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Abstract
We show that conducting a process-mining-centric analysis concerning cyber-physical systems provides insights into usage 
behavior. To show that, we perform our analysis on connected-vehicle data. We transform connected-vehicle data into an 
event log. We analyze the resulting event log using various process-mining techniques. In particular, we apply basic statis-
tical analysis as well as process-discovery and conformance-checking techniques to receive a well-representative process 
model. We apply various process-enhancement techniques to get deeper insights. Finally, we capture a multi-perspective 
view using a state-based approach. We show deviations between a de-jure model and our picked process model, leading 
to better knowledge concerning real user behavior. We observed that the predefined escalation of warning states does not 
happen. Additionally, we verified system requirements. Furthermore, we show that the reasons for drivers’ behavior are not 
related to system issues. Applying process-mining techniques to data concerning cyber-physical systems provides valuable 
insights into their functionality in a real-world setting. By utilizing process-mining techniques, we can extract insights to a 
human-understandable level and provide a well-studied access point.
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Introduction

Cyber-Physical Systems (CPSs) [1] and Internet of Things 
(IoT) [2] are omnipresent and are integrated into our daily 
lives. While CPSs are about integrating physical components 
with computing and controlling systems for autonomous 
operation in real time, IoT focuses on the interconnection of 
a wide range of devices and objects for data collection and 
communication. These systems are implemented in various 
domains, from household items to connected vehicles. By 

using these devices, an enormous volume of data is gener-
ated. When we analyze the data to capture the overall sys-
tems’ behavior and the underlying human interactions, we 
face multiple challenges. One challenge is that the data from 
IoT devices are often captured by sensors, which transmit 
their values, for instance, an acceleration or the heading of 
an object. We refer to such data as low-level data. By analyz-
ing the data, we want to understand the higher-level interac-
tions between humans and these devices. As a result, there 
is a gap between the recorded data and our goal.

Process-mining techniques analyze data to support the 
understanding of the underlying behavior. Process mining 
can be divided into three areas: process discovery, con-
formance checking, and process enhancement [3]. Process-
discovery techniques aim to automatically discover a com-
prehensible process model that represents the underlying 
behavior in the data by focusing on the control-flow per-
spective. Conformance-checking techniques quantify how 
well a process model represents the behavior in the recorded 
data. Process-enhancement techniques are used to gener-
ate deeper insights based on a well-representative process 
model, such as measuring the time spent in states or reasons 
for decisions. To apply process-mining techniques, data must 
be in the form of an event log. An example event log can be 
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extracted from an airport system. Activities are “checking 
the luggage”, ”scanning the passport”, etc., and a customer 
serves as an identifier, trackable in the data. These activities 
are sequences based on their execution time, i.e., timestamp. 
However, data generated by IoT devices are not in the format 
of an event log. Data produced by IoT devices may only con-
sist of low-level measurements and timestamps that reveal 
when the record happened. An example of such low-level 
data is transmitted by a temperature sensor attached to a con-
nected vehicle. Such data must be transformed into an event 
log where a measurement is associated with some identifier 
that can be tracked throughout the system.

As denoted in [4] and in our previous example, using 
IoT data for process mining is a challenging task. In this 
work, we provide a framework of how data transmitted by 
test vehicles can be transformed into an event log and which 
insights process mining can provide. We focus on a part 
of a hands-free driving system that is embedded in con-
nected test vehicles. The system enables the vehicle to be 
driven hands-free and without human intervention in defined 
zones as long as defined conditions are not violated. Vehi-
cles equipped with this feature require connectivity and can 
receive over-the-air updates to improve the feature’s behav-
ior based on its usage. On connected test vehicles equipped 
with a hands-free driving system, a data stream is recorded 
at a one-second rate and transmitted to the cloud using the 
vehicles’ modem. Features of the collected data include an 
anonymized vehicle identifier and states and warnings of 
assistance systems. By utilizing the data for process min-
ing, we can get insights into the usage of the system and the 
system’s behavior. These insights can guide future updates 
of the hands-free driving system and help to spot the needs 
of users and flaws in the system.

As stated, IoT data are challenging for process-mining 
approaches. In addition to these challenges, data trans-
mitted by vehicles adds more challenges when we apply 
process-mining techniques. First, the data collection is 
susceptible to data quality issues and noise. At any instant 
in time, thousands of vehicles send data under different 

conditions, such as software versions, sensors, ages, and 
connectivity conditions. An example of inaccurate infor-
mation is GPS signals contradicting vehicle speed or tem-
perature measurements taken while a vehicle is parked 
under the sun. Second, privacy and security have to be 
ensured. The collected data may contain information that 
could be used to identify individuals directly or indirectly. 
Preserving the privacy and security of individuals’ data 
is vital. Third, the contextualization of data is not trivial. 
Without additional context, the recorded data may not be 
well interpretative. For example, when the speed of a car 
is low, potential reasons can be road conditions or a traffic 
jam. Without this contextualization, it is hard to under-
stand the behavior of drivers. Our work is able to resolve 
some of these challenges.

In this work, we focus on analyzing real-life test vehi-
cle data from Ford by transforming the data and utilizing 
various process-mining techniques. An overview of our 
approach is depicted in Fig. 1.

As shown, we take a sample of the recorded test vehicle 
data. This sample of connected-vehicle data is transformed 
into an event log, suitable for process mining. We perform 
an analysis of the event log. By applying process-mining 
techniques, we receive a well-representative process model 
that we use to generate further insights. Finally, we capture 
a multi-perspective view of the process.

In the remainder of this paper, we first show and 
discuss related work in the Sect.  “Related work”. In 
the Sect. “Preliminaries”, we introduce basic concepts. 
In the Sect. “Vehicle Data”, we provide insights into how 
we transformed vehicles’ data into an event log. In the 
Sect. “Statistics”, we analyze the received event log using 
a basic statistical analysis. In the Sect. “Process Analy-
sis” , we perform a process analysis using process-mining 
techniques. We capture a multi-perspective view of the 
process in the Sect.“Multi-perspective Analysis” section. 
We summarize and discuss our work in the Sect. “Conclu-
sion” and describe future work.

Fig. 1   Overview of our framework for transforming vehicle data and applying process-mining techniques
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Related Work

In this section, we present and comment on related work. 
In [4], challenges and opportunities for IoT by using IoT 
data for process mining are presented. IoT has many chal-
lenges, such as sensor placement and data connectivity, 
security, and privacy. Bridging the gap between low-level 
sensor data and event logs leads to more challenges. An 
example of a challenge is identifying activities and pro-
cesses associated with the recorded data. In this work, 
we are facing such challenges. In the following, we first 
present related work concerning the general intersection of 
BPM and IoT. Subsequently, we focus on the intersection 
of BPM and IoT by focusing on a vehicle-related setting.

An example of why tackling and overcoming these 
challenges is rewarding is presented in [5]. In [5], a 
case study on integrating Business Process Manage-
ment (BPM) and IoT in Australia’s meat and livestock 
industry is presented. This study does not describe how 
challenges were overcome, but the benefits of combining 
BPM with IoT are presented. An example is that farmers 
can confidently plan daily activities through the embed-
ded system’s support. Based on the results of our study, 
we demonstrate that original equipment manufactur-
ers such as Ford can benefit by combining BPM with 
IoT. The understanding of the usage of the hands-free 
driving feature improves, and the underlying system 
can be checked. The system can be improved, validated, 
and adjusted to users’ needs based on the overall bet-
ter insights. In [6], van Eck et al. segment sensor data 
in smaller time windows and compute relevant features 
for each segment, for example, the average value of an 
attribute. These relevant features are used to cluster the 
segments. Each cluster is assigned an activity by using 
domain knowledge. In our work, we use sensor record-
ings to create additional information for each event, for 
instance, if the vehicle is facing the sun. Also, we use 
domain knowledge. However, we do not rely on time win-
dows. Instead, we focus on the change of attribute values. 
In [7], a general framework to discover process models 
from sensor data is presented. The work utilizes location 
sensor data. Events are grouped into activity instances 
through correlation. Afterward, activities are discovered. 
Then, events are abstracted based on the groups and the 
discovered activities. Finally, processes can be discov-
ered. Our study does not deal with location data, but we 
also have to define activities and process instances. In [8], 
data from user interactions with software are collected 
and analyzed. Mainly, process-discovery techniques are 
used for the analysis. Based on the results of the analysis, 
improvements for the software are defined. We also aim to 
improve the understanding of user behavior to implement 

improvements. Additionally, we want to find out the rea-
sons behind the system’s or drivers’ decisions. Therefore, 
we do not rely only on process discovery; we also perform 
process enhancement techniques.

There also exist works in the intersection of vehicles and 
process mining. In [9], a Petri net is discovered to track the 
occupancy of a parking space. In addition, the discovered 
model can be adjusted during deployment, for instance, if 
a sensor is broken. Another example is the work presented 
in [10], for which this work is an extension. In [10], vehicle 
data are transformed into event data. In addition, a de-jure 
model is created by consulting domain experts. Besides, 
de-facto models are discovered by applying dedicated 
process-discovery techniques to the received event data. 
The most promising process model is picked by consider-
ing conformance-checking results and opinions of domain 
experts. The picked de-facto model is compared against the 
de-jure model by considering the conformance-checking 
result and their behavior. In this work, we also discover 
de-facto models but on a different data set. Moreover, we 
apply dedicated process-enhancement techniques. Also, 
we capture a multi-perspective view of the data. In [11], 
process enhancement techniques are in focus to gain more 
insights. A comparison between vehicle models concerning 
time spent in states is conducted. Also, the mentioned work 
discovers statistical differences in the execution frequency 
of activities between vehicle models. In addition, decision 
mining is applied to a process model to discover reasons for 
decisions, for example, why the hands-free-driving feature 
was turned off instead of solving an issue. In our work, we 
perform different tasks of process-enhancement techniques 
since we have different data. Also, we capture a multi-per-
spective view of the process, which was not performed in 
the mentioned work.

Preliminaries

In this section, we formally introduce concepts that are the 
basics of the techniques we propose later. Given a set X, a 
sequence � ∈ X∗ assigns an enumeration to elements of the 
set. We denote this with � = ⟨�1, ...�n⟩ . If a sequence is a 
subsequence, we denote this with ⊑ . In the remainder, we 
refer with �i to the sequence’s i-th element.

To apply process-mining techniques, we need an event 
log. An event log consists of at least three mandatory attrib-
utes: case identifier, activty name, and timestamp. We use 
Ucase as the universe of case identifiers, Uact as the universe 
of activity names, and Utime as the universe of timestamps. 
The following defines an event log.

Definition 1  (Event log) Uev is the universe of events. e ∈ Uev 
is an event, �act(e) ∈ Uact is the activity of e, �case(e) ∈ Ucase 
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is the case of e, and �time(e) ∈ Utime is the timestamp of 
e. An event log L ⊆ Uev is a set of events. For simplicity, 
we assume that other, here non-defined, functions can be 
applied to an event, resulting in more attributes.

An example event log is displayed in Table 1. For e1 , 
�case(e1) = 1337 , �act(e1) = a , and �time(e1) = 2023-01-21.

In the remainder of this work, we use Petri nets as pro-
cess model representations. They are introduced in [3, 12]. 
We also use �-transitions, respectively, silent transitions. In 
Petri nets, silent transitions provide a flexible and expres-
sive mechanism for modeling various aspects of process 
behavior. They enable the representation of internal actions, 
improving Petri nets’ modeling capabilities. They allow the 
synchronization of different parts of the Petri net and can be 
used to control the execution of other transitions by requir-
ing that certain conditions or constraints be met before pro-
ceeding. Silent transitions can act as synchronization points, 
waiting for specific conditions to be met before allowing 
subsequent transitions to fire. In our figures, we depict them 
as black transitions. We use conformance-checking tech-
niques to quantify a process model’s quality by measuring 
fitness, precision, simplicity, and generalization scores. [13] 
provides an introduction to these measurements.

Vehicle Data

In this section, we focus on connected-vehicle data from 
Ford’s test vehicles. First, we describe the data and how they 
were gathered. Second, we describe the preprocessing of the 
data. Finally, we describe the transformation of vehicle data 
into an event log.

Data Description and Gathering

We receive data transmitted by test vehicles in the United 
States of America. The data of vehicles are recorded on US 
highways at a sample rate of roughly one second. The data 
contains information related to cars’ software and sensors. 

The following briefly explains the recorded data’s most 
important features.

•	 Vehicle: Vehicle to which a datum belongs.
•	 Journey: A journey is created as soon as a recording 

of a vehicle takes place. Moreover, journeys are gener-
ated if highways are switched. In addition, journeys are 
generated if a vehicle drives in a rest area or at a petrol 
station. Consequently, traveling can involve multiple 
journeys. A journey is linked to a vehicle.

•	 State: States of traffic jam assist. We consider four 
states: hands-free driving (HF) and “State 1”, “State 
2”, and “State 3”.

•	 Warning: Different warnings are stored in this feature. 
We consider the following: “No Warning”, “Warning 
1”, “Warning 2”, and “Warning 3”.

•	 Longitude: Part of the GPS coordinate of the vehicle.
•	 Latitude: Part of the GPS coordinate of the vehicle.
•	 Heading: Showing the direction in which the vehicle is 

heading.
•	 Wiper: State of the front wiper of the vehicle.
•	 Model: Model of the vehicle.
•	 Year: Production year of the vehicle.
•	 Plant: Plant in which the vehicle was produced.
•	 Timestamp: Timestamp for each recording.

An example of such data is shown in Table 2. The size 
of the collected data is large. Unfortunately, it is difficult 
for most process-mining tools to process data at such a 
large scale. Systems like Celonis can handle billions of 
events, but in this work, we are using open-source soft-
ware running locally. To overcome this issue, we sample 
data. Journeys are randomly sampled from the collected 
data, and only journeys with useful information are con-
sidered to be part of the sampling pool, thus minimizing 
the amount of erroneous data. Our sampled data contains 
over 8,635,640 instances, 10,733 journeys, and records 
from over 500 vehicles. The second step is filtering the 
data. Due to the large amount of data available, we found 
the results more revealing if we only keep journeys with 
hands-free engagements. Also, through several iterations, 
we identified some erroneous data, such as overlapping 
journeys. Therefore, we created a script based on domain 
knowledge that checks the data for flaws.

In the following, we formally introduce vehicle data. 
Ujourney is the universe of journey identifiers, S is the set of 
states, and W is the set of warnings.

Definition 2  (Vehicle data) Uvd is the universe of vehicle 
data. d ∈ Uvd is a vehicle data instance, �journey(d) ∈ Ujourney 
is the journey of d, �state(d) ∈ S is the state of d, 
�warning(d) ∈ W  is the warning of d, and �time(d) ∈ Utime is 
the timestamp of d.

Table 1   Example event log

Event ID Case Activity Timestamp

e
1

1337 a 2023-01-21
e
2

1337 b 2023-02-15
e
3

1337 c 2023-05-05
e
4

1338 d 2023-06-01
e
5

1338 e 2023-06-19
e
6

1338 c 2023-07-20
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Preprocessing

We preprocess the data before we transform the vehicle data 
into an event log. Our preprocessing consists of multiple 
steps. First, hands-free driving should occur at least once 
in each journey since we analyze the corresponding feature. 
If this is not the case, we remove the journey. Second, we 
check if a vehicle’s journeys overlap due to potential log-
ging issues. If so, we remove the journey from the data. 
Third, based on the system’s nature, two journeys may be 
created, even though not much time has passed between the 
two journeys. Therefore, we merge trips of a vehicle if they 
are less than 5 s apart. Besides, we added information on the 
sun’s position relative to the vehicle for each entry. The sun 
is either left, right, in the front, or in the back of the vehicle. 
To compute this information, we utilized the GPS informa-
tion of a record, i.e., latitude, longitude, and the direction 
the vehicle faces (azimuth), combined with the information 
on when the record happened. We use the method presented 
in [14]. This method is implemented in the Python library 
pvlib [15]. After preprocessing the vehicle data, we ended 
up with 1,342,825 instances and 1055 journeys from over 
400 vehicles.

Transforming Vehicle Data into an Event Log

After preprocessing the data, we have to transform the data 
into an event log to apply process-mining techniques. For 
the transformation, journeys play a vital role. As introduced, 
they provide an identifier that enables the linkage of vehicle 
data and provides a first separation of the data stream. How-
ever, they are too coarse for our analysis scope. Therefore, 

we divide them into smaller units, which we call runs. Each 
run represents a driver’s engagement with the feature, i.e., 
to analyze the feature, a run provides a perfect scope, which 
we use later as an event log’s case. Based on our scope, some 
instances of our data are not of interest and are not part of a 
run. Instances that are part of a run are assigned activities. 
After filtering the created runs, we transform the remain-
ing vehicle data and create an event log suitable for process 
mining. In order to transform the set of vehicle data, the 
presented methods have to be applied on all journeys and, 
consequently, on all runs.

From Journeys to Runs

In order to explain the transformation process, we need to 
extract data from our set of vehicle data that are associated 
with one journey. Our transformation approach is based on 
sequences, so we transform the data associated with a jour-
ney into a sequence in which the data are sorted by their 
timestamp—from the earliest to the latest.

Definition 3  (Journey sequence) Let D ⊆ Uvd be a set of 
vehicle data. Djourney = {d ∈ D ∣ �journey(d) = journey} 
is a subset of D that only contains instances that are 
associated with one journey. �journey = ⟨d1,… , dn⟩ , 
d1 ∈ Djourney,… , dn ∈ Djourney , is the sequential representa-
tion of Djourney such that 𝜋time(d1) < ⋯ < 𝜋time(dn).

Given our vehicle data depicted in Table  2, 
D1 = {d1,… , d11} and D2 = {d12,… , d15}.

We want to capture the beginning of the hands-free driv-
ing mode until its end. To do so, we divide the sequence of 

Table 2   Example recording of vehicle data

The column names are related to the formerly mentioned features. “RowID” is used to identify instances

RowID Vehicle Journey State Warning Longitude Latitude Heading Wiper Model Year Plant Timestamp

1 ABC 1 HF No warning 60.01 30.02 65.21 Off A 2023 Z 2023-01-01 13:37:37
2 ABC 1 HF No warning 60.01 30.03 65.22 Off A 2023 Z 2023-01-01 13:37:38
3 ABC 1 HF Warning 1 60.02 30.03 65.23 Off A 2023 Z 2023-01-01 13:37:39
4 ABC 1 HF Warning 1 60.02 30.02 65.21 Off A 2023 Z 2023-01-01 13:37:40
5 ABC 1 HF No warning 60.02 30.03 65.21 Off A 2023 Z 2023-01-01 13:37:41
6 ABC 1 State 1 No warning 60.01 30.04 65.21 Off A 2023 Z 2023-01-01 13:37:42
7 ABC 1 State 1 No warning 60.01 30.04 65.24 Off A 2023 Z 2023-01-01 13:37:43
8 ABC 1 HF No warning 60.02 30.04 65.22 Off A 2023 Z 2023-01-01 13:37:44
9 ABC 1 HF No warning 60.02 30.05 65.24 Off A 2023 Z 2023-01-01 13:37:45
10 ABC 1 State 1 No warning 60.03 30.05 65.25 Off A 2023 Z 2023-01-01 13:37:46
11 ABC 1 State 1 No warning 60.03 30.05 65.26 Off A 2023 Z 2023-01-01 13:37:47
12 ABC 2 HF No warning 61.05 29.92 15.29 Off A 2023 Z 2023-01-02 20:08:02
13 ABC 2 HF No warning 61.05 29.93 15.29 Off A 2023 Z 2023-01-02 20:08:03
14 ABC 2 HF No warning 61.05 29.94 15.31 Off A 2023 Z 2023-01-02 20:08:04
15 ABC 2 State 2 No warning 61.05 29.95 15.32 Off A 2023 Z 2023-01-02 20:08:05
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a journey into runs. Each run starts with the beginning of 
hands-free driving and ends with the first state that is not 
hands-free.

Definition 4  (Run) Let D ⊆ Uvd be a set of vehicle data, 
and Djourney and �journey = ⟨d1,… , dn⟩ be defined as before. 
⟨di,… , dj⟩ ⊑ 𝜎journey , with j > i , is a run if �state(di−1) ≠ HF 
or i = 1 . Furthermore, �state(di) = HF,… ,�state(dj−1) = HF 
and �state(dj) ≠ HF . We refer to such a sequence as �run , 
with �run(di) = run,… ,�run(dj) = run . The data of one run 
is stored in Drun , i.e., Drun = {d ∈ D ∣ �run(d) = run}.

One run that we observe for D1 is ⟨d2,… , d6⟩ . Another 
run is ⟨d8, d9, d10⟩.

Assigning Activities

In the next step, we assign each vehicle datum that is associ-
ated with a run an activity. While the first instance of a run 
is assigned “System started” and the last the state of the 
vehicle, we focus on warning changes for the rest of the data 
in a run. An absence of information is denoted with ⊥ . The 
following presents our activity assignment.

Definition 5  (Creating activities) Let D ⊆ Uvd be a set of 
vehicle data, and Drun and �run = ⟨d1,… , dn⟩ be as intro-
duced before. We assign each di , i ∈ {1,… , n} , an activity 
as follows:

Concerning the run ⟨d2,… , d6⟩ , d2 gets assigned “Sys-
tem started”, d3 gets assigned “Warning 1”, d5 gets assigned 
“Warning solved”, and d6 gets assigned “State 1”. The others 
are assigned ⊥ as the activity.

Filtering Runs

So far, instances that are associated with a run are assigned 
activities. However, some instances are assigned ⊥ as activ-
ity. Instances assigned with this activity do not provide value 
for our analysis. Therefore, we filter them out.

�act(di) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

System started, if i = 1
�state(di), if i = n
�warning(di), if �warning(di) ≠ No Warning

and �warning(di) ≠ �warning(di−1)
Warning solved, if �warning(di) = No Warning

and �warning(di−1) ≠ No Warning
⊥, else

Definition 6  (Filtering runs) Let D ⊆ Uvd be a set of vehi-
cle data, and Drun and �run = ⟨d1,… , dn⟩ be as introduced 
before. Dfiler

run = {d ∈ Drun ∣ 𝜋act(d) ≠ ⊥} is the data associ-
ated with a run that has not ⊥ assigned as activity. �filter

run  
the sequential representation of Dfilter

run  sorted from earliest 
to latest.

Based on the run ⟨d2,… , d6⟩ , the filtered run is 
⟨d2, d3, d5, d6⟩ . The run ⟨d8, d9, d10⟩ is reduced to ⟨d8, d10⟩.

Transformation

In the last step, we transform the vehicle data into an event 
log. To do so, we focus on vehicle data of a filtered run.

Definition 7  (Transformation) Let D ⊆ Uvd be a set of 
vehicle data, L ⊆ Uev be an event log, and Dfilter

run  and 
�
filter
run = ⟨d1,… , dn⟩ be as previously introduced. There 

exists a function trans ∶ D
filter
run → L that maps each element 

of Dfilter
run  , d ∈ D

filter
run  , to an event, e ∈ L , such that the follow-

ing holds:

•	 trans(�run(d)) = �case(e)

•	 trans(�act(d)) = �act(e)

•	 trans(�time(d)) = �time(e)

Concerning our previously introduced example vehicle 
data, the transformed event log is shown in Table 3.

Table 3   Event log based on transformed example recording of vehi-
cle data

RowID CaseID Activity Vehicle ID .. Timestamp

1 001 System started ABC .. 2023-01-01 
13:37:37

3 001 Warning 1 ABC .. 2023-01-01 
13:37:39

5 001 Warning solved ABC .. 2023-01-01 
13:37:41

6 001 State 1 ABC .. 2023-01-01 
13:37:42

8 002 System started ABC .. 2023-01-01 
13:37:44

10 002 State 1 ABC .. 2023-01-01 
13:37:46

12 003 System started ABC .. 2023-01-02 
20:08:02

15 003 State 2 ABC .. 2023-01-02 
20:08:05
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Statistics

In this section, we analyze the event log that we transformed 
from the vehicle data. First, we filter the event log. Sec-
ond, we analyze the frequency of activities. Third, we take 
a closer look at the variants of the filtered event log. Finally, 
we provide a short overview of time-related statistics.

Filtering

The event log we received by applying our previous steps on 
vehicle data still contains noise, which we need to remove. 
Our filtering is based on domain knowledge and consists 
of two parts. First, if an event with activity “Warning 3” 
happens, only an event with activity “State 1”, “State 2”, or 
“State 3” can take place next in a case. Second, a case has to 
end with an event with activity “State 1”, “State 2”, or “State 
3”. Non-compliant behavior occurs due to logging issues or 
actions taking place between the transmitting period, thus 
not appearing in the data. By only using this limited set of 
rules, we ensure that we observe the system’s and drivers’ 
real behavior. In this process, we remove ≈ 2.6% of traces, 
leading to an event log consisting of 9413 traces and 27,266 
events. Removing only this fraction of traces shows that the 
transmitted data quality is good concerning the control flow.

Analysis of Activities

After filtering the transformed vehicle data, we take a look 
at the various activity frequencies’. In this process, we 
focus on the frequency of end activities and the overall fre-
quency. Due to our transformation, we know the start activ-
ity is “System started”. An overview of the distributions is 
depicted in Fig. 2.

In Fig. 2a, the distributions of activities across all cases 
contained in the transformed event log are shown. “System 
started” is not shown since it appears in each case once, 
leading to a frequency of 9413. When considering the 

frequencies of the different warnings, it becomes visible 
that “Warning 2” happens way more often than “Warning 
1” and “Warning 3” combined. Since the different warn-
ings are related to an escalation, it becomes clear that there 
may be issues. When focusing on the frequency relation-
ship between “Warning solved” and the different warnings, 
we see that not all warnings are solved. As a result, there 
are other strategies that we will explore in the remainder 
of this paper. In Fig. 2b, the distribution of end activities is 
shown. Important to note is that the frequency of “State 1”, 
“State 2”, and “State 3” is the same as depicted in Fig. 2a 
since these activities serve as end activities. The figure 
shows that most of the time “State 3” turns the system off, 
followed by “State 2”. Only ≈ 5% of the time, “State 1” 
is executed.

This analysis gave us a first overview of how the system 
operates when considering the transmitted data. We found 
that “Warning 2” is the most executed warning (with an 
execution probability of ≈ 43% per case). Additionally, we 
denoted that not all warnings are solved, indicating that there 
are other strategies to get out of the warning state.

Analysis of Variants

In the following, we take a look at the variants of the event 
log. For this analysis, we focus on the variants obtained by 
focusing on the order of activities. In total, 202 variants are 
contained in the received event log. In the following, we 
list the five most prominent variants and their frequency, 
absolute and relative. 

1.	 ⟨System started, State 3 ⟩ : 55.43% (5,218 traces)
2.	 ⟨System started, State 2 ⟩ : 23.38% (2,201 traces)
3.	 ⟨System started, Warning 2, Warning solved, State 3 ⟩ : 

4.80% (452 traces)
4.	 ⟨System started, State 1 ⟩ : 3.63% (342 traces)

(a)Frequency distribution of all activities
across the cases.

(b) Frequency distribution of endactivi-
ties across the cases.

Fig. 2   Distributions of activities in the transformed event log
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5.	 ⟨System started, Warning 2, Warning solved, State 2 ⟩ : 
2.01% (189 traces).

The cases related to the listed variants cover 89.25% of cases 
of the event log. Therefore, they are worth taking a closer 
look. Approximately 82% of the time, the hands-free driv-
ing feature is started and turned off without a warning state. 
Hence, in 18% of the cases, warnings have to happen at least 
once. The two most prominent variants of these cases are 
presented in our enumeration. In each, “Warning 2” hap-
pens and is resolved. Later, the system is turned off through 
“State 2” or “State 3”. Besides, we denote that “Warning 1” 
is not part of the variants, explaining its previously shown 
low frequency.

Time‑Related Statistics

In the next step, we focus on time-related statistics. In 
particular, we investigate how much time is spent in the 
hands-free driving mode. To do so, we measure the time 
passed in the filtered event log cases. In addition, we 
filter out measured times if they are greater than 2000s 
( ≈ 33 minutes) to show a comprehensive overview. With 
this filtering, we ensure to capture more than 99.3% of 
measured times, thus not removing the actual behavior. 
An overview of the measured times is provided in Fig. 3.

As shown in Fig. 3, most cases have a throughput time 
of roughly four to five minutes. The first quartile is ≈ 11 
s, the median is ≈ 40 s, the mean is ≈ 82 s, and the third 
quartile is ≈ 100 s. It is revealed that most cases, i.e., runs 
of the system, cover only a short period. To understand 
what happens in this short amount of time, we need to 
analyze the process.

Process Analysis

In this section, we perform a process-oriented analysis. 
Our analysis consists of three parts. First, we decide on 
a well-representative process model by considering the 
available data and knowledge of domain experts. Sec-
ond, by utilizing conformance checking, we get a closer 
look at the behavior of the hands-free driving feature. 
Third, we analyze the performance utilizing the picked 
process model. Fourth, we discover reasons for decisions 
by using decision mining.

Finding a Suitable Process Model

This subsection shows our process of finding a representa-
tive process model. We use multiple approaches. We start 
by constructing a de-jure model based on the system docu-
mentation. Subsequently, we discover de-facto process 
models based on our transformed event log. Finally, we 
evaluate the models using domain experts’ opinions and 
metrics.

Constructing the De‑jure Model

To implement the feature of hands-free driving, a behavioral 
model in the form of a flow chart was designed by humans. 
In our work, we focus on a subset of the system. This subset 
includes a small selection of warnings and conflict resolu-
tion strategies. We focus on conflicts related to the absence 
of focus of a driver and three warning types. The absence 
of focus is measured by checking if the driver still looks 
at the road. The textual description of the model is as fol-
lows. Assume the starting state is hands-free driving without 
interruption. If the eyes are off the road, a first warning goes 

(a) Boxplot concerning the time spent in
hands-free driving. (b) Histogram about the spent time.

Fig. 3   Visualizations concerning the time spent in hands-free driving
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off. The driver can resolve this conflict by looking back on 
the road. A second warning appears if the conflict is not 
resolved, meaning eyes are still not looking on the road. 
Again, the situation can be solved by looking back on the 
road. If that is not done, a third warning happens. The sys-
tem takes control of the car, including decelerating, and this 
situation can only be solved by looking at the road. After a 
driver looks back on the road, the assistance system enters a 
non-hands-free-driving state. This takeover procedure can 
also happen at any time if an invalid situation for the system 
occurs and the eyes are not focused on the road. If conflicts 
are resolved before a third warning, the car continues driving 
hands-free without any warning.

This textual description is translated into a Petri net to 
compare this model and the discovered process models. 

To convert this model into a Petri net, we assigned each 
state a place and a marking, as shown in [12]. The resulting 
Petri net is depicted in Fig. 4. We use �-transitions since 
the reasons for starting the takeover can not properly be 
defined using a single transition and, therefore, can lead to 
an unreadable model. Moreover, after consulting domain 
experts, we introduced multiple transitions to reveal the 
input that drivers perform to turn the hands-free driving 
mode off. By executing “State 1”, “State 2”, or “State 3”, 
hands-free driving is disabled, leading to place p5. The first 
conflict state is entered with “Warning 1” (p2). When the 
conflict is resolved, the system is again in the hands-free 
driving state (p1). When the conflict is not resolved, and 
after a certain period of time, the conflict escalates by exe-
cuting “Warning 2”, leading to place p3. Again, the conflict 

Fig. 4   Petri net showing the behavior of the hands-free driving system based on human design. After executing “System started”, the vehicle is 
in the state of hands-free driving

Warning 3

System
started

Warning
solved

Warning 2

State 3

State 2

p1

State 1

Warning 1 p2 p3

Warning
solved

p4

State 3

p5
Hands-free driving

Hands-free
driving deactivated

Warning 2 active

Warning 3 active

Warning 1 active

Fig. 5   Petri net discovered by applying region-based mining
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can be resolved; however, when the conflict is not resolved, 
“Warning 3” is executed, leading to place p4. When “Warn-
ing 3” is executed, only “State 3” can be executed next, lead-
ing to the turn-off of the system and place p5. “Warning 3” 
can also be executed in other system states.

Discovering De‑facto Models

In contrast to constructing a Petri net from an existing 
description, we apply process-discovery techniques to the 
event log to discover de-facto models. To discover process 
models, we apply several process discovery algorithms to 

the transformed event log, all implemented in ProM [16]. 
In the following, we provide an overview of the approaches 
and showcase a selection of Petri nets.

We employed variations of the � algorithm, including 
the classic � algorithm [17], the �+ algorithm [18], the �++ 
algorithm [19], and the �# algorithm [20]. However, process 
models discovered by these techniques have issues, as later 
shown in the evaluation of models. Most of them are not a 
workflow net (WF-net) or unsound, i.e., they are not of use.

Also, we use region theory [21, 22] by applying the 
region miner [23–27]. In this process, we first mine a tran-
sition system by using the event name as a backward key 

Warning 3System
started State 3

State 2

p1

State 1

Warning 1 p2

p3

Warning
solved

p4

Warning 2 p5

p6

p7

p8

p9

Fig. 6   Petri net discovered by applying the Inductive Miner infrequent [28] with a threshold of 0.2

Fig. 7   Petri net discovered by applying directly follows mining [30]
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and a set abstraction of size one. Moreover, self-loops were 
removed, and label-splitting was performed. By using the 
mentioned methods, a Petri net is created. The resulting Petri 
net is displayed in Fig. 5.

Each place of the Petri net corresponds to the system’s 
states. The hands-free driving state is in place p1. All states 
and warnings can happen there. However, the execution of 
“Warning 2” should not be possible according to the defini-
tion. Place p2 is the state in which “Warning 1” is active. 
The warning can be resolved, which leads to p1. Also, the 
system can be turned off by utilizing “State 2” and “State 
3”, which was not part of the description but is possible 
according to domain experts. Additionally, the conflict can 
be escalated via “Warning 2” to p3. In p3, the system can 
be turned off, the warning can be solved (returning to p1), 
or the conflict can escalate by executing “Warning 3” lead-
ing to p4. In p4, the system’s next action is to turn itself off. 
However, in contrast to the description, two options for the 
turn-off are possible in the given data.

We also applied the Inductive Miner infrequent (IMf) 
[28], which is based on the Inductive Miner [29], the state-
of-the-art process-discovery algorithm. The resulting Petri 
net when applying the IMf with a threshold of 0.2 is dis-
played in Fig. 6.

This Petri net shows the escalation of warnings and all 
states that lead to the turn-off of the system. In contrast to 
previous models, this model does not have multiple transi-
tions with the same activity. However, this model has some 
issues. First, “Warning solved” can be infinitely often exe-
cuted in a row, which does not make much sense given the 
domain knowledge and the knowledge about the data. Sec-
ond, “Warning solved” can be executed if no warning hap-
pens. Third, in contrast to the de-facto model (see Fig. 4) and 
the model discovered by region-based mining (see Fig. 5), 
the markings are less interpretative. For instance, if p2 is 
marked, one must check the data to observe whether “Warn-
ing 1” has been executed. These issues are based on how the 
algorithm works.

Table 4   Conformance checking results for the de-jure model and models discovered by applying various algorithms and filters

Results are rounded to the second decimal

Algorithm Filter parameter WF-net Sound Fitness Precision Generalization Simplicity F-1 score

� – No – – – – – –
�+ – Yes No – – – – –
�++ – Yes No – – – – –
�# – No – 0.72 0.57 0.97 1.00 0.64
Region miner – Yes Yes 1.00 0.94 0.85 0.50 0.97
Inductive miner infrequent 0.0 Yes Yes 1.00 0.68 0.97 0.66 0.81
Inductive miner infrequent 0.1 Yes Yes 0.99 0.82 0.97 0.64 0.90
Inductive miner infrequent 0.2 Yes Yes 0.99 0.82 0.97 0.64 0.90
Inductive miner infrequent 0.3 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.4 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.5 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.6 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.7 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.8 Yes Yes 0.89 0.88 0.97 0.70 0.88
Inductive miner infrequent 0.9 Yes Yes 0.68 0.79 0.97 0.73 0.73
Inductive miner infrequent 1.0 Yes Yes 0.51 1.00 0.97 0.82 0.68
Directly follows miner 0.0 (paths) Yes Yes – – – – –
Directly follows miner 0.1 (paths) Yes Yes 0.47 1.00 0.66 1.00 0.64
Directly follows miner 0.2 (paths) Yes Yes 0.47 1.00 0.66 1.00 0.64
Directly follows miner 0.3 (paths) Yes Yes 0.47 1.00 0.66 1.00 0.64
Directly follows miner 0.4 (paths) Yes Yes 0.47 1.00 0.66 1.00 0.64
Directly follows miner 0.5 (paths) Yes Yes 0.47 1.00 0.66 1.00 0.64
Directly follows miner 0.6 (paths) Yes Yes 0.66 1.00 0.74 0.78 0.80
Directly follows miner 0.7 (paths) Yes Yes 0.66 1.00 0.74 0.78 0.80
Directly follows miner 0.8 (paths) Yes Yes 0.91 1.00 0.86 0.68 0.95
Directly follows miner 0.9 (paths) Yes Yes 0.93 1.00 0.87 0.64 0.96
Directly follows miner 1.0 (paths) Yes Yes 1.00 0.94 0.83 0.47 0.97
De-Jure model – Yes Yes 0.91 0.99 0.88 0.62 0.95
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We also applied a directly follows-based approach using 
[30]. We set the activity parameter to 1.0 and changed the 
path parameter. The resulting Petri net by setting the path 
parameter to 1.0 is depicted in Fig. 7.

The result is similar to the process model discovered by 
the region miner (see Fig. 5). Each marking corresponds to 
a system’s state. The major difference is that the model dis-
covered by the directly follows miner distinguishes between 
the initial hands-free driving (p1) and the hands-free driving 
after conflict resolution (p5). However, both places have the 
same labeled outgoing transitions. Thus, the differentiation 
leads to a more complex model, while the insights concern-
ing the control flow are the same. Another difference is the 
option for an empty trace, which is unrelated to showing how 
the systems operate.

Evaluation of the Different Models

After creating a de-jure model by utilizing domain knowl-
edge and discovering various process models, we evalu-
ate them to find the most representative process model. 
In particular, we measure fitness by utilizing alignments 
with a standard cost function [31], computed precision 
[32] and generalization [33] scores, as well as the sim-
plicity of the model [34]. In addition, we computed F1 
scores using the obtained fitness and precision scores. 
Besides, we used WOFLAN [35] to check soundness and 

whether the Petri net is a WF-net. The results are depicted 
in Table 4.

As denoted in Table 4, the de-jure model explains the 
underlying data well since the F1 score is 0.95. This shows 
that the system performs most of the time as designed by 
the experts. Comparable models are found by using the 
region-based approach (F1 score of 0.97) and the directly 
follows miner (F1 score of 0.97). The results of the different 

(a) Frequency distribution for being in
hands-free drivingwith no warning (p1 ).

(b) Frequency distribution for having
“Warning1”(p2 ).

(c) Frequency distribution for having
“Warning2” (p3 ).

(d) Frequency distribution for having
“Warning3” (p4 ).

Fig. 8   Distributions of the next executed activity for a selection of places shown in the Petri net portrayed in Fig. 5

Fig. 9   Time spent is selected states of the Petri net depicted in Fig. 5. 
The bars show the minimum and maximum value, the diamonds the 
corresponding mean, and the whiskers represent the standard devia-
tion
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� miners are not of use due to either missing soundness or 
not being a WF-net. Applying the Inductive Miner leads, as 
shown, to unsatisfying models that lack interpretability. The 
region-based approach produces a slightly better F1 score 
than the de-jure model by having a perfect fitness score. In 
addition, this model has better scores concerning generali-
zation and simplicity than the model obtained by applying 
the directly follows miner. Due to the better scores and by 
considering domain experts’ opinions, we chose the region-
based model as our representative process model.

Conformance Analysis

As described before, the model discovered by the region 
miner has perfect fitness. When aligning the model (see 
Fig. 5) and the event log, we get a comprehensive overview 
of the frequency of the execution of the transitions. Conse-
quently, we are also getting insights into users’ behavior. An 
overview is depicted in Fig. 8.

As shown in Fig. 8, the choice of the next activity varies, 
sometimes based on the system itself. For instance, for p1 
and p4, “Warning solved” cannot be executed.

For p1 (Fig. 8a), “State 3” is the most executed activity 
( ≈ 46% of the time). The combination of the frequencies 
for “State 1” and “State 2” happens less than for “State 
3”. This can be related to the user behavior, perhaps the 
preferable turn-off option. The second most activity is 
“Warning 2”. In contrast to “Warning 2”, “Warning 1” 
happens rarely. This is a contradiction to the require-
ments. Given these requirements, there is an escalation 
order. However, as we denote, the second-level warning 
usually happens. Possible causes are a data logging issue. 
Nevertheless, more investigations are needed.

For p2 (Fig. 8b), “Warning 2” and “Warning solved” 
happen the most and equally often (each ≈ 49% of the 
time). This means that roughly half of the time, a driver 
manages to resolve the conflict, and half of the time, the 
conflict escalates to the next level. However, sometimes 
drivers turn the feature off (“State 2” and “State 3”). 
“State 1” and “Warning 3” never happen.

For p3 (Fig. 8c), the warning is often resolved ( ≈ 93% 
of the time). Sometimes, the conflict escalated to the third 
level. Besides, the feature is occasionally turned off by 
drivers.

For p4 (Fig.  8d), there is only the choice between 
“State 1” and “State 3”. As shown, the latter happens four 
times more often than the former ( ≈ 82% of the time).

In general, this analysis shows that “State 3” is a highly 
frequent activity in all places in the model. Moreover, we 
observed that there are potential logging issues concern-
ing the escalation of warnings, which need to be investi-
gated by domain experts.

Performance Analysis

We conduct a performance analysis based on the region-
based process model (depicted in Fig. 5). The perfor-
mance analysis reveals how much time is spent in places 
of a Petri net and how much time passed before firing 
a transition. The time spent in the warning places, i.e., 
p2, p3, and p4, are highly interesting to further check 
the system requirements. We use the package provided 
in ProM [16] for this analysis. The results are displayed 
in Fig. 9.

As shown in Fig. 9, the maximum times vary, and, con-
sequently, the overall distribution. While not much time is 
spent in p2, over a minute is potentially spent in p3 and p4. 

(a) Accuracy of predicting the next action
being in hands-free driving (p1).

(b) Accuracy of predicting the next action
for having “Warning 1” (p2).

(c) Accuracy of predicting the next action
for having “Warning 2” (p3).

(d) Accuracy of predicting the next action
for having “Warning 3” (p4).

Fig. 10   Accuracy measurements for predicting the next activity in selected places of the Petri net portrayed earlier in Fig. 5
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However, the average values are close to each other, and the 
deviations are minor. The time for “Warning 1” being active 
is dense. For “Warning 2” it is a bit less dense; however, 
there are potential outliers as shown by the standard devia-
tion. “Warning 3” is the less dense distribution, but still, it is 
not as bad as the outliers may indicate. Possible reasons for 
that are logging issues, which can occur. Besides the outli-
ers, the systems seem to operate as intended.

Decision Mining

After measuring the time spent in selected system states, we 
investigate reasons for certain paths. The technique which 
enables us to do so is called decision mining. First, we iden-
tify decision points in the process, i.e., places with more than 
one outgoing arc in our picked process model (see Fig. 5). In 
our case, these are p1, p2, p3, and p4. By aligning the event 
log with the data, we use the different attributes of an event 
to predict the next activity. More information can be found 
in [36]. In this process, we create a supervised learning prob-
lem. For each decision point, we extract a dataset by using 
PM4Py [37]. Each dataset is used as input for RapidMiner.1 
In RapidMiner, we use the auto-model functionality to pre-
dict the next activity for each decision point. Using auto-
modeling in RapidMiner, different techniques with various 
parameter settings are applied to the data. The results are 
showcased in Fig. 10.

The result concerning p1 is displayed in Fig. 10a. The 
accuracy values are similar, while the highest result is 
achieved by using deep learning (48%). The accuracy value 
is greater than the probability of always picking the most 
popular value ( ≈ 46% ). However, the accuracy is not satisfy-
ing. As a result, the next action when being in place p1 can 
not be well predicted with our data.

The result concerning p2 is presented in Fig. 10b. The 
accuracy values are often similar. The accuracy value for 
fast large margin could not be computed and returned an 
error, and logistic regression performs worse than others. 
The probability for the most prominent next activity is 
≈ 49% , while the greatest accuracy score is 55.1%, achieved 
by Naive Bayes. Therefore, the accuracy is better than the 
majority vote, but it suffers simultaneously for being too low.

The result concerning p3 is shown in Fig. 10c. As we can 
denote, the accuracy values are always above 90%. When 
comparing this with the probability of the most frequent 
activity, which is ≈ 93% , we conclude that our classifiers 
perform not better than the majority vote.

The result concerning p4 is depicted in Fig. 10d. There 
are various accuracy values, ranging from ≈ 72% to ≈ 82% . 
As described earlier, the probability for the most common 
activity is ≈ 82% . Consequently, the next activity cannot be 
well predicted.

In general, we observe that our classifiers often do not 
outperform majority votes. A potential reason is that our 

Fig. 11   Interface of the CSMM [39]. By clicking on the arcs between states, we can observe co-occurring states, indicated by their color

Table 5   Overview of selected results from applying the CSSM [39]

Values are rounded to the second decimal

From To Affected feature and 
state

Confidence Lift

Initial warning Warning 1 Sun: Right 0.19 1.24
Initial warning Warning 3 Sun: Right 0.20 1.30
Warning 1 Warning 2 Sun: Left 0.22 1.26
Warning 2 Warning 3 Sun: Front 0.15 1.30
No warning Warning 1 Sun: Front 0.20 1.84
No warning Warning 1 Sun: Left 0.20 1.50
No warning Warning 3 Sun: Behind 0.80 1.37
No warning Warning 3 Wiper: Auto off 0.10 2.30
Initial state State 1 Sun: Left 0.21 1.38
Initial state State 1 Wiper: Auto off 0.28 8.10

1  https://​rapid​miner.​com/.

https://rapidminer.com/
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data are missing information, for example, a vehicle’s speed. 
Also, we do not know the state of the environment, which 
may have an impact. Potential environmental effects include 
traffic jams, temperature, road conditions, software versions, 
etc. As a result, we have limited knowledge about the situ-
ation when a decision occurs and, therefore, cannot predict 
well. Even though we cannot predict the next action well, the 
result shows that the feature we considered does not cause 
the next action, indicating that there are no major design 
issues.

Multi‑perspective Analysis

In this section, we provide a multi-perspective analysis of 
the process. First, we present the motivation and the cho-
sen approach. Second, we describe the data transformation 
to utilize this tool. Third, we provide the results from our 
analysis.

So far, we have concentrated on the control-flow per-
spective of the different states and warnings of the system. 
However, a vehicle consists of many subsystems which 
interact with each other. Also, the environment influences 
the system. These dynamics are captured in the transmit-
ted vehicle data. In the following, we take a closer look at 
these dynamics. The domain experts are interested in the 
relationship between the sun’s relative position, the system’s 
states and warnings, and the wiper state. For our analysis, 
we use the Composite State Machine Miner (CSMM) [38, 
39]. The different values of a feature are interpreted as its 
states. The CSMM enables us to observe the dynamics 
between the states of a feature individually. Additionally, 
the tools allow us to check which states across the features 
occurred together by returning a lift and confidence value. 
By utilizing this technique, we are interested in observing 
links across the features and indicators for certain behaviors. 
For example, whether a sun’s state often co-occurs with a 
vehicle’s warning state which may indicate potential issues.

For this task, we preprocessed the data as we did earlier. 
However, to use the tool, we must transform our data differ-
ently than before. Besides, a drawback of the CSMM is that 
it assumes that initial states are the same. Thereby, it only 
tracks changes. However, our vehicle data does not always 
start in the same state. For example, the relative position 
of the car to the sun can be different for each run. Since, 
according to the experts, the sun’s position may influence 
the system, we create an initial state for the sun, which then 
directly changes to the real initial state. This enables us to 
analyze the sun’s influence compactly and comprehensively. 
A screenshot of the tool that loaded our data is provided in 
Fig. 11.

For our results, we focus on relationships that have a 
minimum confidence value of 0.1 and a minimum lift value 

of 1.2. We focus on the switch between states, i.e., the arcs 
connecting them. Our results are shown in Table 5.

As shown in Table 5, most confidence values are between 
0.1 and 0.3. Such findings indicate that the corresponding 
findings are questionable. Also, the findings reveal that the 
assumed influence does not exist. The most striking finding 
deals with “No Warning” and “Warning 3”. With a confi-
dence value of 0.8 and a lift value of 1.37, this finding shows 
a positive association. However, considering that a lift value 
nearly to one indicates independence, the impact of our find-
ing is limited.

In summary, we applied this analysis to capture the 
dynamics within the systems and to observe co-occurring 
behavior. By doing so, we checked whether the assump-
tion that the environment influences the system holds. Our 
analysis shows that there are some influences. However, the 
corresponding confidence and lift values are often low. This 
leads to the conclusion that the assumed influences do not 
exist, so further investigations are needed.

Conclusion

In this section, we summarize our work and provide pointers 
for future work.

In this work, we presented in detail how to enrich and 
transform continuous data recorded by cyber-physical 
systems into an event log. We analyzed the event log, and 
by conducting a small variant analysis, we found out that 
the most frequent five variants are responsible for nearly 
90% of the behavior. By looking at the cases’ throughput 
time, we found out that most engagements with the features 
are less than four minutes long. Furthermore, we applied 
process-discovery and conformance-checking techniques 
to the transformed event log. Also, we created a de-jure 
model based on the feature’s documentation. By utilizing 
the conformance scores and domain experts’ opinions, we 
picked a well-representative model. This model revealed dif-
ferences between the documentation of the system and the 
actual behavior. According to experts, the behavior was as 
designed in most aspects, but some behaviors provide points 
for further investigation, for instance, the warning escala-
tion. At the same time, critical aspects of the feature work 
as intended. Additionally, we applied process-enhancement 
techniques by utilizing our picked model. We obtained the 
behavior that drivers tend to have when they are in different 
states of the system. We also checked the amount of time 
spent in a warning state. However, the results have to be 
treated with caution due to logging issues. By using decision 
mining, we aimed to discover the reasons behind the actions 
taken in the system. However, most of the time, the accuracy 
of our classifiers was roughly the same as when using major-
ity voting. We also aimed to capture a multi-perspective 
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view of the system to discover which states often occur. For 
this multi-perspective view, we not only focused on states 
and warnings, but we also took the wiper state and the rela-
tive position between the sun and a vehicle into account. 
Most of our reported results lacked a high confidence value, 
limiting the reasoning of our findings. At the same time, we 
showed with the analysis that there are no flaws in the sys-
tem based on the available data and the considered features.

There are points for future work. As pointed out, the 
accuracy values of the classifiers are unsatisfying. There-
fore, one cannot easily interpret the reasons for decisions. 
However, it is possible that other attributes can help us in 
understanding the reasons. For example, a vehicle’s speed 
or the information of whether a curve is driven or whether 
a vehicle is in a traffic jam helps to capture the situation of 
a vehicle. Also, inter-case attributes can be interesting, for 
example, the number of engagements during a journey until 
that run. Besides the need for more attributes, there is a need 
for better techniques concerning a multi-perspective view. 
As pointed out, the technique suffers from only capturing 
state changes and assigning different states the same initial 
state. As a result, complex systems with changing condi-
tions, both initial and during the execution, like a vehicle, 
suffer from this approach since data have to be artificially 
adjusted. For a data-driven analysis, we need to invent tech-
niques that capture that.
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