
Checking Constraints for
Object-Centric Process Executions

Tian Li, Gyunam Park and Wil M. P. van der Aalst

Process and Data Science Group (PADS), RWTH Aachen University, Germany
tian.li, gnpark, wvdaalst@pads.rwth-aachen.de

Abstract. Conformance-checking techniques reveal the deviations between
event data and the desired process specification, which can be expressed as
a process model or a set of rules. State-of-the-art approaches assume a single
case identifier, i.e., each case in the business process is associated with only
one object. In contrast, processes in real life usually involve multiple object
types. For instance, an order management process involves object types such
as orders, items, and packages. These objects interact with one another, e.g.,
packing multiple items from the inventory to create a package. Existing tech-
niques may provide misleading insights when applied to such object-centric
event data. We address the issue by extracting process executions (cases) from
the object-centric event log and representing constraints using Object-Centric
Constraint Models (OCCMs). In this way, we handle cardinality, temporal,
and performance constraints. Compared to procedural languages like Petri
nets, the declarative nature of OCCMs provides more flexibility in modeling
constraints, and constraint checking delivers more comprehensive diagnostics
that go beyond isolated cases. The proposed method has been implemented
as a ProM plug-in that supports the extraction of process executions, user-
defined OCCMs, and constraint-checking. The feasibility of the proposed
approach has been evaluated with other state-of-the-art approaches.

Keywords: Process Mining · Conformance Checking · Constraint Checking·
Object-Centric.

1 Introduction

Process mining techniques aim to analyze event data recorded in the information
systems and gain insights into business processes. Identifying unexpected or undesired
deviations in processes is critical to mitigating risks or bottlenecks, thus monitoring
the operational issues is essential for companies and organizations to maintain
operational efficiency.

State-of-the-art constraint-checking/conformance-checking techniques are based
on a single case notion in the event data, i.e., an event is associated with one object
of a unique type (case notion). However, in real-life processes stored in ERP systems,
one event can be associated with different objects of multiple types. For example,
a simplified recruitment process is illustrated in Fig. 1. The organization opens a
new vacancy based on specific needs. Candidates who are interested in the position

2 Tian Li, Gyunam Park and Wil M. P. van der Aalst

(a) Event data of a vacancy hiring process.

(b) flattened sequences based on a particular object type.

Fig. 1: Real-life event data for the recruitment process and flattened event data with one
object type.

send applications before the submission deadline. After several rounds of reference
checking or interviews, one candidate is hired for the vacancy.

In this process, events can be associated with multiple objects of different types,
and each event may have multiple preceding and succeeding events. Therefore, the
whole process is not a collection of homogeneously typed event sequence assumed in tra-
ditional process mining settings. To bridge this gap between object-centric settings and
traditional conformance-checking techniques, the flattening approach [1] is currently
used. It first chooses an object type as a case notion, then produces sequences of events
related to the lifecycle of objects of this type. As illustrated in Fig. 1b, each case notion
provides a sequential event sequence, describing the lifecycle of each object of the
selected type. However, there are drawbacks to flattening event data in object-centric
settings. To illustrate the problem, we showcase three example constraints as follows:
- constraint 1: Open vacancy should be later followed by Close vacancy.
- constraint 2: Close new application should be preceded by at least one Submit
application.
- constraint 3: Submit application should happen within two months after Open
vacancy.

When flattening with object type vacancy, constraint 1 is satisfied as Open
vacancy is followed by Close vacancy afterward. However, constraint 2 is violated
since Close new application is not preceded by any Submit application, and constraint
3 is also violated due to the absence of Submit application after Open vacancy. The
underlying reason is that flattening removes activities not related to the object type,
thus constraints that involve multiple object types can not be accurately checked.

To tackle the aforementioned problems, we propose a constraint-checking tech-
nique that operates in object-centric settings, which provides two key contributions:

Checking Constraints for Object-Centric Process Executions 3

1) We introduce an extraction technique that is able to identify process executions
from an Object-Centric Event Log (OCEL) [5] using one leading object type and
multiple secondary object types. 2) We outline three different constraint models to
specify constraints in the extracted process execution. The approach is implemented
as a plugin in the ProM package “ObjectCentricConstraintChecking”.

The remainder of the paper is organized as follows. In Section 2 we discuss the
related work, then we present preliminaries and the notion of process executions in
Section 3. In Section 4, we formalize the constraint models for process execution. In
Section 5, we evaluate our approach with other existing techniques. Finally, Section 6
concludes the paper.

2 Related Work

The importance of constraint monitoring and follow-up process redesign has long been
recognized by the industry. In [11], a technique was proposed to derive monitoring
queries from a process model and monitor control-flow deviations. A run-time frame-
work based on Linear Temporal Logic (LTL) was introduced [9]. On the whole, the
majority of work for constraints in the process still revolves around traditional event
data using a single case notion such that the event data present a sequential structure.

Due to the drawbacks of flattening with a single case identifier when dealing with
object-centric event data, there have been a few studies highlighting handling event
data with multiple dimensions [2]. A method to model business processes based on
artifacts was discussed in [6]. A method to model and reason over object-centric
behavioral constraints was proposed in [4]. Jalali et al.[8] tracked rules defined for
process instances by considering multiple perspectives. In [7], the authors convert
the multi-dimensional event log to graph-based data models and retrieve behavioral
insights, such as direct-follow-relations.

3 Preliminaries

Given a set X, the power set P(X) denotes the set of all possible subsets. A sequence
σ= ⟨x1, ..., xn⟩ assigns an order to elements of X, and len(σ)=n is the length of
σ. X∗ denotes the set of all sequences over X.

A graph is a tuple G=(V, E) where V is a set of nodes and E⊆V ×V is a set
of edges. In an undirected graph, ∀v,v′∈V : (v,v′)∈E↔(v′,v)∈E. For two distinct
nodes v, v′∈V , path(v, v′)={⟨(v, v1),(v1, v2),...,(vk−1, vk),(vk, v

′)⟩∈E∗} denotes
the set of all possible paths between them. conn(v, v′)= true if and only if nodes
v and v′ are connected, i.e., path(v, v′)≠∅. For two connected nodes v and v′, the
distance in between is the length of the shortest path dist(v, v′)=len(σ) such that
σ∈path(v, v′)∧∀σ′∈path(v,v′) len(σ

′)≥len(σ).

Definition 1 (Object-Centric Event Log (OCEL)). Let Ue be the universe of
events, Uetype be the universe of event types (i.e., activities), Utime be the universe of
timestamps, Uo be the universe of objects, and Uot be the universe of object types. An
object-centric event log is a tuple L=(E, O, πetype, πotype, πomap, πtime, <), where:
- E⊆Ue is a set of events,
- O⊆Uo is a set of objects,

4 Tian Li, Gyunam Park and Wil M. P. van der Aalst

Table 1: Example object-centric event log L1.

Event
Object type

Event type Timestamp

Order Item Package

e1 o1 i1, i2 Place order 2019-01-12 09:36:06
e2 o1 i1 Item out of stock 2019-01-12 10:01:02
e3 o1 i2 Pick item 2019-01-12 10:06:58
e4 o1 i1 Reorder item 2019-01-12 11:59:42
e5 o2 i3 Place order 2019-01-12 13:13:19
e6 o1 i1, i2 Pay order 2019-01-12 15:31:07
e7 o2 i3 Pick item 2019-01-12 16:36:52
e8 o1 i2 p2 Create package 2019-01-14 09:12:35
e9 o1, o2 i1, i3 p1 Create package 2019-01-14 11:01:29
e10 o1 p2 Package delivered 2019-01-15 12:36:01
e11 o1, o2 p1 Package delivered 2019-01-15 15:44:53
e12 o2 Payment reminder 2019-01-22 09:15:41
e13 o2 Pay order 2019-01-23 17:21:56

- πetype : E→Uetype is the function associating an event to an event type,
- πotype : E→Uot is the function associating an object to an object type,
- πomap : E→P(O) is the function associating an event to a set of related objects,
- πtime : E→Utime is the function associating an event to a timestamp,
- < is a total order on the events.

An example OCEL L1 is present in Table 1, where we only keep the event id,
object type, event type, and timestamp. There are multiple objects, including i1, i2,
i3, o1, o2, p1, p2∈Uo.

Definition 2 (Object Interaction Graph). Let L=(E, O, πetype, πotype, πomap,
πtime, ≤) be an OCEL, its object interaction graph OGL={O, I} where O is a set
of objects and I=∪e∈E{(o1,o2) |o1,o2∈πomap(e)∧o1≠o2}.

The object interaction graph of an OCEL consists of nodes of all the objects, and
every pair of objects co-occurring in the set of related objects of an event is connected
with an undirected edge. The object interaction graph of L1 has been illustrated in
Fig. 2a. The degree of dependency between objects can be measured by the distance
in the object interaction graph. For example, items i1 and i3 are associated with
order o2, while item i2 is not. This association is reflected in the graph as the distance
between i1/i3 and o2 is 1, whereas the distance between i2 and o2 is 2.

(a) The object interaction graph ofL1

(b) o1 as the leading
object

(c) o2 as the leading
object

Fig. 2: Object interaction graph and two subgraphs extracted with leading object type.

Checking Constraints for Object-Centric Process Executions 5

(a) Process execution pe1 (b) Process execution pe2

Fig. 3: Process executions extracted from corresponding object interaction graphs.

Then we introduce the case concept, i.e., process executions in object-centric
event data. Then we explain an extraction technique to extract process executions
from OCEL.

Definition 3 (Process Execution). Let L=(E, O, πetype, πotype, πomap, πtime,
<) be an object-centric event log, and OGL=(O, I) be the object interaction graph
of L. A process execution pe=(E′, O′, R′) is a tuple where:
- E′⊆E is a set of events,
- O′⊆O forms a connected subgraph in OGL.
- R′⊆{(e, e′)∈E′×E′ |∃o′∈O′∃⟨e1,...,en⟩=trace(o′)∃1≤i<ne=ei∧e′=ei+1} is the set of
process flow relation (i.e. direct-follow-relations),
Upe denotes the universe of process executions.

We adopt the extraction of process executions following the techniques in [3].
Consider the object interaction graph in Fig. 2a, by selecting Orders as the leading
object type, we first extract two object interaction graphs depicted in Fig. 2b and
Fig. 2c. Based on the object interaction graph, we extract two process executions
present in Fig. 3a and Fig. 3b. For instance, process execution pe1=(E, O, R) where
E=({e1, e2, e3, e4 e6, e8 e9, e10, e11}, O= {o1, i1, i2, i3, p1, p2}, R= {(e1, e2),
(e1, e3), (e2, e4), (e3, e6), (e4, e6), (e6, e8), (e6, e9), (e8, e10), (e9, e11)}. In order to
formalize the semantics of constraint models in the next section, we introduce several
notations for process executions.

Definition 4 (Notations for Process Executions). Let pe= (E, R, O) be a
process execution, et∈Uetype be an event type, e∈E be an event in pe. We introduce
the following notations:
- pree(E)={e′∈E | conn(e′, e)= true} is the set of events in pe preceding e, from
which e is reachable,
- suce(E)={e′∈E |conn(e, e′)=true} is the set of reachable events succeeding e,
- allet(E)={e′∈E |πetype(e′)=et} is the set of events corresponding to event type et,
- firstet(E)=e such that πetype(e)=et∧̸∃e′∈E πetype(e

′)=et∧e′<e is the first event
of type et in p. firstet(E)=⊥ denotes the absence of events of type et,
- lastet(E)=e such that πetype(e)=et∧̸∃e′∈E πetype(e

′)=et∧e′>e is the last event
of type et in p. lastet(E)=⊥ denotes the absence of events of type et.

As for pe1 depicted in Fig. 3a, pree3(E)={e1} is the set of events preceding e3,
suce3(E)={e6, e8 ,e9, e10, e11} is the set of events succeeding e3. allPick item(E)=
{e3} is the set of events that execute Pick item. firstCreate package(E)= e8 is the

6 Tian Li, Gyunam Park and Wil M. P. van der Aalst

Fig. 4: Sorted events of preceding/succeeding event types in process execution pe.

first event in pe1 that executes Create package. lastPackage delivered(E)=e11 is the
last event in pe1 that executes Package delivered.

4 Object-Centric Constraint Model

In this section, we explain how to model the constraints for process executions using
graphical notation. We first introduce the process flow cardinality and temporal
constraint models to describe the constraints from a behavioral perspective. Each con-
straint has a preceding event type, a succeeding event type, and constraint information
that enforces the restrictions between them. Afterward, we focus on the performance
constraints w.r.t. an event type in the process executions. Each constraint has one
event type and constraint information that specifies the performance requirements.

4.1 Process Flow Constraint Model

In the process execution extracted from object-centric event data, the same event
type may occur repeatedly. For example, one Place order event is later followed by
several Create package events, as the items from one order may be packed and sent
in different packages. Likewise, one Create package may be preceded by multiple
Place order events, as a package may contain items from different orders.

The above examples are abstracted and present in Fig. 4. Given a process
execution pe=(E, O, R), we abstract two event types, i.e., the preceding event type
Pre and succeeding event type Suc, such that Pre={p∈E |πtype(p)=pre} is the
set of events of type pre, and Suc={s∈E |πtype(s)=suc} is the set of events of type
suc. We sort the events in Pre and Suc based on their timestamps. A preceding
event p∈Pre is connected to a succeeding event s∈Suc if conn(p, s) is true. As
depicted, a preceding event p1 is connected to succeeding events s1 and sk−1 (edges
in blue), which indicates that events s1 and sk−1 are the connected succeeding events
for p1. We introduce cardinality types to indicate the allowed number of connected
succeeding events after each preceding event or the required number of connected
preceding events before each succeeding event.

Definition 5 (Process Flow Cardinality Constraint Model (CCM)). Let
A⊆Uetype be the set of event types, and C⊆Uct be the set of cardinality types. A
process flow cardinality constraint model CCM=(V , Ccd, Lpre cd, Lsuc cd) is a graph
where:
- V ⊆A is a set of nodes,
- Ccd⊆V ×V is the set of cardinality edges that connect a preceding event type to a
succeeding event type,
- Lpre cd∈Ccd→P(N) maps edges to the cardinality of the preceding event types,
- Lsuc cd∈Ccd→P(N) maps edges to the cardinality of the succeeding event type.

Checking Constraints for Object-Centric Process Executions 7

Fig. 5: A CCM for event types Place order, Create package and Package delivered.

Fig. 5 depicts a process flow cardinality constraint model CCM = (A, Ccd,
Lpre cd, Lsuc cd) with A={Place order, Create package, Package delivered}, Ccard=
{c1 = (Place order, Create package), c2 = (Create package, Package delivered)}.
Lpre cd(c1)=N+ (denoted as 1..∗) indicates that each event executing Create package
is preceded by at least one event executing Place order. Lsuc cd(c1)=N+ indicates
that each event executing Place order is succeeded by at least one event executing
Create package. Lpre cd(c2)={1} (denoted as 1..1) indicates that each event execut-
ing Package delivered is preceded by exactly one event executing Create package.
Lsuc cd(c2)={1} indicates that each event executing Create package is succeeded by
exactly one event executing Package delivered.

Definition 6 (Conformance of CCM). Let CCM=(V , Ccd, Lpre cd, Lsuc cd) be
a process flow cardinality constraint model, and pe=(E, O, R) be a process execution.
pe satisfies ccd=(et1, et2)∈Ccd, if and only if:
- ∀e∈allet1(E) |suce(allet2(E)) |∈Lsuc cd (ccd),
- ∀e′∈allet2(E) |pree′(allet1(E)) |∈Lpre cd (ccd).

For each constraint in CCM, the preceding event type et1 defines the events set
allet1(E), while the succeeding event type et1 defines the events set allet2(E). For
each preceding event e∈allet1(E), it is checked whether the number of succeeding
events of type et2 is within the allowed number. Likewise, for each succeeding event
e′∈allet2(E), it is checked whether the cardinality constraint is satisfied.

For example, consider the process execution pe1 in Fig. 3a, event e1 that executes
Place order is succeeded by events e8 and e9 that executes Create package. Both e8
and e9 that execute Create package are preceded by e1 that executes Place order.
Likewise, the cardinalities between event type Create package and Package delivered
are also satisfied. Therefore, process execution pe1 satisfies the CCM in Fig. 5.

Subsequently, we introduce a model that reflects the temporal constraints between
a pair of events in the process execution. For instance, items from one order may be
sent with multiple packages, and the timely delivery of all goods guarantees customer
satisfaction. Therefore, we define the process flow temporal constraint model to
enforce that the time between two specific events must conform to predefined time
frames, e.g., it is required that the last Package delivered should take place within
a week after the Place order.

Definition 7 (Process Flow Temporal Constraint Model (TCM)). Let
A ⊆ Uetype be the set of event types, U ∈{seconds, minutes, hours, days, weeks,
months} be the time unit, and P ∈{first, last} be the set of temporal patterns. A
process flow temporal constraint model TCM=(V, Ctp, Lpt, Ltp) is a graph where:
- V ⊆A is a set of nodes,
- Ctp⊆A×A is the set of temporal edges,
- Lpt∈Ctp→P×P maps temporal edges to temporal pattern,
- Ltp∈Ctp→R×R×U maps temporal edges to time frames.

8 Tian Li, Gyunam Park and Wil M. P. van der Aalst

Fig. 6: A TCM for event types Place order and Package delivered.

Fig. 6 depicts a process flow temporal constraint model TCM = (V, Ctp,
Lpt, Ltp) with A = {Place order, Package delivered}, Ctp = {c1 = (Place order,
Package delivered)}. Lpt(c1)=(first, last) indicates that we select the first event in
the process execution that executes Place order and the last event in the process
execution that executes Package delivered. Ltp(c1)=(0, 3, days) indicates that the
time frames between the first Place order and the last Package delivered should be
within three days.

Definition 8 (Conformance of TCM). Let TCM = (V, Ctp, Lpt, Ltp) be a
process flow temporal constraint model, and pe=(E, O, R) be a process execution.
For ctp=(v1, v2)∈Ctp, pe satisfies if and only if:
- Lpt(ctp)=(first, first): πtime(firstv1(E)) - πtime(firstv2(E))∈Ltp(ctp),
- Lpt(ctp)=(first, last): πtime(firstv1(E)) - πtime(lastv2(E))∈Ltp(ctp),
- Lpt(ctp)=(last, first): πtime(lastv1(E)) - πtime(firstv2(E))∈Ltp(ctp),
- Lpt(ctp)=(last, last): πtime(lastv1(E)) - πtime(lastv2(E))∈Ltp(ctp).

For each constraint in the model, the preceding event type v1 with the preceding
pattern determines which preceding event to take and the succeeding event type
v2 with the succeeding pattern determines the corresponding succeeding event. It is
checked whether the time gap between the two events satisfies the temporal constraint.

For instance, consider the process execution pe1 in Fig. 3a. Event e1 that executes
Place order is succeeded by events e10 and e11 that execute Package delivered. In this
scenario, e1 is chosen as the preceding event, and e11 is chosen as the last succeeding
Package delivered. The time frame is calculated based on their timestamps. Since
the time in between is less than three days, pe1 satisfies TCM .

Definition 9 (Performance Constraint Model (PCM)). Let A⊆Uetype be
the set of event types, Utp be the universe of time performance types, OT ⊆Uot be
the set of object types, T⊆Utp be the time performance types, U∈{seconds, minutes,
hours, days, weeks, months} be the time unit, F be the frequency performance type,
and C⊆Uct be the set of cardinalities. A performance constraint model PCM=(V,
Eot, Et, Efq, Lot, Lt, Lfq) is a graph where:
- V ⊆A×OT×T×F is a set of nodes,
- Eot⊆V ×OT is the set of cardinality edges,
- Et⊆V ×T is the set of time edges,
- Efq⊆V ×F is the set of frequency edges,
- Lot ∈ Eot →P(N) maps cardinality edges to object cardinality, i.e., the allowed
number of associated objects for this object type,
- Lt∈Et→R×R×U maps time edges to time frames,
- Lfq∈Efq→P(N) maps frequency edges to frequency value.

Fig. 7 defines a PCM=(V, Eot, Et, Efq, Lot, Lt, Lfq) where V ={Create package,
Waiting time, Item, Order, Frequency}, Eot = {e1 = (Create package, Order),

Checking Constraints for Object-Centric Process Executions 9

Fig. 7: A PCM for event type Create package.

e2 = (Create package, Item)}, Et = {e3 = (Create package, Waiting time)}, Efq =
{e4=(Create package, Frequency)}, Lot(e1)=N+ and Lot(e2)=N+ indicates that the
number of items and orders should be greater than 1, Lt(e3)=(0, 24, hours) indicates
the waiting time, Lfq(e5)= 1..3 implies that the occurrence of Create Package in
the process execution should lie between one to three times. Consider the process
execution pe1 in Fig. 3a. Events e8 and e9 correspond to event type Create package,
thus the frequency of this event type satisfies the constraint. Event e9 is associated
with two item objects and one order object, while event e8 is associated with one item
and one order object, thus the constraint on object frequency is satisfied. Moreover,
since the waiting time for e8 and e9 falls within 24 hours, pe1 satisfies the PCM.

Next, we define the Object-Centric Constraint Model (OCCM) models, which
relate multiple behaviors in process executions through a combination of process flow
modeling and performance modeling.

Definition 10 (Object-Centric Constraint Model (OCCM)). An object-
centric constraint model OCCM = (TCM, CCM, PCM) is a hybrid graph where:
- CCM=(V , Ccd, Lpre cd, Lsuc cd) is a process flow cardinality constraint model,
- TCM=(V ′, Ctp, Lpt, Ltp) is a process flow temporal constraint model,
- PCM=(V ′′, Eot, Et, Efq, Lot, Lt, Lfq) is a performance constraint model.

An object-centric constraint model OCCM combines constraints on the process
flow, but also constraints of certain event types that should be satisfied in the process
execution. A process execution conforms to the object-centric constraint model
OCCM=(CCM, TCM, PCM) if and only if it satisfies each constraint in CCM ,
TCM and PCM .

We implement the checking of constraints as a ProM plugin, which enables the
user to 1) extract process executions based on a leading object type 2) configure the
constraint model based on Definition 5, Definition 7 and Definition 9 3) evaluate the
violations of the constraint model in each process execution according to Definition 6
and Definition 8.

5 Implemantations and Evaluations

In this section, we first introduce the implementations of the approach and then
evaluate its feasibility by comparing it with other existing techniques.

5.1 Implementations

The approach presented before has been implemented as a ProM plug-in, which
supports the following functions: 1) The extraction of process executions from
object-centric event logs. 2) User-defined graphical OCCM. 3) Constraint checking
and violation diagnosis for the extracted process executions.

10 Tian Li, Gyunam Park and Wil M. P. van der Aalst

Fig. 8: An order management process: It begins with the event type “Place order”, which
involves the placement of an order with multiple items. Once the order has been confirmed,
the items in the order are picked from inventory and packed into a package. Finally, the
“Package delivered” and “Pay order” events mark the completion of the process.

5.2 Evaluations

Based on the implementation, we evaluate the ability of our approach by comparing
it with other state-of-the-art models that model the same constraints. Fig. 8 is an
Object-Centric Petri Nets (OCPNs) [2] that illustrates the simplified process model
of an order management process. We illustrate the following five constraints for the
extracted process executions in Fig. 9:

– Constraint 1: Pick item should be preceded by precisely one Place order. Place
order could be succeeded by arbitrary number of Pick item.

– Constraint 2: the final Pay order after the first Payment reminder should occur
within two weeks.

– Constraint 3: the allowed number of item objects associated with Create package
should be less than five.

– Constraint 4: the allowed frequency of Payment reminder is less than or equal
to two times.

– Constraint 5: the waiting time for Reorder item should be less than one day.

Fig. 9: OCCM in the ProM plug-in.

Next, we evaluate the ability of the OCCM by comparing it with other models
that describe the aforementioned constraints in the process.

Fig. 10 is the graphical notations of Declare templates. The response constraint in
Fig. 10a approaches constraint 1 by specifying that if Pick item occurs, Place order
occurs beforehand. However, it could not imply the allowed number of Pick item after
Place order, or the allowed number of Place order before Pick item. As for the at-
MostTwo constraint in Fig. 10b, it approaches constraint 4 by requiring that Payment

Checking Constraints for Object-Centric Process Executions 11

(a) Response constraint (b) AtMostTwo constraint

Fig. 10: Declare templates. Constraints 2, 3, and 5 cannot be modeled.

(a) Behavioral constraint (b) AOC cardinalities

Fig. 11: OCBC modeling technique [4]. Constraints 2, 3, and 5 cannot be modeled.

(a) Causal constraint (b) Object involvement constraint (c) performance constraint

Fig. 12: OCCGs modeling technique [10]. Constraints 1, 2, and 4 cannot be modeled.

reminder occurs no more than two times in each case. Declare template is incapable of
describing constraints 2, 3, and 5. The isolated case notion does not consider the interac-
tion of different object types, and the performance-related constraints are not specified.

There are other declarative-based techniques that address the drawbacks of using
single-case notions. Fig. 11 employs OCBC models to describe the constraints in
the event log. This technique relates events in the log through a data perspective.
One major drawback is that the temporal constraint, such as constraint 2, is missing
due to the absence of process executions. Also, time and frequency performance
constraints are missing in OCBC.

Another recent technique uses object-centric constraint graphs (OCCGs) to
evaluate constraints based on the metrics of the entire object-centric event log, i.e.,
the technique does not pinpoint violations for single process execution. As depicted in
Fig. 12a, the model describes that a simple causal relation between two event types
regarding an item object should hold for all events of type Place order. Due to the
absence of a process execution notion, it assigns an object type label for the ordering
relation. However, when multiple object types interact, the technique is not suitable
for modeling specific cardinality or temporal constraints between two events. Thus
constraints 1 and 2 are not represented, and frequency constraint 4 is not possible.

In summary, the declarative approach ignores object-centric settings and fails to
reflect performance, cardinality, and temporal constraints. In contrast, OCBC and
OCCG modeling techniques partly address the issue while not considering constraints
for each single process execution, whereas our modeling technique can explicitly
represent one-to-many and many-to-many relations on a more granular level. The
comparison is summarized in Table 2.

12 Tian Li, Gyunam Park and Wil M. P. van der Aalst

Table 2: Comparison of our approach with existing techniques.

Techniques Object-centric Settings Case Notion Performance Cardinality Temporal

Declare [4] - ✓ - - -
OCBC [4] ✓ - - ✓ -
OCCG [10] ✓ - ✓ - -
Our work ✓ ✓ ✓ ✓ ✓

6 Conclusion

In this paper, we proposed a novel graphical constraint-checking technique for process
executions extracted from object-centric event data. The declarative nature of our
approach enables a more flexible constraint modeling than procedural languages such
as Petri nets. We implemented the language as an editor in ProM, which supports
designing models to describe constraints for process executions. One future research
direction is to scale the atomic events to non-atomic as the event data in real life can
have a non-zero execution duration. Additionally, we plan to extend the approach for
more complex constraints, such that deviations on the attribute levels can be detected.

References

1. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence and
convergence in event data. In: SEFM. Lecture Notes in Computer Science, vol. 11724,
pp. 3–25. Springer (2019)

2. van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fundam.
Informaticae 175(1-4), 1–40 (2020)

3. Adams, J.N., Schuster, D., Schmitz, S., Schuh, G., van der Aalst, W.M.P.: Defining
cases and variants for object-centric event data. In: ICPM. pp. 128–135. IEEE (2022)

4. Artale, A., Kovtunova, A., Montali, M., van der Aalst, W.M.P.: Modeling and reasoning
over declarative data-aware processes with object-centric behavioral constraints. In:
BPM. Lecture Notes in Computer Science, vol. 11675, pp. 139–156. Springer (2019)

5. Berti, A., van der Aalst, W.M.P.: OC-PM: analyzing object-centric event logs and
process models. Int. J. Softw. Tools Technol. Transf. 25(1), 1–17 (2023)

6. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of
artifact-centric business process models. In: BPM. Lecture Notes in Computer Science,
vol. 4714, pp. 288–304. Springer (2007)

7. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data
Semant. 10(1-2), 109–141 (2021)

8. Jalali, A., Johannesson, P.: Multi-perspective business process monitoring. In:
BMMDS/EMMSAD. Lecture Notes in Business Information Processing, vol. 147, pp.
199–213. Springer (2013)

9. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring
business constraints with linear temporal logic: An approach based on colored automata.
In: BPM. Lecture Notes in Computer Science, vol. 6896, pp. 132–147. Springer (2011)

10. Park, G., van der Aalst, W.M.P.: Monitoring constraints in business processes using
object-centric constraint graphs. In: ICPM Workshops. Lecture Notes in Business
Information Processing, vol. 468, pp. 479–492. Springer (2022)

11. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-based
monitoring of process execution violations. In: BPM. Lecture Notes in Computer
Science, vol. 6896, pp. 182–198. Springer (2011)

	Checking Constraints for Object-Centric Process Executions

