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Abstract
Process mining techniques have proven crucial in identifying performance and compliance issues. Traditional process mining,
however, is primarily case-centric and does not fully capture the complexity of real-life information systems, leading to a
growing interest in object-centric process mining. This paper presents a novel graph-based approach for feature extraction
from object-centric event logs. In contrast to established methods for feature extraction from traditional event logs, object-
centric logs present a greater challenge due to the interconnected nature of events related to multiple objects. This paper
addresses this gap by proposing techniques and tools for feature extraction specifically designed for object-centric event logs.
In this work, we focus on features pertaining to the lifecycle of the objects and their interaction. These features enable a
more comprehensive understanding of the process and its inherent complexities. We demonstrate the applicability of our
approach through its implementation in two significant areas: anomaly detection and throughput time prediction for objects
in the process. Our results, based on four problems in a Procure-to-Pay process, affirm the potential of our proposed features
in enhancing the scope of process mining. By effectively transforming object-centric event logs into numeric vectors, we pave
the way for the application of a broader range of machine learning techniques, such as classification, prediction, clustering,
and anomaly detection, thereby extending the capabilities of process mining.

Keywords Object-centric process mining · Object-based graphs · Object-centric feature extraction · Object-centric machine
learning

1 Introduction

Process mining provides an established set of tools and tech-
niques to analyze and obtain insights into the execution of an
organizational business process starting from an event log.
Event logs are extracted from the information systems sup-
porting the execution of such processes.

Among existing process mining techniques, we also
find applications of machine learning, including predictive
analytics (e.g., predicting the remaining time of a case), pre-
scriptive analytics (e.g., identifying the activities that should
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be performed to complete the case successfully), cluster-
ing (i.e., identifying groups of cases with similar behavior),
and anomaly detection (i.e., identifying cases with excep-
tional behavior in comparison to the mainstream cases).
Any application of the aforementioned techniques starts
with the extraction of numeric features related to the pro-
cess executions from the event log. When working with
“traditional” event logs, for which a case notion is iden-
tified,1 feature extraction associates a numeric vector to
each case of the event log. The vector can contain infor-
mation such as the number of occurrences per activity, the
frequency/performance of the directly-follows relationships,
and the values of the events’ numeric attributes. The feature
extraction depends on the situation. For example, if a pre-
dictor is built to predict the choice made in a decision point,
then the numeric vector is extracted from the part of the trace
that happened (has been recorded) before that choice point.

1 A case notion is a criterion used to group events belonging to the same
process execution. For example, in a ticketing management system, the
identifier of the ticket can be used to group all the events that are needed
to resolve the ticket.
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Table 1 Example object-centric event log of a purchase requisition process represented as a table

Ev.ID Activity Timestamp Purch. req. Purch. ord. Goods issues Invoices Payments

e1 Create purchase requisition 2021-03-20 10:30 [’PR1’]

e2 Close purchase requisition 2021-03-20 14:00 [’PR1’]

e3 Create purchase requisition 2021-03-21 09:30 [’PR2’]

e4 Create purchase order 2021-03-22 14:59 [’PR2’] [’PO1’]

e5 Invoice receipt 2021-03-25 11:00 [’PO1’] [’R1’]

e6 Perform payment 2021-03-30 11:58 [’R1’] [’P1’]

e7 Create purchase requisition 2021-04-01 09:15 [’PR3’]

e8 PR formal approval 2021-04-01 10:15 [’PR3’]

e9 Create purchase order 2021-04-02 17:00 [’PR3’] [’PO2’]

e10 Change purchase requisition 2021-04-03 10:00 [’PR3’]

e11 Invoice receipt 2021-04-05 15:00 [’PO2’] [’R2’]

e12 Perform payment 2021-04-15 09:27 [’R2’] [’P2’]

e13 Create purchase order 2021-04-17 14:29 [’PO3’]

e14 Invoice receipt 2021-04-28 10:00 [’PO3’] [’R3’]

e15 Perform payment 2021-04-30 15:00 [’R3’] [’P3’]

e16 Invoice receipt 2021-05-28 10:01 [’PO3’] [’R4’]

e17 Perform payment 2021-05-30 15:17 [’R4’] [’P4’]

e18 Invoice receipt 2021-06-28 10:01 [’PO3’] [’R5’]

e19 Perform payment 2021-06-30 15:29 [’R5’] [’P5’]

e20 Create purchase requisition 2021-07-01 11:15 [’PR4’]

e21 Create purchase order 2021-07-02 09:38 [’PR4’] [’PO4’]

e22 Invoice receipt 2021-07-09 16:00 [’PO4’] [’R6’]

e23 Goods issue 2021-07-11 10:30 [’PO4’] [’GI1’]

e24 Perform payment 2022-05-15 09:00 [’R6’] [’P6’]

e25 Invoice receipt 2022-05-20 12:00 [’R7’]

e26 Create purchase order 2022-05-20 15:00 [’PO5’] [’R7’]

e27 Create purchase order 2022-06-01 09:17 [’PO6’]

e28 Create purchase order 2022-06-02 11:48 [’PO7’]

e29 Create invoice 2022-06-05 09:00 [’PO6’, ’PO7’] [’R8’]

In real-life information systems, the assumption that an
event is related to a single case/object is unrealistic. For
example, events in ERP systems can be related to several
objects of different object types (e.g., an event of invoice cre-
ation is related to an object of type “invoice” and potentially
many objects of type “order”). Object-centric process min-
ing develops on these assumptions. Object-centric process
mining techniques require object-centric event logs (OCELs,
[11]). An example of an OCEL in tabular form is contained
in Table 1. For example, the first row contains the event
with identifier e1, activity Create Purchase Requisition, and
timestamp 2021-03-20 10:30. This event is related to a single
object PR1 of type Purch.Req.

Object-centric event logs, given the possibility to relate
multiple objects to an event, help to resolve the convergence
and divergence issues [24] observed in traditional event logs.
A convergence issue arises when an event (for example, the

creation of an invoice) needs to be replicated in different
cases (for example, all the orders cited in the invoice). A
divergence issue arises when several instances of the same
activity (for example, the receipt of an invoice) are contained
in the same case, describing a non-existing loop. In the devel-
opment of object-centric processmining techniques, both the
lifecycle (sequence of related events) of the objects and their
interactions can be considered. Considering both aspects, it
is possible to extract more meaningful numeric features for
the application of machine learning techniques.

In this paper, we propose an approach for feature extrac-
tion on object-centric event logs that can consider traditional
(related to the events of the lifecycle of an object) and graph-
based (related to different types of interactions between
objects) features. Two tools (pm4py and OCPM) are offered
to extract the features from an object-centric event log and
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Fig. 1 Summary of the approach described in the paper. Starting from
a business process, we could extract an object-centric event log from
the information system supporting the process. A model describing the
executions (1) of the process could be quite complex. In this paper, we

describe an approach to enable feature extraction on object-centric event
logs, which allows for the application of machine learning techniques
(2) to improve the process (3) and eventually streamline its execution
(4), making the process simpler and more effective

use the features to improve the execution of the business pro-
cesses. The following application areas are proposed:

• Checking conformance patterns in the object-centric
event logs (e.g., an invoice should always be preceded
by an order).

• Identifying and filtering the outlier behavior to focus on
the mainstream/exceptional behavior (e.g., mainstream
behavior to discover more meaningful process models,
and exceptional behavior for diagnostics purposes).

• Visualize the correlation between different variables of
the process to understand the process (e.g., is a high num-
ber of open cases affecting negatively the throughput time
of the process?).

A real-life application to a Procure-to-Pay (P2P) process is
proposed, in which three conformance aspects (identification
ofmaintenance contracts,maverick buying, and post-mortem
changes to purchase requisitions) are verified on top of the
object-centric event log of the process.

The rest of the paper is organized as follows. Section2
presents the related work. Section3 introduces the essential
definition of object-centric event log. Section4 describes the
extraction of object-related graphs from the event log, their
conversion to numeric feature maps, and the propagation of

the values of these features to neighboring objects. Section5
presents two tools performing object-centric feature extrac-
tion. Section6 assesses graph-based feature extraction in its
ability to identify several real-life problems in a Procure-to-
Pay process. Finally, Sect. 7 concludes the paper.

2 Related work

In this section,we present the relevantwork on feature extrac-
tion, and its applications, on traditional or object-centric
event logs.
Graph-Based Analysis of Event Data: The graph-based
nature of event data has been described in [9]. Here, a graph
database (Neo4J) encodes the events and attributes as nodes
of a graph. Derived structures (for example, the directly-
follows graph given the lifecycle of an object) are computed
directly on top of the graph database (using the Cypher
language). The advantage of using graph databases is their
scalability in the querying/analysis of complex relationships
between the different nodes of the graph. Applications to
publicly available logs are described throughout the paper.
Feature Extraction on Traditional Event Logs: A feature
extraction approach starting from traditional event logs is
described in [6]. In this framework, each case is associated
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with a numeric vector describing the behavior observed in the
case (for example, the number of occurrences for an activ-
ity, the paths’ frequency/performance, the duration, and the
values of numeric/string attributes). Depending on the target
application, the numeric vector can be different (situation).
For example, if the goal is to build a predictor of the total time
of the case starting from the knowledge of the first event, only
the features related to the attributes of the first event can be
considered. In [8], additional features helpful for machine
learning purposes are engineered starting from process mod-
els automatically discovered from the event logs.

In [14, 18], inter-case features are discovered from tra-
ditional event logs to improve predictive tasks (such as the
prediction of the remaining time). of the remaining time). An
example of an inter-case feature is batching, in which lots of
cases are waiting for closure. However, this only occurs at
given points of time or when enough cases are in the queue.
Also, instance-spanning constraints [26] are discovered from
event logs discovered advanced inter-case correlations (an
example of ISC follows: a washing machine can start only
when there are at least 5 dresses inside it). Inter-case features
can be seen as object-to-object relationships. In our approach,
we considered for example the work-in-progress metric. In
[5], features that are useful for prediction are extracted from
the performance spectrum.

Temporal features (inspired by the system dynamics
paradigm) can be extracted from event logs which are use-
ful to build simulation models [16] and therefore supporting
decisions in production line processes [17]. These are com-
puted by dividing the time interval into subintervals, comput-
ingmetrics such as the number of events/resources/activities,
the case arrival/finish rate, the service/waiting time, and com-
puting linear relations over them.

Graph embeddings have been used to encode event graphs
and compute high-quality features [13]. In [25], different
encoding techniques have been used to enrich an ongo-
ing process execution with information related to advanced
control-flow patterns.

There are several works that propose feature extraction
methods with specific goals. For example, in [19], a feature
extraction method has been explained and then the problem
of discovering potential causal relationships between a set
of extracted features has been addressed. This helps to find
problematic features of the process and estimate the effect of
an intervention on such features. In [20], results from causal
inference are adapted on top of features calculated on top
of event logs to be able to reason over event logs and pro-
cess interventions. Furthermore, causal inference methods
are adapted on top of the features calculated from an event
log, allowing reasoning about the event log and process inter-
ventions.
Feature Extraction on Object-Centric Event Logs: In [1],
the interconnections between different objects in an object-

centric event log are used to define variants in the object-
centric setting. In particular, the connected components of
the object interaction graph are used to identify clusters of
related objects. These clusters are used to identify correlated
events in the object-centric event log. The graph-related prop-
erties of these events and objects are then used to identify
events/objects with similar behavior (this is eventually called
variant). These properties are also exploited in [2] for feature
extraction on object-centric event logs. Different use cases
(including predictive analytics) and types of feature extrac-
tion (table-based, graph-based) are proposed. In particular,
the importance of the single features for the target is identi-
fied using explainable AI techniques (including the usage of
SHAP values). The assessment of the paper is done starting
from a traditional event log “adapted” as an object-centric
event log. The related tool support is publicly available and
can be easily installed. The paper [10] introduces feature
extraction on object-centric event logs for the goals of pre-
dictive analytics (prediction of the remaining time, activities
occurrences, customer satisfaction). It shows how consider-
ing the interaction between objects (object interaction graph)
leads to an improvement in the quality of the prediction on
object-centric event logs, compared to only considering the
flattened event logs. This has been evaluated in a real-life
case study. Also, [12] considers predictive monitoring start-
ing from object-centric event logs, focusing on the prediction
of the next activity and remaining time starting from tradi-
tional and interaction-based features.

A qualitative comparison with the related work highlights
distinctive aspects of our approach. While [1] leverage inter-
connections between different objects for feature extraction,
it does not distinguish different types of interactions between
objects, as we do. Furthermore, our work uniquely considers
diverse use cases such as anomaly detection and object-
centric event log querying in addition to predictive analytics.
The papers [10, 12] also utilize object interactions for predic-
tive analytics. However, they primarily focus on prediction
tasks such as remaining time prediction and next activity
prediction. In contrast, our approach not only facilitates pre-
dictive analytics but also significantly extends its scope by
accommodating use cases like anomaly detection and event
log querying. Moreover, our work provides a graphical tool
to facilitate these use cases, as opposed to a library, contribut-
ing to the usability of the proposed techniques. Therefore, the
versatility of our approach and its broadened focus on vari-
ous types of object interactions and use cases distinguishes it
qualitatively from the relatedworks. In terms of a direct com-
parison on prediction accuracy or error rates (as inferred from
metrics like MAPE and RMSPE), a comprehensive compar-
ison may not be feasible due to the diverse datasets and use
cases across different works. However, the broadened use
cases and enhanced usability of our tool support the potential
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of our approach to generate valuable insights across various
process mining scenarios.
Applications ofMachineLearning inProcessMining:Machine
learning (ML) has become a cornerstone in the field of pro-
cess mining, significantly contributing to the advancement of
various aspects of this discipline. As evidenced in [22], long
short-term memory (LSTM) neural networks are explored
for predictive process monitoring tasks. With the capabil-
ity to remember past information over long periods, LSTM
presents a consistent and accurate model for prediction tasks
such as identifying the next event and its timestamp in a run-
ning process case, projecting the full continuation of a case,
and estimating the remaining time of the process. As these
tasks are central to process monitoring, the application of
LSTM suggests a promising enhancement in performance
over traditional methods.

The paper [23] delves into the intersection of ML and
process mining, examining the role of sequence model-
ing methods in predicting the next element in a sequence.
Machine learning methods, such as (hidden) Markov models
and recurrent neural networks, often demonstrate superior
accuracy in capturing sequential behavior in data compared
to traditional process mining and grammar inference fields.
This superiority suggests their potential for broader applica-
tions within the realm of process mining.

In [7], machine learning is harnessed for anomaly detec-
tion in logs of process-aware information systems (PAISs).
Given the inherent risks in businesses such as financial losses
due to mismanagement, anomaly detection serves a critical
role in ensuring governance best practices and operational
security. The integration of ML-powered tools like ProM for
anomaly detection in process logs can enhance the capabili-
ties of PAISs, creating amore robust, secure, and competitive
business environment.

The paper [21] underscores a significant challenge in pro-
cess mining: the concept drift. Machine learning techniques
are instrumental in detecting and adapting to concept drift
in evolving environments, facilitating online process mining
in contrast to the traditional offline analysis. However, the
study also highlights the need for common evaluation pro-
tocols, datasets, and metrics for a more effective assessment
of these ML techniques, which would further bolster their
applications in handling concept drift within process min-
ing.

3 Preliminaries

In the following, we will introduce the definition of object-
centric event log, which is the core concept on top of which
the filters will be applied. In Definition 1, some universes
needed for the definition of OCEL are introduced.

Definition 1 (Universes (for OCEL)) Some universes are
used in the formal definition of object-centric event logs are:
U� is the universe of all the strings;Ue is the universe of event
identifiers;Uact is the universe of activities;Utimest is the uni-
verse of timestamps; Uatt is the universe of attribute names;
Uval is the universe of attribute values;Utyp is the universe of
attribute types;Uo is the universe of object identifiers;Uot is
the universe of objects types.

Definition 2 introduces the formal definition of object-
centric event log.

Definition 2 (Object-Centric Event Log) An object-centric
event log is a tuple L = (E, AN , AV , OT , O, πact, πtime,

πvmap, πomap, πotyp, πovmap,≤) such that:

• E ⊆ Ue is the set of event identifiers.
• AN ⊆ Uatt is the set of attributes names.
• AV ⊆ Uval is the set of attribute values (with the require-
ment that AN ∩ AV = ∅).

• OT ⊆ Uot is the set of object types.
• O ⊆ Uo is the set of object identifiers.
• πact : E → Uact is the function associating an event
(identifier) to its activity.

• πtime : E → Utimest is the function associating an event
(identifier) to a timestamp.

• πvmap : E → (AN � AV ) is the function associating
an event (identifier) to its attribute value assignments.

• πomap : E → P(O) is the function associating an event
(identifier) to a set of related object identifiers.

• πotyp : O → OT assigns precisely one object type to
each object identifier.

• πovmap : O → (AN � AV ) is the function associating
an object to its attribute value assignments.

• ≤ is a total order on the events (i.e., it respects the
antisymmetry, transitivity, and connexity properties). A
possible way to define a total order is to consider the
timestamps associated with the events as a pre-order (i.e.,
assuming some arbitrary, but fixed, order for events hav-
ing the same timestamp).

To explain better the definition, we can map the entities in
the definition to the example in Table 1. In this case:

• E = {e1, e2, . . . , e29}.
• OT = {“Purch.Req”, “Purch.Ord”, “Goods Issues”,

“Invoices”, “Payments”}.
• O = {PR1, PR2, PR3, PR4, PO1, PO2, PO3,

PO4, PO5, PO6, PO7,GI1, R1, R2, R3, R4, R5,
R6, R7, R8, P1, P2, P3, P4, P5, P6}.

• πact(e1) = “Create Purchase Requisition”.
• πact(e2) = “Close Purchase Requisition”.
• πtime(e1) = 2021-03-20 10:30,πtime(e2) = 2021-03-20 14:00,

…
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• πomap(e1) = {PR1}, πomap(e4) = {PR2, PO1}.
• πotyp(PR1) = “Purch.Req”,πotyp(PO1) = “Purch.Ord”,

πotyp(R1) = “Invoices”, …
• e1 ≤ e2 ≤ e3 ≤ · · · ≤ e29

In Definition 2, every event is related through πomap to
several objects of different object types. The reverse is also
true: An object can be related to a sequence of events in
the object-centric event log. This is called lifecycle and is
introduced in Definition 3.

Definition 3 (Lifecycle of an Object) Let L be an object-
centric event log as in Definition 2. Given an object o ∈ O ,
we define lif(o) = 〈e1, . . . , en〉 as the ordered sequence
of events e1, . . . , en ∈ E which are related to the object,
i.e., ∀i ∈ {1, . . . , n} : o ∈ πomap(ei ). We define the start
event start(o) = lif(o)(1) and the end event end(o) =
lif(o)(|lif(o)|).

Looking to the object-centric event log described in
Table 1, we could see that the lifecycle of PR1 is the
sequence of events 〈e1, e2〉, while the lifecycle of PO4
is the sequence of events 〈e21, e22, e23〉. Consequently,
start(PR1) = e1, end(PR1) = e2, and start(PO4) =
e21, end(PO4) = e23.

Recently, the OCEL standard http://www.ocel-standard.
org/ has been introduced for the storage of object-centric
event logs [11]. Two different implementations of the stan-
dard are provided (JSON-OCEL and XML-OCEL), which
are based on popular file formats.

Object-centric process mining is also supported by com-
mercial software. For example, the Celonis vendor recently
introduced the Process Sphere feature, which allows “to ana-
lyze and visualize the complex relationships between events
and objects across interconnected processes”2 and can ingest
object-centric event logs in the OCEL standard.

4 Approach

In this section,wewant to definegraph-related features on top
of object-centric event logs. Since real-life processes include
many-to-many interactions between objects, this can be use-
ful for detecting several problems (for example, by looking
if an expected relation between some objects is recorded
in the object-centric event log). In the assessment of the
paper (Sect. 6), we will show the application of these features
extracted from an object-centric event log of a P2P (Procure-
to-Pay) process for detecting problems such as maverick
buying (the order is placed without approval, so the invoice is
received from the company without a pre-existing purchase

2 https://www.celonis.com/blog/celonis-announces-next-generation-
mri-process-mining-technology-with-process-sphere/.

order in the system), post-mortem changes to the purchase
requisitions and the detection of maintenance contracts as a
special category of purchase orders.

The section is organized as follows. In Sect. 4.1, we intro-
duce the definition of object-based graph and three important
object-based graphs. In Sect. 4.2, we introduce the definition
of object-based feature maps and introduce two examples
(basic and graph-based). In Sect. 4.3, the concept of feature
propagation is introduced which helps in understanding the
influence between the objects. In Sect. 4.4, an approach for
the automatic identification of anomalous conditions is pro-
posed.

4.1 Object-based graphs

An object-centric graph describes the relationships between
the objects of an object-centric event log. This helps to iden-
tify several patterns of interest. In Definition 4, the generic
definition of an object-based graph is proposed.

Definition 4 (Object-Based Graph) Given a set of objects
O ⊆ UO and � ⊆ O × O , (O,�) is an object-based graph.

Some important object-based graphs are presented inDef-
inition 5.

Definition 5 (Object Interaction, Creation, and Continua-
tion Graph) Let L be an object-centric event log as in
Definition 2. We define the following object-based graphs:

1. Object Interaction Graph: G = (O,�), � = ∪e∈E {(o1,
o2) | o1, o2 ∈ πomap(e) ∧ o1 = o2}.

2. ObjectCreationGraph:G = (O,�),� = ∪e∈E {(o1, o2)
| o1, o2 ∈ πomap(e) ∧ e = start(o1) ∧ e = start(o2)}

3. Object Continuation Graph: G = (O,�), � =
∪e∈E {(o1, o2) | o1, o2 ∈ πomap(e) ∧ e = start(o1) ∧ e =
end(o1) ∧ e = start(o2)}

In Definition 5, the object interaction graph is introduced,
connecting every couple of objects co-occurring in the set of
related objects of an event in the event log. The nodes of
this graph are the objects, and the set of edges � contains
pairs of objects. The relation is symmetric, which means that
for all the pairs of objects o1, o2 ∈ O , (o1, o2) ∈ � ⇐⇒
(o2, o1) ∈ �. Figure2 shows an example of an object inter-
action graph computed on top of the event log described in
Table 1. Given the symmetry of the relation, the graph has
been represented as an undirected graph. In particular, since
in Table 1 the objects PO6, PO7, and R8 are all related to
the event e29, they are connected.

The object interaction graph can be used to see whether
an expected relation exists. For example, we could expect
that every purchase order in a P2P system is connected to at
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Fig. 2 Object interaction graph
built on top of the event log
described in Table 1

Fig. 3 Object creation graph
built on top of the event log
described in Table 1

least one purchase requisition (which implies that the order
followed a standard approval process).

The object creation graph is also introduced in Defini-
tion 5. This graph considers the sequence of the events of the
log and, for every event, connects every pre-existing object
(i.e., an object started before the current event) to every novel
object (whose lifecycle starts with the current event). Look-
ing at Table 1, PR2 (starting its lifecycle in e3 and belonging
to the relatedobjects of the event e4) is connected in the object
creation graph to PO1 (starting its lifecycle in e4). Figure3
shows an example of an object creation graph computed on
top of the event log described in Table 1. In this case, the rela-
tion is asymmetric, and we can represent a directed graph.
We note that, differently from the object interaction graph
shown in Fig. 2, PO6 and PO7 are not directly connected,
but they are connected by an arc to R8 (since R8 starts its
lifecycle in e29 and both PO6 and PO7 start their lifecycle
earlier and end it at e29).

The object creation graph can be used to see whether the
relations between the objects follow the expected temporal
order. For example, in a P2P system, we can expect an order
to be followed by the invoice and not vice versa (this problem
is called maverick buying).

InDefinition 5, also the object continuation graph is intro-
duced. This graph connects two objects o1, o2 ∈ O when the
lifecycle of o1 is terminated by the same event in which the
lifecycle of o2 starts. Looking at Table 1,we see that the event
e4 terminates the lifecycle of the purchase requisition PR2
and starts the lifecycle of the purchase order PO1. Hence,

PR2 and PO1 are connected in the object continuation
graph. Figure4 shows an example of an object continuation
graph computed on top of the event log described in Table 1.
In this case, the relation is asymmetric, and we can represent
a directed graph.Wenote that, differently from the object cre-
ation graph shown in Fig. 3, the purchase requisition PR3 is
not connected to the purchase order PO2, because the pur-
chase requisition is changed after the start of the lifecycle
of PO2. Note that the object continuation graph contains a
subset of the edges contained in the object creation graph.

The object continuation graph can be used to verify
whether the lifecycle of some objects (e.g., the purchase
requisitions) is terminated when the lifecycle of some other
objects starts (for example, the purchase orders).

4.2 Object-based feature maps

An object-based feature map associates each object of an
object-centric event log to a set of numeric features. This is
essential to perform any machine learning task (classifica-
tion, prediction, anomaly detection, etc.).

Definition 6 (Object-Based Feature Map) Given a set of
objects O ⊆ Uo and a set of features � ⊆ U� , an object-
based feature map is a function O → (� → R).

Definition 7 associates each object to some basic features:
the number of related events, the throughput time as the dif-
ference between the timestamps of the last and first event
of the lifecycle, the work-in-progress metric, which counts
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Fig. 4 Object continuation
graph built on top of the event
log described in Table 1

how many objects have a lifecycle with (non-empty) tem-
poral overlap with the lifecycle of the current event, and for
every activity of the log, the number of occurrences in the
lifecycle of the object. Note that many other features could
be easily introduced (for example, based on the paths’ fre-
quency or performance) but are not included for simplicity
in Definition 7.

Definition 7 (Basic Feature Map) Let L be an object-centric
event log as in Definition 2. Given ACT = {πact(e) | e ∈ E},
and� = {“relevs,′′ “throughput,′′ “wi p′′}∪{“#′′@a | a ∈
ACT} (where @ is the concatenation of strings), we define
the basic feature map fbas : O → (� → R) in which:

• for o ∈ O , fbas(o)(“relevs”) = |lif(o)|.
• for o ∈ O , fbas(o)(“throughput”) = πtime(end(o)) −

πtime(start(o)).
• for o ∈ O , fbas(o)(“wip”) = |{o′ ∈ O | [πtime(start(o)),

πtime(end(o))]∩ [πtime(start(o′)), πtime(end(o′))] = ∅}|.
• for o ∈ O and a ∈ ACT, we define fbas(o)(“#”@a) =

|{e ∈ lif(o)|πact(e) = a}|.

Looking at the object-centric event log proposed in Table
1, and focusing on the object PO4, we have:

• fbas(PO4)(“relevs′′) = 3 (because the events e21, e22
and e23 are related to PO4).

• fbas(PO4)(“throughput ′′) ≈ 9days (its lifecycle starts
in e21 and terminates in e23).

• fbas(PO4)(“wi p′′) = 4 (because the objects PR4, GI1
and R6 have temporal intersection with its lifecycle, and
also PO4 itself).

• fbas(PO4)(“#CreatePurchaseOrder ′′) = 1 (because
there is a single occurrence of the activity Create Pur-
chase Order for the object).

The basic feature map on top of the object-centric event log
proposed in Table 1 is presented in Table 2.

The calculation of graph-based features is introduced in
Definition 8. More comprehensive feature maps using the
contributions of different graphs could be defined. For exam-
ple, the structural properties of the vertices of the graph can

be exploited. However, this is not done for simplicity in Def-
inition 8.

Definition 8 (Graph-BasedFeatureMap)Let L be an object-
centric event log as in Definition 2 and G = (O,�)

an object-based graph. Given � = {“outdegree′′} ∪
{“outdegreeot ′′@ot | ot ∈ OT } (where @ is the concate-
nation of strings), we define the feature map fgraph : O →
(� → R) in which:

• for o ∈ O , fgraph(o)(“outdegree”) = |{(o1, o2) ∈
� | o1 = o}|

• foro ∈ O andot ∈ OT , fgraph(o)(“outdegreeot”@ot) =
|{(o1, o2) ∈ � | o1 = o ∧ πotyp(o2) = ot}|.

The feature map proposed in Definition 8 includes both
the number of outgoing connections of the object to the other
objects and the number of connected objects per object type.
Looking at the object-centric event log in Table 1, if we
choose the object interaction graph (represented in Fig. 2)
and focus on the object PO4, we have:

• fgraph(PO4)(“outdegree′′) = 3 (because the objects
PR4, GI1 and R6 are connected to PO4 in the object
interaction graph).

• fgraph(PO4)(“outdegreeot Purch.Req.′′) = 1 (because
the purchase requisition PR4 is connected to PO4).

• fgraph(PO4)(“outdegreeot I nvoices′′) = 1 (because
the invoice R6 is related to PO4).

• fgraph(PO4)(“outdegreeotGoods I ssues′′) = 1 (because
the goods issue GI1 is connected to PO4).

The graph-based feature map computed on the object-centric
event log in Table 1 and its object interaction graph is pro-
posed in Table 3.

4.3 Feature propagation

Weintroduce inDefinition9 the feature propagation approach
to “propagate” the values of the features of the neighboring
objects.
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Table 2 Basic feature map on top of the object-centric event log proposed in Table 1

ID Relevs Throughput wip #Change #Close #Cr. #Cr. #Cr. #G. #Inv. #PR #Payment
PR PR Inv. PO PR Issue Receipt Appr.

PR1 2 12600.0 1 0 1 0 0 1 0 0 0 0

PR2 2 106140.0 2 0 0 0 1 1 0 0 0 0

PR3 4 175500.0 2 1 0 0 1 1 0 0 1 0

PR4 2 80580.0 2 0 0 0 1 1 0 0 0 0

PO1 2 244860.0 3 0 0 0 1 0 0 1 0 0

PO2 2 252000.0 3 0 0 0 1 0 0 1 0 0

PO3 4 6204720.0 6 0 0 0 1 0 0 3 0 0

PO4 3 780720.0 4 0 0 0 1 0 1 1 0 0

PO5 1 0.0 2 0 0 0 1 0 0 0 0 0

PO6 2 344580.0 3 0 0 1 1 0 0 0 0 0

PO7 2 249120.0 3 0 0 1 1 0 0 0 0 0

R1 2 435480.0 3 0 0 0 0 0 0 1 0 1

R2 2 844020.0 3 0 0 0 0 0 0 1 0 1

R3 2 190800.0 3 0 0 0 0 0 0 1 0 1

R4 2 191760.0 3 0 0 0 0 0 0 1 0 1

R5 2 192480.0 3 0 0 0 0 0 0 1 0 1

R6 2 26758800.0 4 0 0 0 0 0 0 1 0 1

R7 2 10800.0 2 0 0 0 1 0 0 1 0 0

R8 1 0.0 3 0 0 1 0 0 0 0 0 0

GI1 1 0.0 3 0 0 0 0 0 1 0 0 0

P1 1 0.0 2 0 0 0 0 0 0 0 0 1

P2 1 0.0 2 0 0 0 0 0 0 0 0 1

P3 1 0.0 3 0 0 0 0 0 0 0 0 1

P4 1 0.0 3 0 0 0 0 0 0 0 0 1

P5 1 0.0 2 0 0 0 0 0 0 0 0 1

P6 1 0.0 2 0 0 0 0 0 0 0 0 1

Definition 9 (Feature Propagation) Let L be an object-
centric event log as in Definition 2, G = (O,�) an
object-based graph and f : O → (� → R) an object-
based feature map. Given an aggregation function agg :
P(R) → R, we define fagg,G : O → (� → R) such that
for σ ∈ � and o ∈ O , fagg,G(o)(σ ) = agg({ f (o′)(σ ) | o =
o′ ∨ (o, o′) ∈ �}).

An example application is the following. Looking at the
object-centric event log proposed in Table 1, if we choose
the object interaction graph (represented in Fig. 2) and focus
on the invoice R6, we can see that the invoice is connected to
the purchase order PO4. We can see also that PO4 is con-
nected to the goods issueGI1. The presence of a goods issue
connected to PO4 could significantly delay the payment of
the invoice R6. Hence, the number of goods issues connected
to a purchase order is a relevant feature also for the invoice,
and the feature propagation introduced in Definition 9 finds
a good application in this context.

4.4 Automatic identification of anomalous
conditions

Once a feature map (as in Definition 7) is defined, we can
identify the objects with anomalous values in the features,
or strange combinations of these values, using any anomaly
detection method (for example, isolation forests [15]). Given
an object-centric event log (as in Definition 2) and any
ot ∈ OT , we consider the set of objects Oot = {o ∈
O | πotyp(o) = ot} having object type ot . An anomaly
detection method would split this set of objects into a set
NOot (objects with normal behavior) and AOot (objects with
anomalous behavior). We are interested in explaining the
decisions of the anomaly detection method and consequently
understanding the differences in the values of the features
between the objects classified as NOot and the objects clas-
sified as AOot. This can be done using different approaches,
for example using decision trees or the RIPPER [4] algo-
rithm to get explainable classification rules describing the
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Table 3 Graph-based feature
map based on the object-centric
in Table 1 and its object
interaction graph

ID Outdegree Outdegree Outdegree Outdegree Outdegree Outdegree
Goods issues Invoices Payments Purch. orders Purch. req.

PR1 0 0 0 0 0 0

PR2 1 0 0 0 1 0

PR3 1 0 0 0 1 0

PR4 1 0 0 0 1 0

PO1 2 0 1 0 0 1

PO2 2 0 1 0 0 1

PO3 3 0 3 0 0 0

PO4 3 1 1 0 0 1

PO5 1 0 1 0 0 0

PO6 2 0 1 0 1 0

PO7 2 0 1 0 1 0

R1 2 0 0 1 1 0

R2 2 0 0 1 1 0

R3 2 0 0 1 1 0

R4 2 0 0 1 1 0

R5 2 0 0 1 1 0

R6 2 0 0 1 1 0

R7 1 0 0 0 1 0

R8 2 0 0 0 2 0

GI1 1 0 0 0 1 0

P1 1 0 1 0 0 0

P2 1 0 1 0 0 0

P3 1 0 1 0 0 0

P4 1 0 1 0 0 0

P5 1 0 1 0 0 0

P6 1 0 1 0 0 0

differences between NOot and AOot. These rules take into
account combinations of values of the features.

If we consider a Procure-to-Pay process, the following
conditions can be identified automatically:

• Every purchase order should be connected to at least a
purchase requisition, so if we choose the object interac-
tion graph in Definition 8,
fgraph(o)(“outdegreeot Purch.Req.′′) >= 1 for the
non-anomalous purchase orders.

• The orders should precede the corresponding invoices,
so if we choose the object creation graph in Definition 8,
fgraph(o)(“outdegreeot Purch.Ord.′′) = 0 for the non-
anomalous invoices.

• Purchase requisitions should be followed by at least a
purchase order and should not be modified when the
purchase order is created. So, if we choose the object
continuation graph in Definition 8,
fgraph(o)(“outdegreeot Purch.Ord.′′) >= 1 for the
non-anomalous purchase requisitions.

• Length and duration of the lifecycle: We can identify
bounds of duration and length for the lifecycle of the
objects for any object type, which can be used to identify
“surprising” objects to investigate. This canbedoneusing
the fbas(o)(“throughput ′′) and fbas(PO4)(“relevs′′)
features introduced in Definition 7.

Some anomaly detection methods (such as isolation
forests) return an anomaly score for each considered object
(the higher the score, the more anomalous the object). By
sorting the objects based on their anomaly score, we can
consider the first objects of this list for further investigation.

5 Tool

In this section,we present two tools for object-centric process
mining and machine learning on object-centric event logs.
In particular, the OCPM web-based tool https://www.ocpm.
info and the Python process mining library pm4py https://
pm4py.fit.fraunhofer.de are described.
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OCPM is an object-centric process mining tool that offers
support for:

• Ingestion/exporting of object-centric event logs in the
OCEL standard format (JSON-OCEL andXML-OCEL).

• Flattening the object-centric event logs into traditional
event logs with the choice of a case notion.

• Advanced preprocessing features (filtering, sampling).
• Discoveringobject-centric processmodels: object-centric
directly-follows graphs and object-centric Petri nets.

• Conformance checking on object-centric event logs
based on declarative and temporal constraints (log skele-
ton, temporal profile).

• Exploration of the events/objects of the object-centric
event log.

A machine learning component is available that implements
the traditional and graph-based features described in this
paper. With these features, different process mining appli-
cations are possible:

• With the SQL explorer, it is possible to manually explore
the patterns emerging in the object-centric event log. For
example, it is possible to explore when maverick buy-
ing happens in a Procure-to-Pay process (i.e., the invoice
creates the order and not vice versa).

• With anomaly detection, it is possible to explore (and then
filter) the objects with the most anomalous patterns. This
helps to simplify the process models to the mainstream
behavior.

• With correlation analytics, it is possible to understand
which factors are influencing the outcome of a process.
For example, thework in progress influences the duration
of the invoice processing.

• With conformance checking, it is possible to explore the
outliers objects for a selected feature. In this case, outlier
objects can be filtered out, and this can help in reducing
the process model.

pm4py is a processmining library in Python,which imple-
ments object-centric process mining feature extraction. An
object-centric machine learning module is available that
offers the traditional and graph-based features described in
this paper. This allows for integration with the rich Python
ecosystem for machine/deep learning.

6 Assessment

Wedivide the assessment into three sections (qualitative real-
life, qualitative synthetic, and quantitative synthetic). As the
real-life event log that has been used to assess the techniques

Table 4 Characteristics of the real-life event log used for the qualitative
assessment

Characteristic Value

Number of events 18037

Number of objects 9197

Number of activities 225

Number of object types 10

is not publicly available, synthetic event logs have been pro-
vided and can be used with the tool support described in
Sect. 5.

6.1 Qualitative assessment using a real-life P2P
event log

The proposed feature extraction has been used on a real-
life object-centric event log (the characteristics of this event
log are described in Table 4) related to a Procure-to-Pay
(P2P) process in SAP. The goal is to prove the utility of
the aforementioned features to find useful insights related to
the process. For each one of the proposed graphs, we found
an application in the Procure-to-pay process. Moreover, fea-
ture propagation proved useful in correlating features of the
purchase order to the total time of the process.

6.1.1 Application of the object continuation graph:
post-mortem changes to purchase requisitions

Problem Statement: big purchase orders require, in most
cases, formal approval through a purchase requisition. The
payment amount/quantity of the purchase order is matched
against the purchase requisition to check for possible devi-
ations. An inconvenient step is related to the creation of a
smaller purchase requisition that is formally approved and
the subsequent placement of a purchase order that exceeds
the amount/quantity set in the purchase requisition. The pur-
chase requisition is eventually updated tomatch the purchase
order. This could be easily visualized after building the object
continuation graph from the object-centric event log. In this
case, purchase requisitions that are disconnected from the
purchase order are either:

• Not approved. An example of this is PR1 in Table 1 and
Fig. 4.

• Updated after the creation of the purchase order. An
example is PR3 in Table 1.

Quantitative Metrics: in the considered case study, a sig-
nificant number of purchase requisitions, 11.8%, have been
modified after the creation of a corresponding purchase order.
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Comparison versus Traditional Process Mining: Since many
changes (corresponding to different activities) could be per-
formed on a purchase requisition, the verification of this
property starting from the traces of a traditional event log
for the P2P process is problematic.

6.1.2 Application of the object interaction graph: detection
of maintenance contracts

Problem Statement: purchase orders are usually placed to
buy a set of products from a supplier. Therefore, they involve
a limited number of invoices/payments. Some purchase
orders are “maintenance contracts,” which means they are
used to cover periodic maintenance interventions of exter-
nal companies. These maintenance contracts are left open
and associated with the periodic invoices coming from such
companies. This subclass of purchase orders can be detected
thanks to the object interaction graph. In particular, orders
that are associated with a significant amount of invoices are,
in most cases, maintenance contracts. An example is PO3 in
Table 1 and Fig. 2; in comparisonwith the other orders shown
in Fig. 2, the number of invoices associated with the order is
higher.
Quantitative Metrics: in the considered case study, 2.3% of
the orders are associated with at least five different invoices.
Comparison versus Traditional Process Mining: while it is
still possible to detect maintenance contracts on traditional
P2P event logs, this depends on the chosen granularity and
case notion. If the case notion is the purchase order and the
granularity is at the document level, it is possible to count
the number of invoices associated with each single purchase
order. Otherwise, if the granularity is at the document item
level, getting the actual number of invoices per order is com-
plicated.

6.1.3 Application of the object creation graph: Maverick
buying

Problem Statement: maverick buying is another workaround
in the Procure-to-Pay process. To avoid a formal placement of
the purchase order, the order is informally placed to the sup-
plier, which sends the goods and the invoice to the company.
After receiving the invoice, the purchase order is inserted
into the ERP system. It is possible to use the object creation
graph to detect maverick buying.What should happen in nor-
mal conditions is that the purchase order should be followed
by an invoice. In contrast, maverick buying leads to invoices
followed by purchase orders. An example is R7 in Table 1
and Fig. 4.
Quantitative Metrics: in the considered case study, the 1.6%
of the orders suffer from maverick buying.
Comparison versus Traditional Process Mining: this prob-
lem is easier to detect on traditional P2P event logs, in

comparison with the problems in the other subsections.
However, if the invoices are also inserted using different
transactions compared to the usual ones, the detection of this
phenomenon can be problematic.

6.1.4 Application of the feature propagation: factors
influencing invoice duration

The lifecycle of an invoice is directly influenced by the fea-
tures of the purchase order and not by the invoice processing
itself. Consider, for example, an invoice related to a pur-
chase order suffering from a goods issue. This means that
the items of the order are not delivered in a functioning state,
and replacement may be sent. In addition, this influences the
clearance (payment) of the invoice, with a payment block
that could be inserted until the goods have arrived in a good
state. In the object interaction graph (Fig. 2), we could see,
for example, that invoice R6 is associated with a purchase
order suffering from a goods issue. While the goods issue
is not directly connected to the invoice, it could lead to a
significant delay in the payment of the invoice.

6.2 Qualitative assessment on a synthetic event log

Input: a synthetic event log related to an order management
process has been generated to support the reproducibility
of the results of the techniques proposed in this paper. The
event log is available at the address https://www.ocpm.info/
synthetic_po.jsonocel, and its characteristics are described
in Table 5. In this event log:

• Purchase orders are created with a “Create Purchase
Order” activity, followed possibly by the “Change Price”
activity and (except in the case of maverick buying) some
invoices which are related to the purchase order.

• Invoices are created with a “Create Invoice” activity, fol-
lowed possibly by some change activities (“Change Y1,”
“ChangeY2,” “ChangeY3,” “ChangeY4’,’ and “Change
Y5”) and a “Payment” (with annexed object).

• In the case of maverick buying, the invoices are followed
by a purchase order.

Table 5 Characteristics of the synthetic event log used for the qualita-
tive assessment

Characteristic Value

Number of events 1187

Number of objects 723

Number of activities 8

Number of object types 3
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Anomaly Detection: different anomalies can be identified in
the event log:

• Some invoices are related to a significantly bigger number
of changes than other invoices.

• Some purchase orders are related to many invoices.

The event log can be directly uploaded to the OCPM tool
www.ocpm.info. Then, the “isolation forests” component of
the tool can be used to identify the most anomalous objects
that appear on top of the list (see Fig. 5).

We see, for example, that the object with the identifier
“PO_35” is associated with 24 different invoices, and that is
exceptional enough that the object gets a very high anomaly
score. The invoice with the identifier “INVOICE_149” is
anomalous because many change activities (“Change Y1,”
“Change Y2,” “Change Y3,” “Change Y4,” and “Change
Y5”) are executed. This is correctly identified by the tool.
Using the Results: An example application of the knowledge
of anomalous objects is the filtering of the object-centric
directly-follows graph. Figure6 shows the object-centric
directly-follows graph on the entire object-centric event log.
Figure7 shows the model computed on a filtered version
of the log where we removed the 20% of most anoma-
lous objects according to the isolation forest score. This can
be done by selecting the Advanced filtering component of
OCPM and executing the Anomalous Objects Filtering (Iso-
lation Forest) component. We can see that some connections
with a low number of occurrences have been filtered out.

6.3 Quantitative assessment using public available
object-centric event logs

Goal:The qualitative assessment has shown that graph-based
features are useful to detect complex conditions of interaction
between different objects, both in the real P2P process and
the synthetic event log, but a quantitative assessment (how
much the features are useful in a generic setting?) is miss-
ing. In this subsection, we propose a quantitative assessment
of the features extracted from our approach on top of more
complex publicly available event logs. Indeed, we compare
four different settings for feature extraction:

S1 (Baseline) only features related to the lifecycle of an
object are considered. This is equivalent to performing
feature extraction on top of traditional event logs.

S2 Features related to the lifecycle of an object and the object
interaction graph are considered. This is equivalent to the
setting described in [10].

S3 Features related to the lifecycle of an object and the object
interaction and creation graph are considered.

S4 Features related to the lifecycle of an object and the object
interaction, creation, and continuation graphs are consid-
ered.

Inputs: the logs that are used in the quantitative assessment
are available at the address https://www.ocel-standard.org/
and their features are reported in Table 6. For some of the
event logs, we filtered out the object types as specified in
Table 6. This was done because objects of some object types
were connected to a significant number of events, inducing
a connection between most of the events and objects of the
event log, therefore making graph-based feature extraction
less effective. As an example, many orders contained the
same products, so the products object type was filtered out
from the “Order management log.”
Technique-Dependent Considerations:we assessed the qual-
ity of features based on the quality of machine learning
models that can be learned from the data. In particular, we
want to predict the lifecycle duration starting from four differ-
ent scenarios, S1-t, S2-t, S3-t, and S4-t, which are equivalent
to the aforementioned scenarioswith the exclusion of the life-
cycle duration feature. For this,weuse an extra trees regressor
trained on 80% of the objects to predict the lifecycle duration
of the remaining objects and compare the prediction with the
actual value.

The effectiveness of the prediction was measured using
two standardmetrics (meanabsolute percentage error (MAPE)
and root ofmean squared percentage error (RMSPE)), briefly
reported below. Here, Ai is relative to the actual value (the
effective throughput time) and Fi is relative to the predicted
completion time.

MAPE = 1

n

n∑

i=1

| Ai − Fi
Ai

|

RMSPE =
√∑n

i=1(Ai − Fi )2

n

The results are reported in Table 7 (for the MAPE metric)
and Table 8 (for the RMSPE metric). Lower values indicate
better predictions, and, generally, the addition of the object
interaction graph and the object creation graph contributes
to improving the results of the prediction. Considering the
MAPE metric, the best predictive results are obtained in the
scenario S4-t for three of the four logs.

Therefore, considering several different graph-based fea-
tures contributed to a better prediction in comparison with
considering only features related to the lifecycle of an object
(S1-t, which is equivalent to what is done in [6]) or just the
object interaction graph (S2-t, which is equivalent to what is
done in [10])
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Fig. 5 Isolation forests computed on the synthetic event log available at https://www.ocpm.info/synthetic_po.jsonocel in the machine learning
component of the OCPM tool

Fig. 6 Object-centric directly-follows graph [3] based on the object-centric event log available at the address https://www.ocpm.info/synthetic_po.
jsonocel

Fig. 7 Object-centric directly-follows graph [3] obtained filtering out the 20% of most anomalous objects. In comparison with the model discovered
on the unfiltered log, this discovered model is significantly simpler
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Table 6 Event logs used in the quantitative assessment

Event log Cons. obj. types N. events N. objects N. activities

Order management log {Orders; items; packages} 22367 11484 11

SAP ERP IDES instance—O2C log All 98350 107767 23

SAP ERP IDES instance—P2P log {EBELN_EBELP; EBELN; BELNR_EBELN_EBELP; BELNR} 20554 62353 13

Recruiting process {Applicants; applications; offers} 6607 1339 12

Table 7 Prediction error
(MAPE) of the lifecycle
duration in the four experimental
scenarios S1-t, S2-t, S3-t, and
S4-t (lower is better)

Event log S1-t (%) S2-t (%) S3-t (%) S4-t (%)

Order management log 54 55 55 55

SAP ERP IDES instance—O2C log 53 36 28 27

SAP ERP IDES instance—P2P log 147 134 132 129

Recruiting process 45 45 44 43

Bold highlights the value with minimum prediction error given the metric (i.e., MAPE)

Table 8 Prediction error
(RMSPE) of the lifecycle
duration in the four experimental
scenarios S1-t, S2-t, S3-t, and
S4-t (lower is better)

Event log S1-t S2-t S3-t S4-t

Order management log 0.14D 0.15D 0.15D 0.15D

SAP ERP IDES instance—O2C log 3.63D 3.14D 2.85D 2.79D

SAP ERP IDES instance—P2P log 0.14D 0.12D 0.11D 0.13D

Recruiting process 0.82D 0.82D 0.82D 0.82D

Bold highlights the value with minimum prediction error given the metric (i.e., MAPE)

7 Conclusion

In this paper, we introduce graph-based feature extraction on
object-centric event logs. Many interesting applications of
machine learning have been adapted to the process mining
field. However, this could not be easily used in the object-
centric setting since the quality of features extracted starting
from the lifecycle of a single object is generally lower.Graph-
based feature extraction techniques close the gap, allowing
us to compute features based on the interaction between dif-
ferent objects.

The utility of the aforementioned features is highly
dependent on the definition of an object-centric event log.
Currently, in the OCEL standard, we do not consider the def-
inition of any relationship between the objects, while this
information could be already known during the log creation
phase. Examples of relationships are the parent–children
relation (for example, a purchase order is the “father” object
of its purchase order items) and the bill of materials (a hier-
archical structure including the final product, the list of raw
materials, and the sub- and intermediate assemblies, with
the final product at the top and the raw materials at the bot-
tom). If the definition of object-centric event log is adapted
to include relationships between objects, then the techniques
of this paper are in part redundant. Moreover, the extrac-
tion of an object-centric event log could be quite arbitrary.
In an ERP system, a purchase order is related to invoice(s)

quite straightforwardly. However, when we create an object-
centric event log, we can identify in different ways the events
in which the relationship(s) occur(s). For example, the event
with the activity “Create Purchase Order” could contain only
the reference to the purchase order, while the event with the
activity “Create Invoice” contains the reference to the pur-
chase order and the invoice. Another possible choice is to
place the information about the related invoices on the event
with the activity “Create Purchase Order,” while the event
with the activity “Create Invoice” contains only the refer-
ence to the invoice. The number of arbitrary choices that are
possible during the creation of an object-centric event log can
determine a different behavior when extracting the features.

In this paper, we propose two tools (pm4py and OCPM)
in which graph-based object-centric feature extraction tech-
niques have been implemented. In particular, OCPM is
web-based and offers some machine learning applications
on top of the computed features. An assessment has been
done on a real-life Procure-to-Pay event log, showing that
graph-based features can be used to detect three different
problems of the process. Some of these problems could not
have been identified so easily on traditional event logs.

We leave out from the current version of the paper the defi-
nition of situation table. Indeed, the proposed graphs are built
on top of the entire object-centric event log. While anomaly
detection/clustering is possible starting from the features of
the overall event log, some applications such as prescrip-
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tive/predictive analytics need to consider a “prefix,” which
has not been done yet for object-centric event logs.
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