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Abstract—The mining industry faces many challenges, prompt-
ing the adoption of new technologies and continuous improve-
ment of processes to improve operational efficiency and personnel
safety. Using data from information systems combined with novel
process-mining techniques creates new possibilities for improving
industrial processes. The paper presents a comprehensive method
of modeling and analyzing the longwall process in underground
mining based on event data using process mining (PM4LMP).
The method comprises four basic steps: data gathering, data
preprocessing, creation of event logs, and process mining tasks.
In our method, we proposed, among all, case ID identification
based on heuristics using context data and activity identification
with supervised and unsupervised approaches, which provide
complementary information about process execution. The method
assumes an in-depth analysis of processes based on sensor data
and knowledge gathered in IT systems, which can significantly
improve the quality of information at managers’ disposal when
making decisions regarding the mining process.

Index Terms—process mining, longwall mining, coal mining,
sensor data, industrial processes

I. INTRODUCTION

IN dynamic and competitive market conditions, under-
ground mining companies need to adapt and enhance

their processes and activities. Achieving success in this area
requires modern management aimed at creating value for
these enterprises in the long run [1]. One of the fundamental
concepts enabling the modern management of an organization
is Business Process Management (BPM), which includes the
identification of processes and the creation of process archi-
tecture as well as their modeling and analysis. Process man-
agement is aimed at the continuous improvement of processes
whereby data available from various IT systems are used as a
source of information and expertise.

Intensive development of virtualization and computerization
in the mining industry enables monitoring of practically all
events and activities involved in mining processes. Advances
in sensor technology (Industrial Internet of Things - IoT) and
enhanced capabilities of computer hardware and software are
increasingly used in underground coal mines [2]; however,
along with the increased amount of collected data, there is
a growing need to develop tools for its efficient processing
and analysis.
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The primary data analytic approaches used in underground
mining are data-oriented and not process-centric; they focus
on knowledge discovery from data through the use of tra-
ditional and advanced analytic techniques such as Machine
Learning (ML), data mining, and statistics. However, process
improvement activities require a process-oriented analysis of
the available data. Process Mining (PM) techniques provide
new opportunities for knowledge discovery from data about
processes. However, process discovery from industrial raw
sensor data has to meet several requirements imposed by
traditional PM techniques, which may not be an easy task
in such cases. Applying PM to raw mining sensor data
requires customization and development of solutions tackling
the following challenges [3]:

• There is no single, comprehensive dataset (event log) that
could be directly used for the purpose of process mining
analysis. Raw sensor data are stored in different systems,
databases, or platforms;

• The event log generated from the sensor data can be af-
fected by noise, inaccurate measurements, and ambiguous
information, which may result in an unreliable event log;

• It is necessary to identify the case ID - a single process
execution;

• The translation of low-level data into high-level data,
known as event abstraction, requires appropriate data
aggregation techniques.

Hence, the main factors limiting the applicability of PM in
underground mining include the lack of suitable event logs
for process modeling and analysis. It results mainly from the
structure of IT systems monitoring underground processes and
the granularity of collected data. Most of the data presents low-
level readings coming directly from sensors. There are many
different sensors, and their data form is not suitable for direct
usage by PM techniques. This requires special preprocessing
in order to create suitable event logs to model and analyze the
underlying process.

With our work, we aim to address the gap related to
creating higher-level event logs from sensor data collected in
the monitoring system for the underground mining process
and present an example of the usage of PM to model and
analyze the longwall coal excavation process. We identify two
important contributions to the fields:

1) Mining industry - we propose a sophisticated method
named Process Mining for Longwall Mining Process
(PM4LMP) to create an event log based on raw low-
level data from IT monitoring system enabling in-depth
process analysis of selected underground process and we
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present an example of how PM can support the process
improvement in the mining industry.

2) Process mining - we present challenges and solutions
related to PM based on real-life industrial sensor data,
including complementary usage of supervised and unsu-
pervised techniques to increase knowledge about process
execution, taking into consideration the mixed character
of sensor data, still not being recognized fully by the
PM community due to a lack of real-life examples
and experiments with mixed types of variables (also of
continuous type).

The paper is structured as follows. In Section 2, we in-
troduce the preliminaries related to process mining artifacts.
Section 3 summarises the related work. Section 4 presents the
longwall mining process and data characteristics. A general
description of our method considered in this paper is given in
Section 5. Section 6 presents the results of the application of
our method to model and analyze the longwall mining process.
The final section summarizes our work and presents our future
research plans.

II. PRELIMINARIES

PM is a relatively new field of research bringing together
capabilities of several known disciplines, e.g., data mining,
machine learning, modeling, and analysis of processes [4].
The most important function of PM is to extract knowledge
from recorded event log data for discovering, monitoring, and
improving real processes.

The two main artifacts used in PM are the event log and
process model. An event log is a collection of events. An event
e can have any number of attributes, and most of the process
mining techniques require the following three attributes to
be present: case #case(e), activity #act(e), and timestamp
#time(e). For process mining techniques focusing on control
flow, it often suffices to focus only on the activity attribute
and the ordering within a case. This leads to a much simpler
event log notion.

Preparation of a proper event log is a complex task that can
be accomplished in many different ways depending on antic-
ipated results. Techniques dedicated to event log preparation
can be organized in three main types [5]:

1) Event data extraction – identifying data elements that
characterize events coming from diversified data sources.

2) Event correlation - grouping the data elements related to
a single process instance.

3) Event abstraction - mapping data elements to events that
correspond to activity executions in a business process.

Each of the mentioned tasks, especially in terms of in-
dustrial processes, is challenging to perform. First of all, in
industrial databases, most information is stored as raw sensor
data. It could be treated as event data but on a very low level
of abstraction. Actually, it cannot be used in this form in
further process mining analysis. Transforming input raw event
data from industrial databases into the event log represents a
challenge related to data quality. Currently, no fully automated
approach is available for extracting event data or event logs
from databases. Although the databases are loaded with data,

there is no direct reference to events, cases, and activities.
Thus, it brings additional challenges to event correlation and
event abstraction.

Event abstraction approaches are a bridge between raw data
gathered in information systems and a format of events that
represent the execution of an activity and are correlated to
traces and, as such, could be analyzed in process mining.

In the literature, various techniques for event abstraction are
categorized into three major groups: (i) supervised, (ii) semi-
supervised, and (iii) unsupervised learning strategies. Their
detailed taxonomy is presented in [6]. It is worth emphasizing
that event abstraction based on sensor data is recognized as
one of the main challenges in BPM and PM domains [7].

As mentioned before, the second important artifact used
by PM is the process model. The main objective of the
process model is to reflect the execution of activities in the
proper order. For process model creation, different process
modeling languages (of imperative or declarative type) could
be applied. Mathematical concepts and notations reported in
the literature on the subject differ in their expressive power
and formal semantics for process modeling, e.g., Transition
Systems (TS), Petri Nets (PN), Workflow Nets (WF-nets),
Business Process Modeling and Notation (BPMN), Process
Trees (PT) or Directly Follows Graphs (DFG), Declare (DeC),
Dynamic Condition Response Graphs (DCR) [8], [9].

The most popular process modeling languages used in the
context of process mining are still PN and DFG models [8].
Hence, we briefly introduce both [4].

Definition 1 (Directly-Follows Graph): A Directly-Follows
Graph (DFG) is a pair G = (A,F ) where A ⊆ Uact is a set of
activities and F ∈ B((A×A)∪ ({▶}×A)∪ (A×{■})∪ ({▶
} × {■})) is a multiset of arcs. ▶ is the start node and ■ is
the end node ({▶,■} ∩ Uact = ∅), where Uact is the universe
of activities.
▶ and ■ can be viewed as artificially added activities to

clearly indicate the start and end of the process. The other
nodes in the graph denote the activities. In Definition 1, F is
a multiset of arcs to be able to capture frequencies. A DFG
G = (A,F ) represents all activity sequences corresponding to
paths starting in ▶ and ending in ■.

The main drawback of using DFGs is that they cannot
express concurrency. If activities do not happen in a fixed
sequence, immediately loops are created. A DFG is like a
Markov chain, i.e., the state is determined by the last activity,
and there is no memory. Therefore, we need notations like
Petri nets.

Definition 2 (Labeled Accepting Petri Net): A labeled ac-
cepting Petri net is a tuple PN = (P, T, F, l,Minit ,Mfinal)
with P the set of places, T the set of transitions, P ∩ T = ∅,
F ⊆ (P × T ) ∪ (T × P ) the flow relation, l ∈ T ̸→ Uact

a labeling function, Minit ∈ B(P ) is the initial marking, and
Mfinal ∈ B(P ) is the final marking.

A complete explanation of Petri nets is out of the scope of
the paper, and we assume that the reader is familiar with the
basics [8], [10], [11].

Workflow nets (WF-nets) form a subclass of Petri nets
having precisely one source place pstart and one sink place
pend , and all other nodes on a path from source to sink [12].
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The source place defines the Minit = [pstart ] is the initial
marking and Mfinal = [pend ] is the final marking. Hence, a
WF-net defines an accepting Petri net modeling cases that can
move from source place pstart to sink place pend . A WF-
net is sound if and only if the following requirements are
satisfied: (1) option to complete: for each case, it is always
still possible to reach the state which just marks pend , (2)
proper completion: if place pend is marked all other places are
empty for a given case, and (3) no dead transitions: it should
be possible to execute an arbitrary activity by following the
appropriate route through the WF-net, and (4) safeness: it is
not possible to put two tokens in place at any point in time
[12]. Techniques like the inductive mining approach guarantee
to produce sound WF-nets [13].

Possessing the suitable event log (and process model if
required), one can perform one or several PM tasks. Major
process mining tasks include [4]:

• Process model discovery - the discovery of real process
models. Transformation of input data from event logs into
a process model without a priori information. The process
model can be expressed in different notations (Petri nets,
BPMN, process tree).

• Conformance checking - comparing an existing, formal
model with an event log to check whether the process
recorded in the event log is consistent with the formal
models (procedural, organizational, declarative, business
rules).

• Enhancement, also called performance analysis, includes
in-depth analysis of the process through the use of
contextual information stored in the event log, which
is used to extend and refine the existing process model
(e.g., by indicating process bottlenecks, bandwidths, and
frequencies).

• Comparative process mining - uses as input multiple
event logs from different periods, locations, or case
categories to compare process executions and to search
differences.

• Predictive process mining - introduces various Machine
Learning techniques to better diagnostics and explanation
of process behavior as well as process outcome predic-
tion.

• Action-oriented process mining - aims to turn diagnostics
into actions using low-code automation platforms for
triggering the workflows.

Our work focuses on process discovery, conformance check-
ing, and performance analysis tasks to model and analyze the
longwall mining process described in the following sections.

III. RELATED WORK

The usage of PM techniques in the mining industry is
still limited. Only a few papers present its utilization in
underground process modeling and analysis. The first scope
of applications is related to the analysis of working machin-
ery and installations in the primary process; the other area
encompasses non-industrial processes, i.e., emergency rescue.

In terms of analysis of working machinery, PM applications
were related to mechanized roof support operations [14], roof

bolter operation [15] as well as LHD (Load Haul Dump)
machine [16].

The application of PM in underground mining was also
related to higher-level processes, such as emergency rescue
processes after fatal accidents due to gas explosions in China
[17].

PM on sensor data is currently one of the research directions
aiming to introduce IoT data into the BPM domain more
widely for process analysis and improvement. The event log
creation from low-level events has been undertaken by many
researchers, e.g. [6], [18].

Only a few examples of industrial use cases using sensor
data for PM tasks can be found in the literature.

A general proposal to deal with sensor data is presented in
[19]. The authors provide an interactive method for the process
analyst to conduct an initial analysis of data sets from IoT
for activity executions. The method comprises visualizations
and filtering features to find patterns in data, enabling activity
signatures identification and labeling of similar activities;
however, most of the sensor readings used in the smart factory
example are discrete and binary.

The approach using the continuous sensor data readings
for PM was presented in [20]. In the paper, authors use
window-based segmentation of the sensor measurements for
the creation of event logs and discover processes of using a
smart baby bottle. After data segmentation, they applied cluster
analysis, in which results were labeled by a domain expert.
The following steps comprised the grouping of segments into
activities and process instance identification. Finally, they used
created event logs to process discovery.

In [21] authors propose a similar window-based segmenta-
tion approach, including time-series-based process and product
state data as additional attributes in the event log in the context
of Digital control-flow Twin. Authors applied unsupervised
techniques (cluster analysis) based on statistics in sized time-
series segments to event abstraction. Obtained clusters were
mapped to process states using domain knowledge and used
for event log creation and process discovery.

A different approach is proposed in [22]. The authors
present a supervised approach for analyzing the dependency
relationships between events to generate multi-level models.
In the example from a pulp mill, the authors defined the so-
called operating regions of the process based on KPIs, aiming
to transform data from continuous values to discrete ones. It
was done based on domain expert knowledge. In the next step,
a classifier (Decision Tree) was applied, with input variables
coming from process monitoring and the operating region as
a target variable, to extract meaningful patterns explaining
the relation between observations and their assigned label.
Discovered patterns are further used as events, and Case ID is
identified as one day of operation. Finally, the created event
log is used to process discovery.

In the mentioned works, various supervised and unsuper-
vised techniques are presented. Our method assumes parallel
usage of supervised and unsupervised approaches to activity
identification, which reveals the potential of such complemen-
tary usage for in-depth process understanding and analysis.
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The content of the presented references shows that PM
on the industrial sensors is a promising direction of research
in terms of event abstraction, case identification, and event
log requirements, especially when working with data of a
continuous type.

IV. LONGWALL MINING PROCESS

Longwall mining is a technique whereby coal is mined by
sliced blocks (from 0.6 to 1.2 meters in thickness), usually
100 to 300 meters wide and 1,000 to 3,000 meters long.

The process involves coal cutting along the width of the
panel (longwall face length) to the depth of the intended slice
(having the width of the longwall panel) by a longwall shearer
- Fig. 1. Next, crushed coal is loaded onto a conveyor (Ar-
mored Face Conveyor). The sequence of operations continues
after the roof support (Powered Roof Supports) is propped at
the front, and the conveyor advances forward. The crushed
coal is transported to the breaker feeder (Crusher) via a chain
conveyor (Beam Stage Loader).

Most often, the shearer’s front organ cuts the coal body’s
upper layer under the slant (clockwise rotation). The rear organ
works in overflow, cutting the lower part of the coal body, and
loads the hitherto unloaded material onto the scraper conveyor
through the advanced organ.

The slotting phase (changing the organ position) occurs at
the end and the beginning of the longwall face. The working
shearer moves in two directions: back (Along) and forth
(Return) alongside the length of the longwall.

The steps described above define a common cutting method
involving operations repeated in a specified sequence and
cyclical implementation of operations (activities) in a longwall
face. The actual selection of operations depends on deployed
technology, equipment, and work organization [23].

The cutting cycle could be divided into three main parts:
main cut, shuffle, and turnaround [24]. Fig. 2 shows the model
of the bi-directional cutting cycle of the shearer.

The shearer cycle consists of the following stages (marked
in Fig. 2):

• Direction Along:
1) Cutting at the beginning of the longwall face,
2) Stoppage in ON mode at the beginning of the longwall

(30-40m from the minimum value),
3) Return to the drive I,
4) Stoppage in ON mode at the beginning of the longwall

face,
5) Cutting at the middle section of the longwall face,
6) Cutting at the end of the longwall face, and
7) Stoppage in ON mode at the end of the longwall,
• Direction Return:

8) Cutting at the end of the longwall face,
9) Stoppage in ON mode at the end of the longwall face,

10) Return to the drive II,
11) Stoppage in ON mode at the end of the longwall face,
12) Cutting at the middle section of the longwall face,
13) Cutting at the beginning of the longwall face, and
14) Stoppage in ON mode at the beginning of the longwall

face.

The described process is remotely monitored from the sur-
face by the mine’s dispatcher, who possesses limited detailed
information about the ongoing processes. The dispatcher’s
observations are primarily based on the real-time tracking
of the shearer’s position and sensor data collected from the
machine. Consequently, our research focuses on the applica-
tion of process mining techniques to enhance the monitoring
process, facilitating in-depth process-oriented analysis and,
subsequently, opportunities for process improvement [3].

Although the theoretical model is relatively simple, cer-
tain complications might arise in real-life conditions. In real
processes, unexpected and unpredictable events occur quite
frequently due to different geological and mining conditions
or organizational settings [25], [26]. These issues related to
the specificity of the mining process will be addressed in more
detail in the following sections.

V. OUR METHOD

In this paper, we propose the Process Mining for Longwall
Mining Process (PM4LMP) method. The PM4LMP method is
employed to support the analysis and improvement of under-
ground mining processes in the longwall face with the use of
PM techniques to answer the following research questions:

• RQ1: What is the empirical representation of the mining
process carried out in the longwall face, considering the
integration of sensor data from the longwall shearer?

• RQ2: What specific operational states can be discerned
during the execution of the mining process?

• RQ3: To what extent do deviations or discrepancies
manifest in the actual execution of the mining process
when compared to the underlying theoretical process
model?

• RQ4: What are the primary bottlenecks within the long-
wall mining process?

• RQ5: How effectively does the process address the spe-
cific requirements of business users?

The method involves four main steps:
1) Gathering of input data, including raw sensor data, a

theoretical model of the process, and business questions
formulated by users;

2) Data preprocessing;
3) Event log creation;
4) PM tasks, namely process discovery, conformance check-

ing, and process enhancement.
The raw data from the underground mine that we used in our

work was prepared for monitoring, visualization, and simple
statistics but not for process mining. Data in the original format
and structure cannot be used directly to analyze or improve
process effectiveness due to the specific nature of the data but
also due to the complexity of the analyzed process. Another
aspect that obstructs the analysis of mining data is that real
industrial data may be incomplete and involve noise. Thus,
the preprocessing step is required before the final data set can
be prepared in the format adequate for process mining. An
important feature of sensor data in the mining industry is their
mixed character, including categorical data (nominal, binary)
and numerical data (discrete and continuous).
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Fig. 1: Scheme of longwall face.

Fig. 2: Model of the bi-directional cutting cycle of the shearer.

The main aim of the data preprocessing step is data
cleaning, dimensionality reduction, and selection of the most
accurate variables describing the work of the shearer in a
pertinent way.

Dimensionality reduction starts from the data cleaning with
the imputation of missing values and outlier identification.
This step also contains correlation analysis for numerical
data and crosstables for categorical data to exclude dependent
variables, as well as Principal Component Analysis (PCA).
An additional step in data preprocessing is feature engineering,
including the discretization of continuous variables (if needed).

There are two main challenges related to the usage of sensor
data from longwall monitoring systems in process mining
important for the creation of event logs: (i) they usually do
not contain case IDs, and (ii) activity names are not given due
to the low-level character of data.

While analyzing and monitoring the industrial machinery
and equipment, a single, full-duty cycle should be identified.
Due to the specificity of sensor data from a longwall shearer,
such identification does not exist and requires manual prepro-
cessing and case identification. Therefore, we proposed the
heuristic procedure [27] enabling the cycle identification in
data based on the shearer location variable.

Since the shearer activities’ names are not available in the

data, two approaches for activity identification are proposed:
1) Supervised - based on a theoretical model and expert

rules,
2) Unsupervised - based on clustering techniques and incor-

porating domain knowledge,
In the first approach, based on the domain expert’s knowl-

edge and a longwall working technology manual, the longwall
shearer operation process’s theoretical stages were defined as
a hierarchical state model.1

The hierarchical model covers the main prescribed states in
the longwall shearer operation process mentioned in Section
IV. In line with the theoretical process model, 14 main stages
were thus defined; however, some undesirable states can also
occur during the process, namely Moving and Reversion. All
identified activities are general and do not cover the real
diversity of working conditions.

When the supervised approach is employed, some actual
non-typical behavior of the shearer can be omitted; thus,
unsupervised activity identification with clustering methods is
proposed as a complementary approach.

Clustering is an unsupervised data mining technique typi-
cally requiring a predetermined number of clusters. According
to a specified number of clusters and the final statistical
description, the optimal number of clusters can be determined
based, e.g., on Silhouette information.

The last essential step of the unsupervised approach is
assigning unique, understandable labels to discovered clusters
based on cluster summary statistics and visualizations, con-
sulting with domain experts, and verifying using the technical
manuals.

Based on case ID identification and activity labeling, we cre-
ate raw event logs with columns: timestamp (”TIMESTAMP”),
case ID (”CASE ID”), and activity (”ACTIVITY”).

Created event logs are used in the selected PM tasks. Our
goal in the process discovery is to analyze in general process
execution based on specific activities and behavior recorded
in data. For this purpose, we use DFG models and event logs
created with an unsupervised approach.

1Due to the NDA of the company providing data for analysis, we cannot
show the details of the used expert rules.
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In the conformance checking procedure, we apply an event
log labeled with expert rules and a theoretical process model.
The main objective of this task is to reveal the discrepancies
between the actual process execution and the prescribed pro-
cess model so as to identify deviations and failures.

Finally, in the process enhancement, the time perspective
of the shearer operation process is analyzed on the basis
of created process models with Inductive Miner. We also
analyze process execution in relation to the following business
questions raised by practitioners interested in the occurrence
and frequencies of the following events:

1) Reverse movements in specific parts of the longwall face
(beginning and end),

2) More than two stoppages in operation at the beginning
and the end of the longwall,

3) Moving in the middle section of the longwall face.
The implementation of our method on real-life examples is

presented in the next section. In analyses, we used ProM [28]
and Disco software [29].

VI. IMPLEMENTATION

The presented approach was evaluated on a data set con-
taining raw sensor data from the monitoring system of un-
derground longwall machinery. An analytical sample covering
a period of one month. The data contains 460,000 records
and 147 variables (continuous and binary type) related to the
shearer operation process.

A. Data preprocessing

Real-world industrial datasets frequently exhibit incom-
pleteness and noise. In the dataset under investigation, ap-
proximately 30% of columns were entirely devoid of data,
and nearly 50% of variables exhibited more than a 50%
incidence of missing values. Consequently, only 57% of all
variables proved suitable for subsequent analysis. Furthermore,
it was noted that among the 44 logical variables associated
with safety sensors, a single logical value was present. This
observation implies that these safety sensors had not been
activated at any point, thus warranting their exclusion from
further analytical considerations.

Missing numerical values were imputed with Multivariate
Imputation by Chained Equations (MICE) with the uncondi-
tional mean method, as well as interpolation and categorical
features with mode value. The detection of outliers was
carried out utilizing the Interquartile Range (IQR) method, and
subsequently, any identified outliers were substituted with null
values. In cases where the actual position of the shearer was
unrecorded, a variable extrapolation technique was employed
by estimating values between the two nearest data points. The
theoretical cycles are thoroughly documented, allowing for the
validation of extrapolation results based on other variables.

The subsequent phase involved correlation analysis on nu-
merical data and generating cross-tabulations for logical data
to identify and eliminate interdependent variables. Numerical
attributes exhibiting a correlation coefficient exceeding 0.6
were excluded from further analysis.

TABLE I: Summary of selected variables
Variable Description Type Range

SM Daily
RouteOfTheShearer Daily route of the shearer [m] Numerical 0-29904

SM ShearerLocation Shearer location [m] Numerical 0-152
SM ShearerSpeed Shearer speed [m/min] Numerical 0-25

SM TotalRoute Total route [km] Numerical 0-100
SM ShearerMoveInLeft Shearer move to the left Binary 0/1

SM ShearerMoveInRight Shearer move to the right Binary 0/1
LCD Average

Three-phaseCurrent
Average three-phase current [A]

left cutter drum (organ) Numerical 0-769

RCD Average
Three-phaseCurrent

Average three-phase current [A]
right cutter drum (implement) Numerical 0-775

LHD MotorCurrent
Motor current [A] left
haulage drive (tractor) Numerical 0

RHD MotorCurrent
Motor current [A] right
haulage drive (tractor) Numerical 0-191

LP Average
Three-phaseCurrent

Average three-phase
current [A] left pump Numerical 0-171

RP Average
Three-phaseCurrent

Average three-phase
current [A] right pump Numerical 0-164

Fig. 3: Example of identified full cycles.

The next stage of dimensionality reduction was PCA. Ini-
tially, we selected the primary components, ranging from PC1
to PC9, guided by an assessment of cumulative variance (91%)
as well as adherence to the Kaiser Criterion, which entailed the
exclusion of components with eigenvalues exceeding one. To
facilitate a more precise interpretation of these primary com-
ponents, we scrutinized the relationship between the absolute
values of their coefficients and the component calculations,
opting for a threshold of 0.5 for the absolute coefficient value.

Based on data quality evaluation and PCA results, the final
list of variables related to the shearer operation, including the
basic operating parameters (e.g., speed, currents in drums and
tractors) and parameters related to its position with respect to
the longwall face (e.g., location, the direction of movement)
was created and confirmed by domain experts (Table. I).

The preprocessing step yields the final data set containing
12 original variables (10 numerical and two categorical) and
460,000 records.

B. Case ID Identification

The shearer duty cycles were identified based on the
analysis of variables indicating the location and ride di-
rection, namely SM ShearerLocation, SM ShearerMoveInLeft
and SM ShearerMoveInRight.

The result of the heuristic procedure implementation is
presented in Fig. 3.

In most cases, the proposed heuristic approach enabled the
correct identification of the cycle start and end. The errors in
identification were caused mainly by data quality issues and
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Fig. 4: Silhouette scoring for various numbers of clusters for
each clustering task.

unpredictable situations responsible for abnormal operating
conditions. Further analysis was restricted to cases with the
correct ID.

C. Activity Identification

As it was mentioned in earlier sections, two approaches
were adopted in activity identification. The first approach
involves labeling stages with expert rules, and the second one
uses clustering techniques.

In the practical implementation of activity identification
based on domain expert rules the following variables were
used: RCD AverageThree-phaseCurrent, LCD AverageThree-
phaseCurrent, RHD MotorCurrent, SM ShearerMoveInLeft,
SM ShearerMoveInRight, SM ShearerLocation.

In the unsupervised approach, we use hierarchical and non-
hierarchical clustering techniques [30]. We divided cluster-
ing into the following tasks: clustering only numerical vari-
ables (RNV) with k-medoids algorithm, clustering discretized
numerical and categorical variables (CV) with hierarchical
clustering based on Gower’s distance, clustering mixed type
variables (MV) and clustering artificial numerical variables
(based on mean values (ANV-AG) and standard deviations
(ANV-SD) in time windows).

Results obtained with the use of respective methods were
generated with a number of clusters in the range of 5 to 20. The
Silhouette scores for different numbers of clusters obtained by
various clustering methods are given in Fig. 4.

In further analysis, we used the results of numerical vari-
ables clustering (RNV) for which the Silhouette score obtained
the highest value for 19 clusters.

In the final step, based on statistical and visualization
methods, unique, understandable labels were assigned to dis-
covered clusters, followed by the verification procedure with
the domain expert.

The verification with the domain expert was carried out
in the form of a direct interview, including the presentation
of cluster statistics, cluster visualization (in the form of the
cluster mapping into shearer cycle (e.g., Fig. 5), and initial
defined cluster labels. After the interview, the labels of the
obtained clusters were confirmed or revised by the domain
expert.
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Fig. 5: Defined states of the shearer operation obtained by
each approach.

TABLE II: Excerpt from EVENT LOG EXPKNW
Timestamp Case ID Activity

05.06.2019 19:46:22 14 Stoppage in O mode beginning along
05.06.2019 19:46:54 14 Cutting beginning along
05.06.2019 20:12:22 14 Return to drive along
05.06.2019 20:12:38 14 Stoppage in O mode beginning along
05.06.2019 20:12:48 14 Return to drive along
05.06.2019 20:12:58 14 Stoppage in O mode beginning along
05.06.2019 20:13:09 14 Cutting beginning along
05.06.2019 20:13:17 14 Stoppage in O mode beginning along
05.06.2019 20:13:48 14 Cutting beginning along
05.06.2019 20:13:55 14 Stoppage in O mode beginning along

Visualizations of defined states on the shearer cycle obtained
by each approach are given in Fig. 5.

D. Event log characteristics

The event log preparation procedure yields two event logs:
1) EVENT LOG EXPKNW - Event log with activities

identified with expert rules;
2) EVENT LOG NUMERIC - Event log with activities

identified with clustering of numerical variables.
An excerpt from created event logs is presented in Tables II

and III.
The EVENT LOG EXPKNW includes 44 full cases, and

the total number of events is 4425. This event log in-
cludes 17 unique classes of events. In the event log
EVENT LOG NUMERIC, there are 59 full cases and about
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TABLE III: Excerpt from EVENT LOG NUMERIC.
Timestamp Case ID Activity

05.06.2019 19:46:26 14 Stoppage Working cutter drum 2
05.06.2019 19:46:54 14 Moving Beginning Drive from start longwall
05.06.2019 19:47:16 14 Stoppage Working cutter drum 2
05.06.2019 19:47:26 14 Stoppage Start longwall
05.06.2019 20:11:15 14 Stoppage Working cutter drum 2
05.06.2019 20:12:21 14 Moving Beginning Drive from start longwall
05.06.2019 20:13:17 14 Stoppage Working cutter drum 2
05.06.2019 20:19:50 14 Moving Beginning Drive from start longwall
05.06.2019 20:20:17 14 Stoppage Working cutter drum 2
05.06.2019 20:20:45 14 Moving Middle Crushing

7115 events, with 19 unique classes. The difference in case
number between the event logs is the result of missing
data in categorical data used for activity identification based
on expert rules. Both event logs include only unique vari-
ants of the process, which proves that the analyzed pro-
cess characterizes high variability. However, these two event
logs have significant differences in relative frequencies. Cer-
tain tendencies in the occurrence of activities can be seen.
In EVENT LOG NUMERIC, the events appear alternately
whilst frequent and infrequent events are dispersed. A reverse
situation is observed in EVENT LOG EXPKNW. In this case,
there are clear sequences of very frequent and infrequent
events. In EVENT LOG EXPKNW, specific sequences occur
at similar places in the cases, e.g., the beginning of the case.

E. Process Discovery
In the process discovery phase, we used

EVENT LOG NUMERIC to visualize the process flow
of discovered specific states in the longwall shearer operation
(RQ1). To model their relations in a general view, we use
DFG (Fig. 6), created with Disco.

The discovered model shows the complexity of the real-life
industrial process (although the presented view covers 65%
of the paths in the event log). The most frequent states are
mostly at the beginning and the end of the longwall and are
related to frequent moving and stoppage operations (e.g., Stop-
page Working cutter drum 2 denotes stoppage with working
cutting drum, Stoppage End longwall 2 denotes stoppage at
the end of the longwall without working drums). It can be
caused by mining and geological conditions of the coal seam
(e.g., problems with roof stability or rock parting in the coal
seam). Also, very often, the working drum operations during
stoppage can be noticed related to the start of cutting with
many repetitions with moving, which can be found undesirable
for process continuity and energy consumption (e.g., longwall
shearers are machinery with high installed power, even over
2300 kW).

Interesting states, which can also be found in event data, are
so-called quick stops, which denote sudden stoppage of the
shearer, not recommended from the point of view of shearer
operation (RQ2). That example of information can be missed
relying only on an event log created with expert rules.

Models based on event logs created with the use of un-
supervised techniques (after preprocessing and incorporating
the domain knowledge) can provide insights into real process
performance. The new knowledge acquired from their analyses
could be used in updating:

1) Process and machinery maintenance - analysis of un-
desirable states related to excessive overload or non-

obvious stoppages can significantly improve the operating
conditions and control the wearing of machines and
underground equipment, e.g., shearer overloading and its
root cause analysis may provide additional information
about typical coincidences with working conditions.

2) The safety management - through an in-depth analysis of
deviations during the process, their causes can be better
understood, and adequate protective measures are taken,
e.g., a slower cutting rate could be an effect of methane
occurrence, so its identification may help to improve air
monitoring sensor systems.

3) Reporting and monitoring of work performance - a
broad spectrum of analysis of the entire process enables
the identification of bottlenecks in several perspectives,
leading to improvement of time efficiency, which also
translates into financial aspects, e.g., noticed problems
in the longwall face due to bad organization of work
resulting in time losses, could be resolved and improved
with time and cost savings.

The performed analysis revealed the complexity of longwall
shearer behavior. A comparison of recorded behavior in rela-
tion to the theoretical process model is presented in the next
section.

F. Conformance checking

The main objective of the conformance checking task was
to verify the discrepancy between the actual process execution
and the theoretical process model (RQ3). Thus, we used the
log labeled with expert rules (EVENT LOG EXPKNW) and
the theoretical process model.

This task was supported by ProM’s Replay a log on Petri
net for Conformance Analysis plugin, yielding a Petri net
with additional information such as specific colors and shapes.
Figure 7 shows the results of conformance checking analysis
- theoretical model as Petri net with colors indicating the
deviations. The green bar at the bottom of the activities column
indicates the frequency of times the log was synchronized
with the model (the darker the color, the more frequent the
synchronization). The purple bar at the bottom of the activity
column indicates the frequency of cases where executions
deviate from the model.

The trace fitness to the theoretical process model is only
0.39. Some transitions are skipped, and 13 places indicate
events in the log that could not be explained with the model.
The white circles represent the paths followed according to
the model, while the yellow circles indicate the occurrence of
movements inconsistent with the model. Larger circles mean
more frequent alternative movements. There are many places
in the Petri net where activities occurred where they were
not supposed to (e.g., the activity Cutting end along indicated
as skipped in all cases after Cutting middle along, was per-
formed 45 times after Stoppage in O mode end along). This
is also confirmation of difficult process performance in the end
part of the longwall face (revealed during the process discovery
task).

The event log also includes activities that do not occur in
the theoretical model as Reversion and Moving, mainly in the



9

Fig. 6: Process map for EVENT LOG NUMERIC.

middle part of the longwall. They occur very often in the
execution of the process: 193 and 68 times, respectively. It
is also a sign of difficult conditions of the mining process,
Reversion denotes moving in the opposite direction to the
cycle part and without cutting (e.g., to clean the conveyor
path, among others, after roof collapsing), which is also not
desirable from the process efficiency point of view.

Although the generalization of the theoretical model is quite
high (0.9997), the performed analysis leads to the question
of whether the theoretical process model is not too simple
to imitate complex real-life behavior of the longwall shearer
operation; maybe revision in this scope is needed. Some rep-
etitions of activities, especially in difficult mining conditions,
are normal daily basis practice and should not be pointed out
as deviations from the process model.

G. Process enhancement

In the process enhancement, we mostly focused on the
analysis of the time perspective (RQ4) and looked for the
answers to business questions formulated by domain users
(RQ5).

The time perspective analysis was obtained with ProM’s
plugin Replay a log on Petri net for Performance/Conformance
Analysis. This plugin allows for the identification of flows
with the most frequently performed activities in the analyzed
processes and time statistics.

The general statistics for process execution are as follows.
The shortest cycle time was 1.75h, and the longest one was
1.09 days. The histogram of the cycle duration is presented
in Fig. 8. A few cases can be seen that are too long (the
cycles pass two days with night hours; however, taking this
into account, the longest cycle time covers 16 hours). The

average cycle duration is 6.5h with a standard deviation equal
to 5.9h, confirming the high variability of the analyzed process.

The four longest activities in the process are:

• Reversion return with an average duration of 39.61 min
and a standard deviation of 47.55min,

• Reversion along with an average duration of 36.80 min
and a standard deviation of 2.01h,

• Cutting middle return, with an average duration of 27.80
min and a standard deviation of 1.13h,

• Return to drive return, with an average duration of
25.05 min and a standard deviation of 1.82h.

What is worth noting is that the first two activities are
additional to the theoretical model; their presence may indicate
problems in the process execution due to mining conditions.
The existence of the activity Return to drive return on the
list confirms problems in the end part of the longwall face.

The performance of activity Cutting middle return requires
a more in-depth analysis of process execution in the middle
part of the longwall. For this purpose, we created a heat map
of events based on EVENT LOG NUMERIC (Fig. 9).

The analysis of the heat map revealed the following
specific states related to shearer overloading (Mov-
ing Middle Overloading, Moving Middle Cooling down,
Stoppage Quick stop) confirming issues related to coal
cutting activity in the middle of the longwall.

In response to queries from business users, process analysis
reveals the type of changes and the places where the changes
should be effected. The frequency analysis of activities in-
volved in process executions in specific sections of the long-
wall face and comparison of the real process performance with
the theoretical model leads us to the following conclusions:
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Fig. 7: Conformance checking results on the theoretical model.

Fig. 8: Histogram of shearer cycle duration.

1) Reverse movements in specific parts of the longwall face:
at the beginning of the longwall face, reverse movement
occurs 26 times, in the middle section—143 times, and
at the end of the longwall face—24.

2) More than two stoppages in operation at the beginning
and the end of the longwall: 410 stoppages occurred in the
beginning section of the longwall face and 812 stoppages
at the end of the longwall face.

3) Moving without mining in the middle section of the
longwall face: occurred two times.

The results obtained, as well as knowledge about events and
their occurrence frequency in different longwall locations, can
be used in process improvement.

Firstly, the presented analysis could be used to report the
most problematic places regarding shearer operation in the
longwall face. Secondly, knowledge about event frequency,
e.g., undesirable stoppages, can be extended with context
data (if available) and case perspective analysis with building
classifiers on top of external factors, e.g., mining and geo-
logical conditions, labor force, or management conditions for
searching causes of process failures.

VII. CONCLUSIONS

The underground mining process is a specific example of
a business undertaking, which could be viewed as a complex
process system enabling minerals extraction.

Presently, control and monitoring systems in underground
mines allow the collection of data characterizing the opera-
tion of mining machinery and equipment. Sensors located in
underground mines measure major operational and environ-
mental parameters. However, integrated management systems
implemented in underground mines according to ISO standards
define the selected processes, but the underlying theoretical,
general models are not confronted with the actual process
performance data stored in the mine’s IT systems. Such
analyses are recommendable because they show the existing
structure and method of process implementation, providing
the mine operators with information on the deviations and
anomalies in process execution [3].

In our work, we presented the PM4LMP method with the
aim of enabling the modeling and analysis of an underground
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Fig. 9: Frequencies of activities performed in the longwall face.

mining longwall process based on event logs. We showed
the potential of complementary usage of supervised and
unsupervised approaches in event log creation, enabling the
identification of important issues in the process execution.

The analysis of the mining process based on event data is
far from a trivial task, presenting several challenges; thus, our
method imposes certain limitations, e.g.:

• Case ID identification - Because of the data’s low quality
and numerous errors, the heuristic approach cannot be
regarded as entirely reliable and can lead to unreliable
results, requiring further event log cleaning.

• Activity identification - In the method, only k-medoids
clustering was tested as the most common ones.

Considering the mentioned limitations, our future research
directions will include exploring alternative ways to generate
case ID relying on more variables and more complex rules
for detecting the end and start of the cycle. Additionally, data
providers will be advised to collect the identifications of such
cycles or directly monitor the performance of the machine with
incorporated dedicated sensors. Further research is also needed
to extend already used clustering techniques with those based
on density, e.g., DBSCAN [31] or the newest algorithms like
[32].

We are aware that the proposed method is a new approach
to the analysis of the longwall mining process and requires
improvement, but still, it appears to be a viable alternative
to traditional data-oriented analysis in the mining industry
operating in the reality of Industry 4.0.
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