
Vol.:(0123456789)

SN Computer Science (2024) 5:706
https://doi.org/10.1007/s42979-024-03008-8

SN Computer Science

ORIGINAL RESEARCH

Analyzing Data Streams from Cyber‑Physical‑Systems: A Case Study

Harry H. Beyel1 · Omar Makke2 · Mahsa Pourbafrani1 · Oleg Gusikhin2 · Wil M. P. van der Aalst1

Received: 12 December 2023 / Accepted: 22 May 2024
© The Author(s) 2024

Abstract
We show that conducting a process-mining-centric analysis concerning cyber-physical systems provides insights into usage
behavior. To show that, we perform our analysis on connected-vehicle data. We transform connected-vehicle data into an
event log. We analyze the resulting event log using various process-mining techniques. In particular, we apply basic statis-
tical analysis as well as process-discovery and conformance-checking techniques to receive a well-representative process
model. We apply various process-enhancement techniques to get deeper insights. Finally, we capture a multi-perspective
view using a state-based approach. We show deviations between a de-jure model and our picked process model, leading
to better knowledge concerning real user behavior. We observed that the predefined escalation of warning states does not
happen. Additionally, we verified system requirements. Furthermore, we show that the reasons for drivers’ behavior are not
related to system issues. Applying process-mining techniques to data concerning cyber-physical systems provides valuable
insights into their functionality in a real-world setting. By utilizing process-mining techniques, we can extract insights to a
human-understandable level and provide a well-studied access point.

Keywords Process mining · Connected vehicles · Internet of Things · Cyber-physical systems

Introduction

Cyber-Physical Systems (CPSs) [1] and Internet of Things
(IoT) [2] are omnipresent and are integrated into our daily
lives. While CPSs are about integrating physical components
with computing and controlling systems for autonomous
operation in real time, IoT focuses on the interconnection of
a wide range of devices and objects for data collection and
communication. These systems are implemented in various
domains, from household items to connected vehicles. By

using these devices, an enormous volume of data is gener-
ated. When we analyze the data to capture the overall sys-
tems’ behavior and the underlying human interactions, we
face multiple challenges. One challenge is that the data from
IoT devices are often captured by sensors, which transmit
their values, for instance, an acceleration or the heading of
an object. We refer to such data as low-level data. By analyz-
ing the data, we want to understand the higher-level interac-
tions between humans and these devices. As a result, there
is a gap between the recorded data and our goal.

Process-mining techniques analyze data to support the
understanding of the underlying behavior. Process mining
can be divided into three areas: process discovery, con-
formance checking, and process enhancement [3]. Process-
discovery techniques aim to automatically discover a com-
prehensible process model that represents the underlying
behavior in the data by focusing on the control-flow per-
spective. Conformance-checking techniques quantify how
well a process model represents the behavior in the recorded
data. Process-enhancement techniques are used to gener-
ate deeper insights based on a well-representative process
model, such as measuring the time spent in states or reasons
for decisions. To apply process-mining techniques, data must
be in the form of an event log. An example event log can be

 * Harry H. Beyel
 beyel@pads.rwth-aachen.de

 Omar Makke
 omakke@ford.com

 Mahsa Pourbafrani
 mahsa.bafrani@pads.rwth-aachen.de

 Oleg Gusikhin
 ogusikhi@ford.com

 Wil M. P. van der Aalst
 wvdaalst@pads.rwth-aachen.de

1 Chair of Process and Data Science, RWTH Aachen
University, Aachen, Germany

2 Global Data Insight & Analytics, Ford, Dearborn, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-03008-8&domain=pdf
http://orcid.org/0000-0002-6541-3848

 SN Computer Science (2024) 5:706 706 Page 2 of 17

SN Computer Science

extracted from an airport system. Activities are “checking
the luggage”, ”scanning the passport”, etc., and a customer
serves as an identifier, trackable in the data. These activities
are sequences based on their execution time, i.e., timestamp.
However, data generated by IoT devices are not in the format
of an event log. Data produced by IoT devices may only con-
sist of low-level measurements and timestamps that reveal
when the record happened. An example of such low-level
data is transmitted by a temperature sensor attached to a con-
nected vehicle. Such data must be transformed into an event
log where a measurement is associated with some identifier
that can be tracked throughout the system.

As denoted in [4] and in our previous example, using
IoT data for process mining is a challenging task. In this
work, we provide a framework of how data transmitted by
test vehicles can be transformed into an event log and which
insights process mining can provide. We focus on a part
of a hands-free driving system that is embedded in con-
nected test vehicles. The system enables the vehicle to be
driven hands-free and without human intervention in defined
zones as long as defined conditions are not violated. Vehi-
cles equipped with this feature require connectivity and can
receive over-the-air updates to improve the feature’s behav-
ior based on its usage. On connected test vehicles equipped
with a hands-free driving system, a data stream is recorded
at a one-second rate and transmitted to the cloud using the
vehicles’ modem. Features of the collected data include an
anonymized vehicle identifier and states and warnings of
assistance systems. By utilizing the data for process min-
ing, we can get insights into the usage of the system and the
system’s behavior. These insights can guide future updates
of the hands-free driving system and help to spot the needs
of users and flaws in the system.

As stated, IoT data are challenging for process-mining
approaches. In addition to these challenges, data trans-
mitted by vehicles adds more challenges when we apply
process-mining techniques. First, the data collection is
susceptible to data quality issues and noise. At any instant
in time, thousands of vehicles send data under different

conditions, such as software versions, sensors, ages, and
connectivity conditions. An example of inaccurate infor-
mation is GPS signals contradicting vehicle speed or tem-
perature measurements taken while a vehicle is parked
under the sun. Second, privacy and security have to be
ensured. The collected data may contain information that
could be used to identify individuals directly or indirectly.
Preserving the privacy and security of individuals’ data
is vital. Third, the contextualization of data is not trivial.
Without additional context, the recorded data may not be
well interpretative. For example, when the speed of a car
is low, potential reasons can be road conditions or a traffic
jam. Without this contextualization, it is hard to under-
stand the behavior of drivers. Our work is able to resolve
some of these challenges.

In this work, we focus on analyzing real-life test vehi-
cle data from Ford by transforming the data and utilizing
various process-mining techniques. An overview of our
approach is depicted in Fig. 1.

As shown, we take a sample of the recorded test vehicle
data. This sample of connected-vehicle data is transformed
into an event log, suitable for process mining. We perform
an analysis of the event log. By applying process-mining
techniques, we receive a well-representative process model
that we use to generate further insights. Finally, we capture
a multi-perspective view of the process.

In the remainder of this paper, we first show and
discuss related work in the Sect. “Related work”. In
the Sect. “Preliminaries”, we introduce basic concepts.
In the Sect. “Vehicle Data”, we provide insights into how
we transformed vehicles’ data into an event log. In the
Sect. “Statistics”, we analyze the received event log using
a basic statistical analysis. In the Sect. “Process Analy-
sis” , we perform a process analysis using process-mining
techniques. We capture a multi-perspective view of the
process in the Sect.“Multi-perspective Analysis” section.
We summarize and discuss our work in the Sect. “Conclu-
sion” and describe future work.

Fig. 1 Overview of our framework for transforming vehicle data and applying process-mining techniques

SN Computer Science (2024) 5:706 Page 3 of 17 706

SN Computer Science

Related Work

In this section, we present and comment on related work.
In [4], challenges and opportunities for IoT by using IoT
data for process mining are presented. IoT has many chal-
lenges, such as sensor placement and data connectivity,
security, and privacy. Bridging the gap between low-level
sensor data and event logs leads to more challenges. An
example of a challenge is identifying activities and pro-
cesses associated with the recorded data. In this work,
we are facing such challenges. In the following, we first
present related work concerning the general intersection of
BPM and IoT. Subsequently, we focus on the intersection
of BPM and IoT by focusing on a vehicle-related setting.

An example of why tackling and overcoming these
challenges is rewarding is presented in [5]. In [5], a
case study on integrating Business Process Manage-
ment (BPM) and IoT in Australia’s meat and livestock
industry is presented. This study does not describe how
challenges were overcome, but the benefits of combining
BPM with IoT are presented. An example is that farmers
can confidently plan daily activities through the embed-
ded system’s support. Based on the results of our study,
we demonstrate that original equipment manufactur-
ers such as Ford can benefit by combining BPM with
IoT. The understanding of the usage of the hands-free
driving feature improves, and the underlying system
can be checked. The system can be improved, validated,
and adjusted to users’ needs based on the overall bet-
ter insights. In [6], van Eck et al. segment sensor data
in smaller time windows and compute relevant features
for each segment, for example, the average value of an
attribute. These relevant features are used to cluster the
segments. Each cluster is assigned an activity by using
domain knowledge. In our work, we use sensor record-
ings to create additional information for each event, for
instance, if the vehicle is facing the sun. Also, we use
domain knowledge. However, we do not rely on time win-
dows. Instead, we focus on the change of attribute values.
In [7], a general framework to discover process models
from sensor data is presented. The work utilizes location
sensor data. Events are grouped into activity instances
through correlation. Afterward, activities are discovered.
Then, events are abstracted based on the groups and the
discovered activities. Finally, processes can be discov-
ered. Our study does not deal with location data, but we
also have to define activities and process instances. In [8],
data from user interactions with software are collected
and analyzed. Mainly, process-discovery techniques are
used for the analysis. Based on the results of the analysis,
improvements for the software are defined. We also aim to
improve the understanding of user behavior to implement

improvements. Additionally, we want to find out the rea-
sons behind the system’s or drivers’ decisions. Therefore,
we do not rely only on process discovery; we also perform
process enhancement techniques.

There also exist works in the intersection of vehicles and
process mining. In [9], a Petri net is discovered to track the
occupancy of a parking space. In addition, the discovered
model can be adjusted during deployment, for instance, if
a sensor is broken. Another example is the work presented
in [10], for which this work is an extension. In [10], vehicle
data are transformed into event data. In addition, a de-jure
model is created by consulting domain experts. Besides,
de-facto models are discovered by applying dedicated
process-discovery techniques to the received event data.
The most promising process model is picked by consider-
ing conformance-checking results and opinions of domain
experts. The picked de-facto model is compared against the
de-jure model by considering the conformance-checking
result and their behavior. In this work, we also discover
de-facto models but on a different data set. Moreover, we
apply dedicated process-enhancement techniques. Also,
we capture a multi-perspective view of the data. In [11],
process enhancement techniques are in focus to gain more
insights. A comparison between vehicle models concerning
time spent in states is conducted. Also, the mentioned work
discovers statistical differences in the execution frequency
of activities between vehicle models. In addition, decision
mining is applied to a process model to discover reasons for
decisions, for example, why the hands-free-driving feature
was turned off instead of solving an issue. In our work, we
perform different tasks of process-enhancement techniques
since we have different data. Also, we capture a multi-per-
spective view of the process, which was not performed in
the mentioned work.

Preliminaries

In this section, we formally introduce concepts that are the
basics of the techniques we propose later. Given a set X, a
sequence � ∈ X∗ assigns an enumeration to elements of the
set. We denote this with � = ⟨�1, ...�n⟩ . If a sequence is a
subsequence, we denote this with ⊑ . In the remainder, we
refer with �i to the sequence’s i-th element.

To apply process-mining techniques, we need an event
log. An event log consists of at least three mandatory attrib-
utes: case identifier, activty name, and timestamp. We use
Ucase as the universe of case identifiers, Uact as the universe
of activity names, and Utime as the universe of timestamps.
The following defines an event log.

Definition 1 (Event log) Uev is the universe of events. e ∈ Uev
is an event, �act(e) ∈ Uact is the activity of e, �case(e) ∈ Ucase

 SN Computer Science (2024) 5:706 706 Page 4 of 17

SN Computer Science

is the case of e, and �time(e) ∈ Utime is the timestamp of
e. An event log L ⊆ Uev is a set of events. For simplicity,
we assume that other, here non-defined, functions can be
applied to an event, resulting in more attributes.

An example event log is displayed in Table 1. For e1 ,
�case(e1) = 1337 , �act(e1) = a , and �time(e1) = 2023-01-21.

In the remainder of this work, we use Petri nets as pro-
cess model representations. They are introduced in [3, 12].
We also use �-transitions, respectively, silent transitions. In
Petri nets, silent transitions provide a flexible and expres-
sive mechanism for modeling various aspects of process
behavior. They enable the representation of internal actions,
improving Petri nets’ modeling capabilities. They allow the
synchronization of different parts of the Petri net and can be
used to control the execution of other transitions by requir-
ing that certain conditions or constraints be met before pro-
ceeding. Silent transitions can act as synchronization points,
waiting for specific conditions to be met before allowing
subsequent transitions to fire. In our figures, we depict them
as black transitions. We use conformance-checking tech-
niques to quantify a process model’s quality by measuring
fitness, precision, simplicity, and generalization scores. [13]
provides an introduction to these measurements.

Vehicle Data

In this section, we focus on connected-vehicle data from
Ford’s test vehicles. First, we describe the data and how they
were gathered. Second, we describe the preprocessing of the
data. Finally, we describe the transformation of vehicle data
into an event log.

Data Description and Gathering

We receive data transmitted by test vehicles in the United
States of America. The data of vehicles are recorded on US
highways at a sample rate of roughly one second. The data
contains information related to cars’ software and sensors.

The following briefly explains the recorded data’s most
important features.

• Vehicle: Vehicle to which a datum belongs.
• Journey: A journey is created as soon as a recording

of a vehicle takes place. Moreover, journeys are gener-
ated if highways are switched. In addition, journeys are
generated if a vehicle drives in a rest area or at a petrol
station. Consequently, traveling can involve multiple
journeys. A journey is linked to a vehicle.

• State: States of traffic jam assist. We consider four
states: hands-free driving (HF) and “State 1”, “State
2”, and “State 3”.

• Warning: Different warnings are stored in this feature.
We consider the following: “No Warning”, “Warning
1”, “Warning 2”, and “Warning 3”.

• Longitude: Part of the GPS coordinate of the vehicle.
• Latitude: Part of the GPS coordinate of the vehicle.
• Heading: Showing the direction in which the vehicle is

heading.
• Wiper: State of the front wiper of the vehicle.
• Model: Model of the vehicle.
• Year: Production year of the vehicle.
• Plant: Plant in which the vehicle was produced.
• Timestamp: Timestamp for each recording.

An example of such data is shown in Table 2. The size
of the collected data is large. Unfortunately, it is difficult
for most process-mining tools to process data at such a
large scale. Systems like Celonis can handle billions of
events, but in this work, we are using open-source soft-
ware running locally. To overcome this issue, we sample
data. Journeys are randomly sampled from the collected
data, and only journeys with useful information are con-
sidered to be part of the sampling pool, thus minimizing
the amount of erroneous data. Our sampled data contains
over 8,635,640 instances, 10,733 journeys, and records
from over 500 vehicles. The second step is filtering the
data. Due to the large amount of data available, we found
the results more revealing if we only keep journeys with
hands-free engagements. Also, through several iterations,
we identified some erroneous data, such as overlapping
journeys. Therefore, we created a script based on domain
knowledge that checks the data for flaws.

In the following, we formally introduce vehicle data.
Ujourney is the universe of journey identifiers, S is the set of
states, and W is the set of warnings.

Definition 2 (Vehicle data) Uvd is the universe of vehicle
data. d ∈ Uvd is a vehicle data instance, �journey(d) ∈ Ujourney
is the journey of d, �state(d) ∈ S is the state of d,
�warning(d) ∈ W is the warning of d, and �time(d) ∈ Utime is
the timestamp of d.

Table 1 Example event log

Event ID Case Activity Timestamp

e
1

1337 a 2023-01-21
e
2

1337 b 2023-02-15
e
3

1337 c 2023-05-05
e
4

1338 d 2023-06-01
e
5

1338 e 2023-06-19
e
6

1338 c 2023-07-20

SN Computer Science (2024) 5:706 Page 5 of 17 706

SN Computer Science

Preprocessing

We preprocess the data before we transform the vehicle data
into an event log. Our preprocessing consists of multiple
steps. First, hands-free driving should occur at least once
in each journey since we analyze the corresponding feature.
If this is not the case, we remove the journey. Second, we
check if a vehicle’s journeys overlap due to potential log-
ging issues. If so, we remove the journey from the data.
Third, based on the system’s nature, two journeys may be
created, even though not much time has passed between the
two journeys. Therefore, we merge trips of a vehicle if they
are less than 5 s apart. Besides, we added information on the
sun’s position relative to the vehicle for each entry. The sun
is either left, right, in the front, or in the back of the vehicle.
To compute this information, we utilized the GPS informa-
tion of a record, i.e., latitude, longitude, and the direction
the vehicle faces (azimuth), combined with the information
on when the record happened. We use the method presented
in [14]. This method is implemented in the Python library
pvlib [15]. After preprocessing the vehicle data, we ended
up with 1,342,825 instances and 1055 journeys from over
400 vehicles.

Transforming Vehicle Data into an Event Log

After preprocessing the data, we have to transform the data
into an event log to apply process-mining techniques. For
the transformation, journeys play a vital role. As introduced,
they provide an identifier that enables the linkage of vehicle
data and provides a first separation of the data stream. How-
ever, they are too coarse for our analysis scope. Therefore,

we divide them into smaller units, which we call runs. Each
run represents a driver’s engagement with the feature, i.e.,
to analyze the feature, a run provides a perfect scope, which
we use later as an event log’s case. Based on our scope, some
instances of our data are not of interest and are not part of a
run. Instances that are part of a run are assigned activities.
After filtering the created runs, we transform the remain-
ing vehicle data and create an event log suitable for process
mining. In order to transform the set of vehicle data, the
presented methods have to be applied on all journeys and,
consequently, on all runs.

From Journeys to Runs

In order to explain the transformation process, we need to
extract data from our set of vehicle data that are associated
with one journey. Our transformation approach is based on
sequences, so we transform the data associated with a jour-
ney into a sequence in which the data are sorted by their
timestamp—from the earliest to the latest.

Definition 3 (Journey sequence) Let D ⊆ Uvd be a set of
vehicle data. Djourney = {d ∈ D ∣ �journey(d) = journey}
is a subset of D that only contains instances that are
associated with one journey. �journey = ⟨d1,… , dn⟩ ,
d1 ∈ Djourney,… , dn ∈ Djourney , is the sequential representa-
tion of Djourney such that 𝜋time(d1) < ⋯ < 𝜋time(dn).

Given our vehicle data depicted in Table 2,
D1 = {d1,… , d11} and D2 = {d12,… , d15}.

We want to capture the beginning of the hands-free driv-
ing mode until its end. To do so, we divide the sequence of

Table 2 Example recording of vehicle data

The column names are related to the formerly mentioned features. “RowID” is used to identify instances

RowID Vehicle Journey State Warning Longitude Latitude Heading Wiper Model Year Plant Timestamp

1 ABC 1 HF No warning 60.01 30.02 65.21 Off A 2023 Z 2023-01-01 13:37:37
2 ABC 1 HF No warning 60.01 30.03 65.22 Off A 2023 Z 2023-01-01 13:37:38
3 ABC 1 HF Warning 1 60.02 30.03 65.23 Off A 2023 Z 2023-01-01 13:37:39
4 ABC 1 HF Warning 1 60.02 30.02 65.21 Off A 2023 Z 2023-01-01 13:37:40
5 ABC 1 HF No warning 60.02 30.03 65.21 Off A 2023 Z 2023-01-01 13:37:41
6 ABC 1 State 1 No warning 60.01 30.04 65.21 Off A 2023 Z 2023-01-01 13:37:42
7 ABC 1 State 1 No warning 60.01 30.04 65.24 Off A 2023 Z 2023-01-01 13:37:43
8 ABC 1 HF No warning 60.02 30.04 65.22 Off A 2023 Z 2023-01-01 13:37:44
9 ABC 1 HF No warning 60.02 30.05 65.24 Off A 2023 Z 2023-01-01 13:37:45
10 ABC 1 State 1 No warning 60.03 30.05 65.25 Off A 2023 Z 2023-01-01 13:37:46
11 ABC 1 State 1 No warning 60.03 30.05 65.26 Off A 2023 Z 2023-01-01 13:37:47
12 ABC 2 HF No warning 61.05 29.92 15.29 Off A 2023 Z 2023-01-02 20:08:02
13 ABC 2 HF No warning 61.05 29.93 15.29 Off A 2023 Z 2023-01-02 20:08:03
14 ABC 2 HF No warning 61.05 29.94 15.31 Off A 2023 Z 2023-01-02 20:08:04
15 ABC 2 State 2 No warning 61.05 29.95 15.32 Off A 2023 Z 2023-01-02 20:08:05

 SN Computer Science (2024) 5:706 706 Page 6 of 17

SN Computer Science

a journey into runs. Each run starts with the beginning of
hands-free driving and ends with the first state that is not
hands-free.

Definition 4 (Run) Let D ⊆ Uvd be a set of vehicle data,
and Djourney and �journey = ⟨d1,… , dn⟩ be defined as before.
⟨di,… , dj⟩ ⊑ 𝜎journey , with j > i , is a run if �state(di−1) ≠ HF
or i = 1 . Furthermore, �state(di) = HF,… ,�state(dj−1) = HF
and �state(dj) ≠ HF . We refer to such a sequence as �run ,
with �run(di) = run,… ,�run(dj) = run . The data of one run
is stored in Drun , i.e., Drun = {d ∈ D ∣ �run(d) = run}.

One run that we observe for D1 is ⟨d2,… , d6⟩ . Another
run is ⟨d8, d9, d10⟩.

Assigning Activities

In the next step, we assign each vehicle datum that is associ-
ated with a run an activity. While the first instance of a run
is assigned “System started” and the last the state of the
vehicle, we focus on warning changes for the rest of the data
in a run. An absence of information is denoted with ⊥ . The
following presents our activity assignment.

Definition 5 (Creating activities) Let D ⊆ Uvd be a set of
vehicle data, and Drun and �run = ⟨d1,… , dn⟩ be as intro-
duced before. We assign each di , i ∈ {1,… , n} , an activity
as follows:

Concerning the run ⟨d2,… , d6⟩ , d2 gets assigned “Sys-
tem started”, d3 gets assigned “Warning 1”, d5 gets assigned
“Warning solved”, and d6 gets assigned “State 1”. The others
are assigned ⊥ as the activity.

Filtering Runs

So far, instances that are associated with a run are assigned
activities. However, some instances are assigned ⊥ as activ-
ity. Instances assigned with this activity do not provide value
for our analysis. Therefore, we filter them out.

�act(di) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

System started, if i = 1
�state(di), if i = n
�warning(di), if �warning(di) ≠ No Warning

and �warning(di) ≠ �warning(di−1)
Warning solved, if �warning(di) = No Warning

and �warning(di−1) ≠ No Warning
⊥, else

Definition 6 (Filtering runs) Let D ⊆ Uvd be a set of vehi-
cle data, and Drun and �run = ⟨d1,… , dn⟩ be as introduced
before. Dfiler

run = {d ∈ Drun ∣ 𝜋act(d) ≠ ⊥} is the data associ-
ated with a run that has not ⊥ assigned as activity. �filter

run
the sequential representation of Dfilter

run sorted from earliest
to latest.

Based on the run ⟨d2,… , d6⟩ , the filtered run is
⟨d2, d3, d5, d6⟩ . The run ⟨d8, d9, d10⟩ is reduced to ⟨d8, d10⟩.

Transformation

In the last step, we transform the vehicle data into an event
log. To do so, we focus on vehicle data of a filtered run.

Definition 7 (Transformation) Let D ⊆ Uvd be a set of
vehicle data, L ⊆ Uev be an event log, and Dfilter

run and
�
filter
run = ⟨d1,… , dn⟩ be as previously introduced. There

exists a function trans ∶ D
filter
run → L that maps each element

of Dfilter
run , d ∈ D

filter
run , to an event, e ∈ L , such that the follow-

ing holds:

• trans(�run(d)) = �case(e)

• trans(�act(d)) = �act(e)

• trans(�time(d)) = �time(e)

Concerning our previously introduced example vehicle
data, the transformed event log is shown in Table 3.

Table 3 Event log based on transformed example recording of vehi-
cle data

RowID CaseID Activity Vehicle ID .. Timestamp

1 001 System started ABC .. 2023-01-01
13:37:37

3 001 Warning 1 ABC .. 2023-01-01
13:37:39

5 001 Warning solved ABC .. 2023-01-01
13:37:41

6 001 State 1 ABC .. 2023-01-01
13:37:42

8 002 System started ABC .. 2023-01-01
13:37:44

10 002 State 1 ABC .. 2023-01-01
13:37:46

12 003 System started ABC .. 2023-01-02
20:08:02

15 003 State 2 ABC .. 2023-01-02
20:08:05

SN Computer Science (2024) 5:706 Page 7 of 17 706

SN Computer Science

Statistics

In this section, we analyze the event log that we transformed
from the vehicle data. First, we filter the event log. Sec-
ond, we analyze the frequency of activities. Third, we take
a closer look at the variants of the filtered event log. Finally,
we provide a short overview of time-related statistics.

Filtering

The event log we received by applying our previous steps on
vehicle data still contains noise, which we need to remove.
Our filtering is based on domain knowledge and consists
of two parts. First, if an event with activity “Warning 3”
happens, only an event with activity “State 1”, “State 2”, or
“State 3” can take place next in a case. Second, a case has to
end with an event with activity “State 1”, “State 2”, or “State
3”. Non-compliant behavior occurs due to logging issues or
actions taking place between the transmitting period, thus
not appearing in the data. By only using this limited set of
rules, we ensure that we observe the system’s and drivers’
real behavior. In this process, we remove ≈ 2.6% of traces,
leading to an event log consisting of 9413 traces and 27,266
events. Removing only this fraction of traces shows that the
transmitted data quality is good concerning the control flow.

Analysis of Activities

After filtering the transformed vehicle data, we take a look
at the various activity frequencies’. In this process, we
focus on the frequency of end activities and the overall fre-
quency. Due to our transformation, we know the start activ-
ity is “System started”. An overview of the distributions is
depicted in Fig. 2.

In Fig. 2a, the distributions of activities across all cases
contained in the transformed event log are shown. “System
started” is not shown since it appears in each case once,
leading to a frequency of 9413. When considering the

frequencies of the different warnings, it becomes visible
that “Warning 2” happens way more often than “Warning
1” and “Warning 3” combined. Since the different warn-
ings are related to an escalation, it becomes clear that there
may be issues. When focusing on the frequency relation-
ship between “Warning solved” and the different warnings,
we see that not all warnings are solved. As a result, there
are other strategies that we will explore in the remainder
of this paper. In Fig. 2b, the distribution of end activities is
shown. Important to note is that the frequency of “State 1”,
“State 2”, and “State 3” is the same as depicted in Fig. 2a
since these activities serve as end activities. The figure
shows that most of the time “State 3” turns the system off,
followed by “State 2”. Only ≈ 5% of the time, “State 1”
is executed.

This analysis gave us a first overview of how the system
operates when considering the transmitted data. We found
that “Warning 2” is the most executed warning (with an
execution probability of ≈ 43% per case). Additionally, we
denoted that not all warnings are solved, indicating that there
are other strategies to get out of the warning state.

Analysis of Variants

In the following, we take a look at the variants of the event
log. For this analysis, we focus on the variants obtained by
focusing on the order of activities. In total, 202 variants are
contained in the received event log. In the following, we
list the five most prominent variants and their frequency,
absolute and relative.

1. ⟨System started, State 3 ⟩ : 55.43% (5,218 traces)
2. ⟨System started, State 2 ⟩ : 23.38% (2,201 traces)
3. ⟨System started, Warning 2, Warning solved, State 3 ⟩ :

4.80% (452 traces)
4. ⟨System started, State 1 ⟩ : 3.63% (342 traces)

(a)Frequency distribution of all activities
across the cases.

(b) Frequency distribution of endactivi-
ties across the cases.

Fig. 2 Distributions of activities in the transformed event log

 SN Computer Science (2024) 5:706 706 Page 8 of 17

SN Computer Science

5. ⟨System started, Warning 2, Warning solved, State 2 ⟩ :
2.01% (189 traces).

The cases related to the listed variants cover 89.25% of cases
of the event log. Therefore, they are worth taking a closer
look. Approximately 82% of the time, the hands-free driv-
ing feature is started and turned off without a warning state.
Hence, in 18% of the cases, warnings have to happen at least
once. The two most prominent variants of these cases are
presented in our enumeration. In each, “Warning 2” hap-
pens and is resolved. Later, the system is turned off through
“State 2” or “State 3”. Besides, we denote that “Warning 1”
is not part of the variants, explaining its previously shown
low frequency.

Time‑Related Statistics

In the next step, we focus on time-related statistics. In
particular, we investigate how much time is spent in the
hands-free driving mode. To do so, we measure the time
passed in the filtered event log cases. In addition, we
filter out measured times if they are greater than 2000s
(≈ 33 minutes) to show a comprehensive overview. With
this filtering, we ensure to capture more than 99.3% of
measured times, thus not removing the actual behavior.
An overview of the measured times is provided in Fig. 3.

As shown in Fig. 3, most cases have a throughput time
of roughly four to five minutes. The first quartile is ≈ 11
s, the median is ≈ 40 s, the mean is ≈ 82 s, and the third
quartile is ≈ 100 s. It is revealed that most cases, i.e., runs
of the system, cover only a short period. To understand
what happens in this short amount of time, we need to
analyze the process.

Process Analysis

In this section, we perform a process-oriented analysis.
Our analysis consists of three parts. First, we decide on
a well-representative process model by considering the
available data and knowledge of domain experts. Sec-
ond, by utilizing conformance checking, we get a closer
look at the behavior of the hands-free driving feature.
Third, we analyze the performance utilizing the picked
process model. Fourth, we discover reasons for decisions
by using decision mining.

Finding a Suitable Process Model

This subsection shows our process of finding a representa-
tive process model. We use multiple approaches. We start
by constructing a de-jure model based on the system docu-
mentation. Subsequently, we discover de-facto process
models based on our transformed event log. Finally, we
evaluate the models using domain experts’ opinions and
metrics.

Constructing the De‑jure Model

To implement the feature of hands-free driving, a behavioral
model in the form of a flow chart was designed by humans.
In our work, we focus on a subset of the system. This subset
includes a small selection of warnings and conflict resolu-
tion strategies. We focus on conflicts related to the absence
of focus of a driver and three warning types. The absence
of focus is measured by checking if the driver still looks
at the road. The textual description of the model is as fol-
lows. Assume the starting state is hands-free driving without
interruption. If the eyes are off the road, a first warning goes

(a) Boxplot concerning the time spent in
hands-free driving. (b) Histogram about the spent time.

Fig. 3 Visualizations concerning the time spent in hands-free driving

SN Computer Science (2024) 5:706 Page 9 of 17 706

SN Computer Science

off. The driver can resolve this conflict by looking back on
the road. A second warning appears if the conflict is not
resolved, meaning eyes are still not looking on the road.
Again, the situation can be solved by looking back on the
road. If that is not done, a third warning happens. The sys-
tem takes control of the car, including decelerating, and this
situation can only be solved by looking at the road. After a
driver looks back on the road, the assistance system enters a
non-hands-free-driving state. This takeover procedure can
also happen at any time if an invalid situation for the system
occurs and the eyes are not focused on the road. If conflicts
are resolved before a third warning, the car continues driving
hands-free without any warning.

This textual description is translated into a Petri net to
compare this model and the discovered process models.

To convert this model into a Petri net, we assigned each
state a place and a marking, as shown in [12]. The resulting
Petri net is depicted in Fig. 4. We use �-transitions since
the reasons for starting the takeover can not properly be
defined using a single transition and, therefore, can lead to
an unreadable model. Moreover, after consulting domain
experts, we introduced multiple transitions to reveal the
input that drivers perform to turn the hands-free driving
mode off. By executing “State 1”, “State 2”, or “State 3”,
hands-free driving is disabled, leading to place p5. The first
conflict state is entered with “Warning 1” (p2). When the
conflict is resolved, the system is again in the hands-free
driving state (p1). When the conflict is not resolved, and
after a certain period of time, the conflict escalates by exe-
cuting “Warning 2”, leading to place p3. Again, the conflict

Fig. 4 Petri net showing the behavior of the hands-free driving system based on human design. After executing “System started”, the vehicle is
in the state of hands-free driving

Warning 3

System
started

Warning
solved

Warning 2

State 3

State 2

p1

State 1

Warning 1 p2 p3

Warning
solved

p4

State 3

p5
Hands-free driving

Hands-free
driving deactivated

Warning 2 active

Warning 3 active

Warning 1 active

Fig. 5 Petri net discovered by applying region-based mining

 SN Computer Science (2024) 5:706 706 Page 10 of 17

SN Computer Science

can be resolved; however, when the conflict is not resolved,
“Warning 3” is executed, leading to place p4. When “Warn-
ing 3” is executed, only “State 3” can be executed next, lead-
ing to the turn-off of the system and place p5. “Warning 3”
can also be executed in other system states.

Discovering De‑facto Models

In contrast to constructing a Petri net from an existing
description, we apply process-discovery techniques to the
event log to discover de-facto models. To discover process
models, we apply several process discovery algorithms to

the transformed event log, all implemented in ProM [16].
In the following, we provide an overview of the approaches
and showcase a selection of Petri nets.

We employed variations of the � algorithm, including
the classic � algorithm [17], the �+ algorithm [18], the �++
algorithm [19], and the �# algorithm [20]. However, process
models discovered by these techniques have issues, as later
shown in the evaluation of models. Most of them are not a
workflow net (WF-net) or unsound, i.e., they are not of use.

Also, we use region theory [21, 22] by applying the
region miner [23–27]. In this process, we first mine a tran-
sition system by using the event name as a backward key

Warning 3System
started State 3

State 2

p1

State 1

Warning 1 p2

p3

Warning
solved

p4

Warning 2 p5

p6

p7

p8

p9

Fig. 6 Petri net discovered by applying the Inductive Miner infrequent [28] with a threshold of 0.2

Fig. 7 Petri net discovered by applying directly follows mining [30]

Warning 3System
started

Warning
solved

Warning 2

State 3

State 2

p1

State 1

Warning 1 p2

p3

State 3

Hands-free driving
before conflict

State 3

State 2

State 2

State 1

Warning
solved

State 3

State 1

p4

Hands-free
driving deactivated

Warning 2 active

Warning 1 active

Warning 3 active

Warning 2

Warning 3

p5

Warning 1

State 3

State 2

State 1

Warning 2

Warning 3

Hands-free driving
after conflict

SN Computer Science (2024) 5:706 Page 11 of 17 706

SN Computer Science

and a set abstraction of size one. Moreover, self-loops were
removed, and label-splitting was performed. By using the
mentioned methods, a Petri net is created. The resulting Petri
net is displayed in Fig. 5.

Each place of the Petri net corresponds to the system’s
states. The hands-free driving state is in place p1. All states
and warnings can happen there. However, the execution of
“Warning 2” should not be possible according to the defini-
tion. Place p2 is the state in which “Warning 1” is active.
The warning can be resolved, which leads to p1. Also, the
system can be turned off by utilizing “State 2” and “State
3”, which was not part of the description but is possible
according to domain experts. Additionally, the conflict can
be escalated via “Warning 2” to p3. In p3, the system can
be turned off, the warning can be solved (returning to p1),
or the conflict can escalate by executing “Warning 3” lead-
ing to p4. In p4, the system’s next action is to turn itself off.
However, in contrast to the description, two options for the
turn-off are possible in the given data.

We also applied the Inductive Miner infrequent (IMf)
[28], which is based on the Inductive Miner [29], the state-
of-the-art process-discovery algorithm. The resulting Petri
net when applying the IMf with a threshold of 0.2 is dis-
played in Fig. 6.

This Petri net shows the escalation of warnings and all
states that lead to the turn-off of the system. In contrast to
previous models, this model does not have multiple transi-
tions with the same activity. However, this model has some
issues. First, “Warning solved” can be infinitely often exe-
cuted in a row, which does not make much sense given the
domain knowledge and the knowledge about the data. Sec-
ond, “Warning solved” can be executed if no warning hap-
pens. Third, in contrast to the de-facto model (see Fig. 4) and
the model discovered by region-based mining (see Fig. 5),
the markings are less interpretative. For instance, if p2 is
marked, one must check the data to observe whether “Warn-
ing 1” has been executed. These issues are based on how the
algorithm works.

Table 4 Conformance checking results for the de-jure model and models discovered by applying various algorithms and filters

Results are rounded to the second decimal

Algorithm Filter parameter WF-net Sound Fitness Precision Generalization Simplicity F-1 score

� – No – – – – – –
�+ – Yes No – – – – –
�++ – Yes No – – – – –
�# – No – 0.72 0.57 0.97 1.00 0.64
Region miner – Yes Yes 1.00 0.94 0.85 0.50 0.97
Inductive miner infrequent 0.0 Yes Yes 1.00 0.68 0.97 0.66 0.81
Inductive miner infrequent 0.1 Yes Yes 0.99 0.82 0.97 0.64 0.90
Inductive miner infrequent 0.2 Yes Yes 0.99 0.82 0.97 0.64 0.90
Inductive miner infrequent 0.3 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.4 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.5 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.6 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.7 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.8 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.9 Yes Yes 0.68 0.79 0.97 0.73 0.73
Inductive miner infrequent 1.0 Yes Yes 0.51 1.00 0.97 0.82 0.68
Directly follows miner 0.0 (paths) Yes Yes – – – – –
Directly follows miner 0.1 (paths) Yes Yes 0.47 1.00 0.66 1.00 0.64
Directly follows miner 0.2 (paths) Yes Yes 0.47 1.00 0.66 1.00 0.64
Directly follows miner 0.3 (paths) Yes Yes 0.47 1.00 0.66 1.00 0.64
Directly follows miner 0.4 (paths) Yes Yes 0.47 1.00 0.66 1.00 0.64
Directly follows miner 0.5 (paths) Yes Yes 0.47 1.00 0.66 1.00 0.64
Directly follows miner 0.6 (paths) Yes Yes 0.66 1.00 0.74 0.78 0.80
Directly follows miner 0.7 (paths) Yes Yes 0.66 1.00 0.74 0.78 0.80
Directly follows miner 0.8 (paths) Yes Yes 0.91 1.00 0.86 0.68 0.95
Directly follows miner 0.9 (paths) Yes Yes 0.93 1.00 0.87 0.64 0.96
Directly follows miner 1.0 (paths) Yes Yes 1.00 0.94 0.83 0.47 0.97
De-Jure model – Yes Yes 0.91 0.99 0.88 0.62 0.95

 SN Computer Science (2024) 5:706 706 Page 12 of 17

SN Computer Science

We also applied a directly follows-based approach using
[30]. We set the activity parameter to 1.0 and changed the
path parameter. The resulting Petri net by setting the path
parameter to 1.0 is depicted in Fig. 7.

The result is similar to the process model discovered by
the region miner (see Fig. 5). Each marking corresponds to
a system’s state. The major difference is that the model dis-
covered by the directly follows miner distinguishes between
the initial hands-free driving (p1) and the hands-free driving
after conflict resolution (p5). However, both places have the
same labeled outgoing transitions. Thus, the differentiation
leads to a more complex model, while the insights concern-
ing the control flow are the same. Another difference is the
option for an empty trace, which is unrelated to showing how
the systems operate.

Evaluation of the Different Models

After creating a de-jure model by utilizing domain knowl-
edge and discovering various process models, we evalu-
ate them to find the most representative process model.
In particular, we measure fitness by utilizing alignments
with a standard cost function [31], computed precision
[32] and generalization [33] scores, as well as the sim-
plicity of the model [34]. In addition, we computed F1
scores using the obtained fitness and precision scores.
Besides, we used WOFLAN [35] to check soundness and

whether the Petri net is a WF-net. The results are depicted
in Table 4.

As denoted in Table 4, the de-jure model explains the
underlying data well since the F1 score is 0.95. This shows
that the system performs most of the time as designed by
the experts. Comparable models are found by using the
region-based approach (F1 score of 0.97) and the directly
follows miner (F1 score of 0.97). The results of the different

(a) Frequency distribution for being in
hands-free drivingwith no warning (p1).

(b) Frequency distribution for having
“Warning1”(p2).

(c) Frequency distribution for having
“Warning2” (p3).

(d) Frequency distribution for having
“Warning3” (p4).

Fig. 8 Distributions of the next executed activity for a selection of places shown in the Petri net portrayed in Fig. 5

Fig. 9 Time spent is selected states of the Petri net depicted in Fig. 5.
The bars show the minimum and maximum value, the diamonds the
corresponding mean, and the whiskers represent the standard devia-
tion

SN Computer Science (2024) 5:706 Page 13 of 17 706

SN Computer Science

� miners are not of use due to either missing soundness or
not being a WF-net. Applying the Inductive Miner leads, as
shown, to unsatisfying models that lack interpretability. The
region-based approach produces a slightly better F1 score
than the de-jure model by having a perfect fitness score. In
addition, this model has better scores concerning generali-
zation and simplicity than the model obtained by applying
the directly follows miner. Due to the better scores and by
considering domain experts’ opinions, we chose the region-
based model as our representative process model.

Conformance Analysis

As described before, the model discovered by the region
miner has perfect fitness. When aligning the model (see
Fig. 5) and the event log, we get a comprehensive overview
of the frequency of the execution of the transitions. Conse-
quently, we are also getting insights into users’ behavior. An
overview is depicted in Fig. 8.

As shown in Fig. 8, the choice of the next activity varies,
sometimes based on the system itself. For instance, for p1
and p4, “Warning solved” cannot be executed.

For p1 (Fig. 8a), “State 3” is the most executed activity
(≈ 46% of the time). The combination of the frequencies
for “State 1” and “State 2” happens less than for “State
3”. This can be related to the user behavior, perhaps the
preferable turn-off option. The second most activity is
“Warning 2”. In contrast to “Warning 2”, “Warning 1”
happens rarely. This is a contradiction to the require-
ments. Given these requirements, there is an escalation
order. However, as we denote, the second-level warning
usually happens. Possible causes are a data logging issue.
Nevertheless, more investigations are needed.

For p2 (Fig. 8b), “Warning 2” and “Warning solved”
happen the most and equally often (each ≈ 49% of the
time). This means that roughly half of the time, a driver
manages to resolve the conflict, and half of the time, the
conflict escalates to the next level. However, sometimes
drivers turn the feature off (“State 2” and “State 3”).
“State 1” and “Warning 3” never happen.

For p3 (Fig. 8c), the warning is often resolved (≈ 93%
of the time). Sometimes, the conflict escalated to the third
level. Besides, the feature is occasionally turned off by
drivers.

For p4 (Fig. 8d), there is only the choice between
“State 1” and “State 3”. As shown, the latter happens four
times more often than the former (≈ 82% of the time).

In general, this analysis shows that “State 3” is a highly
frequent activity in all places in the model. Moreover, we
observed that there are potential logging issues concern-
ing the escalation of warnings, which need to be investi-
gated by domain experts.

Performance Analysis

We conduct a performance analysis based on the region-
based process model (depicted in Fig. 5). The perfor-
mance analysis reveals how much time is spent in places
of a Petri net and how much time passed before firing
a transition. The time spent in the warning places, i.e.,
p2, p3, and p4, are highly interesting to further check
the system requirements. We use the package provided
in ProM [16] for this analysis. The results are displayed
in Fig. 9.

As shown in Fig. 9, the maximum times vary, and, con-
sequently, the overall distribution. While not much time is
spent in p2, over a minute is potentially spent in p3 and p4.

(a) Accuracy of predicting the next action
being in hands-free driving (p1).

(b) Accuracy of predicting the next action
for having “Warning 1” (p2).

(c) Accuracy of predicting the next action
for having “Warning 2” (p3).

(d) Accuracy of predicting the next action
for having “Warning 3” (p4).

Fig. 10 Accuracy measurements for predicting the next activity in selected places of the Petri net portrayed earlier in Fig. 5

 SN Computer Science (2024) 5:706 706 Page 14 of 17

SN Computer Science

However, the average values are close to each other, and the
deviations are minor. The time for “Warning 1” being active
is dense. For “Warning 2” it is a bit less dense; however,
there are potential outliers as shown by the standard devia-
tion. “Warning 3” is the less dense distribution, but still, it is
not as bad as the outliers may indicate. Possible reasons for
that are logging issues, which can occur. Besides the outli-
ers, the systems seem to operate as intended.

Decision Mining

After measuring the time spent in selected system states, we
investigate reasons for certain paths. The technique which
enables us to do so is called decision mining. First, we iden-
tify decision points in the process, i.e., places with more than
one outgoing arc in our picked process model (see Fig. 5). In
our case, these are p1, p2, p3, and p4. By aligning the event
log with the data, we use the different attributes of an event
to predict the next activity. More information can be found
in [36]. In this process, we create a supervised learning prob-
lem. For each decision point, we extract a dataset by using
PM4Py [37]. Each dataset is used as input for RapidMiner.1
In RapidMiner, we use the auto-model functionality to pre-
dict the next activity for each decision point. Using auto-
modeling in RapidMiner, different techniques with various
parameter settings are applied to the data. The results are
showcased in Fig. 10.

The result concerning p1 is displayed in Fig. 10a. The
accuracy values are similar, while the highest result is
achieved by using deep learning (48%). The accuracy value
is greater than the probability of always picking the most
popular value (≈ 46%). However, the accuracy is not satisfy-
ing. As a result, the next action when being in place p1 can
not be well predicted with our data.

The result concerning p2 is presented in Fig. 10b. The
accuracy values are often similar. The accuracy value for
fast large margin could not be computed and returned an
error, and logistic regression performs worse than others.
The probability for the most prominent next activity is
≈ 49% , while the greatest accuracy score is 55.1%, achieved
by Naive Bayes. Therefore, the accuracy is better than the
majority vote, but it suffers simultaneously for being too low.

The result concerning p3 is shown in Fig. 10c. As we can
denote, the accuracy values are always above 90%. When
comparing this with the probability of the most frequent
activity, which is ≈ 93% , we conclude that our classifiers
perform not better than the majority vote.

The result concerning p4 is depicted in Fig. 10d. There
are various accuracy values, ranging from ≈ 72% to ≈ 82% .
As described earlier, the probability for the most common
activity is ≈ 82% . Consequently, the next activity cannot be
well predicted.

In general, we observe that our classifiers often do not
outperform majority votes. A potential reason is that our

Fig. 11 Interface of the CSMM [39]. By clicking on the arcs between states, we can observe co-occurring states, indicated by their color

Table 5 Overview of selected results from applying the CSSM [39]

Values are rounded to the second decimal

From To Affected feature and
state

Confidence Lift

Initial warning Warning 1 Sun: Right 0.19 1.24
Initial warning Warning 3 Sun: Right 0.20 1.30
Warning 1 Warning 2 Sun: Left 0.22 1.26
Warning 2 Warning 3 Sun: Front 0.15 1.30
No warning Warning 1 Sun: Front 0.20 1.84
No warning Warning 1 Sun: Left 0.20 1.50
No warning Warning 3 Sun: Behind 0.80 1.37
No warning Warning 3 Wiper: Auto off 0.10 2.30
Initial state State 1 Sun: Left 0.21 1.38
Initial state State 1 Wiper: Auto off 0.28 8.10

1 https:// rapid miner. com/.

https://rapidminer.com/

SN Computer Science (2024) 5:706 Page 15 of 17 706

SN Computer Science

data are missing information, for example, a vehicle’s speed.
Also, we do not know the state of the environment, which
may have an impact. Potential environmental effects include
traffic jams, temperature, road conditions, software versions,
etc. As a result, we have limited knowledge about the situ-
ation when a decision occurs and, therefore, cannot predict
well. Even though we cannot predict the next action well, the
result shows that the feature we considered does not cause
the next action, indicating that there are no major design
issues.

Multi‑perspective Analysis

In this section, we provide a multi-perspective analysis of
the process. First, we present the motivation and the cho-
sen approach. Second, we describe the data transformation
to utilize this tool. Third, we provide the results from our
analysis.

So far, we have concentrated on the control-flow per-
spective of the different states and warnings of the system.
However, a vehicle consists of many subsystems which
interact with each other. Also, the environment influences
the system. These dynamics are captured in the transmit-
ted vehicle data. In the following, we take a closer look at
these dynamics. The domain experts are interested in the
relationship between the sun’s relative position, the system’s
states and warnings, and the wiper state. For our analysis,
we use the Composite State Machine Miner (CSMM) [38,
39]. The different values of a feature are interpreted as its
states. The CSMM enables us to observe the dynamics
between the states of a feature individually. Additionally,
the tools allow us to check which states across the features
occurred together by returning a lift and confidence value.
By utilizing this technique, we are interested in observing
links across the features and indicators for certain behaviors.
For example, whether a sun’s state often co-occurs with a
vehicle’s warning state which may indicate potential issues.

For this task, we preprocessed the data as we did earlier.
However, to use the tool, we must transform our data differ-
ently than before. Besides, a drawback of the CSMM is that
it assumes that initial states are the same. Thereby, it only
tracks changes. However, our vehicle data does not always
start in the same state. For example, the relative position
of the car to the sun can be different for each run. Since,
according to the experts, the sun’s position may influence
the system, we create an initial state for the sun, which then
directly changes to the real initial state. This enables us to
analyze the sun’s influence compactly and comprehensively.
A screenshot of the tool that loaded our data is provided in
Fig. 11.

For our results, we focus on relationships that have a
minimum confidence value of 0.1 and a minimum lift value

of 1.2. We focus on the switch between states, i.e., the arcs
connecting them. Our results are shown in Table 5.

As shown in Table 5, most confidence values are between
0.1 and 0.3. Such findings indicate that the corresponding
findings are questionable. Also, the findings reveal that the
assumed influence does not exist. The most striking finding
deals with “No Warning” and “Warning 3”. With a confi-
dence value of 0.8 and a lift value of 1.37, this finding shows
a positive association. However, considering that a lift value
nearly to one indicates independence, the impact of our find-
ing is limited.

In summary, we applied this analysis to capture the
dynamics within the systems and to observe co-occurring
behavior. By doing so, we checked whether the assump-
tion that the environment influences the system holds. Our
analysis shows that there are some influences. However, the
corresponding confidence and lift values are often low. This
leads to the conclusion that the assumed influences do not
exist, so further investigations are needed.

Conclusion

In this section, we summarize our work and provide pointers
for future work.

In this work, we presented in detail how to enrich and
transform continuous data recorded by cyber-physical
systems into an event log. We analyzed the event log, and
by conducting a small variant analysis, we found out that
the most frequent five variants are responsible for nearly
90% of the behavior. By looking at the cases’ throughput
time, we found out that most engagements with the features
are less than four minutes long. Furthermore, we applied
process-discovery and conformance-checking techniques
to the transformed event log. Also, we created a de-jure
model based on the feature’s documentation. By utilizing
the conformance scores and domain experts’ opinions, we
picked a well-representative model. This model revealed dif-
ferences between the documentation of the system and the
actual behavior. According to experts, the behavior was as
designed in most aspects, but some behaviors provide points
for further investigation, for instance, the warning escala-
tion. At the same time, critical aspects of the feature work
as intended. Additionally, we applied process-enhancement
techniques by utilizing our picked model. We obtained the
behavior that drivers tend to have when they are in different
states of the system. We also checked the amount of time
spent in a warning state. However, the results have to be
treated with caution due to logging issues. By using decision
mining, we aimed to discover the reasons behind the actions
taken in the system. However, most of the time, the accuracy
of our classifiers was roughly the same as when using major-
ity voting. We also aimed to capture a multi-perspective

 SN Computer Science (2024) 5:706 706 Page 16 of 17

SN Computer Science

view of the system to discover which states often occur. For
this multi-perspective view, we not only focused on states
and warnings, but we also took the wiper state and the rela-
tive position between the sun and a vehicle into account.
Most of our reported results lacked a high confidence value,
limiting the reasoning of our findings. At the same time, we
showed with the analysis that there are no flaws in the sys-
tem based on the available data and the considered features.

There are points for future work. As pointed out, the
accuracy values of the classifiers are unsatisfying. There-
fore, one cannot easily interpret the reasons for decisions.
However, it is possible that other attributes can help us in
understanding the reasons. For example, a vehicle’s speed
or the information of whether a curve is driven or whether
a vehicle is in a traffic jam helps to capture the situation of
a vehicle. Also, inter-case attributes can be interesting, for
example, the number of engagements during a journey until
that run. Besides the need for more attributes, there is a need
for better techniques concerning a multi-perspective view.
As pointed out, the technique suffers from only capturing
state changes and assigning different states the same initial
state. As a result, complex systems with changing condi-
tions, both initial and during the execution, like a vehicle,
suffer from this approach since data have to be artificially
adjusted. For a data-driven analysis, we need to invent tech-
niques that capture that.

Acknowledgements This research is supported by the Ford-RWTH
Aachen University Alliance program. We thank the Alexander von
Humboldt (AvH) Stiftung for supporting our research. Grant number
1191945.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability The data is not publicly available.

Declarations

Conflict of interest Harry H. Beyel works on a project financed by
Ford. Omar Makke and Oleg Gusikhin are Ford employees. Wil M. P.
van der Aalst works part-time for Celonis.

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Lee EA. Cyber physical systems: design challenges. In: IEEE
(ISORC). 2008. p. 363–9. https:// doi. org/ 10. 1109/ ISORC. 2008.
25.

 2. Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of things
(iot): a vision, architectural elements, and future directions. Future
Gener Comput Syst. 2013;29(7):1645–60. https:// doi. org/ 10.
1016/j. future. 2013. 01. 010.

 3. van der Aalst WMP. Process mining–data science in action. 2nd
ed. 2016. https:// doi. org/ 10. 1007/ 978-3- 662- 49851-4.

 4. Janiesch C, Koschmider A, Mecella M, Weber B, Burattin A, Di
Ciccio C, Fortino G, Gal A, Kannengiesser U, Leotta F, Man-
nhardt F, Marrella A, Mendling J, Oberweis A, Reichert M,
Rinderle-Ma S, Serral E, Song W, Su J, Torres V, Weidlich M,
Weske M, Zhang L. The internet of things meets business pro-
cess management: a manifesto. IEEE Syst Man Cybern Mag.
2020;6(4):34–44. https:// doi. org/ 10. 1109/ MSMC. 2020. 30031 35.

 5. Keates O. Integrating iot with BPM to provide value to cattle
farmers in Australia. In: Business process management work-
shops. 2019. p. 119–29. https:// doi. org/ 10. 1007/ 978-3- 030- 37453-
2_ 11.

 6. van Eck ML, Sidorova N, van der Aalst WMP. Enabling pro-
cess mining on sensor data from smart products. In: Tenth IEEE
international conference on Research Challenges in Information
Science, RCIS 2016, Grenoble, France, June 1–3, 2016. p. 1–12.
https:// doi. org/ 10. 1109/ RCIS. 2016. 75493 55.

 7. Koschmider A, Janssen D, Mannhardt F. Framework for process
discovery from sensor data. In: EMISA. 2020. p. 32–8.

 8. Astromskis S, Janes A. Mairegger M. A process mining
approach to measure how users interact with software: an indus-
trial case study. In: ICSSP. 2015. p. 137–41. https:// doi. org/ 10.
1145/ 27855 92. 27856 12.

 9. Makke O, Gusikhin O. Robust iot based parking information
system. In: Smart cities, green technologies, and intelligent
transport systems. 2021. p. 204–27. https:// doi. org/ 10. 1007/
978-3- 030- 89170-1_ 11.

 10. Beyel HH, Makke O, Yuan F, Gusikhin O, van der Aalst WMP.
Analyzing cyber-physical systems in cars: a case study. In: Pro-
ceedings of the 12th International Conference on Data Science,
Technology and Applications, DATA 2023, Rome, Italy, July
11–13, 2023. p. 195–204. https:// doi. org/ 10. 5220/ 00121 36000
003541.

 11. Beyel HH, Makke O, van der Aalst Gusikhin O, WMP. Analyz-
ing behavior un cyber-physical systems in connected vehicles:
a case study. Business Process Management Workshops—BPM
2023 International Workshops. Utrecht, The Netherlands:;
September 11–15, 2023. p. 92–104. https:// doi. org/ 10. 1007/
978-3- 031- 50974-2_8.

 12. Reisig W. Petri nets: an introduction. EATCS monographs on
theoretical computer science, vol. 4. 1985. https:// doi. org/ 10.
1007/ 978-3- 642- 69968-9.

 13. Carmona J, van Dongen BF, Solti A, Weidlich M. Conformance
checking—relating processes and models. 2018. https:// doi. org/
10. 1007/ 978-3- 319- 99414-7.

 14. Reda I, Andreas A. Solar position algorithm for solar radiation
applications. Sol Energy. 2004;76(5):577–89. https:// doi. org/
10. 1016/j. solen er. 2003. 12. 003.

 15. Holmgren WF, Hansen CW, Mikofski MA. pvlib python: a
python package for modeling solar energy systems. J Open
Source Softw. 2018;3(29):884. https:// doi. org/ 10. 5281/ zenodo.
83684 94.

 16. van Dongen BF, Medeiros AKA, Verbeek HMW, Weijters AJMM,
van der Aalst WMP. The prom framework: a new era in process

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1109/MSMC.2020.3003135
https://doi.org/10.1007/978-3-030-37453-2_11
https://doi.org/10.1007/978-3-030-37453-2_11
https://doi.org/10.1109/RCIS.2016.7549355
https://doi.org/10.1145/2785592.2785612
https://doi.org/10.1145/2785592.2785612
https://doi.org/10.1007/978-3-030-89170-1_11
https://doi.org/10.1007/978-3-030-89170-1_11
https://doi.org/10.5220/0012136000003541
https://doi.org/10.5220/0012136000003541
https://doi.org/10.1007/978-3-031-50974-2_8
https://doi.org/10.1007/978-3-031-50974-2_8
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1016/j.solener.2003.12.003
https://doi.org/10.1016/j.solener.2003.12.003
https://doi.org/10.5281/zenodo.8368494
https://doi.org/10.5281/zenodo.8368494

SN Computer Science (2024) 5:706 Page 17 of 17 706

SN Computer Science

mining tool support. In: Applications and theory of Petri nets.
2005. p. 444–54. https:// doi. org/ 10. 1007/ 11494 744_ 25.

 17. van der Aalst WMP, Weijters T, Maruster L. Workflow mining:
discovering process models from event logs. IEEE Trans Knowl
Data Eng. 2004;16(9):1128–42. https:// doi. org/ 10. 1109/ TKDE.
2004. 47.

 18. Medeiros AKA, van Dongen BF, van der Aalst WMP, Weijters
AJMM. Process mining for ubiquitous mobile systems: an over-
view and a concrete algorithm. In: Baresi L, Dustdar S, Gall HC,
Matera M, editors. Ubiquitous mobile information and collabo-
ration systems, second CAiSE workshop, UMICS 2004, Riga,
Latvia, June 7–8, 2004, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 3272. 2004. p. 151–65. . https:// doi. org/
10. 1007/ 978-3- 540- 30188-2_ 12.

 19. Wen L, van der Aalst WMP, Wang J, Sun J. Mining process mod-
els with non-free-choice constructs. Data Min Knowl Discov.
2007;15(2):145–80. https:// doi. org/ 10. 1007/ S10618- 007- 0065-Y.

 20. Wen L, Wang J, van der Aalst WMP, Huang B, Sun J. Mining
process models with prime invisible tasks. Data Knowl Eng.
2010;69(10):999–1021. https:// doi. org/ 10. 1016/J. DATAK. 2010.
06. 001.

 21. Ehrenfeucht A, Rozenberg G. Partial (set) 2-structures. Part I:
basic notions and the representation problem. Acta Inform.
1990;27(4):315–42. https:// doi. org/ 10. 1007/ BF002 64611.

 22. Ehrenfeucht A, Rozenberg G. Partial (set) 2-structures. Part II:
state spaces of concurrent systems. Acta Inform. 1990;27(4):343–
68. https:// doi. org/ 10. 1007/ BF002 64612.

 23. van der Aalst WMP, Rubin VA, Verbeek HMW, van Dongen BF,
Kindler E, Günther CW. Process mining: a two-step approach to
balance between underfitting and overfitting. Softw Syst Model.
2010;9(1):87–111. https:// doi. org/ 10. 1007/ s10270- 008- 0106-z.

 24. Cortadella J, Kishinevsky M, Lavagno L, Yakovlev A. Deriv-
ing petri nets for finite transition systems. IEEE Trans Comput.
1998;47(8):859–82. https:// doi. org/ 10. 1109/ 12. 707587.

 25. Solé M, Carmona J. Light region-based techniques for process
discovery. Fundam Inform. 2011;113(3–4):343–76. https:// doi.
org/ 10. 3233/ FI- 2011- 612.

 26. Solé M, Carmona J. Incremental process discovery. Trans Petri
Nets Other Model Concurr. 2012;5:221–42. https:// doi. org/ 10.
1007/ 978-3- 642- 29072-5_ 10.

 27. Solé M, Carmona J. Region-based foldings in process discovery.
IEEE Trans Knowl Data Eng. 2013;25(1):192–205. https:// doi.
org/ 10. 1109/ TKDE. 2011. 192.

 28. Leemans SJJ, Fahland D, van der Aalst WMP. Discovering block-
structured process models from event logs containing infrequent
behaviour. In: Lohmann N, Song M, Wohed P, editors. Business
Process Management Workshop—BPM 2013 International Work-
shops, Beijing, China, August 26, 2013, Revised Papers. Lecture
Notes in Business Information Processing, vol. 171. 2013. p.
66–78. https:// doi. org/ 10. 1007/ 978-3- 319- 06257-0_6.

 29. Leemans SJJ, Fahland D, van der Aalst WMP. Discovering
block-structured process models from event logs—a constructive
approach. In: Colom JM, Desel J, editors. Application and theory
of Petri nets and concurrency—34th International Conference,
PETRI NETS 2013, Milan, Italy, June 24–28, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7927. 2013. p. 311–29.
https:// doi. org/ 10. 1007/ 978-3- 642- 38697-8_ 17.

 30. Leemans SJJ, Poppe E, Wynn MT. Directly follows-based process
mining: exploration & a case study. In: International Conference
on Process Mining, ICPM 2019, Aachen, Germany, June 24–26,
2019, p. 25–32. https:// doi. org/ 10. 1109/ ICPM. 2019. 00015.

 31. Adriansyah A, Sidorova N, van Dongen BF. Cost-based fitness
in conformance checking. In: Caillaud B, Carmona J, Hiraishi K,
editors. 11th international conference on Application of Concur-
rency to System Design, ACSD 2011, Newcastle Upon Tyne, UK,
20–24 June, 2011. p. 57–66. https:// doi. org/ 10. 1109/ ACSD. 2011.
19.

 32. Adriansyah A, Munoz-Gama J, Carmona J, van Dongen BF, van
der Aalst WMP. Measuring precision of modeled behavior. Inf
Syst E Bus Manag. 2015;13(1):37–67. https:// doi. org/ 10. 1007/
s10257- 014- 0234-7.

 33. Buijs JCAM, van Dongen BF, van der Aalst WMP. Quality dimen-
sions in process discovery: the importance of fitness, precision,
generalization and simplicity. Int J Coop Inf Syst. 2014. https://
doi. org/ 10. 1142/ S0218 84301 44000 12.

 34. Weerdt JD, Backer MD, Vanthienen J, Baesens B. A critical
evaluation study of model-log metrics in process discovery. In:
Muehlen M, Su J, editors. Business Process Management Work-
shops—BPM 2010 International Workshops and Education Track,
Hoboken, NJ, USA, September 13–15, 2010, Revised Selected
Papers. Lecture Notes in Business Information Processing, vol.
66. 2010. p. 158–69. https:// doi. org/ 10. 1007/ 978-3- 642- 20511-8_
14.

 35. Verbeek HMW, Basten T, van der Aalst WMP. Diagnosing work-
flow processes using woflan. Comput J. 2001;44(4):246–79.
https:// doi. org/ 10. 1093/ comjnl/ 44.4. 246.

 36. Leoni M, van der Aalst WMP, Dees M. A general process min-
ing framework for correlating, predicting and clustering dynamic
behavior based on event logs. Inf Syst. 2016;56:235–57. https://
doi. org/ 10. 1016/j. is. 2015. 07. 003.

 37. Berti A, van Zelst S, Schuster D. Pm4py: a process mining library
for python. Softw Impacts. 2023;17:100556. https:// doi. org/ 10.
1016/j. simpa. 2023. 100556.

 38. van Eck ML, Sidorova N, van der Aalst WMP. Discovering and
exploring state-based models for multi-perspective processes. In:
Rosa ML, Loos P, Pastor O, editors. Business Process Manage-
ment—14th International Conference, BPM 2016, Rio de Janeiro,
Brazil, September 18–22, 2016. Proceedings. Lecture Notes in
Computer Science, vol. 9850. 2016. p. 142–57. https:// doi. org/
10. 1007/ 978-3- 319- 45348-4_9.

 39. van Eck ML, Sidorova N, van der Aalst WMP. Composite state
machine miner: discovering and exploring multi-perspective pro-
cesses. In: Azevedo L, Cabanillas C, editors. Proceedings of the
BPM Demo Track 2016 co-located with the 14th International
Conference on Business Process Management (BPM 2016), Rio
de Janeiro, Brazil, September 21, 2016. CEUR Workshop Pro-
ceedings, vol. 1789. 2016. p. 73–7. https:// ceur- ws. org/ Vol- 1789/
bpm- demo- 2016- paper 14. pdf.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/11494744_25
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1007/978-3-540-30188-2_12
https://doi.org/10.1007/978-3-540-30188-2_12
https://doi.org/10.1007/S10618-007-0065-Y
https://doi.org/10.1016/J.DATAK.2010.06.001
https://doi.org/10.1016/J.DATAK.2010.06.001
https://doi.org/10.1007/BF00264611
https://doi.org/10.1007/BF00264612
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1109/12.707587
https://doi.org/10.3233/FI-2011-612
https://doi.org/10.3233/FI-2011-612
https://doi.org/10.1007/978-3-642-29072-5_10
https://doi.org/10.1007/978-3-642-29072-5_10
https://doi.org/10.1109/TKDE.2011.192
https://doi.org/10.1109/TKDE.2011.192
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1109/ICPM.2019.00015
https://doi.org/10.1109/ACSD.2011.19
https://doi.org/10.1109/ACSD.2011.19
https://doi.org/10.1007/s10257-014-0234-7
https://doi.org/10.1007/s10257-014-0234-7
https://doi.org/10.1142/S0218843014400012
https://doi.org/10.1142/S0218843014400012
https://doi.org/10.1007/978-3-642-20511-8_14
https://doi.org/10.1007/978-3-642-20511-8_14
https://doi.org/10.1093/comjnl/44.4.246
https://doi.org/10.1016/j.is.2015.07.003
https://doi.org/10.1016/j.is.2015.07.003
https://doi.org/10.1016/j.simpa.2023.100556
https://doi.org/10.1016/j.simpa.2023.100556
https://doi.org/10.1007/978-3-319-45348-4_9
https://doi.org/10.1007/978-3-319-45348-4_9
https://ceur-ws.org/Vol-1789/bpm-demo-2016-paper14.pdf
https://ceur-ws.org/Vol-1789/bpm-demo-2016-paper14.pdf

	Analyzing Data Streams from Cyber-Physical-Systems: A Case Study
	Abstract
	Introduction
	Related Work
	Preliminaries
	Vehicle Data
	Data Description and Gathering
	Preprocessing
	Transforming Vehicle Data into an Event Log
	From Journeys to Runs
	Assigning Activities

	Filtering Runs
	Transformation

	Statistics
	Filtering
	Analysis of Activities
	Analysis of Variants
	Time-Related Statistics

	Process Analysis
	Finding a Suitable Process Model
	Constructing the De-jure Model
	Discovering De-facto Models
	Evaluation of the Different Models

	Conformance Analysis
	Performance Analysis
	Decision Mining

	Multi-perspective Analysis
	Conclusion
	Acknowledgements
	References

