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A B S T R A C T

Process models describe the desired or observed behaviour of organisations. In stochastic process mining,
computational analysis of trace data yields process models which describe process paths and their probability
of execution. To understand the quality of these models, and to compare them, quantitative quality measures
are used.

This research investigates model comparison empirically, using stochastic process models built from real-
life logs. The experimental design collects a large number of models generated randomly and using process
discovery techniques. Twenty-five different metrics are taken on these models, using both existing process
model metrics and new, exploratory ones. The results are analysed quantitatively, making particular use of
principal component analysis.

Based on this analysis, we suggest three stochastic process model dimensions: adhesion, relevance and
simplicity. We also suggest possible metrics for these dimensions, and demonstrate their use on example

models.
1. Introduction

It has been said that ‘‘the purpose of a system is what it does’’ [1];
in the same spirit, much can be learnt about a system’s purpose by how
often it does it. An organisation is a system, and we can understand
it through the processes it follows. A process performed hundreds
of times daily can be a good target for optimisation, and a rare
sequence of events may be important to monitor for legal compliance.
In these cases where event frequency is important, to analyse such
organisational behaviours quantitatively, we need a stochastic model of
a process, that explicitly represents probability. This research is about
measuring and comparing stochastic process models. It draws on, and
contributes to, the discipline of process mining [2], which concerns the
automatic discovery of process models and their further computational
analysis.

Process mining uses sequential data recorded as observations of
a process in action. A collection of such sequences, recording many
instances of the process executing, is termed an event log. Logs are the
input to discovery algorithms which output process models: computa-
tional models that describe the underlying process. Process discovery is
then a form of unsupervised learning. In the case of stochastic process
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mining, the models learnt describe not only which sequences are possi-
ble, but, perhaps indirectly, how probable those sequences are. Process
mining is used across many industries, and there are many commercial
tools [3,4]. These tools all provide frequency information on activities,
but no explicit support for stochastic models. Explicit stochastic pro-
cess models have been used in insurance [5,6] and healthcare [7] to
optimise workflows and to identify risks.

Quality metrics exist to measure the success of models in repre-
senting logs, and support other forms of quantitative comparison. This
may be to check compliance against a target model, or to understand
ways an official model differs from facts on the ground, or change
over time. For instance, analysts at a German hospital used process
mining conformance tools to compare the changes in medical treatment
between different waves of COVID-19 [8]. Many quantitative measures
for such models exist.

When they capture only a control-flow perspective, without a
stochastic element, process mining has well-established ideas on how
to organise metrics. They are organised under four quality dimen-
sions: fitness, precision, simplicity and generalisation [2, p118]. Having
four dimensions supports thinking through design trade-offs in the
vailable online 2 April 2024
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Fig. 1. Research overview.

construction of models, rather than seeking to optimise a singular
metric.

Some equivalent of process quality dimensions for stochastic models
would help understand quality, support process compliance, and make
meaningful model design trade-offs. It is far from clear whether the four
control-flow quality dimensions translate to use on stochastic process
models. Existing metrics may or may not connect to a control-flow di-
mension, and are often constrained to subsets of common process model
types. More fundamentally, we lack an understanding of how these
quality metrics relate to one another. As our investigation shows, two
metrics that purport to measure the same concept, such as precision,
may give very different measurements for the same log and model. On
the other hand, metrics that supposedly measure different concepts may
be highly correlated.

Accordingly, in this paper, we investigate what dimensions may
describe the quality of stochastic process models. There are no estab-
lished quality dimensions for such models, so we use metrics designed
for stochastic models as one starting point, as well as established
control-flow process mining dimensions. The mathematical space under
consideration is not purely analytical, as the underlying event logs
to which models are compared are real-life empirical data on the
social behaviour of organisations. This suggests using an exploratory
quantitative analysis. Our approach was empirical, based on collect-
ing and evaluating stochastic process models for real-life processes.
Experiments generated a collection of thousands of models, using a
variety of techniques, and based on event data from six real-life logs.
Metrics collected included those from the literature and some adapted
or designed specifically for this experiment. This empirical data was
analysed for correlation and a principal components analysis (PCA)
performed. Based on this analysis, we propose three stochastic process
model quality dimensions: adhesion, relevance and simplicity. Both the
proposed dimensions for stochastic process model quality, and the
empirical investigation, are novel.

Fig. 1 gives an overview of the research. Stochastic process models
are generated from logs using discovery techniques. These models,
together with the logs, are inputs to quality metric calculations. The
dataset of collected metrics is then analysed quantitatively.

This article extends our earlier conference paper [9], which reported
on the experiment design and an initial round of experiment and
quantitative analysis. This article adds:
2

• Additional metrics for entropic relevance [10], and measures
based on alpha precision [11], from recently published research;

• Improvements to the experimental design, particularly metric
capture and choice;

• A second cycle of experimental evaluation and analysis;
• Candidate metrics based on the three dimensions; and
• Detailed demonstrations of the dimensions and metrics in use on

concrete example models.

We also share the following secondary results:

• A practical, approximate solution for trace probability calculation
(Trace-Prob) [12], allowing an expanded set of supported models
for some metrics, and mentioned in our previous work as a
play-out log generation technique;

• New detail on the formal properties of this trace probability
calculation;

• A genetic miner for the discovery of stochastic process models,
Stochastic Evolutionary Tree Miner (SETM), suitable for labora-
tory use; and

• A new implementation of the entropic relevance measure [10]
applicable to a broader range of models than those in the original
paper or public implementation.

The remainder of this article proceeds as follows. Formal founda-
tions are defined in Section 2 and background scholarship is discussed
in Section 3. The experimental design is described in Section 4, includ-
ing metric choice, model generation, and two cycles of experiments.
The results of the experiments are presented and analysed in Section 5.
Quality dimensions, and metrics suggested by these results, are dis-
cussed in Section 6, including applying them to example models with
a range of different qualities. Section 8 concludes.

2. Preliminaries

This section defines process mining concepts and mathematical
structures used throughout this article.

2.1. Logs and languages

Sequences are shown as ⟨𝑎1,… , 𝑎𝑛⟩ and their concatenation operator
as +, for example, ⟨𝑎, 𝑏⟩ = ⟨𝑎⟩ + ⟨𝑏⟩. The set of multisets (bags)
over type 𝐶 is (𝐶) and real-valued multisets are +(𝐶). Real-valued
multisets are always positive-valued in this paper, with values ∈ R+.
The count of item 𝑥 ∈ 𝐶 in bag 𝐵 ∈ (𝐶) is 𝐵[𝑥]. Multiset union and
ntersection are ⊔ and ⊓ respectively. In real-valued multisets, the count
f a member is in R+. As an example, consider real-valued multiset 𝑋 =
⟨𝑎⟩3.4, ⟨𝑏, 𝑐⟩2.0]. Then 𝑋[⟨𝑎⟩] = 3.4. The ⋅ operator scales all occurrence
alues by a numeric factor, as in 2 ⋅ [⟨𝑎⟩1, ⟨𝑐, 𝑏⟩3] = [⟨𝑎⟩2, ⟨𝑐, 𝑏⟩6].

efinition 1 (Activities and Event Logs). Let 𝐴 be a set of activities
n a process, and 𝐴∗ the possible sequences of those activities. Each
ccurrence of an activity is an event. A trace 𝜎 ∈ 𝐴∗ is a sequence of
ctivities. Event logs are multisets of traces (𝐴∗).

 is the set of all event logs. |𝐿| is the number of traces in a log
∈ , and ‖𝐿‖ the number of events. The number of cases matching

race 𝜎 in log 𝐿 ∈  is 𝐿[𝜎].

efinition 2 (Play-out Log). A play-out log [2, p41] 𝐿𝑝 ∈ +(𝐴∗) is a
inite real-valued multiset of traces.

Real-life event logs have whole-numbered traces, but in our lab-
ratory setup, fractional trace counts are useful in play-out logs to
ccommodate some side-effects of scaling. These are always positive.
he set of all play-out logs is + ⊃ .
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Fig. 2. Example SLPN for a commuter travelling to work, with its stochastic language.
The language has an infinite number of traces due to the presence of the loop. An
SLPN without weights and a label function is a place-transition net.

Definition 3 (Stochastic Language).A stochastic language 𝛩 ⊆ +(𝐴∗)
for traces over activities 𝐴 is a real-valued multiset holding probability
values for each trace, and summing to 1.

∀𝜎 ∈ 𝛩,𝛩[𝜎] ∈ [0, 1]
∑

𝜎∈𝛩
𝛩[𝜎] = 1

Stochastic languages may be infinite, but this experiment design
uses finite approximations derived from play-out logs. The correspond-
ing finite stochastic language for a play-out log can be found when
scaling by the inverse of the cardinality of the log, 1

|𝐿| .

.2. Petri nets and other models

The term Petri net can refer either to a specific formalism or to
family of related transition structures. We refer to the foundational

ontrol-flow structure as a place-transition net, following [13].

efinition 4 (Place-transition Nets). A place-transition net is a tuple
(𝑃 , 𝑇 , 𝐹 ,𝑀0) of places 𝑃 , transitions 𝑇 , flow relation 𝐹 ⊆ (𝑃×𝑇 )∪(𝑇×𝑃 )
and initial marking 𝑀0. Markings are multisets of places 𝑀 ∈ (𝑃 )
indicating a state of the net.

The flow relation 𝐹 represents a directed connection from the first
to the second node. A transition 𝑡 is enabled under marking 𝑀 when
every incoming place is marked, or ∀(𝑝, 𝑡) ∈ 𝐹 , 𝑝 ∈ 𝑀 . When enabled,
transitions may fire, changing the state of the net by consuming one
oken from each incoming place and producing one token for each
utgoing place.

This structure can be extended to model process probabilities, and
o support activity labels.

efinition 5 (Stochastic Labelled Petri Net). An SLPN [6] is a tuple
(𝑃 , 𝑇 , 𝐹 ,𝑀0,𝑊 , 𝜆) such that (𝑃 , 𝑇 , 𝐹 ,𝑀0) is a place-transition net. A
weight function 𝑊 ∶ 𝑇 → R+ assigns each transition a weight. Labelling
function 𝜆∶ 𝑇 → 𝐴∪ {𝜏} then provides a mapping from transitions to a
symbol library of activities 𝐴. 𝜏 is a silent label where 𝜏 ∉ 𝐴.

When transitions 𝑇𝑒 ⊆ 𝑇 are enabled in a particular marking, a
transition 𝑡 ∈ 𝑇𝑒 fires according to the probability given by 𝑊 (𝑡)

∑

𝑡′∈𝑇𝑒 𝑊 (𝑡′) .
he sequences of activity labels, without silent label 𝜏, generated by a
eries of transitions through the model forms a trace, and the collection
f such traces and their probabilities is the SLPN’s stochastic language.
e assume traces to end in deadlock, where no transitions are enabled.
Fig. 2 is an example SLPN describing a commuter travelling to

ork. Every trip starts with them walking to the train station. They
lways take the train and buy a coffee, but sometimes they buy the
offee from the cafe at their departure station, before embarking, and
ometimes after taking the train, from a cafe close to their work. When
3

i

they arrive at work, they may go straight to their desk to start the
day, or they may chat with one or more colleagues. In the model, at
each point where more than one transition is enabled, the probability is
determined by weighted choice. Transitions are annotated with labels
and weights in the diagram, with 𝜏 a silent label. For example, after
walking to the station (walk∶ 8), the commuter usually takes the train
train∶ 7) before buying their coffee (coffee∶ 1), with a probability of
7
8 . The probability of the entire trace ⟨walk, train, coffee, sit⟩ is 0.18, as
shown in the excerpt from the infinite stochastic language generated
by the model.

We name the set of all SLPNs as  . SLPNs are a labelled variant of
Stochastic Petri Nets (SPNs) [13] and Generalized SPNs (GSPNs) [13].
SPNs use timed transitions, where firing happens according to a reverse
exponential function. GSPNs have both immediate transitions, as in
SLPNs, and timed transitions, as in SPNs.

All process models used in this research are either SLPNs, or struc-
tures translatable to SLPNs. A Probabilistic Process Tree (PPT) [14] is
a tree of weighted nodes.

Definition 6 (Probabilistic Process Trees). Let 𝑥∶𝑤 be a node, where 𝑥
is the unweighted portion and 𝑤 ∈ R+ a weight. The universe of PPTs
over activity set 𝐴 is recursively defined as:

1. A single activity. For 𝑎 ∈ 𝐴, 𝑎∶𝑤 ∈  .
2. A silent activity, represented by the constant 𝜏, such that 𝜏 ∉

𝐴 ∧ 𝜏 ∶ 𝑤 ∈  .
3. An n-ary operator ⊕𝑛 over one or more child trees. Given 𝑚 ≥ 1,

𝑢1,… , 𝑢𝑚 ∈  , then ⊕𝑛(𝑢1,… , 𝑢𝑚)∶𝑤 ∈  . ⊕𝑛 ∈
{→,×,∧}.

• →(𝑥1∶𝑤,… , 𝑥𝑛∶𝑤)∶𝑤 is a sequence of trees, executed se-
rially.

• ×(𝑥1∶𝑤1,… , 𝑥𝑛∶𝑤𝑛)∶𝑤 is a weighted exclusive choice be-
tween processes.

• ∧(𝑥1∶𝑤1,… , 𝑥𝑛∶𝑤𝑛)∶ describes child processes which ex-
ecute concurrently. The next process to progress is deter-
mined by a weighted race.

4. A unary operator ⊕1. Given 𝑢 ∈  , then ⊕1(𝑢)∶𝑤 ∈  .
⊕1 ∈ {↻𝑛,↻𝑝}.

• ↻𝑚
𝑛 (𝑥∶𝑤)∶𝑤 is a fixed loop which repeats process 𝑥∶𝑤 m

times.
• ↻𝜌

𝑝 (𝑥∶𝑤)∶𝑤 is a probabilistic loop which repeats process
𝑥∶𝑤 zero or more times, with exit probability 1

𝜌 .

PPTs can be translated to SLPNs and are used in multiple ways as
art of the model generation in these experiments. Fig. 3 is an example
PT describing the same commuter travel process as Fig. 2, and with
he same stochastic language. Fig. 3(b) shows the automatic translation
f the PPT to an SLPN, including the silent transitions which maintain
he block structure. For example, the concurrent subtree describing
aking the train and having a coffee becomes a block with a race
etween ‘‘train’’ and ‘‘coffee’’ Petri net transitions.

.3. Metrics and measures

In this work, metrics and measures are particular classes of functions
sed to evaluate log and model quality.

efinition 7 (Metrics and Measures). A metric 𝑚 is a function comparing
odels and logs, 𝑚∶ × + → R, which returns a real number. A
easure 𝜇 is a metric with range [0, 1], or 𝜇∶ × + → [0, 1].

Measures are a subset of metrics with a guaranteed finite range that
ake some forms of comparison and analysis simpler. Where a metric

r measure does not return values for all SLPN models ( ), we term

t delicate. This may be a formally identified limitation, or a practical
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Fig. 3. Example PPT for a commuter travelling to work (3(a)), and its SLPN translation (3(b)).
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observation about the behaviour of a particular metric implementation.
To give some examples from the literature, Entropic Relevance [10] is a
metric reported in bits, which has no upper bound. Entropy Recall [15],
by contrast, is a measure, formally defined in a way that guarantees
a [0, 1] range; it is also a delicate measure, which is defined only for
deterministic models.

Some metrics are designed to work with play-out logs instead of
models.

Definition 8 (Play-out Metrics and Measures). A play-out metric is a
unction comparing play-out logs and event logs, 𝜋 ∶+ ×+ → R, and
play-out measure 𝜋𝜇 is a play-out metric with range [0, 1].

. Related work

This research builds on other scholarly work on stochastic pro-
ess mining and models. This includes the discovery of such models,
heir quantitative measurement and comparison (conformance), and
he dimensions along which they may be compared.

.1. Discovery of stochastic process models

Many control-flow discovery algorithms exist [16]. Stochastic pro-
ess discovery algorithms are more limited in number, and may directly
nnotate models discovered by control-flow techniques [17–20] or con-
truct stochastic models directly [14,21]. Table 1 summarises existing
iscovery techniques, including whether a technique depends on a
on-stochastic model from another miner, the type of model output,
hether the output is convertible to an SLPN, and the existence of a
ublic implementation. For completeness, we include two techniques
ublished after our experiments were run [19,20]. Both use SLPN
ariants, one with dynamic weights [19], the second with data-sensitive
uards [20]. Most discovery techniques leverage a control-flow tech-
ique as an initial step, such as the use of Inductive Miner [22] by
DT_SPN discovery [17]. Many of techniques have public implemen-

ations. There is a diversity of output model types, but most of them
upport conversion to SLPNs. Other formats, such as the annotated
PMN used by Simod [23], may potentially support SLPN conversion
ith further research beyond the scope of the current paper.

For our experiment, we use existing GSPN and SLPN discovery tech-
iques with public implementations [14,17,18]. Other recent discovery
esearch has shown techniques for discovering probability-annotated
PMN models [23], probabilistic declarative models [24], non-classical
robability Bayesian networks [21] and Bayesian models for place-
ransition Petri nets [25]. The Bayesian technique [25] also has poten-
ial applications for model comparison and new conformance measures.

The current study builds directly on the analysis of genetically-
ined control-flow models [27], both in study design, and direct exten-

ion of the Evolutionary Tree Miner code [28]. That work conducted a
4

s

ualitative study on classes of models generated with different genetic
iner constraints. In this work, the dimensions derived through quan-

itative analysis in Section 6 are applied qualitatively in Section 6.4.
he Stochastic Evolutionary Tree Miner (SETM), a laboratory discovery
echnique suitable for exploring alternative models, is introduced in
ection 4.3.

.2. Quality dimensions

For control-flow process models and process mining, quality mea-
ures are typically considered to be measuring one of four quality
imensions: fitness, precision, simplicity and generalisation [27], [2,
118]. Fitness measures indicate how well the model can reproduce
he behaviour of the log. Precision measures how much of the model
s used to reproduce log behaviour. A model may describe not just all
races in the log, but many other traces besides: such a model has high
itness but low precision. The simplicity dimension considers simpler
odels as higher quality, in both an application of Ockham’s Razor [29]

nd a recognition that simpler models are easier to understand [30].
eneralisation measures whether the model is applicable to more than

he current sample (in process mining, a specific event log). In contrast
o approaches in statistical learning where metrics aspire to represent
verall model quality [31], in process mining, model quality is usually
resented as a way to make design trade-offs against four quality
riteria which are inherently in tension.

Though many studies investigate particular techniques quantita-
ively, quantitative experiments on the basis for quality dimensions
re rarer. There is at least one quantitative study of the relationship
etween control-flow quality dimensions [32]. This used a collection
f quality measures on models from a variety of control-flow dis-
overy techniques. Factor analysis on the results found fitness and
recision components with a clear correspondence to existing mea-
ures. An established consensus on what control-flow dimensions were
eaningful preceded the experiment, and the empirical components

upported those concepts. For the stochastic process context, there
re no pre-known dimensions, so this study has a more exploratory
haracter.

.3. Conformance of stochastic process models

Stochastic conformance metrics are those which specifically take
tochastic process models as input. We make use of most of the met-
ics surveyed below in Section 4.1, either directly, or by introducing
lternatives inspired by them (defined formally in Appendix). Existing
etrics in the literature often consider probability mass or the proba-

ility of particular traces as parameters in metric calculation. Table 2
ummarises existing metrics, including whether their design is based
n a control-flow dimension, restrictions on model inputs from the full

et of SLPN models, and whether there is a public implementation.
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Table 1
Related work on stochastic process discovery.
Technique Miner

dependency
Model output SLPN

conversion
Public
impl.

Year

GDT_SPN
discovery [17]

Inductive
miner [22]

GDT_SPN Yes Yes 2014

Non-classical
Bayesian
net discovery [21]

No Bayesian net
variant

No No 2018

PLTL discovery [24] No ProbDeclare No No 2019
MCMC prefix tree
discovery [25]

No Prefix automaton No No 2020

Simod [23] Split
miner [26]

Annotated
BPMN

No Yes 2020

Weight estimators
(6 variants) [18]

Yes SLPN Yes Yes 2021

Toothpaste Miner
[14]

No PPT Yes Yes 2021

SLPN-SD
discovery [19]

Yes SLPN variant Yes Yes 2023

Data-Based
Stochastic
Discovery [20]

Yes SLPN variant Yes Yes 2023
Table 2
Related work on stochastic process conformance.
Technique Related

Control-flow
dimension

SLPN
restriction
(delicate)

Public impl. Year

Earth-movers’ distance [33] No Some Yes 2019
Entropy projection precision [15] Precision SDFA only Yes 2020
Entropy projection recall [15] Fitness SDFA only Yes 2020
Entropic behavioural simplicity [34] Simplicity No No 2020
Alpha precision [11] Precision No No 2022
Entropic relevance [10] No SDFA only Yes 2020
There are a small number of metrics, all a product of research from the
last four years. There is no metric for the control-flow Generalisation
dimension, and a third of the models have no control-flow dimension
analogue. Most metrics have restrictions on which models they can
be applied to. Three apply only to SDFA-equivalent models. The set
of models for which the Earth-Movers’ Distance measure (EM) [33] is
not practical has been noted, but is not a recognised formal class of
models. Public implementations are available for most, but not all, of
the published metrics.

Calculating the probability of a particular trace through a process
model is a non-trivial algorithmic problem, Trace-Prob [12]. Though
solutions now exist, efficient approaches for broad classes of models
are still an active research challenge. Two recent approaches use firstly,
linear programming [12] and secondly, an expectation-minimisation
(EM) algorithm on Probabilistic Context Free Grammar trees [35]. In
Section 4.2 we show an alternative solution which uses SLPN model
play-out - a variant of the Petri net token game [2, p41] - to give the
trace probability for all traces in a model beyond a given probability
threshold. The result is represented as a play-out log.

The Earth-Movers’ Distance measure (EM) [33] combines the well-
known concepts of Levenshtein string edit cost – in this case in compar-
ing traces – with the Earth-Movers’ distance over the possible traces of
model and log. As the set of possible model traces can be infinite, this
includes a truncated measure using a specific fraction of the probability
mass, for tractability. This theoretical constraint was seen in practice on
some models built by existing discovery techniques from real-life logs.

Entropy has also been used for model quality measurement. In
projection-based precision and recall [15], Stochastic Deterministic
Finite Automata (SDFAs) are constructed for both log and model. New
SDFAs can be computed from a projection of the log over the model,
and vice versa. Entropy ratios then provide measures for precision
(𝐻𝑃 ) and recall/fitness (𝐻𝐹 ), both used in this study. We also employ
measures inspired by entropy projection, but not limited to SDFAs
5

(Play-out Entropy Fitness and Precision measures HIFT, HIPT, HJFT,
HJPT). In entropic relevance [10], the process model is considered as
a way of encoding the log. The entropy of the resulting encoding is
calculated using trace probability, accounting for the encoding cost
according to a background cost model. Three defined metrics corre-
spond to three background cost models: Universal (HRU), Zero Order
(HRZ) and Restricted Zero Order (HRR). In the original work trace
probability is calculated for SDFAs only. In our experiments, we use
a trace probability calculation from play-out logs when calculating
these metrics, as seen in Section 4.1. The result is in bits and so not
constrained to a [0, 1] range. Entropy has also been used to formulate
behavioural simplicity measures [34] for control-flow models.

The Alpha Precision measure [11] uses the stochastic language of
the model and the event log, and inferences about the underlying
system that generated the log. Probability in the (otherwise unknown)
underlying system is estimated using attributes of the log, including the
traces, and reasoning from a Dirichlet distribution. Traces are included
in the calculation when their probability in the underlying system
exceeds a parameter called alpha significance. This alpha significance
parameter varies across domains, making the comparison of models
across logs difficult. The Existential Precision metric (XPU) is the
alternative we introduce to allow such comparisons.

In summary, current discovery techniques use a variety of tech-
niques and output model types, but are somewhat comparable using
a common denominator of SLPNs. Control-flow quality dimensions
suggest starting points for the quality of stochastic models, but trans-
lation of the concepts to a stochastic setting is non-obvious, and new
concepts may apply. Existing metrics for stochastic models are incon-
sistently related to control-flow dimensions, and have restrictions on
supported model types due to the challenges of calculating stochastic
languages. This landscape provides the challenges and constraints for
our experimental design.
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Fig. 4. Experiment design, generating a broad range of models from event logs from different domains, then applying metrics to them for analysis.
Table 3
Event logs.

Log Traces Variants |𝐴| Domain

BPIC 2013 closed 1487 183 4 Issue tracking
BPIC 2013 incidents 7554 1511 3 Incident tracking
BPIC 2018 control 43 808 59 7 EU Agriculture policy
BPIC 2018 reference 43 802 515 6 EU Agriculture policy
Road Traffic Fines 150 370 231 11 Italian policing
Sepsis 1054 846 16 Hospital diagnosis

4. Experiment design

In this section, we introduce the experiment design in more detail,
including components and phases. The experiment aimed to build a
dataset of metrics for quantitative analysis. Fig. 4 shows the detailed
experiment design.

We started with real-life event log data, covering a number of
domains, as summarised in Table 3. A large number of process mod-
els were generated with these input logs, using random generation
and discovery techniques (including genetic miner SETM). This was
designed to obtain a large number of models of varying quality, and
an abundance of metrics for quantitative and qualitative analysis from
different perspectives. Measures applicable to all models, including
low-quality ones, are termed exploration measures. Some broad metrics
applicable to all models (such as the number of edges) were added,
and this set of exploration metrics were calculated for all models to form
the exploration dataset. From laboratory experience, some measures in
the literature only reliably return values on higher-quality models.
We designate these delicate measures, and use them only on models
generated by established discovery techniques, the discovery models.
Though such models are only a smaller part of the larger universe of
possible models, they are among the most relevant to process mining in
practice. This full set of metrics was collected on the discovery models,
yielding the discovery dataset.
6

Two full iterations of the experiments were run, with small vari-
ations in the choice of metrics for each cycle. Finally, dimensional
analysis was performed on both datasets.

In detailing the components of the experiment design, we first
introduce the metrics collected. Secondly, we examine the model rep-
resentations which make the metrics calculation practicable, stochastic
play-out logs, and the technique used to construct them. Thirdly, we in-
troduce the SETM genetic miner for model discovery, used to generate
a large volume of models across a quality gradient. Fourthly, we detail
the random and discovery model generation techniques.

4.1. Choice of metrics

As reviewed in Section 3.3, metrics in stochastic process mining are
an ongoing research challenge with an expanding literature. In choos-
ing and designing the metrics in these experiments, we deliberately
covered a number of different design concepts, based on a detailed
study of metrics in the literature. We drew on the four control-flow
quality dimensions of fitness, precision, simplicity and generalisation,
using existing stochastic metrics where possible (e.g., Entropy Precision
(𝐻𝑃 ) [33]). To supplement these metrics and to explore a larger quality
space, we constructed stochastic versions of control-flow measures,
such as Play-out Entropy Precision (HIPT) or the small changes to
Generalisation measures by trace floor and trace uniqueness [36]. We
also explored the stochastic quality concepts Earth Movers’ Distance,
Probability Mass, and Entropy. The metrics used in the two experiment
cycles are listed in Table 4. This includes the design concept behind a
metric’s inclusion, the abbreviation for it throughout the article, and
which experiments it was used in. Categories correspond to those in
Fig. 4. Formal definitions for metrics are found in Appendix.

In the first experiment cycle, we found that some of these ex-
ploratory measures were very highly correlated. As this is uninfor-
mative, and the measures were therefore excluded from much of the
statistical analysis, Trace Overlap Ratio (TOR), and two Generalisation
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Table 4
Metrics and their design rationale.

Abbrv. Metric name Design concept Experiment
1 2

Exploration measures
EMT Earth Movers’

With Play-out Trace
Earth Movers’ ✓ ✓

TOR Trace Overlap Ratio Probability Mass ✓ ✓

TMO Trace Probability Mass
Overlap

Probability Mass ✓

ARG Activity Ratio Gower Fitness ✓ ✓

TRG2 Trace Ratio Gower length 2 Fitness ✓ ✓

TRG3 Trace Ratio Gower length 3 Fitness ✓ ✓

TRG4 Trace Ratio Gower length 4 Fitness ✓ ✓

HIFT Play-out Entropy
Intersection Fitness

Fitness ✓ ✓

HIPT Play-out Entropy
Intersection Precision

Precision ✓ ✓

HJFT Play-out Entropy
Projection Fitness

Fitness ✓ ✓

HJPT Play-out Entropy
Projection Precision

Precision ✓ ✓

XPU Existential Precision Precision ✓

SSENC Structural Simplicity
by entity count [37]

Simplicity ✓ ✓

SSEDC Structural Simplicity
by edge count [37]

Simplicity ✓ ✓

SSS Structural Simplicity
incl. stochastic ratio

Simplicity ✓ ✓

TGF1 Generalisation by Trace Floor
(1) [36]

Generalisation ✓

TGF5 Generalisation by Trace Floor
(5) [36]

Generalisation ✓ ✓

TGF10 Generalisation by Trace Floor
(10) [36]

Generalisation ✓

TGDU Generalisation by trace
uniqueness [36]

Generalisation ✓ ✓

Exploration metrics
CSS Structural Complexity

incl. stochastic
Simplicity ✓

MEC Model Entity Count Simplicity ✓

MGC Model Edge Count Simplicity ✓

HRU Entropic Relevance
w. Uniform [10]

Entropy ✓

HRZ Entropic Relevance
w. Zero Order [10]

Entropy ✓

HRR Entropic Relevance
w. Restricted Zero Order [10]

Entropy ✓

Delicate measures - discovery only
EM Earth Movers truncated 0.8

[33]
Earth Movers ✓ ✓

𝐻𝑃 Entropy Precision [15] Precision ✓ ✓

𝐻𝐹 Entropy Recall [15] Fitness ✓ ✓

Log metrics
LTC Log Trace Count Log ✓ ✓

LTE Log Event Count Log ✓ ✓
by Trace Floor measures (TGF1, and TGF10) were excluded in the
second cycle of experiments. In the second experiment cycle, we were
able to add new metrics based on new scholarly work, particularly
Alpha Precision [11] and Entropic Relevance [10]. The Existential
Precision (XPU) measure is based on Alpha Precision.

The Entropic Relevance [10] metrics are originally restricted to
SDFAs according to their formal definition and in the public implemen-
tation. A new implementation for this work removes this restriction by
using stochastic play-out logs.

Two log metrics were included as controls: Log Trace Count (LTC)
and Log Event Count (LTE).

4.2. Stochastic language estimation with play-out logs

Play-out logs [2, p41] are an established process mining technique
for generating event log traces based on process models. For place-
transition Petri nets, a standard way of generating play-out logs is by
7

‘‘playing the token game’’: noting the traces generated when the model
advances from the initial marking through subsequent states. Play-out
logs in a stochastic setting have an advantage over those with control-
flow models: the stochastic model eliminates the need for arbitrary
choices and assumptions when choosing between enabled transitions.
Often, some assumed probability distribution is used for play-out logs
on control-flow models. Stochastic models, such as SLPNs, already
include explicit probability functions which define behaviour when
multiple transitions are enabled. The play-out log can then substitute
for the model when comparing other logs or models, allowing measure-
ment of models which otherwise could not be practically included in
the experiment.

By using a finite representation to approximate the possibly infinite
stochastic language of the model, a stochastic play-out log eliminates
or greatly reduces the need for multiple samples to represent possible
traces Alternatives, such as random walks, will converge to represen-
tative values over many runs, and are necessary when a distribution
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is not well known, or when there are effects that emerge only after
iterative calculation. The information in an SLPN allows alternative
paths to be calculated in proportion directly when the goal is to obtain
representative proportions of valid traces.

The stochastic play-out log generator implemented for these ex-
periments is represented as function 𝑠𝑝𝑔, which takes an SLPN and
returns a play-out log. This can be thought of as a breadth-first search
on possible traces, pruning improbable traces. To describe it, we use
function 𝑒𝑏∶ ×(𝑃 ) → P(𝑇 ), which returns all enabled transitions for
a net and a marking. Trace marking function 𝑡𝑔∶ ×(𝑃 ) × 𝑇 → (𝑃 )
returns the new marking after a transition fires. Lastly, function 𝑙𝑎𝑏
gives a transition label as an activity sequence.

𝑙𝑎𝑏∶ × 𝑇 → 𝐴∗

𝑙𝑎𝑏((𝑃 , 𝑇 , 𝐹 ,𝑀0,𝑊 , 𝜆), 𝑡) = ⟨⟩ if 𝜆(𝑡) = 𝜏 else ⟨𝜆(𝑡)⟩

where 𝑡 ∈ 𝑇

Definition 9 (Stochastic Play-out Generation). Let 𝑔 be an SLPN model
such that 𝑔 = (𝑃 , 𝑇 , 𝐹 ,𝑀0,𝑊 , 𝜆). Then 𝑠𝑑𝑙𝑔 is a play-out log generation
functions taking an SLPN (𝑔), a marking (𝑚), a number of traces to
be generated (𝑏), and a maximum path length (𝜔). Function 𝑠𝑝𝑔 is a
specialisation which starts from the initial marking. Function 𝑠𝑢𝑟𝑝𝑙𝑢𝑠
allocates rounded amounts to specific traces.

𝑠𝑑𝑙𝑔∶ × (𝑃 ) × N × N → 

𝑠𝑑𝑙𝑔(𝑔, 𝑚, 𝑏, 𝜔) =⊔𝑡∈𝑒𝑏(𝑛,𝑚)[𝜎𝑓 ∣ 𝜎 = 𝑙𝑎𝑏(𝑔, 𝑡) + 𝜎𝑡𝑙

∧𝑑 = f loor
(

𝑏𝑊 (𝑡)
𝑊𝑠

)

+ 𝑠𝑢𝑟𝑝𝑙𝑢𝑠(𝑔, 𝑡, 𝑚, 𝑏)

∧𝑟 = 𝑠𝑑𝑙𝑔(𝑔, 𝑡𝑔(𝑛, 𝑚, 𝑡), 𝑑, 𝜔 − 1)

∧𝜎𝑡𝑙 ∈ 𝑟

∧𝑓 = 𝑟[𝜎𝑡𝑙]]
here 𝑊𝑠 =

∑

𝑡′∈𝑒𝑏(𝑔,𝑚)
𝑊 (𝑡′) if 𝑒𝑏(𝑔, 𝑚) ≠ ∅ and 𝜔 > 0

𝑠𝑑𝑙𝑔(𝑔, 𝑚, 𝑏, 𝜔) = [⟨⟩𝑏] if 𝑒𝑏(𝑔, 𝑚) = ∅ ∨ 𝜔 = 0

𝑠𝑝𝑔(𝑔, 𝑏, 𝜔0) = 𝑠𝑑𝑙𝑔(𝑔,𝑀0, 𝑏, 𝜔0)

The 𝑠𝑝𝑔 function takes a target size as a trace ‘‘budget’’, then
recursively splits the budget according to each possible state in a token
game, and the relative weights of enabled transitions. The maximum
path length ensures termination even for models that include potential
livelock, or infinite loops. Traces affected by maximum path lengths are
truncated.

Rounding is controlled by the 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 function. The value rounded
across all enabled transitions is the difference between the budget 𝑏 and
he sum of the weighted natural number allocations to those transitions.
he rounding order is first to silent transitions, then by lexical order of
he transition labels, then to the transition with the least allocation,
hen arbitrarily. Prioritising silent transitions favours the representa-
ion of loop exit states in the SLPN translation of PPT models. Least
llocation refers to the enabled transition which will receive the least
race budget from the weighted allocation. This favours representation
f rarer traces on the margin. In general, the design intent is for easily
eproducible outputs, where variation is limited, and which discourages
he computationally expensive process of sampling over multiple runs.
nstead, if a given granularity is insufficient for a particular use, larger
alues for the log size and maximum path length parameters can be
sed to achieve more granularity.

As play-out logs can be straightforwardly converted to stochastic
anguages, this provides a practical approximation to the Trace-Prob
roblem for SLPNs [12]. A play-out log 𝑀 , generated without maxi-
um path restrictions, will include all traces from paths which have
probability exceeding 1

|𝑀|

. Some models have stochastic languages
which fall outside this guarantee, when they have highly probable
traces which exceed the maximum trace length. These models are
8

Fig. 5. An example of applying an Add Node mutation on a PPT. The activity to add
and the location in the tree are chosen randomly during mutation.

rare in practice, and often amenable to inclusion by using a different
maximum trace length. For example, long traces are mostly due to loop
constructs in an underlying Petri net. In an SLPN which terminates,
each iteration around the loop will construct new traces of monoton-
ically decreasing probability. Therefore very long traces produced by
loops are often also very improbable.

The algorithm has a worst-case computational complexity of 𝑂(𝑏 ⋅
𝜔0), where 𝑏 is the target log size, and 𝜔0 is the maximum path length.
In many cases, a large maximum path length (𝜔0 ≫ 0) parameter is
desirable to ensure representative and non-truncated traces. The use
of the reachability graph (implicitly, via the token game) makes the
algorithm combinatorial below this ceiling. The combination of the
play-out log size limit and the maximum trace limit make it highly
practical across a variety of models, as observed in this experimental
work. Most of the exploration measures make use of this form of trace
probability estimation, by using the frequency of traces in play-out logs.
This approach both increased the range of possible models and radically
decreased calculation times.

In the implementation, the play-out log size was set to 1000 traces.
The maximum path length was set to 5000 for the first round of
experiments and 500 in the second. Almost all play-out logs experi-
encing maximum path truncation were from random models, and on a
minority of traces.

4.3. Genetic miner (SETM)

Genetic algorithms try a broad range of solutions according to a pro-
cess loosely inspired by the ‘‘survival of the fittest’’ genetic adaptation
of biological species to their environment. These algorithms usually
start with some randomly generated potential solutions. The solutions
are evaluated according to a survival function, and the best kept. These
are then mutated randomly according to set rules, and the process is
repeated for many iterations, or generations. When employed for process
discovery, these algorithms are termed genetic miners [28].

A novel genetic miner for discovering stochastic process models,
the Stochastic Evolutionary Tree Miner (SETM), was implemented for
these experiments. It is based on the Evolutionary Tree Miner [28].
The SETM generates random PPTs for the initial generation of models.
Four possible mutations are then applied: to add a node (including
control-flow nodes and silent transitions), mutate a single node, remove
a subtree, or remove useless nodes (specifically to apply Preserving
Compression rules [14]). These mutations also select elements ran-
domly, while preserving valid and consistent tree weights. Models were
exported as SLPNs. SETM is suitable for exploring model alternatives in
a laboratory setting, with the quality of final generation models being
far higher than random models, but not at the same level as those from
other discovery techniques. An example mutation is shown in Fig. 5.

In our experiments, the SETM was run across 1000 generations with
a survival function incorporating all the exploration measures for that
cycle, with equal weight. The model with the highest survival score
in each generation was added to the exploration dataset, generating
a spectrum of models of moderate quality. Any additional exploration
metrics were also collected for each model. The genetic miner yielded
results for four of the logs in this experiment; due to timeouts after
forty hours, the two logs with the most activities gave partial results,
and were excluded from the dataset.
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4.4. Model generation

As well as genetic mining, the two other classes of model generation
techniques employed were firstly, random generation, and secondly,
existing stochastic discovery techniques.

Random models were created by randomly choosing nodes of PPTs.
The random generation included silent, activity and control-flow nodes.
Models larger than the arbitrary cutoffs of a tree depth of 30 or
1000 transitions were discarded, and substituted for another generated
model. Models generated randomly were anticipated to have lower
quality.

Models generated by existing stochastic discovery techniques were
also included, and were anticipated to be of higher quality. Public
implementations of stochastic process discovery techniques for GSPNs
created a further 103 models relating to the selected event logs. This in-
cluded GDT_SPN discovery [17], Tootpaste miner [14], and multiple es-
timation techniques [18] which add weight information to control-flow
models. For estimation, the input control-flow models were constructed
using established miners Inductive Miner [22], Fodina [38] and Split
Miner [26], and all combinations of weight estimation techniques [18]
and the three control-flow discovery algorithms were used. State of the
art stochastic discovery techniques yield higher quality models than
random models or SETM, but still yield low-quality models in a number
of cases. This meant the discovery dataset still contained a wide range
of metric values.

A total of 9301 models were generated. Metric implementations,
metric reuse, and other experimental scaffolding, were all implemented
in Java using the ProM framework.1. Experiments were run on a Linux
clustered data centre using 50 Gb of RAM.

5. Results

An exploratory quantitative analysis was performed on model met-
rics from Experiments 1 and 2. As Experiment 2 is a refinement of
Experiment 1, we foreground Experiment 2 results in this section.

5.1. Quantitative analysis for component identification

We performed analyses of correlations and principal components
[39] to determine commonality and orthogonality between metrics that
indicated potential quality dimensions. To weigh the sources of models
equally, sources with less than 1000 models had data points repeated
as if resampled. Sample sizes are quoted without resampling. We used
scaled PCA, centring all input parameters to a zero mean and scaling to
unit variance. This allowed metrics such as HRU to be included in the
analysis, even though they could not be included in the genetic miner
survival function, as their range was not known in advance.

In Experiment 1, some measures were very highly correlated
(>0.99), and these were excluded in Experiment 2, as indicated in
Table 4. We examined Experiment 2 metric correlation for the ex-
ploration and discovery datasets; exploration metrics are shown in
Fig. 6. Correlation is indicated in blue and anti-correlation in red, with
colour intensity and circle size indicating the strength of correlation.
A number of correlated groups of measures can be observed in these
results, and the metrics are ordered so they are clearer visually. A
number of groups are already related by concept and implementation:
metrics for logs (LTC,LTE), model complexity (MEC,MGC,CSS), Trace
Ratios Gower (TRG2-4), simplicity (SSENC,SSEDC,SSS), and Entropic
Relevance (HRZ,HRR,HRU). Some metrics showed high correlations
even though they were included under different concepts. While Trace
Overlap Ratio (TOR) and Earth Movers’ With Play-out Trace (EMT)
are included under Probability Mass and Earth Movers’ respectively,

1 All source code is accessible at https://github.com/adamburkegh/spm_
dim
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Fig. 6. Correlation between exploration metrics, Experiment 2.

Fig. 7. Scree plot of percent of variance explained by each principal component, sorted
in descending order, on PCA for exploration metrics in Experiment 2.

the Earth Movers’ Distance measure definition is closely related to
probability mass. Play-out Entropy Intersection Fitness and Precision
(HIFT,HIPT) are correlated, though they are intended to measure quite
distinct control-flow concepts. These measures do share implementa-
tion similarities, in that they both use an entropy calculation over a
trace projection. More surprising, perhaps, is the group of five partially
correlated metrics TRG5-XPU, which includes metrics intended to
measure fitness, precision and generalisation, all together.

It is also interesting to note which metrics are not correlated or
are anti-correlated. Activity Ratio Gower (ARG) is not strongly corre-
lated with any other metric, including other subtrace ratios (TRG2-4).
Metrics for fitness are not strongly correlated with one another, and
similarly for precision and generalisation. The Entropic Relevance met-
rics (HRZ,HRR,HRU) show some anti-correlation with the TRG5-XPU
grouping, and with some other tracewise metrics.

The two log metrics LTC and LTE showed correlations with the
trace ratio measures and the simplicity measures (−0.45 and −0.63
respectively). In these cases, either the number of traces or events
is a parameter to the measure, so this is to be expected. Correlation
between LTC and LTE and other metrics is low. As these properties were
already known, we then excluded the two log metrics. An Anderson–
Darling test for normality showed no variables fit a normal distribution
(𝑝 < 0.001), ruling out techniques such as factor analysis for both
experiment cycles.

https://github.com/adamburkegh/spm_dim
https://github.com/adamburkegh/spm_dim
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Fig. 8. Exploration dataset scatterplot against PCA components 1 and 2. Ellipses and colour distinguish source logs.
A scaled Principal Component Analysis (PCA) was then used to
examine the basis for orthogonal components. PCA outputs a change
of basis for a dataset with 𝑛 measures in which the resulting 𝑛 di-
mensions can be ranked by their maximisation of variance. The result
is guaranteed to produce orthogonal dimensions (in PCA terminology,
components), and is often used for dimensional reduction by choosing
the highest-ranked components. It is employed here to identify poten-
tial orthogonal dimensions with an empirical basis. A scree plot of the
variance covered by the components was used to estimate the number
of possible dimensions. Fig. 7 shows the scree plot for exploration
metrics in Experiment 2. These three components explain 39.3%, 27.5%
and 11.3% of the variance respectively, and the remaining components
explain at most 6% each. Results for the discovery dataset, which
includes delicate measures, were similar, explaining 45.9%, 16.9% and
12.3% respectively; these are also similar to Experiment 1’s results. The
elbow technique and other methods suggest a fourth useful component
may exist. Both experiments showed three orthogonal components,
with a possible fourth. This fourth component was not clearly iden-
tified with an underlying concept, and explained less than 10% of the
variance. We chose, conservatively, to exclude it from further analysis.

We performed robustness tests to examine whether components
could be identified with any element in the experiment setup itself,
and for consistency across data subsets. Specifically, components were
compared to log sources and to model generation sources (i.e. ran-
dom/SETM/discovery) to check whether the PCA was simply identi-
fying these input partitions. Classification by log and by model source
varied across PCA components for both experiments. Fig. 8 shows one
example classification by log across the first two PCA components
for the exploration dataset. Though models from different logs, as
represented by the ellipses, have different quality profiles, they are
not straightforwardly identified with components in either instance.
Since this analysis suggests the components reflect deeper underlying
regularities in the dataset, a second round of analysis, below, breaks
these components down further.

5.2. New metrics yield new components

Different components were identified by the two cycles of experi-
ments. Within experiments, components differed across exploration and
discovery datasets, and the order of influence of the second and third
components changed, but similar metrics were associated with them
in both cases. In both experiments, the first component is associated
with the Earth Movers’ Distance (EM) and Trace Generalisation by
floor (TGF) measures. A second component is associated with Simplicity
10
measures. However, in Experiment 1, the third component has an
association with Entropy Precision and Recall (𝐻𝑃 ,𝐻𝐹 ) and Trace Ratio
measures. In Experiment 2, the Structure Stochastic Complexity (CSS)
and on the discovery dataset, the Entropy Relevance metrics (HR*),
are closely associated with a third component, and not correlated with
Entropy Precision and Recall.

To clarify these relationships and seek a more parsimonious de-
scription of the data with fewer input metrics, we performed a second
round of analysis. Metrics that correlated with another at > 0.9 were
pruned. When choosing from a pair of correlated metrics, we prioritised
first metrics from published literature, then metrics that correlated to
delicate measures on the discovery dataset, then conceptually clearer
metrics. By conceptual clarity, we refer to a decision about whether
to include the complexity metric CSS, or the simplicity metric used as
an input to its calculation. Since CSS has a known formal relationship
to simplicity measure SSS, one of these metrics could be excluded.
Examining PCA biplots, the resulting dimensions were more clearly
aligned with named measures, and hence existing concepts, when based
on simplicity, so this was the metric included.There were seven metrics
remaining after pruning. The six metrics available on all models were
Existential Precision (XPU), Generalisation by Trace Floor (5) (TGF5),
Generalisation by Trace Uniqueness (TGDU), Entropic Relevance with
Zero Order (HRZ), Trace Ratio Gower length 2 (TRG2), and Structural
Simplicity by edge count (SSEDC). The seventh is the Earth Movers’
Distance (EM), which is a delicate measure, and so not practically
available for all models. In choosing these metrics, we evaluated their
correlations on both exploration and discovery datasets. ] Fig. 9 shows
PCA biplots for the remaining metrics for the discovery dataset in
Experiment 2. A PCA biplot plots input dataset variables as vectors
against two selected PCA components. Combinations of the first three
components are shown to give a sense of the metrics in the three
dimensional space constructed by three components. For example, The
Earth Mover’s Distance is strongly associated with the first component,
labelled Dim1. The six exploration metrics, EM, and the PCA per-
formed on them across both Experiment 2 datasets, are the immediate
underlying data for our proposed quality dimensions.

In summary, three PCA components are shown across both experi-
ments and across exploration and discovery datasets. Two components
are similar across the two experiments; a third differs in composition
under the influence of new metrics. A second analysis, centred on the
Experiment 2 metrics, suggests candidates for the quality dimensions
proposed in Section 6.
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Fig. 9. PCA biplots for selected metrics on the discovery dataset, comparing three components. The approximate orthogonality of the Native Metrics Earth Movers’ Distance (EM),
Simplicity by Edge Count (SSEDC), and Entropic Relevance Zero Order (HRZ) can be observed.
6. Quality dimensions

From the experimental results above, we propose three quality
dimensions, which we name Adhesion, Simplicity, and Relevance, and
which we characterise below. To apply these dimensions for quantita-
tive measurement and comparison, we provide three sets of measures,
corresponding to two interpretations of the experiments. In the first
view, the experiments and analysis are considered to have revealed hid-
den underlying regularities, akin to physical laws, and corresponding
to PCA components, which the combined weighted measures approx-
imate. We call this view dimensional realism. In the second view, the
experiments and analysis are used to reveal which metrics effectively
partition the quality space, by capturing variance and their orthogonal-
ity to other metrics. Those metrics are then used directly, transformed
only by scaling, and so this is termed the native metrics view. Though
the problem of choosing synthetic or direct metrics is not a new one
in science, the dimensional realist/native metrics terminology is, to
our knowledge, new, at least as applied to the specific problem of
dimensional choice.

6.1. Three model-log quality dimensions

Adhesion. To represent how little effort is required to transform one
stochastic language into another, we use the term adhesion. Such a
transformation can involve both modifying which traces the process
accepts, and the probability of those traces. An informal interpretation
is how few changes a team needs to make to adhere to a different way
of working.

Relevance. Relevance measures the informational cost of reconstruct-
ing the complete traces from the event log with the model. The dimen-
sion name is directly inspired by the Entropic Relevance metrics [10].2
This definition also constrains the concept to a trace level view of the
model and log, where completed cases are considered relevant, but
even slightly differing traces are not.

2 As Relevance concerns the amount of information shared between log and
model, it is related conceptually to Entropy, the name used for the second
dimension in our previous work [9]. However, as noted in Section 5, the
underlying metrics differ significantly.
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Simplicity. Parsimony in models is well-recognised as a virtue in sci-
ence generally [29], and a desirable dimension in process models
specifically [2, p118]. Simplicity represents the number of explicit
syntactic features of the model. Encoding costs, or the movement of
complexity into a notation, are not considered, but are mitigated in
this work by using SLPNs as a common model structure. Syntactic
simplicity, as in this dimension, is also distinct from behavioural sim-
plicity [34], for example where a model with many elements might
describe a process with very limited behaviour. Behavioural simplicity
is more associated with the Relevance dimension.

Example models illustrating these dimensions are examined in Sec-
tion 6.4, and in Figs. 10 and 11.

6.2. Dimensional realist view

In the dimensional realist view, PCA components are taken as
the model of the underlying space. After excluding highly correlated
metrics, we use those remaining as a synthetic estimator for each
dimension, which can be used as a measure for that dimension. To
construct this estimator, we start from the definition of a principal
component in PCA.

In a Principal Component Analysis, each element is centred by
its mean and scaled by its standard deviation. Take the metrics 𝑚1...𝑚6
included in the analysis, then 𝑚𝑖 to be the 𝑖th metric, 𝑥𝑖, 𝑠𝑖 to be the
corresponding mean and standard deviation, and 𝑃𝑋𝑖 the PCA loading
for one of the PCA components.

𝑋𝐷 = 𝑃𝑋1
𝑚1 − 𝑥1

𝑠1
+ 𝑃𝑋2

𝑚2 − 𝑥1
𝑠2

+⋯

=
𝑃𝑋1 ⋅ 𝑚1

𝑠1
−

𝑃𝑋1 ⋅ 𝑥1
𝑠1

+
𝑃𝑋2 ⋅ 𝑚2

𝑠2
−

𝑃𝑋2 ⋅ 𝑥2
𝑠2

+⋯

=
𝑃𝑋1 ⋅ 𝑚1

𝑠1
+

𝑃𝑋2 ⋅ 𝑚2
𝑠2

+⋯ −
∑

𝑖=1...6

𝑃𝑖𝑥𝑖
𝑠𝑖

This linear equation is reorganised for our specific use case by
noting that the concluding sum is a constant, and renaming the constant
factors 𝑃𝑋𝑖

𝑠𝑖
after their corresponding metrics. For example, 𝑃𝑋1⋅𝑚1

𝑠1
is

replaced by 𝑀𝑋𝑋𝑃𝑈 . Definition 10 uses the reorganised formula to
define three metrics, one for each quality dimension.
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Fig. 10. Models exemplifying adhesion and entropy variations relative to log 𝐿𝐸 = [⟨𝑎, 𝑏⟩20 , ⟨𝑎, 𝑏, 𝑐⟩2 , ⟨𝑎, 𝑏, 𝑐, 𝑐⟩1 , ⟨𝑒, 𝑓⟩1].
Fig. 11. Model exemplifying adhesion and entropy variations relative to logs 𝐿𝐹 and 𝐿𝐺 . This also shows how the quality of a single model will vary when compared to
different logs. Adhesion+ Relevance- Simplicity+. Partial major trace relative to log 𝐿𝐹 = [⟨𝑎, 𝑏, 𝑐, 𝑑, 𝑒⟩20 , ⟨𝑎, 𝑏⟩1 , ⟨𝑏, 𝑐⟩1 , ⟨𝑐, 𝑑⟩1 , ⟨𝑑, 𝑒⟩1]. Adhesion mid-range(-) Relevance mid-range(+)
Simplicity+. Half log coverage relative to log 𝐿𝐺 = [⟨𝑎, 𝑏, 𝑐, 𝑑⟩50 , ⟨𝑒, 𝑓 , 𝑔⟩50].
Definition 10 (Dimensional Realist Metrics).

𝑋𝐷 = 𝑀𝑋𝑋𝑃𝑈 ⋅𝑋𝑃𝑈 +𝑀𝑋𝑇𝐺𝐹5 ⋅ 𝑇𝐺𝐹5 +𝑀𝑋𝑇𝐺𝐷𝑈 ⋅ 𝑇𝐺𝐷𝑈

+ 𝑀𝑋𝐻𝑅𝑍 ⋅𝐻𝑅𝑍 +𝑀𝑋𝑇𝑅𝐺2 ⋅ 𝑇𝑅𝐺2

+ 𝑀𝑋𝑆𝑆𝐸𝐷𝐶 ⋅ 𝑆𝑆𝐸𝐷𝐶 +𝐾𝑋𝐷

where 𝐾𝑋𝐷 =
∑

𝑖=1...6

𝑃𝑋𝑖 ⋅ 𝑥𝑖
𝑠𝑖

and 𝑋 ∈ {𝐴,𝑅, 𝑆} for (A)dhesion 𝐴𝐷, (R)elevance 𝑅𝐷

and (S)implicity 𝑆𝐷, respectively.

The empirically derived factors and constants are summarised in
able 5. Min/max values are in Table 6. Min/max scaling is applied in
able 7. The tables show not all factors are of the same importance. For
he third dimension, simplicity, the 𝑃𝑋 values for the entropic relevance
𝐻𝑅𝑍) factor is zero at four digits of significance, excluding it. The
alues for existential precision 𝑋𝑃𝑈 are very small (−0.00113), such
hat it could also be excluded. The PCA component for simplicity min-
mised when input simplicity was highest, so we have reversed the signs
f the factors and constant so that high values indicate higher quality.
he factors show the conceptual limitations of dimensional realism: the
xplicit simplicity measure based on edge count SSEDC has a similar
ontribution to both Relevance and Simplicity DR dimensions, and the
elevance metric HRR contributes only slightly more to Relevance than
dhesion.

The calculations in Definition 10 yield metrics rather than measures,
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s they may range beyond [0, 1], including negative values. Min/max
Table 5
Dimensional realist factors and constants from exploration metrics.

Metric Adhesion (MA) Relevance (MR) Simplicity (MS)

XPU 1.518 −0.693 −0.087
TGF5 1.540 0.358 −0.709
TGDU 1.425 0.579 0.842
HRZ −0.0476 −0.0492 0.000
TRG2 1.090 −3.527 −3.582
SSEDC 0.610 −2.157 2.518

Constant Adhesion (𝐾𝐴𝐷) Relevance (𝐾𝑅𝐷) Simplicity (𝐾𝑆𝐷)
3.09 −2.92 0.97

scaling was applied to achieve a measure in an applied setting, as
seen in Table 7. They are derived by noting that five of the six input
metrics are already normalised within a [0, 1] range. The remaining
input metric, Entropic Relevance Zero Order (HRZ), is observed in
experimental data to have a maximum of 52.55 and range of 50.68.
To calculate scale ranges, we treated HRZ as having range [0, 60], and
calculated overall ranges based on the theoretical extremes of each
input variable. We expect the scaled (measure) versions of DR metrics
in Table 7 to be the most immediately useful to those measuring
Adhesion, Relevance and Simplicity, as they are easier to compare and
intuitively understand. Unscaled factors, constants and min/max values
for this study are in Tables 5 and 6, to allow users of the measures to

rescale if different extrema are observed in their applied domain.
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Table 6
Dimensional realist min/max from exploration metrics.

Adhesion 𝐴𝐷𝑀 Relevance 𝑅𝐷𝑀 Simplicity 𝑆𝐷𝑀

Minimum −5.94 −6.40 −5.36
Maximum 3.09 3.87 2.38

Table 7
Dimensional realist factors and constants from exploration metrics, after min/max
scaling.

Metric Adhesion (MA) Relevance (MR) Simplicity (MS)

XPU 0.168 −0.0675 −0.00113
TGF5 0.170 0.0349 −0.0916
TGDU 0.158 0.05637 0.109
HRZ −0.00526 −0.00479 0.000
TRG2 0.121 −0.344 −0.463
SSEDC 0.0674 −0.210 0.325

Constant Adhesion (𝐾𝐴𝐷) Relevance (𝐾𝑅𝐷) Simplicity (𝐾𝑆𝐷)
0.342 −0.285 0.126

Fig. 12. 3D plot of metrics Trace Generalisation by Uniqueness (5) (TGF), Entropic
Relevance Zero Order (HRZ), and Simplicity by Edge Count (SSEDC), against PCA
dimensions for those three metrics, on the exploration dataset.

6.3. Native metrics view

In the native metrics view, a small number of metrics that partition
the space are each identified with a particular dimension. The metrics
are not fully orthogonal, in the sense that they show partial correla-
tion and do not intersect at perfect right angles. Compared with the
dimensional realist view, this loses some information from the excluded
metrics, but it is simpler. Since metrics were originally designed with
the intent to capture some particular aspect of model quality, it is also
conceptually clearer. Native metrics are listed in Table 8. Fig. 12 plots
a PCA using only the selected metrics on the exploration dataset. As the
current implementation of Earth Movers’ Distance is a delicate measure,
we include a substitute of TGF5 (correlation = 0.75) for when it is
unavailable.

6.4. Interpretation of the adhesion, relevance, and simplicity dimensions
using example models

To give a sense of the three dimensions, and metrics that approx-
imate them, Figs. 10 and 11 illustrate extreme cases. Cases were in-
formed by using alternative fitness functions for SETM which neglected
one or more dimensions, and then the resulting models were optimised
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for extremity by hand. The corresponding metrics are summarised in
Table 9.

The examples in Fig. 10 use log 𝐿𝐸 = [⟨𝑎, 𝑏⟩20, ⟨𝑎, 𝑏, 𝑐⟩2, ⟨𝑎, 𝑏, 𝑐, 𝑐⟩1,
⟨𝑒, 𝑓⟩1]. Note that this log has one frequently occurring trace, ⟨𝑎, 𝑏⟩,
which dominates the probability mass, with some variations, and one
completely different trace, ⟨𝑒, 𝑓⟩. Model 10(a) achieves high adhesion
and relevance by covering the main trace and its variations with plau-
sible weights. In model 10(b), almost perfect adhesion and relevance
has been achieved at the cost of simplicity. This model also has perfect
control-flow fitness and precision. Trace model 10(c) achieves perfect
adhesion and relevance at the cost of poor simplicity.

Flower model 10(d) has poor adhesion and relevance, despite per-
fect control-flow fitness. The many possible alternative traces generated
by a flower model mean little probability mass is devoted to either
similar traces (for adhesion) or entire traces (for relevance). This flower
model has weights taken from the event frequencies in the log (equiva-
lent to the Frequency Estimator [18]), but this has had little quality
impact without further structure constraining the space of possible
subtraces.

In Fig. 11, two logs are considered versus the same simple sequence
model. In log 𝐿𝐹 , a single trace, ⟨𝑎, 𝑏, 𝑐, 𝑑, 𝑒⟩ accounts for the vast
majority of cases (partial major trace). Every event except the last is
covered, resulting in high (not perfect) adhesion, but poor relevance.
In 𝐿𝐺 (half log), there are two frequently occurring traces, one of which
matches the model perfectly, and one not at all. As half probability is a
state that can minimise entropy, we expect somewhat higher relevance,
with at best mid adhesion.

In Table 9, we can see how the metrics identified in Sections 6.2 and
6.3 perform against these extreme cases. To calculate these figures, a
modification had to be made to the dimensional realist metrics, as the
SSEDC metric returns zeroes for very small logs, such as those explored
in this section. We substituted a small log variant which divided model
edge count by the product of trace variants and average trace length
in the dimensional realist measures, and provide edge count (|𝐹 |) as a
substitute for the native metric.

For Adhesion, the earth movers (EM) and ADM metrics reflected the
process edits needed across all models. Trace Generalisation by floor
(TGF5) generally followed the pattern, but returned zero for the Partial
Major Trace scenario, due to the small log.

For Relevance metrics, the Entropic Relevance (HRZ) metric be-
haves consistently with expectations across the models, though it also
shows correlation with Adhesion metrics and makes it difficult to
construct a scenario with high Relevance and low Adhesion. The RDM
measure does show high relevance for the Flower model. Though being
able to map models to all corners of orthogonal dimensions does meet
one goal, the conceptual obscurity may undermine use of this as a
productive design constraint for model construction.

For Simplicity metrics, both the edge count and the SDM measure
show some consistency with expectations. The SDM measure punishes
the perfect model more than the trace model, however, which is due to
the influence of factors such as Trace Ratio (TRG2), and again works
against intuitive understanding.

7. Discussion

So far, as shared in Section 5, we have seen variations and correla-
tions across the twenty-five metrics collected on 9301 models generated
from six real-life logs. These have been analysed quantitatively, identi-
fying the three quality dimensions Adhesion, Relevance and Simplicity.
We saw that these components were not associated with known regu-
larities in the experimental inputs, in the form of logs or generation
sources. We chose metrics based on the dimensions using two alterna-
tive dimensional interpretations. We also investigated example models
at the extremes of the dimensions, based on these metrics.

In this section, we discuss the two dimensional interpretations,
Dimensional Realism versus Native Metrics, in more detail. We also
cover potential applications, and limitations of the current design.
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Table 8
Native metrics for Adhesion, Relevance and Simplicity, chosen by joint PCA orthogonality and conceptual
linkage.
Data set Adhesion Relevance Simplicity

Exploration Generalisation by
Trace Floor (5)
TGF5

Entropic Relevance
w. Zero Order HRZ

Structural Simplicity
by edge count SSEDC

Discovery Earth Movers
truncated EM

Entropic Relevance
w. Zero Order HRZ

Structural Simplicity
by edge count SSEDC
Table 9
Quality metrics for paradigm examples in Figs. 10 and 11.
Model Fig. Log Adhesion Relevance Simplicity

ADM TGF5 EM RDM HRZ SDM |𝐹 |

A+ R+ S++ Fig. 10(a) 𝐿𝐸 0.80 0.72 0.91 0.72 2.76 0.67 4
A++ R++ S+ Fig. 10(b) 𝐿𝐸 0.83 0.96 0.94 0.74 1.76 0.35 10
Trace; A++ R++ S- Fig. 10(c) 𝐿𝐸 0.91 1.00 0.91 0.62 1.08 0.18 22
Flower; A- R mid S mid Fig. 10(d) 𝐿𝐸 0.28 0.00 0.21 0.88 6.37 0.57 29
Partial Major Trace; A+ R- S+ Fig. 11 𝐿𝐹 0.35 0.00 0.73 0.51 14.42 0.52 8
Half log; A mid R mid S+ Fig. 11 𝐿𝐺 0.65 0.50 0.50 0.73 6.92 0.42 8
7.1. Contrasting dimensional interpretations

The two interpretative views we introduce have complementary
strengths and weaknesses. Dimensional realism (DR), by treating PCA
components as real underlying structures, allows for the revelation
of features not directly illustrated by any given metric. Being based
directly on the outcome of a principal components analysis, DR is
also guaranteed to yield perfectly orthogonal dimensions. Yet that
same guarantee, and the ‘‘synthetic’’ nature of PCA, also makes DR
dimensions sensitive to the exact metrics chosen as inputs. As new
metrics are proposed by the community, or excluded for changing
design reasons, the associated dimensions will change.

Native metrics allow for a clearer association between the design
concept of a particular metric, the resulting measurement on a specific
model, and the dimension it is identified with. However, they lose some
information on the underlying quality space, being limited to one met-
ric per dimension. Those metrics also only approximate orthogonality,
and may conceal features that DR metrics can indirectly indicate.

7.2. Potential applications

Stochastic phenomena are widespread in the real world, and
stochastic models are used widely in settings from Operations Re-
search [40], to healthcare [7] and performance prediction [41]. For
stochastic process models specifically, more automated discovery tech-
niques are emerging, but existing metrics for evaluating their quality
are not sufficient. To use these discovered models intelligently, more
widely applicable metrics, and a better understanding of their meaning
and relations, are needed. We envision the dimensions and metrics
proposed above can advance this understanding.

It is often necessary in process modelling and mining to choose
among potential representations based on a specific use case. For exam-
ple, very detailed models with lots of elements may be very accurate,
but make a descriptive model difficult to explain. The decision is
ultimately one of practitioner judgement. Using these dimensions, and
their associated metrics, that judgement can now be better informed
in a fine-grained way. A practitioner or modeller can decide how
much their model adheres strictly to the process it describes, or how
much information on complete traces to sacrifice in working with a
simpler model. Better tooling can help share this information with
users in the right context. For example, an intelligent slider or two
dimensional ‘‘colour-picker’’ widget could allow a user to navigate the
right level of quality and complexity for their use case. Commercial
process mining tools already make use of frequencies. This implicit use
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of stochastic models could be made explicit, and our work above can
help in designing and implementing such features. For instance, there
is little point in calculating two highly correlated metrics.

Another strength of stochastic model comparison can be in explor-
ing change in processes over time, a phenomena known as concept drift.
The Earth-movers’ distance metric (EM) has been used to measure this
kind of change [42]. Using these approaches, we can imagine a plant
manager seeing their manufacturing process has changed, because of
the changing importance of existing paths of workflows in the plant,
a condition hard to detect without a stochastic perspective. Tools
might visualise the impact of the change, for more rapid, productive
troubleshooting.

The metrics based on play-out trace probability (Definition 9) may
now be calculated on more types of models, and with relatively low
computational cost. Our public reference implementation also shows
the feasibility of implementing these metrics in industrial tools.

7.3. Limitations

Although a wide range of models and logs were used, other datasets
may reveal other elements. Larger logs of over 200,000 traces or 16
activities were not used, and SETM use was limited by larger numbers
of log activities. The stochastic models used were limited to SLPNs,
though some of the discovery models were derived from discovery
algorithms with BPMN output, and a mix of discovery algorithms
was used. The use of PPTs for random generation and for the seed
generation in the SETM limits the possible models generated, though
it also constrains them to sound models with consistency constraints
on stochastic weights.

The example models in Section 6.4 help show the dimensions in
use and build an intuition of how these quality dimensions apply in
practice. A model with high Relevance and low Adhesion was not
identified in this research: the closest was a model with middling to low
Adhesion (in Fig. 11). Such a model would be informative, make the
examples symmetrical, and clarify the relationship between different
dimensions in practice.

That new metrics changed the dimensional analysis shows the way
this empirical work will have to evolve as new data is available.
Models discovered from synthetic data can also be used to deepen
our understanding of quality measurement of stochastic processes. As
an experimentally derived theory, further experimentation will be the
ultimate test of generality for all of the proposed dimensions.

8. Conclusion

Organisations may be understood by what they do, and what they

do may be described by stochastic process models. To understand
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the quality of such models, we conducted two experiments studying
stochastic process model quality metrics and relationships. Models were
generated from six real-life logs and collected using both random model
generation and stochastic process discovery. Analysing a variety of
computationally cheap metrics across thousands of models, and metrics
from the literature, three quality dimensions were observed with the
help of principal component analysis. We named these dimensions
Adhesion, Relevance and Simplicity, evolving our understanding of the
three dimensions during the course of the experiments and analysis.
Based on the analysis, we suggested possible metrics for these dimen-
sions, and showed their use on example models demonstrating their
extremes.

A number of avenues are open for future work. The methods here
suggest extensions of existing techniques, and new implementations
of those techniques. Large model datasets may be used to expand the
empirical foundations of process mining in other ways. By integrating
the dimensions and their associated metrics into process mining tools,
we can investigate their applied use by practitioners. Lastly, it is a spur
for the invention of new metrics based on the proposed dimensions,
and for the theory to be challenged with further empirical tests.
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Appendix. Detailed exploration metrics

This section details the measures summarised in Table 4. For the
measure definitions below, let event log 𝐿 ∈ , model 𝑔 ∈  , 𝜔0 ∈ N.
To obtain the play-out log 𝑀 ∈ +, the model 𝑔 is played out to 𝑘
traces, then occurrences are scaled to match the original log: 𝑀 =
|𝐿|
𝑘 ⋅ 𝑠𝑝𝑔(𝑔, 𝑘, 𝜔0).

The first measure is a simplification of the stochastic Earth Movers’
istance [33].

MT Earth Movers with play-out trace weighting.

𝑀𝑇 (𝑀,𝐿) = 1 − 1 ∑

max(𝐿[𝜎] −𝑀[𝜎], 0)
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|𝐿| 𝜎∈𝐿
Two measures address how much of the probability mass of the log is
in shared traces.

TMO Trace Probability mass overlap.

𝑇𝑀𝑂(𝑀,𝐿) =
∑

𝜎∈𝐿⊓𝑀

(𝐿 ⊓𝑀)[𝜎]
|𝐿|

TOR Trace overlap ratio.

𝑇𝑂𝑅(𝑀,𝐿) =
|𝐿 ⊓𝑀|

|𝐿|
Analysis of which subtraces occur in both log and model (represented

by the play-out log) approximate fitness.

ARG The Gower’s similarity [43] between activity count ratio vectors.
This measure is designed to be deliberately sensitive to variation be-
tween poor quality models, when other measures may be zero. Given
log 𝐿, take 𝑆𝑇𝑛(𝐿) to be the subtraces of length 𝑛, 𝜎𝑠#𝐿 the subtrace
frequency of 𝜎𝑠, with each occurrence in a trace counted, and ||𝐿||𝑛 to
be the total subtraces of length 𝑛. ARG is a special case: ARG=TRG1.

TRGn Subtrace ratios, activity ratios generalised to sub-traces of length
𝑛. TRG2, TRG3 and TRG4 are all measured.

𝑇𝑅𝐺𝑛(𝑀,𝐿) =
∑

𝜎∈𝑆𝑇𝑛(𝐿⊔𝑀)
1 − 𝑦𝜎

where 𝑦𝜎 = 1
max(𝜎#𝐿, 𝜎#𝑀)

|

|

|

|

𝜎#𝐿
||𝐿||𝑛

− 𝜎#𝑀
||𝑀||𝑛

|

|

|

|

Two simplified variants of evaluation measure entropy [6], based on
play-out logs, are used to define fitness and precision measures. The
first uses bag intersection.

HIFT Play-out entropy intersection fitness.

𝐻𝐼𝐹𝑇 (𝑀,𝐿) = min(1,
𝐻(𝐿 ⊓𝑀)

𝐻(𝐿)
)

IPT Play-out entropy intersection precision.

𝐼𝑃𝑇 (𝑀,𝐿) = min(1,
𝐻(𝐿 ⊓𝑀)
𝐻(𝑀)

)

he second entropy variant uses SDFA projection [6] function  ∶+ ×
+ → +, where traces are used as SDFA tokens.

(𝐿1, 𝐿2) =𝐿𝑃 ⊔ [⟨⟩|𝐿1|−|𝐿𝑃 |]
where 𝐿𝑃 = [𝜎𝑖 ∈ 𝐿1 ∣ ∃𝑗>0 𝜎𝑗 ∈ 𝐿2]

HJFT Play-out entropy projection fitness.

𝐻𝐽𝐹𝑇 (𝑀,𝐿) =
𝐻((𝐿,𝑀))

𝐻(𝐿)
HJPT Play-out entropy projection precision.

𝐻𝐽𝑃𝑇 (𝑀,𝐿) =
𝐻((𝑀,𝐿))

𝐻(𝑀)
PU Existential precision adapts Alpha precision [11] by calculating

he probability mass of model traces represented at least once in the
og.

𝑃𝑈 (𝑀,𝐿) = 1
|𝑀|

∑

𝜎𝑖𝑛𝐿
𝑀[𝜎]

hree simplicity measures are scaled by log size to impose a valid upper
ound of 1. SSENC Structural simplicity by entity count [37].

𝑆𝐸𝑁𝐶(𝑔, 𝐿) = max(1 −
|𝑃 | + |𝑇 |

|𝐿|
, 0)

SSEDC Structural simplicity by edge count [37].

𝑆𝑆𝐸𝐷𝐶(𝑔, 𝐿) = max(1 −
|𝐹 |

|𝐿|
, 0)

SSS Structural simplicity by all structural components in SLPNs. This
accounts for stochastic features not found in existing structural sim-
plicity measures.

𝑆𝑆𝑆(𝑔, 𝐿) = max(1 − 1 (|𝑃 | + |𝑇 | + |𝐹 | + |

⋃

𝑊 (𝑡)|), 0)

|𝐿| 𝑡∈𝑇

https://github.com/adamburkegh/spm_dim/
https://github.com/adamburkegh/spm_dim/
https://github.com/adamburkegh/spm_dim/
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T

𝑇

𝑇

The following generalisation measures are at a trace level, and are
taken from example measures in [36].

TGF1 Generalisation by trace floor, 𝑔𝑒𝑛𝐿2𝑀𝑞
. We also use TGF5 and

GF10 as measures for trace floors of 5 and 10 respectively.

𝐺𝐹1(𝑀,𝐿) =
|[𝜎 ∈ 𝑙|𝜎 ∈ 𝑀 ∧ 𝐿[𝜎] ≥ 𝑞]|

|𝐿|
with 𝑞 ≥ 1

TGDU Generalisation by trace uniqueness difference, 𝑔𝑒𝑛𝐿2𝑀𝐻𝐵
.

𝐺𝐷𝑈 (𝑀,𝐿) =
|[𝜎 ∈ 𝐿|𝜎 ∈ 𝑀]| − |𝐿 ⊓𝑀|

|𝐿|

CSS Structural Complexity incl. stochastic includes both control-flow
and stochastic features of a SLPN in a common metric. It is a denor-
malised inverse of SSS.

𝐶𝑆𝑆(𝑔, 𝐿) = |𝑃 | + |𝑇 | + |𝐹 | + |

⋃

𝑡∈𝑇
𝑊 (𝑡)|

MEC Model entity count is a count of places and transitions.

𝑀𝐸𝐶(𝑔, 𝐿) = |𝑃 | + |𝑇 |

MEC Model edge count is a count of connecting arcs.

𝑀𝐸𝐶(𝑔, 𝐿) = |𝐹 |
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