process data,
including its statistical distribution and event concurrency.
Indeed, careless assumptions about the encoding of input data
can lead to biased models with reduced generalizability.

A. DATA DISTRIBUTION

When choosing an ML model for a PM task, it is tempting
to assume that the process data fed to the model will follow
a normal distribution. Indeed, data normality is beneficial
for many types of ML models. Models like Gaussian, naive
Bayes, logistic and linear regression explicitly rely on the
assumption that the data distribution is bi-variate or mul-
tivariate normal. Many phenomena of interest for business
process analysis, such as the duration of some activities,

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

are known to follow normal or log-normal distributions 1.
For other PM data, however, assuming normality is not
always advisable. For example, process variants are specific
activity sequences that occur through a process from start
to end. Variants’ occurrence in an activity log is typically
following a non-parametric trend that complies with the
Pareto principle [31]. A normal distribution cannot always
be assured also for the pairwise dependency relationship
between activities, a key statistical information exploited
by process discovery algorithms [40]. Indeed, in this case,
the normality assumption has been verified for some event
logs, including some popular benchmarks we will discuss
in Section V (the “Road traffic fines” [41] and “Receipt
phase of an environmental permit application process” [42]).
However, the normality of dependencies in less regular or
not observed in “spaghetti” like processes, as in the “BPI
Challenge 2015 Municipality 1”[43]. There are reasons to be-
lieve that dependencies in loosely specified logs may follow
some power-law trend as well, and require careful parameter
fitting in statistical analysis. Imbalanced data sets or non-
stationary environments may also cause serious difficulties.
For example, if the training data is skewed towards a par-
ticular class or outcome, the model may be more likely to
predict that class or outcome even when it is not the most
likely one. Independent component analysis [44] provides
ways to reveal Gaussianity and non-Gaussianity. Of course,
non-normal distributions can be transformed to normal ones
using Box-Cox transformations [45], and unbalanced data
sets can be balanced [46, 47] but, as we shall see, such data
transformations should be applied with caution, as they have
consequences on the performance of the models.

Of course, an explicit estimate of the data distribution
may not even be necessary. Some ML models work well
also in the case of non-normally distributed data. Simple yet
effective ML models like decision trees and random forests
do not assume any normality and work reasonably well on
raw event data. Also, linear regression is statistically effective
if the model errors are Gaussian, an assumption less stringent
for process data than the normality of the entire data set.
Kernel methods, e.g., Gaussian processes and support vector
machines, provide flexible models that are practical to work
with but require proper hyperparameter variables to fit the
data.

B. CONCURRENCY
Another area of focus is concurrency. How to use ML to pre-
dict the behavior of highly concurrent systems and processes
is still an open problem, and research in the AI community
has only scratched the surface. Most ML approaches view
event logs as merely sequential data [48], rather than se-
quential manifestations of a concurrent system. This can lead
to under-sampling of the log space and insufficient training
to handle seemingly out-of-order event sequences [49]. To

1See, for instance, the “lunch break” duration dis-
tributions at https://www.statista.com/statistics/995991/
distribution-of-lunch-breaks-by-length-in-europe/

address this issue, it is important to provide ML models with
control flow information about the iterative or concurrent
execution of tasks as additional context to the event logs. One
approach that has been explored is the use of Bi-directional
Long-Short Term Memory (BiLSTM) architectures. Thapa
et al. [50] used BiLSTM to detect concurrent human ac-
tivities in a smart home environment. In addition, Thapa et
al. [51] adapted the LSTM algorithm into a synchronous
algorithm called sync-LSTM, enabling the model to han-
dle multiple parallel input sequences and generate multiple
synchronized output sequences. The field of predicting the
behavior of highly concurrent systems using ML is rapidly
evolving, as evidenced by the recent review by Neu et al.
[52]. Researchers are actively exploring new techniques and
methodologies to improve the understanding and prediction
of concurrency in various domains.

C. NON-STATIONARY BEHAVIOUR
Even when the process data distributions can be fitted pre-
cisely, running processes, especially the ones involving re-
sources that learn and age like people and equipment, change
over time. This gives rise to non-stationary behavior. This
problem is a critical one since ML models’ learning capac-
ity decreases under non-stationary conditions [20].Concept
drift detection techniques are therefore needed. In traditional
data mining applications, concept drift is identified when a
concept, i.e., the relationship between a data instance and its
associated class, changes at two different points in time [53].
In PM, many aspects of drift should be carefully monitored,
including the appropriateness of the event trace with respect
to the model, the dependency relationship between activities,
and the interdependence between the activities and the avail-
able resources or cycle time. Concept drift can compromise
the accuracy of PPM models by causing degradation in per-
formance due to evolving patterns and dynamics within the
process data. Each aspect should be appropriately encoded
and monitored using statistical analysis [54].

D. LLM FOR ZERO-SHOT LEARNING
Zero-shot learning involves identifying solutions that were
not encountered during training [55]. This approach uses
unstructured auxiliary information encoded during training
instead of explicit labels. The system learns to associate new
input elements with encodings that have the highest similarity
in terms of auxiliary information, allowing it to propose
results not seen during training. In PM, where labeled pro-
cess data may be limited or inaccessible, zero-shot learning
becomes critical.

LLMs, exemplified by Generative Pretrained Transformers
(GPT), have emerged as fundamental models for zero-shot
learning applications [56]. Pre-trained on rich linguistic data,
LLMs capture complex patterns, context, and semantics in
natural language. Organizations can use LLMs for various
machine learning tasks without the need for extensive task-
specific training datasets, streamlining development and in-
creasing efficiency. LLMs’ ability to understand prompts and

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.statista.com/statistics/995991/distribution-of-lunch-breaks-by-length-in-europe/
https://www.statista.com/statistics/995991/distribution-of-lunch-breaks-by-length-in-europe/

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

generate human-like text or multimedia data can also greatly
simplify user interaction with PM algorithms.

Integrating LLMs into PM shifts the focus from analysis
to synthesis of activities to achieve desired goals. LLMs
can analyze logs, couple them with other data, and suggest
operational actions to achieve goals. The challenge lies in
learning the mapping between log prefixes and desired out-
comes in the latent space constructed by GPT algorithms.
One promising approach is to integrate LLMs with diffusion
models, which are capable of learning conditional probability
distributions in a latent space [57]. While caution is required
due to training time constraints with current diffusion models
designed for 3D representations, they can help probabilisti-
cally map latent space data points corresponding to known
process activities to points encoding the process sequence in
BPM contexts [58].

E. DATA ENCODING
ML algorithms are trained on collections of examples, each
of which is encoded as a vector in a multidimensional fea-
ture space. Appropriate encoding methods can reduce the
complexity of the samples and the space or time complexity
of the model [59]. In PM, capturing the relationships be-
tween different process dimensions is critical because event
logs contain information from several complementary dimen-
sions, such as event data, execution traces, resource usage,
and cycle time.

Each event in PM can be described as a multidimensional
object whose value to process execution lies in its interdepen-
dence with other events, resources, and time constraints. Cap-
turing constraints due to alternative, optional, or mandatory
dependencies between events is essential. Coding methods
should also identify features subject to concept drift, and
covariance control [60] is necessary to account for hidden
relationships between different dimensions. Surprisingly, the
PM community has devoted relatively little effort to inves-
tigating the impact of encoding methods on PM pipeline
performance. Comparative studies are scarce, with only a few
examples, such as [61, 62, 63], available for reference.

In practice, basic techniques such as one-hot coding [64],
frequency-based coding [13], and general statistics for nu-
merical attributes [22] are often used. Sequential order is
captured using text mining techniques [65, 66], k-gram en-
coding [12], and array representations [67]. While these tech-
niques capture some control flow information, they may not
fully account for concurrency. To better capture dependencies
between activities, PM has turned to techniques from other
domains, such as text mining [65, 66] and graph embed-
ding [68, 69]. Graph embedding methods, while outperform-
ing other techniques, come with increased time complexity
and a loss of transparency in the resulting latent space [70].
Recent trends focus on encoding control-flow information
into feature spaces, representing parallelism or optionality
of activities [71, 72]. Emerging approaches include multi-
perspective views of traces that combine both data-flow
and control-flow [73, 74]. Additionally, inter-case encoding,

capturing relationships between different cases, has been
explored [75]. However, the application of these advanced
encoding techniques often remains domain-dependent.

Moreover, the encoding procedures used to map PM data
into ML models are poorly documented in the PM literature.
The chosen feature space is often implicitly defined, specific
encoding steps are unclear, and the actual code used is not
disclosed. Ablation studies, which examine the impact of
removing parts of the data representation on performance,
are still the exception rather than the rule. We argue that
formalizing the encoding procedure can provide a rationale
for this crucial design choice, aligning it with specific analyt-
ical goals and assumptions relevant to the algorithms under
consideration. In section IV, we present a proposal for such
a formalization.

III. BASIC NOTIONS IN PM
To make this paper self-contained, in this section we recall
some of the basic concepts of PM. An event log is a collection
of events generated in a temporal sequence and stored as
tuples, i.e., recorded values from a set of attributes. Events
are aggregated by case, i.e., the end-to-end execution of a
business process. For the sake of classification, all cases
following the same trace, i.e., performing the same sequence
of business process activities, can be considered equal as they
belong to the same process variant.
Definition 1 (Event, Attribute): Let Σ be the event universe,
i.e., the set of all possible event identifiers; Σ∗ denotes the set
of all finite sequences over Σ. Events have various attributes,
such as timestamp, activity, resource, associated cost, and
others. Let AN be the set of attribute names. For any event
e ∈ Σ and attribute a ∈ AN , the function #a(e) returns the
value of the attribute a for event e.

The set of possible values of each attribute is restricted
to a domain. For example, #activity : Σ → A, where A
is the set of the legal activities of a business process, e.g.
A = {a, b, c, d, e}. If e does not contain the attribute value
for some a ∈ AN , then #a(e) = ⊥. It follows that an
event can also be viewed as a tuple of attribute-value pairs
e = (A1, ...,Am), where m is the cardinality of AN .
Definition 2 (Sequence, Sub-sequence): In a sequence of
events σ ∈ Σ∗, each event appears only once and time is
non-decreasing, i.e., for 1 ≤ i ≤ j ≤ |σ| : #timestamp(ei) ≤
#timestamp(ej). Thus ⟨e1, e2, e3⟩ denotes three subsequent
events. A sequence can also be denoted as a function generat-
ing the corresponding event for each position in the sequence:
σ(i → n) 7→ ⟨ei, ..., en⟩, with en the last event of a sequence.
In this way, we can define a sub-sequence as a sequence
σ(i → j) where 0 ≤ i < j < n.
Definition 3 (Case, Event Log): Let C be the case universe,
that is, the set of all possible identifiers of a business case
execution. C is the domain of an attribute #case ∈ AN .
We denote a case c ∈ C as ⟨e1, e2, e3⟩c, meaning that all
events are in a sequence and share the same case. For a
case ⟨e1, e2, e3⟩c we have #case(e1) = #case(e2) = #case(e3)
= c. An event log L is a set of cases L ⊆ Σ∗ where each

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

event appears only once in the log, i.e., for any two different
cases, the intersection of their events is empty. When the case
identifier is not used as a grouping attribute, an event log L̂
can be simply viewed as a set of events, thus L̂ ⊆ Σ.
Definition 4 (Variant, Event Log): The cases c1 and c2
follow the same variant if ⟨e1, e2, e3⟩c1 and ⟨e4, e5, e6⟩c2
have the same sequence of activities, e.g. #activity(e1) =
#activity(e4) = a, #activity(e2) = #activity(e5) = b, #activity(e3)
= #activity(e6) = a. We call this sequence a trace. This implies
an event log can also be viewed as a multi-set of traces.
We denote an event log as a multi-set by writing L =
[⟨a, b, c⟩3, ⟨a, b, a⟩11, ⟨a, c, b, a⟩20]. The superscript number
of a trace details the number of cases following this variant.
For example, ⟨a, b, a⟩11 means we have a variant with 11
cases following the trace ⟨a, b, a⟩.

IV. A FORMALISATION OF PM DATA ENCODING
Despite the variety of encoding methods discussed in Sec-
tion II, we argue that available approaches fail to capture
key process-level information such as the interplay between
cases, or between activity execution and availability of re-
sources. Most of the encoding methods in use today focus on
the control-flow, according to an inter-case view. Methods
focusing on the intra-case view have been proposed but are
rarely applied [76]. Similarly, proposals for encoding the
data-flow [77] are available in the literature. The research pa-
per of [78] presents a comprehensive survey and benchmark-
ing of 27 encoding methods, highlighting their expressivity,
scalability, correlation, and domain agnosticism. Another
recent trend is stressing the need of capturing constraints
connected to concurrency [71, 72]. In this section, we discuss
in detail how PM data is encoded to suit ML models’ training
procedures. For the sake of space, we limit our discussion to
supervised learning, probably the most widely applied ML
approach. Generally speaking, supervised techniques train
models to compute functions f : Rd → Rd′

where the input
is a d-dimensional vector x and the output is a d′-dimensional
vector y. Each dimension is a measurable piece of data,
a.k.a feature or attribute. For popular ML tasks, the output is
mono-dimensional. In regression, the output is a real-valued
scalar value, while in classification, the output is a natural
number indexing a “class”. However, nothing prevents hav-
ing multidimensional vectors in output. In structured learn-
ing, input and output may be a structure like a block matrix,
divided into sub-matrices to represent algebraic entities such
as graphs, tensors, etc. The training process to approximate
f requires a set of examples {(x1,y1), ..., (xn,yn)} where
inputs and outputs are paired. We can then define this training
set as an example matrix X := [x1, ...,xn]

⊤ ∈ Rn×d and
a label matrix Y := [y1, ...,yn]

⊤ ∈ Rn×d′
, given by the

number n of vectors and the number d of dimensions in the
vector space.

In their original format, PM log entries do not belong to
a vector space. This is because the events in an event log
are grouped by case and this grouping is essential to keep a
connection with business process execution.

Our goal here is to formalize the procedure to encode the
cases into vectors in a way that can be used as a template to
describe the specific encoding chosen for a PM application.
Our starting point is L̂ ⊆ Σ, a log view as a set of event iden-
tifiers. This representation can be mapped into a vector space
X by applying a suitable transformation function grouping
event by case and returning vectors of size equal to or less
than the event size.
Definition 5 (Encoding function): Given an event log L̂ ⊆
Σ, an encoding function Γ : Σ → Xn×d represents L̂ in
the vector space X. The encoding function Γ is valid if it
defines a transformation where two elements of Σ, ei and ej
are aggregated on the same element x ∈ Rd if #case(ei) =
#case(ej), with n ≤ |C|, i.e. the vectors in X are a subset of
the cases in C.

We propose a canonical representation of Γ as a com-
position of a filtering function π, a dimensioning function
ρ, a grouping function η, and a valuation function ν, i.e.,
Γ = ν ◦ η ◦ ρ ◦ π. One or more of these components can
implement the identity function with null effects.

In particular, π : Σ → Σα imposes a condition on the
events’ attributes or the attributes’ values, ∀e ∈ L̂ ∧ a ∈
AN : P (#a(e)), where P is a predicate, thus |Σα| ≤ |Σ|.
For example, filtering the events by their timestamp ∀e ∈ L̂ :
YYYY-MM-DD ≥ #timestamp(e) ≤ YYYY-MM-DD. The func-
tion ρ : Σα → D defines the dimensions of the vector space,
creating new dimensions based on a range of values in the
original dimensions or, less commonly, grouping multiple
dimensions into a single one. Often, the set D is the union of
multiple attribute domains, i.e. D = Ak=1∪Ak=2∪· · ·Ak=l.
The function η : Σα → Xn×d

α , with d = |D|, assigns to
Xα the values of the attributes in e and groups events by
case so that ∀x∀ak : xi,j = #ak(e) ⇐⇒ #ak(e) =
Dj ∧ #case(e) = ci. The number of elements in the vector
space equals the number of cases to include in the example
matrix, thus n ≤ |C|. Because the sets Σα and D can be view
as columnar matrices Mn×1

Σα
and Md×1

D , the size of Xα is
equal to MΣα

× M⊤
D , i.e. the set of events we selected with

π is multiplied by the dimensions we identified with ρ. It is
worth mentioning that, when grouping is applied, each vector
component becomes an array of attribute values rather than a
single value. The function ν aims at transforming these arrays
of attribute values into real-valued scalar values. We define
ν : Xn×d

α → Xn×d to clarify the components of the two
matrices are valuated differently.

For example, the basic one-hot encoding schema corre-
sponds to a null π, a ρ with D =

⋃l
k=1 Ak, an η for grouping

the events of a same case, and a ν : Xn×d
α → {0, 1}n×d,

returning xi,j = 1 if at least a value #ak(e) = Dj is
observed for the case #case(e) = ci, and 0 if not. The popular
activity profile schema [11] encodes an event log into a vector
of activity values by simply counting all events of a case that
include that activity. The encoding function maps the events
in L̂ into X by executing the four canonical transformations
as follows. First, it verifies to consider only events associated
with activity values ∀e ∈ Σ : #activity(e) ̸= ⊥. Then

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Cases Number of Variants Coverage of Cases

56482 1 37,6%
102853 2 68,4%
132758 4 88,3%
142926 7 95,0%
148887 17 99,0%
150270 131 99,9%
150370 231 100,0%

TABLE I. Managing Road Traffic Fines Event Log

it defines the dimensions of X with ρ so that D = A,
where A is the set of legal business process activities.
Third, it aggregates the data by case with η. Finally, it
performs the evaluation with ν, assigning the count of the
components in xi,j for each case ci. For instance, the log
L = [⟨a, b, c⟩3, ⟨a, b, a⟩11, ⟨a, c, b, a⟩20], is transformed in
the first matrix in 1 with π, in the second matrix with ρ, in
the third matrix in with η, to finally get the fourth matrix in 1
with ν.

e1
e2
e3
e4
e5
...

ab
c

a b c
a b c
a b c

[a, a] b ⊥
[a, a] b ⊥
...

1 1 1
1 1 1
1 1 1
2 1 0
2 1 0
...

 (1)

We believe that if the PM community would get used
to clarifying the definition of the following functions when
defining an encoding procedure, the literature will benefit
in terms of the comparability of the results. For example,
a data-fow approach will require clarifying the contribution
of the different dimensions in encoding cases. An intra-case
approach will require modifying the η function to encode
multiple cases into a single vector.

V. ILLUSTRATIVE EXAMPLES
We will now use two examples to illustrate the concepts
introduced above.

The first example refers to the real-live event log of
road traffic fines [41]. The events captured in the event
log include creating a fine notice, recording the penalty
amount, verifying if the payment is received, registering
an appeal to the prefecture, and others. The reader in-
terested in more details is referred to [79]. As illustrated
in Table I, the occurrence of trace variants follows a
Pareto distribution with only 4 variants covering more than
88% of the recorded cases and with 100 variants that
have a single occurrence. The most occurring variant is
⟨Create F ine, Send Fine, Insert F ine Notification,
Add Penalty, Send for Credit Collection⟩56482, the
second is ⟨Create F ine, Payment⟩46371, the third is
⟨Create F ine, Send Fine⟩20385, and so on.

Let us now try to develop predictive analytics on this event
log. For example, we could ask ourselves why certain cases
exhibit a duration that is significantly longer than others. To

study the problem, we are interested in searching for patterns
correlated to long duration. Using encoding, we can represent
the cases in the event log as vectors composed of categorical
data, such as the executed activities, and of numerical data
such as the number of penalties and the trace duration2.
A decision tree can then be used to highlight the factors
influencing case duration. We express it as a simple binary
problem: being below or above a threshold of 200 days.
Figure 2 illustrates the results we obtain. Figure 2a presents
a decision tree conforming to the case distribution observed
in the event log. The entire set of cases in L is encoded in
X . As a consequence, the most frequent variants take the
lion’s share of the examples used to train the decision tree.
Figure 2b presents the decision tree obtained by balancing
the case distribution among variants, oversampling those
variants with low occurrence. This is, for example, achieved
by creating X taking an equal number of occurrences to the
traces in L.

Because the split points of the tree are chosen to best
separate examples into two groups with minimum mixing,
the cases with low occurrence tend to be ignored. Indeed,
the tree in Figure 2a relies on the numeric feature amount to
decide on multiple split points. On the contrary, the tree in
Figure 2b defines the split points using categorical features
only. This is due to the fact that the variants not associated
with a penalty amount were quite rare, and by increasing
their representation for balancing the data set we prevented
the algorithm to use the penalty amount as a discrimination
feature.

It is important to note that, in general, we cannot say if
proactive balancing is better than using data as they are, and
even which is the correct balancing factor to be applied.
The strategy to be preferred strongly depends on our goal.
If we want to analyse an event log in order to identify
procedures that can be automated and learn the decision rule
to be used, our interest is in the frequent behaviour. The real
distribution of the event log, or even a distribution pruned
from rare examples [31], must address the learning procedure
we adopt. If our goal is anomaly detection [82] or root cause
analysis [83] rare examples have to be represented.

Our next example is related to the need of capturing con-
currency (Section II). While cases included in an event log
are described as sequences of activities, the behaviour they
describe should be interpreted differently based on the model
that generated them. To capture control-flow behaviour, one
needs to encode the dependency relationships in event logs.
By executing the Heuristic Miner algorithm [80] on the
“Road Traffic Fines” [41] event log, we observe alternative
paths can be followed to complete the process. If a case
includes the execution of the Payment activity, it will not
include Send Fine and the following activities. The same
algorithm applied to the “Artificial Patient Treatment” [81]
will reveal the concurrent execution of the Blood test,

2The methods used for encoding the event log in a vector space are avail-
able in the PM4PY library https://pm4py.fit.fraunhofer.de/documentation#
decision-trees

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://pm4py.fit.fraunhofer.de/documentation#decision-trees
https://pm4py.fit.fraunhofer.de/documentation#decision-trees

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Unbalanced event log (b) Balanced event log

FIGURE 2. Two decision trees generated from our sample event log. In 2a the data in input conforms to the case distribution
observed in the event log. As a consequence, the most frequent variants take the lion’s share and the numeric feature amount
decides multiple split points. In 2b data is balanced oversampling those variants with low occurrence. The split points in the
tree use categorical features only. The decision tree is an example of an algorithm significantly affected by uncritical training
using the case distribution of event logs.

X-ray scan, and Physical test activities. All these
activities are required to complete the diagnostic stage, ex-
cept for X-ray scan, which may be skipped, but the order
of execution is not relevant. Thanks to process models, PM
techniques do consider concurrency. Two sequences ⟨a, b, c⟩
and ⟨a, c, b⟩ can have the same conformance to the model if
the model describes b and c as concurrent activities, while
the conformance value will be different if b and c are in
sequence or relate to alternative paths. Unfortunately, most
ML models view event logs merely as sequential data. When
cases get encoded into a vector space, the inference the ML
model can produce is based on the distance in this space.
The distance between ⟨a, b, c⟩, and ⟨a, c, b⟩ is accounted in
the same way in the vector space, and we cannot differentiate
between the sequences based on the reference process model.

This limitation impairs capturing concurrent behaviour that
is not detected by simply matching the two sequences. In
terms of our example, an ML procedure could effectively
predict the lead time of a case knowing that the Payment
activity was executed. Training an ML algorithm to predict
the conformance to the diagnostic protocol of a delivered
treatment is more complex, and will require a higher amount
of training data, as the ML model needs to incorporate exam-
ples on the equivalence of the different orders of execution of
the Blood test, X-ray scan, and Physical test
activities. Encoding this equivalence in vector space spaces,
for example, defining suitable pictograms to feed a CNN, is
still an open challenge.

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a)

(b)

FIGURE 3. (a) The Heuristic Miner Algorithm [80] was used to discover a model from the “Road Traffic Fines” [41] event
log. The discovered model specifies alternative routes that can be followed to complete the process. In particular, executing
Payment or Send Fine implies the following alternative paths. (b) The Heuristic Miner Algorithm [80] is used to discover
a model from the “Artificial Patient Treatment” [81] event log. The discovered model specifies that Blood test, X-ray
scan, and Physical test are executed in parallel. Any order can be followed in executing these activities.

VI. TOWARD AN INTEGRATED METHODOLOGY

Guided by the above considerations about encoding, we will
now outline the strategy to be used to properly integrate
PM and ML. In the previous sections, we argued that when
PM tasks are mapped to ML tasks, PM-specific assump-
tions should drive the construction of training functions and
hyper-parameters selection. Simple ML classification and
regression algorithms model the data by a single Gaussian
grounded on mean and co-variance. On the other hand,
kernel methods like Gaussian Processes and Support Vector
Machines, have opened the possibility of flexible models
that are practical to work with, but require non-trivial hyper-
parameter tuning to fit behavioural data[84].

Figure 4 provides a synoptic view of mapping PM tasks
to ML ones. As an example of non-trivial mapping, let us
consider the non-linear relationship between data samples
and the expected outcomes addressed by robust ML algo-
rithms with adjusted hyper-parameters. At this point, linear
projections as PCA are not effective as t-SNE visualisation
[85] to obtain insights from the data. Other challenges with
moderate difficulty are related to label availability and im-
balanced scenarios [82]. In this case, semi-supervised ML
techniques and generative models can tackle the label issue,
as well as sampling or synthesising methods are the second
ones. Problems related to data quality, in which the difficulty
is to build an approximation to have a proper data distribution
accentuated, can be solved by enlarging the training data
and by a proper tuning of the ML algorithm. Alternatively,
the training process can be enriched using generative mod-
els [86]. To handle the difficulties outlined in Section I, when
using non-pictorial traces representation “process-friendly”
GANs can be considered, like Sequence GANs (SGANs),
in which the adversarial samples are designed from discrete
sequences, like events. The application of GANs is not
limited to data augmentation, as it can be used also for

improving data quality for process model generalisation [86].
Preliminary results are available on using GAN-generated
data to improve predictive tasks (e.g., lead time of incomplete
cases) under an adversarial framework [87].

Coming from non-stationary process behaviour, sampling
methods are a promising way to reduce the impact of non-
stationary distributions of event log data [88]. After bringing
the data to at least a near-stationary behaviour, the business
process can naturally change its pattern over time, leading to
a burdensome problem called concept drift [20, 54, 89, 90].
In dealing with this problem, a significant part of the PM
community has focused on detecting and managing its onset.
Regardless of the success of these attempts, we still consider
this problem an open issue, since the event data stream is
modelled as a complete trace stream, known from the start to
the end activity. In reality, the drift onset occurs at an arbitrary
position of the event stream, well before the endpoint is
reached and the rest of the trace is known. Some researchers
are addressing this information deficiency by using statistical
adaptations based on the Hoeffding Bounds [91]. In prin-
ciple, it is possible to rely on statistical assumptions about
the confidence interval of the data to make a decision on
the drift onset. In other words, it is possible to create ML
models and perform predictions and monitoring supported by
an approximated conjecture about the future, obtained from
the available event log data. The use of “stateful” ML models
with memory, in particular, Deep Learners based on the
LSTM architecture, could enable handling drifts. However,
this kind of challenge demands experienced ML practitioners
and a robust computational structure.

A. HYPER-PARAMETER TUNING

Once a class of ML models has been chosen, hyper-parameter
tuning must be performed to instantiate the ML model that
delivers the desired accuracy (and possibly some required
non-functional properties, like explainability). Searching the

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

En
co

di
ng

Process Mining

Machine Learning

Real-time Analysis

Business Process
 Management

Simpli�cation

Causality and Explanation

Classi�cation

Regression

Clustering (Association)

Discovery

Prediction and Simulation

Conformance Checking

Incomplete Traces

Visualisation

Au
to

 M
L

St
at

is
tic

al
 A

da
pt

at
io

n
(P

ar
et

o,
G

au
ss

ia
n,

 H
oe

ff
di

ng
)

Data (volume, balancing, quality)

Stationarity

Non-linearity

Concept Drift

H
id

de
n

M
ar

ko
v

M
od

el
s

Ka
lm

an
 F

ilt
er

in
g

Gaussianity

Cold Start

Outliers

Noise / Missing Entries

Imbalance

Label Availability (Scarce or
Absent)

Re
qu

ire
m

en
ts

Event Logs

Human Interaction

Ta
sk

s

SolutionsChallenges

Re
qu

ire
m

en
ts

Cu
re

nt
 Is

su
es

Non-Stationarity

Non-Gaussianity

Co
m

pl
ex

ity

Su
pe

rv
is

ed
 M

L

Se
m

i S
up

er
vi

se
d

M
L

Sa
m

pl
in

g/
Sy

nt
he

si
zi

ng

Trivial Average Hard Open Pre-processing Modeling Automation

Un
su

pe
rv

is
ed

 M
L

IC
A

t-S
N

E

PM with the usage of ML

De
ep

 L
ea

rn
in

g

Zero-Shot

Actions and Decision Making

Ta
sk

s

G
en

er
at

iv
e

G
au

ss
ia

n
N

et
w

or
ks

 (G
AN

)

PC
A

FIGURE 4. From task to task, an overview of PM and ML relationship

model space by trial and error can be burdensome. Auto-
mated Machine Learning (AutoML) is a reasonable alterna-
tive to tackle these problems grounded on sharing previous
knowledge for similar tasks. AutoML can help to handle the
classification problems called Zero-shot [92, 93] or Cold-
start [94], for which little context information (and even the
complete list of classes) may not be available at the start
of the training, by taking advantage of meta-features and
information on similar models, akin to how human experts
start an old-fashioned search for desirable models driven by
their experience on related tasks [95]. Some PM research
works based on AutoML discusses how to find a suitable PM
pipeline by recommending steps [14, 96, 97]. For example,
[96] proposed a solution to suggest the encoding method,
since the higher number of methods might lead to a tricky
selection. Furthermore, there are encoding methods able to
fit particular data. It is remarkable that traditional process
mining tasks can be leveraged when matched with intelligent
decision support approaches.

B. FINAL RECOMMENDATIONS
In this final section, we present a set of recommendations that
aim to be valuable for both PM practitioners and researchers.

1) RECOMMENDATION 1: Choose data representation
carefully
When working with PM data structures, it is crucial to
carefully translate them into a metric feature space that can be
manipulated by ML algorithms. Additionally, it is important
to preserve context information, such as control-flow, con-
currency, or inter-case constraints, which are essential for
process analysis. The choice of encoding techniques should
align with problem-specific goals and constraints.

2) RECOMMENDATION 2: Fit the data distributions
PM often deals with non-Gaussian, non-stationary distribu-
tions. To achieve optimal performance in production, it is ad-
visable to estimate the data distribution instead of relying on
the best Gaussian mix approximation. Building training sets
interactively poses a significant challenge in PM. Leveraging
ML approaches such as AutoML and Active Learning can
help reduce the manual burden and improve the process.

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

3) RECOMMENDATION 3: Consider zero-shot learning
When training machine learning (ML) models, the full set
of possible outcomes (the co-domain of f) may be only
partially known. In domains such as process optimization, the
costs of certain sequences may not be available during the
training of a regression model. Assessing the completeness
of the available information is essential when formulating
the problem to ensure the quality of the model inference.
Zero-shot learning, e.g. using LLMs, can support this goal.
However, the correct adaptation of their response to PM tasks
is still an open field.

4) RECOMMENDATION 4: Ensure minimum ML quality at
an early stage via constraints
As the estimation of data distribution converges over time, an
extended convergence period is unacceptable as it results in
a high model error during training. It is possible to impose
control flow constraints on ML models when they are known
in advance based on domain requirements and regulations.

5) RECOMMENDATION 5: Incorporate domain knowledge
Domain knowledge plays a critical role in effective PM.
Integrating domain-specific information and constraints into
ML models can significantly enhance their performance and
interpretability. It is important to actively involve domain
experts in the feature engineering and model validation pro-
cesses.

6) RECOMMENDATION 6: Evaluate model interpretability
PM tasks often require interpretable models to gain insight
into process behavior and make informed decisions. It is
essential to evaluate the interpretability of ML models and se-
lect algorithms that provide transparent explanations of their
predictions. This is especially important when dealing with
critical processes or compliance and regulatory requirements.

7) RECOMMENDATION 7: Continuously monitor and update
ML models
Process environments are dynamic, and changes over time
can affect the performance of ML models. Establishing a
monitoring and evaluation framework enables the assess-
ment of model performance and facilitates timely updates
when needed. Continuous learning and retraining of models
ensures their accuracy and relevance in evolving process
scenarios.

8) RECOMMENDATION 8: Share knowledge and best
practices
Promote knowledge sharing and collaboration within the PM
community. Encourage the dissemination of successful case
studies, research findings, and best practices to foster learn-
ing and advancement in the field. Engage in conferences,
workshops, and online forums to connect with with other
practitioners and researchers and stay abreast of the latest
developments in PM.

By following these recommendations, PM practitioners
and researchers can improve the effectiveness and efficiency
of process mining applications, enabling better process un-
derstanding, optimisation and decision-making.

VII. CONCLUSIONS
The growing use of ML methods in PM requires a robust and
comprehensive methodology for integrating these algorith-
mic techniques. The purpose of this paper was to address the
challenges associated with ML/PM mapping and to identify
the basic principles for establishing a methodological foun-
dation in this area. Through the analysis conducted in this
study, we have provided a set of recommendations that can
guide practitioners and researchers in effectively applying
ML to PM tasks. These recommendations cover various
aspects of the PM process, from data representation to model
evaluation and monitoring. Table ?? presents a summary of
the proposed recommendations, which we believe will serve
as a valuable starting point for further advances in the field.
By following these recommendations, PM practitioners and
researchers can improve the effectiveness and efficiency of
their ML-driven process mining applications. It is impor-
tant to recognize that the field of ML in PM is constantly
evolving, and new challenges and opportunities will continue
to emerge. As such, ongoing research and collaboration
between practitioners and researchers is essential to refine
and extend the proposed recommendations. By adopting a
methodological foundation that integrates ML techniques
into PM, we can unlock the full potential of process min-
ing and harness the power of data-driven insights to drive
process understanding, optimization, and decision making
across multiple domains and industries.

REFERENCES
[1] Deloitte, “Global process mining sur-

vey,” Deloitte, Tech. Rep., 2021. [On-
line]. Available: https://mpm-processmining.com/en/
global-process-mining-survey-2021/

[2] W. Van Der Aalst, A. Adriansyah, A. K. A.
De Medeiros, F. Arcieri, T. Baier, T. Blickle, J. C. Bose,
P. Van Den Brand, R. Brandtjen, J. Buijs et al., “Process
mining manifesto,” in International conference on busi-
ness process management. Springer, 2011, pp. 169–
194.

[3] M. Imran, S. Hamid, and M. A. Ismail, “Advancing pro-
cess audits with process mining: A systematic review
of trends, challenges, and opportunities,” IEEE Access,
2023.

[4] T. Teubner, C. M. Flath, C. Weinhardt, W. van der Aalst,
and O. Hinz, “Welcome to the era of chatgpt et al.
the prospects of large language models,” Business &
Information Systems Engineering, vol. 65, no. 2, pp.
95–101, 2023.

[5] D. Chapela-Campa and M. Dumas, “From process min-
ing to augmented process execution,” Software and
Systems Modeling, pp. 1–10, 2023.

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://mpm-processmining.com/en/global-process-mining-survey-2021/
https://mpm-processmining.com/en/global-process-mining-survey-2021/

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[6] A. Berti, D. Schuster, and W. M. van der Aalst, “Ab-
stractions, scenarios, and prompt definitions for pro-
cess mining with llms: A case study,” arXiv preprint
arXiv:2307.02194, 2023.

[7] A. Berti, S. van Zelst, and D. Schuster, “Pm4py: a
process mining library for python,” Software Impacts,
vol. 17, p. 100556, 2023.

[8] N. Tax, N. Sidorova, R. Haakma, and W. M. van der
Aalst, “Event abstraction for process mining using su-
pervised learning techniques,” in Proceedings of SAI
Intelligent Systems Conference. Springer, 2016, pp.
251–269.

[9] S. J. van Zelst, F. Mannhardt, M. de Leoni, and
A. Koschmider, “Event abstraction in process mining:
literature review and taxonomy,” Granular Computing,
vol. 6, no. 3, pp. 719–736, 2021.

[10] G. Tello, G. Gianini, R. Mizouni, and E. Damiani, “Ma-
chine learning-based framework for log-lifting in busi-
ness process mining applications,” in International Con-
ference on Business Process Management. Springer,
2019, pp. 232–249.

[11] M. Song, C. W. Günther, and W. M. Van der Aalst,
“Trace clustering in process mining,” in Interna-
tional conference on business process management.
Springer, 2008, pp. 109–120.

[12] R. J. C. Bose and W. M. Van der Aalst, “Context aware
trace clustering: Towards improving process mining
results,” in proceedings of the 2009 SIAM International
Conference on Data Mining. SIAM, 2009, pp. 401–
412.

[13] A. Appice and D. Malerba, “A co-training strategy
for multiple view clustering in process mining,” IEEE
transactions on services computing, vol. 9, no. 6, pp.
832–845, 2015.

[14] G. M. Tavares, S. Barbon Junior, E. Damiani,
and P. Ceravolo, “Selecting optimal trace clustering
pipelines with meta-learning,” in Brazilian Conference
on Intelligent Systems. Springer, 2022, pp. 150–164.

[15] A. Kalenkova, A. Polyvyanyy, and M. La Rosa, “A
framework for estimating simplicity of automatically
discovered process models based on structural and be-
havioral characteristics,” in International Conference on
Business Process Management. Springer, 2020, pp.
129–146.

[16] A. Senderovich, A. Shleyfman, M. Weidlich, A. Gal,
and A. Mandelbaum, “To aggregate or to eliminate?
optimal model simplification for improved process per-
formance prediction,” Information Systems, vol. 78, pp.
96–111, 2018.

[17] D. Chapela-Campa, M. Mucientes, and M. Lama, “Sim-
plification of complex process models by abstracting
infrequent behaviour,” in International Conference on
Service-Oriented Computing. Springer, 2019, pp. 415–
430.

[18] V. P. Mishra, B. Shukla, and A. Bansal, “Analysis of
alarms to prevent the organizations network in real-time

using process mining approach,” Cluster Computing,
vol. 22, no. 3, pp. 7023–7030, 2019.

[19] G. M. Tavares, P. Ceravolo, V. G. T. Da Costa, E. Dami-
ani, and S. B. Junior, “Overlapping analytic stages in
online process mining,” in 2019 IEEE International
Conference on Services Computing (SCC). IEEE,
2019, pp. 167–175.

[20] P. Ceravolo, G. M. Tavares, S. B. Junior, and E. Dami-
ani, “Evaluation goals for online process mining: a con-
cept drift perspective,” IEEE Transactions on Services
Computing, 2020.

[21] N. Di Mauro, A. Appice, and T. M. A. Basile, “Activity
prediction of business process instances with inception
cnn models,” in AI*IA 2019 – Advances in Artificial
Intelligence, M. Alviano, G. Greco, and F. Scarcello,
Eds. Cham: Springer International Publishing, 2019,
pp. 348–361.

[22] V. Pasquadibisceglie, A. Appice, G. Castellano, and
D. Malerba, “Predictive process mining meets computer
vision,” in International Conference on Business Pro-
cess Management. Springer, 2020, pp. 176–192.

[23] A. E. Márquez-Chamorro, M. Resinas, and A. Ruiz-
Cortés, “Predictive monitoring of business processes:
a survey,” IEEE Transactions on Services Computing,
vol. 11, no. 6, pp. 962–977, 2017.

[24] Z. D. Bozorgi, I. Teinemaa, M. Dumas, M. La Rosa, and
A. Polyvyanyy, “Process mining meets causal machine
learning: Discovering causal rules from event logs,” in
2020 2nd International Conference on Process Mining
(ICPM). IEEE, 2020, pp. 129–136.

[25] K. M. Hanga, Y. Kovalchuk, and M. M. Gaber, “A
graph-based approach to interpreting recurrent neural
networks in process mining,” IEEE Access, vol. 8, pp.
172 923–172 938, 2020.

[26] T. Wiel, “Process mining using integer linear program-
ming,” 2010.

[27] Y. Al-Anqoudi, A. Al-Hamdani, M. Al-Badawi, and
R. Hedjam, “Using machine learning in business pro-
cess re-engineering,” Big Data and Cognitive Comput-
ing, vol. 5, no. 4, p. 61, 2021.

[28] W. Van der Aalst and E. Damiani, “Processes meet big
data: Connecting data science with process science,”
IEEE Transactions on Services Computing, vol. 8,
no. 6, pp. 810–819, 2015.

[29] W. van der Aalst, “Academic view: Development of
the process mining discipline,” in Process Mining in
Action. Springer, 2020, pp. 181–196.

[30] F. Veit, J. Geyer-Klingeberg, J. Madrzak, M. Haug, and
J. Thomson, “The proactive insights engine: Process
mining meets machine learning and artificial intelli-
gence.” in BPM (Demos), 2017.

[31] W. M. van der Aalst, “On the pareto principle in process
mining, task mining, and robotic process automation.”
in DATA, 2020, pp. 5–12.

[32] B. Hilprecht and C. Binnig, “One model to rule them
all: towards zero-shot learning for databases,” arXiv

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

preprint arXiv:2105.00642, 2021.
[33] G. MARQUES TAVARES et al., “Meta learning in pro-

cess mining: Toward a systematic approach to design
data analytics pipelines with event logs,” 2023.

[34] E. Rama-Maneiro, J. Vidal, and M. Lama, “Deep learn-
ing for predictive business process monitoring: Review
and benchmark,” IEEE Transactions on Services Com-
puting, pp. 1–1, 2021.

[35] M. F. Sani, S. J. van Zelst, and W. M. van der Aalst,
“Applying sequence mining for outlier detection in
process mining,” in OTM Confederated International
Conferences" On the Move to Meaningful Internet Sys-
tems". Springer, 2018, pp. 98–116.

[36] M. F. Sani, S. van Zelst, and W. M. van der Aalst, “Re-
pairing outlier behaviour in event logs using contextual
behaviour,” Enterprise Modelling and Information Sys-
tems Architectures (EMISAJ), vol. 14, pp. 5–1, 2019.

[37] W. Li, H. Zhu, W. Liu, D. Chen, J. Jiang, and Q. Jin, “An
anti-noise process mining algorithm based on minimum
spanning tree clustering,” IEEE Access, vol. 6, pp.
48 756–48 764, 2018.

[38] X. Sun, W. Hou, D. Yu, J. Wang, and J. Pan, “Filtering
out noise logs for process modelling based on event
dependency,” in 2019 IEEE International Conference
on Web Services (ICWS). IEEE, 2019, pp. 388–392.

[39] F. Fox, V. R. Aggarwal, H. Whelton, and O. Johnson,
“A data quality framework for process mining of elec-
tronic health record data,” in 2018 IEEE International
Conference on Healthcare Informatics (ICHI). IEEE,
2018, pp. 12–21.

[40] A. Berti, “Statistical sampling in process mining dis-
covery,” in The 9th international conference on infor-
mation, process, and knowledge management, 2017, pp.
41–43.

[41] M. De Leoni and F. Mannhardt, “Road
traffic fine management process,” 2015.
[Online]. Available: http://dx.doi.org/10.4121/uuid:
270fd440-1057-4fb9-89a9-b699b47990f5

[42] J. Buijs, “Receipt phase of an envi-
ronmental permit application process,” 2014.
[Online]. Available: http://dx.doi.org/10.4121/uuid:
a07386a5-7be3-4367-9535-70bc9e77dbe6

[43] B. van Dongen, “Bpi challenge 2015 municipality 1,”
2015. [Online]. Available: http://dx.doi.org/10.4121/
uuid:a0addfda-2044-4541-a450-fdcc9fe16d17

[44] T.-W. Lee, “Independent component analysis,” in Inde-
pendent component analysis. Springer, 1998, pp. 27–
66.

[45] R. M. Sakia, “The box-cox transformation technique: a
review,” Journal of the Royal Statistical Society: Series
D (The Statistician), vol. 41, no. 2, pp. 169–178, 1992.

[46] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes,
and B. Pfahringer, “Efficient online evaluation of big
data stream classifiers,” in Proceedings of the 21th
ACM SIGKDD international conference on knowledge
discovery and data mining, 2015, pp. 59–68.

[47] M. Roccetti, G. Delnevo, L. Casini, and S. Mirri, “An
alternative approach to dimension reduction for pareto
distributed data: a case study,” Journal of big Data,
vol. 8, no. 1, pp. 1–23, 2021.

[48] W. M. van der Aalst, “Concurrency and objects matter!
disentangling the fabric of real operational processes
to create digital twins,” in International Colloquium on
Theoretical Aspects of Computing. Springer, 2021,
pp. 3–17.

[49] C. Di Francescomarino, C. Ghidini, F. M. Maggi,
G. Petrucci, and A. Yeshchenko, “An eye into the fu-
ture: leveraging a-priori knowledge in predictive busi-
ness process monitoring,” in Business Process Man-
agement: 15th International Conference, BPM 2017,
Barcelona, Spain, September 10–15, 2017, Proceedings
15. Springer, 2017, pp. 252–268.

[50] K. Thapa, Z. M. Abdullah Al, B. Lamichhane, and S.-H.
Yang, “A deep machine learning method for concurrent
and interleaved human activity recognition,” Sensors,
vol. 20, no. 20, p. 5770, 2020.

[51] K. Thapa, Z. AI, Y. Sung-Hyun et al., “Adapted long
short-term memory (lstm) for concurrent human ac-
tivity recognition.” Computers, Materials & Continua,
vol. 69, no. 2, 2021.

[52] D. A. Neu, J. Lahann, and P. Fettke, “A systematic liter-
ature review on state-of-the-art deep learning methods
for process prediction,” Artificial Intelligence Review,
pp. 1–27, 2022.

[53] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski,
and M. Woźniak, “Ensemble learning for data stream
analysis: A survey,” Information Fusion, vol. 37, pp.
132–156, 2017.

[54] L. Baier, J. Reimold, and N. Kühl, “Handling concept
drift for predictions in business process mining,” in
2020 IEEE 22nd Conference on Business Informatics
(CBI), vol. 1. IEEE, 2020, pp. 76–83.

[55] M. Käppel, S. Schönig, and S. Jablonski, “Leveraging
small sample learning for business process manage-
ment,” Information and Software Technology, vol. 132,
p. 106472, 2021.

[56] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwa-
sawa, “Large language models are zero-shot reasoners,”
Advances in neural information processing systems,
vol. 35, pp. 22 199–22 213, 2022.

[57] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar,
S. Ermon, and B. Poole, “Score-based generative mod-
eling through stochastic differential equations,” arXiv
preprint arXiv:2011.13456, 2020.

[58] C. Sun, J. Han, W. Deng, X. Wang, Z. Qin, and
S. Gould, “3d-gpt: Procedural 3d modeling with large
language models,” arXiv preprint arXiv:2310.12945,
2023.

[59] S. Barbon Junior, P. Ceravolo, E. Damiani, and G. Mar-
ques Tavares, “Evaluating trace encoding methods in
process mining,” in International Symposium: From
Data to Models and Back. Springer, 2020, pp. 174–

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://dx.doi.org/10.4121/uuid:a0addfda-2044-4541-a450-fdcc9fe16d17
http://dx.doi.org/10.4121/uuid:a0addfda-2044-4541-a450-fdcc9fe16d17

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

189.
[60] J. Wang, R. K. Wong, and X. Zhang, “Low-rank co-

variance function estimation for multidimensional func-
tional data,” Journal of the American Statistical Associ-
ation, vol. 117, no. 538, pp. 809–822, 2022.

[61] S. Barbon Jr, P. Ceravolo, R. S. Oyamada, and G. M.
Tavares, “Trace encoding in process mining: a survey
and benchmarking,” arXiv preprint arXiv:2301.02167,
2023.

[62] I. Teinemaa, M. Dumas, M. L. Rosa, and F. M. Maggi,
“Outcome-oriented predictive process monitoring: re-
view and benchmark,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 13, no. 2, pp.
1–57, 2019.

[63] P. D. Koninck, S. vanden Broucke, and J. D. Weerdt,
“act2vec, trace2vec, log2vec, and model2vec: Repre-
sentation learning for business processes,” in Business
Process Management (BPM), ser. Lecture Notes in
Computer Science, M. Weske, M. Montali, I. Weber,
and J. vom Brocke, Eds., vol. 11080. Springer, 2018,
pp. 305–321.

[64] N. Tax, I. Verenich, M. L. Rosa, and M. Dumas, “Pre-
dictive business process monitoring with LSTM neural
networks,” in Conference on Advanced Information
Systems Engineering (CAiSE), ser. Lecture Notes in
Computer Science, E. Dubois and K. Pohl, Eds., vol.
10253. Springer, 2017, pp. 477–492.

[65] S. M. Weiss, N. Indurkhya, and T. Zhang, Fundamentals
of Predictive Text Mining, Second Edition, ser. Texts in
Computer Science. Springer, 2015.

[66] Q. Le and T. Mikolov, “Distributed representations of
sentences and documents,” in Proceedings of the 31st
International Conference on International Conference
on Machine Learning - Volume 32, ser. ICML’14.
JMLR.org, 2014, p. II–1188–II–1196.

[67] P. Ceravolo, E. Damiani, M. Torabi, and S. Barbon,
“Toward a new generation of log pre-processing meth-
ods for process mining,” in International Conference on
Business Process Management. Springer, 2017, pp.
55–70.

[68] A. Grover and J. Leskovec, “Node2vec: Scalable fea-
ture learning for networks,” in International Conference
on Knowledge Discovery and Data Mining (SIGKDD),
ser. KDD ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 855–864.

[69] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, “Don’t
walk, skip! online learning of multi-scale network em-
beddings,” in International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), ser.
ASONAM ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 258–265.

[70] G. M. Tavares and S. Barbon, “Analysis of language
inspired trace representation for anomaly detection,” in
ADBIS, TPDL and EDA 2020 Common Workshops
and Doctoral Consortium. Springer, 2020, pp. 296–
308.

[71] A. Chiorrini, C. Diamantini, L. Genga, M. Pioli, and
D. Potena, “Embedding process structure in activities
for process mapping and comparison,” in New Trends in
Database and Information Systems (ADBIS), S. Chiu-
sano, T. Cerquitelli, R. Wrembel, K. Nørvåg, B. Cata-
nia, G. Vargas-Solar, and E. Zumpano, Eds., vol. 1652.
Springer, 2022, pp. 119–129.

[72] M. Vazifehdoostirani, L. Genga, and R. Dijkman, “En-
coding high-level control-flow construct information
for process outcome prediction,” in 2022 4th Interna-
tional Conference on Process Mining (ICPM). IEEE,
2022, pp. 48–55.

[73] V. Pasquadibisceglie, A. Appice, G. Castellano, and
D. Malerba, “A multi-view deep learning approach for
predictive business process monitoring,” IEEE Transac-
tions on Services Computing, 2021.

[74] A. Guzzo, M. Joaristi, A. Rullo, and E. Serra, “A
multi-perspective approach for the analysis of complex
business processes behavior,” Expert Systems with Ap-
plications, vol. 177, p. 114934, 2021.

[75] J. Kim, M. Comuzzi, M. Dumas, F. M. Maggi, and
I. Teinemaa, “Encoding resource experience for pre-
dictive process monitoring,” Decision Support Systems,
vol. 153, p. 113669, 2022.

[76] A. Senderovich, C. D. Francescomarino, C. Ghidini,
K. Jorbina, and F. M. Maggi, “Intra and inter-case
features in predictive process monitoring: A tale of two
dimensions,” in Business Process Management (BPM),
ser. Lecture Notes in Computer Science, J. Carmona,
G. Engels, and A. Kumar, Eds., vol. 10445. Springer,
2017, pp. 306–323.

[77] M. de Leoni and W. M. P. van der Aalst, “Data-aware
process mining: discovering decisions in processes us-
ing alignments,” in Symposium on Applied Computing
(SAC), S. Y. Shin and J. C. Maldonado, Eds. ACM,
2013, pp. 1454–1461.

[78] G. M. Tavares, R. S. Oyamada, S. B. Junior, and P. Cer-
avolo, “Trace encoding in process mining: A survey and
benchmarking,” Engineering Applications of Artificial
Intelligence, vol. 126, p. 107028, 2023.

[79] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P.
van der Aalst, “Decision mining revisited - discovering
overlapping rules,” in Advanced Information Systems
Engineering, S. Nurcan, P. Soffer, M. Bajec, and J. Eder,
Eds. Cham: Springer International Publishing, 2016,
pp. 377–392.

[80] A. Weijters, W. M. van Der Aalst, and A. A.
De Medeiros, “Process mining with the heuristics
miner-algorithm,” Technische Universiteit Eindhoven,
Tech. Rep. WP, vol. 166, no. July 2017, pp. 1–34, 2006.

[81] “Process mining in healthcare tutorial,” 2020.
[Online]. Available: https://gitlab.com/healthcare2/
process-mining-tutorial

[82] S. B. Junior, P. Ceravolo, E. Damiani, N. J. Omori,
and G. M. Tavares, “Anomaly detection on event logs
with a scarcity of labels,” in 2020 2nd International

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://gitlab.com/healthcare2/process-mining-tutorial
https://gitlab.com/healthcare2/process-mining-tutorial

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Conference on Process Mining (ICPM). IEEE, 2020,
pp. 161–168.

[83] M. S. Qafari and W. van der Aalst, “Root cause analysis
in process mining using structural equation models,” in
International Conference on Business Process Manage-
ment. Springer, 2020, pp. 155–167.

[84] A. Melkumyan and F. Ramos, “Multi-kernel gaussian
processes,” in Twenty-second international joint confer-
ence on artificial intelligence, 2011.

[85] L. Van der Maaten and G. Hinton, “Visualizing data us-
ing t-sne.” Journal of machine learning research, vol. 9,
no. 11, 2008.

[86] J. Theis and H. Darabi, “Adversarial system variant ap-
proximation to quantify process model generalization,”
IEEE Access, vol. 8, pp. 194 410–194 427, 2020.

[87] F. Taymouri, M. L. Rosa, S. Erfani, Z. D. Bozorgi, and
I. Verenich, “Predictive business process monitoring
via generative adversarial nets: the case of next event
prediction,” in International Conference on Business
Process Management. Springer, 2020, pp. 237–256.

[88] W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Learn-
ing to optimize under non-stationarity,” in The 22nd
International Conference on Artificial Intelligence and
Statistics. PMLR, 2019, pp. 1079–1087.

[89] R. J. C. Bose, W. M. van der Aalst, I. Žliobaitė, and
M. Pechenizkiy, “Handling concept drift in process
mining,” in International Conference on Advanced In-
formation Systems Engineering. Springer, 2011, pp.
391–405.

[90] J. Carmona and R. Gavalda, “Online techniques for
dealing with concept drift in process mining,” in In-
ternational Symposium on Intelligent Data Analysis.
Springer, 2012, pp. 90–102.

[91] P. Domingos and G. Hulten, “Mining high-speed data
streams,” in Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and
data mining, 2000, pp. 71–80.

[92] W. Wang, V. W. Zheng, H. Yu, and C. Miao, “A survey
of zero-shot learning: Settings, methods, and applica-
tions,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–37, 2019.

[93] Z. Ji, G. Dai, and Y. Yu, “Multi-modality adversar-
ial auto-encoder for zero-shot learning,” IEEE Access,
vol. 8, pp. 9287–9295, 2019.

[94] H. Chemingui, I. Gam, R. Mazo, C. Salinesi, and
H. B. Ghezala, “Product line configuration meets pro-
cess mining,” Procedia Computer Science, vol. 164, pp.
199–210, 2019.

[95] R. L. Hu, C. Xiong, and R. Socher, “Correction
networks: Meta-learning for zero-shot learning,” 2019.
[Online]. Available: https://openreview.net/forum?id=
r1xurn0cKQ

[96] G. M. Tavares and S. B. Junior, “Process mining en-
coding via meta-learning for an enhanced anomaly
detection,” in European Conference on Advances in
Databases and Information Systems. Springer, 2021,

pp. 157–168.
[97] G. Marques Tavares and S. Barbon Junior, “Matching

business process behavior with encoding techniques via
meta-learning: An anomaly detection study.” Computer
Science & Information Systems, vol. 20, no. 3, 2023.

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://openreview.net/forum?id=r1xurn0cKQ
https://openreview.net/forum?id=r1xurn0cKQ

Ceravolo P. et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

PAOLO CERAVOLO is currently an associate
professor with the Dipartimento di Informat-
ica, Università degli Studi di Milano, Italy.
His research interests include data representa-
tion and integration, business process monitor-
ing, empirical software engineering. On these top-
ics, he has published several scientific papers.
As a data scientist, he was involved in sev-
eral international research projects and innova-
tive startups. For more information please visit:

http://www.di.unimi.it/ceravolo.

SYLVIO BARBON JUNIOR is an Associate
Professor in the Department of Engineering and
Architecture at the University of Trieste (UNITS),
Italy. He is currently a co-director of the Machine
Learning Lab. Prior to this, from 2012 to 2021,
he led a research group dedicated to the study of
machine learning in the Computer Science Depart-
ment at the State University of Londrina (UEL),
Brazil. He earned his BSc degree in Computer
Science in 2005, followed by an MSc degree in

Computational Physics from the University of São Paulo in 2007. In 2008, he
obtained a degree in Computational Engineering, and in 2011, he completed
his Ph.D. degree at IFSC/USP, also in Computational Physics. His research
interests encompass Computer Vision, Pattern Recognition, and Machine
Learning, with a current emphasis on Meta-Learning, Stream Mining, and
Process Mining.

ERNESTO DAMIANI is a full professor at the
Università degli Studi di Milano, 20133, Mi-
lan, Italy, and founding director of the Center
for Cyber-Physical Systems, Khalifa University,
United Arab Emirates. His research interests in-
clude cybersecurity, big data, and cloud/edge pro-
cessing. Damiani received his honorary doctorate
degree for “his contribution to Big Data teaching
and research” from Institute National des Sci-
ences Appliquées de Lyon, France. Contact him

at ernesto.damiani@ku.ac.ae.

ERNESTO DAMIANI is currently a Full Profes-
sor with RWTH Aachen University, leading the
Process and Data Science (PADS) Group. He is
also the Chief Scientist at Celonis, part-time af-
filiated with the Fraunhofer FIT, and a member
of the Board of Governors of Tilburg University.
He holds unpaid professorship positions with the
Queensland University of Technology, since 2003,
and Technische Universiteit Eindhoven (TU/e). He
is a Distinguished Fellow of Fondazione Bruno

Kessler (FBK), Trento, the Deputy CEO of the Internet of Production (IoP)
Cluster of Excellence, and the Co-Director of the RWTH Center for Artificial
Intelligence.

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3361650

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	The Issues Landscape
	Data Distribution
	Concurrency
	Non-stationary Behaviour
	LLM for Zero-Shot Learning
	Data Encoding

	Basic Notions in PM
	A Formalisation of PM Data Encoding
	Illustrative Examples
	Toward an Integrated Methodology
	Hyper-parameter Tuning
	Final Recommendations
	RECOMMENDATION 1: Choose data representation carefully
	RECOMMENDATION 2: Fit the data distributions
	RECOMMENDATION 3: Consider zero-shot learning
	RECOMMENDATION 4: Ensure minimum ML quality at an early stage via constraints
	RECOMMENDATION 5: Incorporate domain knowledge
	RECOMMENDATION 6: Evaluate model interpretability
	RECOMMENDATION 7: Continuously monitor and update ML models
	RECOMMENDATION 8: Share knowledge and best practices

	Conclusions
	Paolo Ceravolo
	Sylvio Barbon Junior
	Ernesto Damiani
	Ernesto Damiani

