
Process Comparison Using Petri Net

Decomposition

Tobias Brockho�1[0000−0002−6593−9444], Moritz Nicolas Gose2, Merih Seran
Uysal1[0000−0003−1115−6601], and Wil M.P. van der Aalst1[0000−0002−0955−6940]

1 Chair of Process and Data Science, RWTH Aachen University, Germany
{brockhoff,uysal,wvdaalst}@pads.rwth-aachen.de

2 RWTH Aachen University, Germany
moritz.gose@rwth-aachen.de

Abstract. Business processes drive the value creation at companies re-
quiring them to constantly monitor and improve the former. The �eld
of Process Comparison (PC) o�ers promising approaches to gain insight
into di�erences between variants of a process that one can leverage to
improve the latter. For example, one might consider the same process at
di�erent points in time or at di�erent sites. Recent PC methods consider
event logs containing data on real-life process executions the single source
of truth. However, there often exist additional speci�cations that can be
represented as Petri nets. In this paper, we propose an approach that
leverages a given Petri net to compare two event logs in a hierarchical
manner. To this end, we decompose the provided net into subprocesses
and extract data on their executions from the event logs. Based on these
executions, we exemplify how one can �exibly assess di�erent aspects of
a process (e.g., control �ow, performance, or conformance). Using sta-
tistical tests, we eventually detect di�erences between subprocesses with
respect to a selected aspect. Despite the approach is mostly agnostic
to the decomposition applied, we present a decomposition strategy that
we deem particularly suitable for PC. For this purpose, we consider the
Re�ned Process Structure Tree of a Petri net and propose a novel prepro-
cessing approach to improve the �nal decomposition. We implemented
the approach in ProM and evaluate it in a real-life case study.

Keywords: Process Mining · Process Comparison · Process Variant Analysis ·

Business Process Intelligence

1 Introduction

Modern information systems record increasing amounts of data on business pro-
cess executions. Event data are a special type of these data where each data point
is an event comprising a timestamp, an activity name, and a case id related to a
business case. Process mining methods are concerned with the analysis of event
data and the implementation of event-data-to-knowledge pipelines. Ultimately,

2 T. Brockho� et al.

process mining aims to provide insight to improve the process. Process Com-
parison (PC) approaches take this idea one step further revealing di�erences
between two (or more) process variants. Di�erences can, for example, concern
the process' control �ow (e.g., decision likelihoods) or performance (e.g., cycle
times). Thereby, PC provides insight into the e�ect of changes, comparing pro-
cess executions before and after a change, or into particularities of a process'
environment, comparing implementations at di�erent sites.

Recent PC approaches often consider event data as the single source of truth
and, therefore, only take event logs as inputs [10,8,25]. Yet, this neglects process
models (e.g., BPMN models) as another valuable source of information. In prac-
tice, BPMN models are fundamental for the design and re-design of enterprise
information systems [3] making them an essential part of a process' documen-
tation. For analytical purposes, these models can be seamlessly converted into
Petri nets. The advantages of incorporating process models into PC are manifold:
(i) process models help to manage the complexity of processes. PC approaches
solely based on event data often rely on follows relations between activities.
However, example traces cannot properly represent these relations for large and
concurrent processes (e.g., production processes). Besides, process models allow
to explicitly consider duplicated transitions and to model and analyze interest-
ing relations. For example, in [4], the authors add user-de�ned places to measure
times for larger subprocesses within a single process variant. (ii) Submodels of-
ten de�ne logical units enabling us to analyze di�erences at di�erent levels of
granularity. (iii) Finally, models provide a natural context to present the results
of PC. They are the common ground in a projected view of the di�erences. De-
spite the advantages of model-based analysis, merely considering models usually
results in a loss of information. For instance, model notations such as Petri nets
do not support modeling frequencies. Besides, the actual process executions can
deviate from the model or exhibit dependencies not represented by the model.

In this paper, we propose a hybrid approach, which takes two event logs
and a shared process model as an input. Figure 1 shows the main concepts of
the approach. In contrast to existing approaches, we compare the event logs in a
hierarchical manner enabling process analysts to conduct an analysis at di�erent
levels of granularity. For example, in Figure 1, we detect a cycle time di�erence
for a large subprocess on the �rst level of the hierarchy. By drilling down into the
subprocess, one can re�ne this knowledge: (i) there is no signi�cant di�erence
regarding the time it takes to execute the redo part and (ii) one concurrent
branch is even executed faster in the other process variant.

In this work, we use process models, transformed in Petri nets, to enable a
hierarchical analysis, but we discover di�erences based on the event data. To this
end, we decompose the Petri net into a hierarchy of subprocesses and compute
subprocess executions relating subprocesses and event data. Based on these ex-
ecutions, we de�ne measurements that assess di�erent aspects of a process. In
doing so, we not only consider the control-�ow and performance perspective, but
also propose to compare how process variants deviate from the model.

Process Comparison Using Petri Net Decomposition 3

List-Alt Conformance

Map-Signs Control Flow

CLOCK Performance

Database + Database
Event Logs

Su
bp

ro
ce

ss
E

xe
cu

ti
on

s

Hierarchical
Process

ComparisonArrow-Alt-Circle-Right Arrow-Alt-Circle-Right

CLOCK Increased time left/right process variant

Fig. 1: Hierarchical Process Comparison on two event logs using a shared process
model. First, we decompose the Petri net and relate the resulting subprocesses
with the event data. Based on these subprocess executions, we compare the two
process variants with respect to various perspectives. Ultimately, each vertex in
the decomposition shows whether a di�erence was discovered for the respective
subprocess. The color is chosen based on the e�ect size of the di�erence. Selecting
a subprocess, it is highlighted in the original model.

While the approach is mostly agnostic to the decomposition applied, it is
usually preferable that the nodes in the decomposition represent logically coher-
ent subprocesses. We therefore propose a decomposition strategy that leverages
the Re�ned Process Structure Tree (RPST) of a model [27]. In the RPST, each
node corresponds to a subprocess that is entered and exited via a single node,
respectively. However, as illustrated in Section 4.3, relaxing this requirement can
improve the decomposition (e.g., to handle long-term dependencies). To this end,
we propose an additional preprocessing step preceding the RPST computation,
where we use the event log to remove places to improve the block-structuredness
of the Petri net and, consecutively, the decomposition.

The remainder of this paper is structured as follows: we discuss related
works and preliminary concepts in Sections 2 and 3, respectively. In Sections 4.1
and 4.3, we discuss the decomposition approach and illustrate its application
to PC in Section 4.2. In Section 5, we evaluate the method in a real-world case
study. Finally, we give our conclusion and directions for future work in Section 6.

2 Related Work

Our approach is directly related to works on PC and Petri net decomposition as
well as to approaches for decomposed conformance checking.

For a comprehensive survey on PC, we refer the reader to [26]. Despite not
being limited to the control �ow or performance perspective [22], most PC ap-
proaches consider these. One can distinguish PC approaches that consider event
logs as input [8,10,22,25,7,28], compare process models [14,6,18], or require a
process model and two (or more) event logs as input [23,12,30,17,1]. Log-based
approaches often represent follows relation between activities by means of a

4 T. Brockho� et al.

graph [8,22,25,7,28]. Then, a statistical test is used to detect frequency di�er-
ences [8,22,25]. For example, in their seminal approach, Bolt et al. represent the
event logs by a shared transition system [8]. Like our approach, they introduce
measurement functions to annotate the states and edges of the transition system
and apply Welch's t-test to detect di�erences. In contrast to our work, the pro-
posed measurements neither assess di�erences on a subprocess level nor consider
relations between subprocesses. Besides, in contrast to model-based approaches,
event log-based methods cannot represent duplicate activities.

Process model comparison methods analyze di�erences on the process speci-
�cation level [14,6,18]. If event data is available, only considering models would
discard the event data as a valuable source of information providing insight into
decision likelihoods and time. Therefore, approaches for data-driven PC using
process models generally enrich the latter with information obtained from the
event data. Thereby, one can investigate aspects like execution times and de facto
path frequencies in the model. For example, in [17], the authors merge two pro-
cess models into a di�erence model which is further enriched with instance tra�c
information. For each edge, they then detect frequency di�erences. In [30], Wynn
et al. explicitly consider Petri nets. Like our approach, they use alignments [5] to
relate the model with the (potentially slightly deviating) data. Compared to our
method, their approach provides more detailed results on waiting times between
transitions. However, they only consider pairs of transitions rather than larger
subprocesses and their relations. Moreover, they do not validate the statistical
signi�cance of the di�erences returned. In general, to the best of our knowledge,
there currently exists no hierarchical, model-based PC approach.

Petri net decomposition techniques simplify models to (heuristically) solve
problems on subnets. For di�erent applications, various approaches have been
proposed [2,9,13,27,32,16]. In this work, we compare process variants with re-
spect to coherent sub-work�ows (i.e., subprocesses) of the original model. To this
end, we build on the notion of single-entry, single-exit (SESE)-fragments, which
have originally been proposed in [27] as a unique, hierarchical decomposition of a
process model into self-contained subnets. This notion expands upon an earlier
de�nition by Johnson et al. [15]. The resulting, more granular decomposition
coined the term Re�ned Process Structure Tree (RPST). Further improvements
and a more e�cient way to compute the RPST have been proposed in [24]. In
this work, we propose an additional pre-processing step that can improve the
decomposition for the sake of PC but weakens the structural guarantees.

An application of SESE fragments related to our approach is decomposed
conformance checking [20]. While we also consider conformance in the context
of RPSTs, we use fragments to aggregate the diagnostics, similar to [21], rather
than improving the computational e�ciency.

3 Petri nets and Process Mining Concepts

We denote sets by capital letters. Given a set S, its powerset is denoted by P(S),
and the set of all multisets is denoted by B(S). For a multiset m ∈ B(S), the

Process Comparison Using Petri Net Decomposition 5

multiplicity and an element s ∈ S is m(s) ∈ N. Given two multisets m1,m2 ∈
B(S), we write m1+m2 (m1−m2) to denote their sum (di�erence). Besides, we
write m1 ≤ m2 if m1(s) ≤ m2(s) holds for all s ∈ S. In an abuse of notation, we
also apply these operators to pairs of sets and multisets.

The Kleene star (S∗) represents the set of all �nite sequences over a (count-
able in�nite) alphabet S. Given a sequence σ = ⟨σ1, . . . , σn⟩ ∈ S∗, we refer to
its ith element as σi. The length of σ is denoted by |σ|. Let I = {i1, . . . , im} ⊆
{1, . . . , |σ|} be a set of indices. Assuming the order i1 < · · · < im, the index set
I induces the subsequence σ[I] = ⟨σi1 , . . . ,σim⟩.

Petri Nets Let A denote the universe of activity labels.

De�nition 1 (Labeled Petri Net). Let τ /∈ A be a special silent label. A
labeled Petri net is a tuple N = (P, T, F, l), where (i) P is a �nite set of places,
(ii) T is a �nite set of transitions, (iii) F ⊆ (P ×T)∪ (T ×P) is a �ow relation,
and (iv) l : T → A∪ {τ} is a labeling function.

Let N = (P, T, F, l) be a Petri net. For an element x ∈ P ∪T , its preset (postset)
are de�ned as •x := {y | (y, x) ∈ F} (x• := {y | (x, y) ∈ F}). Given a set of
edges F ′ ⊆ F , we denote the set of adjacent places by PF ′ := {p ∈ P∃t ∈
T ((p, t) ∈ F ′ ∨ (t, p) ∈ F ′)}. Likewise, for the set TF ′ of adjacent transitions.
The edge-induced subnet NF ′ is the Petri net

(
PF ′ , TF ′ , F ′, l ↾TF ′

)
, where l ↾TF ′

denotes the restriction of l on the adjacent transitions. The semantics of Petri
nets are determined by marking places, �ring (sequences of) transitions.

De�nition 2 (Marking, Firing). Let N = (P, T, F, l) be a labeled Petri net.
A marking m ∈ B(P) of N is a �nite multiset of places. A transition t ∈ T is
enabled in m if •t ≤ m. If t is enabled, �ring t in m results in the marking
m′ = (m− •t) + t•, written as m[t⟩Nm′.

De�nition 3 (Firing Sequence). Let N = (P, T, F, l) be a labeled Petri net
and mI ,mF ∈ B(P) be two markings. A sequence σ = ⟨t1, . . . , tn⟩ ∈ T ∗ is a

valid �ring sequence from mI to mF of N , written mI
σ−→N mF , if there exist

markings m1, . . . ,mn+1 such that (i) m1 = mI , (ii) mn+1 = mF , and (iii) for
1 ≤ i ≤ n we have mi[ti⟩Nmi+1.

In process mining, a commonly considered class of Petri nets are work�ow nets
(WF-nets). A WF-net has a clear start and end, and all elements are on a
directed path from the start to the end.

De�nition 4 (Work�ow Net (WF-net)). A labeled Petri net N = (P, T, F, l)
is a labeled work�ow net (WF-net) if (i) there is a unique source place pI
(i.e., {pI} = {p ∈ P | •p = ∅}), (ii) there is a unique sink place pF (i.e.,
{pF } = {p ∈ P | p• = ∅}), and (iii) every node is on a path from pI to pF .

The work�ow system net (WF-sytem net) explicitly establishes a connection
between a WF-net and its semantics (i.e., its initial and �nal marking).

6 T. Brockho� et al.

De�nition 5 (Work�ow System Net (WF-sytem net)). A work�ow sys-
tem net (WF-sytem net) SN = (N,mI ,mF) comprises a labeled WF-net N =
(P, T, F, l), the initial marking mI = [pI], and the �nal marking mF = [pF].

The language of a WF-sytem net comprises all sequences of visible activity labels
of its valid �ring sequences. Finally, a WF-sytem net is safe if we cannot reach
a marking where a place contains multiple tokens.

De�nition 6 (Safeness). A WF-sytem net SN = ((P, T, F, l),mI ,mF) is safe
if there is no valid �ring sequence σ ∈ T ∗ reaching a marking m′ ∈ B(P) from

mI (i.e., mI
σ−→N m′) with m′(p) > 1 for some p ∈ P .

Event Data We leverage Petri nets to compare two process variants based on data
of their real-life executions. Each process execution corresponds to a business case
and comprises information on the activities executed for this particular case. For
each activity execution, we record the activity's name and a timestamp. While
additional attributes are possible, they are not considered in this work. An event
log collects multiple process executions.

De�nition 7 (Event Log). Let A and T denote (countable in�nite) universes
of activity names and timestamps. The set of all activity executions is de�ned
as E := A × T . A trace σ = ⟨(a1, t1), . . . , (an, tn)⟩ ∈ E∗ is a �nite sequence of
activity executions respecting time�that is ti ≤ tj for all 1 ≤ i < j ≤ n. An
event log L ∈ B(E∗) is a �nite multiset of traces.

Dealing with event data, we frequently use two types of projection. The projec-
tion πS′ : S∗ → (S′)∗ of a sequence over a set S on a subset S′ ⊆ S only keeps the
elements contained in S′. Consider the trace σ = ⟨(a, 1), (b, 2), (c, 3)⟩. Projecting
σ onto all executions of a and b yields the trace π{a,b}×T (σ) = ⟨(a, 1), (b, 2)⟩.
Moreover, we write πtime : E∗ → T ∗ (πact : E∗ → A∗) to denote the projection of
traces onto the associated timestamps (activities). For example, for σ, we obtain
the sequence πtime(σ) = ⟨1, 2, 3⟩. In a slight abuse of notation, we also apply
πtime and πact to individual activity executions.

Alignments In real life processes, the traces recorded might not perfectly match
with the prescribed Petri net model. Introducing a dedicated skip symbol, we
additionally require that columns either contain a single skip symbol or that the
trace's activity matches the transition's label. Thereby, an alignment represents
a joined, synchronized execution of the trace and the model.

De�nition 8 (Alignment [2]). Let σ ∈ E∗ be a trace and SN = (N,mI ,mF),
N = (P, T, F, l), l : T → A be a WF-sytem net. Let ≫ /∈ A∪ T denote a special
no-move symbol. We de�ne the sets of synchronous, log, model, and all moves
as MSYNC := {(e, t) | t ∈ T, l(t) ̸= τ, e ∈ E , πact(e) = l(t)}, MLM := E × {≫
}, MMM := {≫} × T , and MALL := MSYNC ∪ MLM ∪ MMM, respectively. An
alignment of σ and N is a sequence of moves γ ∈ M∗

ALL such that

(i) projection π1 (γ) on the �rst element, ignoring ≫, yields σ�that is,
π ̸≫

(
π1 (γ)

)
= σ�and

Process Comparison Using Petri Net Decomposition 7

Input

Skeleton RPST Combine Align Executions Measure Evaluate

Decomposition Replay Process Comparison

p
1

a t 1 b t 2

p
2

c t 3
p
3

d t 4 e t 5

p
4

p
5

p
6

p1

a

t1

b

t2

p2

c

t3 p3

d

t4

e

t5

p4

p5

p6

S1

S2

S3

S4

S5

S6

S7
F

SLT1

SLT2

Arrow-Alt-Circle-Right

Database + Database

• • • • •
t• t• t• t• t•

Execution Sx

Arrow-Alt-Circle-Right

F

S3

S1 S2

S4 S7

S5 S6

SLT1 SLT2Arrow-Alt-Circle-Right

Fig. 2: Overview of our three-stage approach for comparing two process variants.
First, we hierarchically decompose the model into subprocesses. Second, we re-
play the event data to relate the subprocesses with the data. Third, we compare
the variants with respect to the subprocesses from various perspectives. Even-
tually, we project the di�erences onto the decomposition.

(ii) projection π2 (γ) on the second element, ignoring ≫, yields a valid �ring

sequence from mI to mF of N�that is, mI

π ̸≫(π2(γ))−−−−−−−→N mF ,

where π ̸≫ := π(E∪T)\{≫} denotes the projection that removes skips.

The set of best alignments is typically determined by a cost function minimizing
the number of log and visible model moves. In this work, we assume that a single
best alignment is given, which can make our approach non-deterministic. Finally,
given an alignment γ of a trace σ and WF-sytem net SN = ((P, T, F, l),mI ,mF),
the marking reached after executing the �rst 1 ≤ k ≤ |γ| steps is mal

γ (k) with

mI

π ̸≫(π2(γ[{1,...,k}]))−−−−−−−−−−−−−→N mal
γ (k). (1)

4 Hierarchical Process Comparison

This section presents our approach for comparing the executions of two process
variants based on a shared process model. To avoid boundary cases (e.g., empty
alignments), we assume that event logs do not contain empty traces and that
WF-sytem nets have at least one transition. Figure 2 shows an overview of
our approach that has three stages: (i) the model decomposition stage, where we
hierarchically decompose the model into subprocesses; (ii) the replay stage, where
we relate the subprocesses with the event data; and (iii) the comparison stage,
where we compare the process variants with respect to di�erent perspectives.

4.1 Hierarchical Decomposition

Existing Petri net decomposition approaches [27,2,9,13,16] focus on the seman-
tic relation between the original Petri net and the sub-nets. For example, the

8 T. Brockho� et al.

p1 t1

p2

a1

t2

a2

t3

p4

p3

b

t4 p5

c

t5 p6

d1

t6

d2

t7

p7

p8

e

t8

f

t9

p9

p10

g

t10 p11

S0 S1 S2S4 S8S9

S10

S5

S6

S7

S3

(a) Petri net N1

S0

S1

S2

S4

S8

S9 S10

S5

S3

S6 S7

(b) Decomposition

Fig. 3: Illustration of a hierarchical WF-net decomposition. Sub�gure (a) shows
a WF-net and ten (S0, . . . , S9) (single-entry, single-exit (SESE)) subprocesses.
Each subprocess contains the edges inside the illustrated rectangle. A hierarchy
of these subprocesses is depicted in Sub�gure (b).

decomposition proposed in [2] is motivated by the idea of stitching together valid
�ring sequences of the sub-nets to an (over-optimistic) execution of the original
net. In contrast, as illustrated in Figure 2, we align the log with the original
net. Thereby, we gain more freedom to decompose the net in a hierarchical man-
ner without facing problems when relating process executions to sub-nets. Yet,
computing alignments can be computationally costly. In this work, we employ a
generic hierarchical decomposition based on the edges of a WF-net.

De�nition 9 (Hierarchical Decomposition). Let N = (P, T, F, l) be a WF-
net. A hierarchical decomposition of N is a tree H = (S, E),S ⊆ P(F), E ⊆ S×S
rooted at a vertex v0 ∈ S and downward-pointing edges such that v0 = F ; for
(v1, v2) ∈ E, we have v1 ⊃ v2; and for S ∈ S, the induced subnet NS is connected.

Intuitively, each vertex in the hierarchy corresponds to an edge induced subnet of
the original net. Under this interpretation, the original net is at the root, and each
non-root vertex's net is a subnet of its parent's net�that is, it comprises a subset
of its parent's net's places, transitions, and edges. We require connectedness of
subprocesses to later de�ne the semantics of a subprocess execution.

Figure 3b shows a decomposition of the WF-net in Figure 3a. Note that, given
the ten subprocesses in Figure 3a, De�nition 9 does not enforce a unique hier-
archy. A decomposition where S0 is the root and all remaining subprocesses are
S0's children would also be valid. While a deeper hierarchy is usually preferable,
there can be exceptions. For example, an analysis that investigates parent-child
relations can bene�t from this additional freedom (cf. Equation (10)).

In general, De�nition 9 does not impose strong restrictions on the decomposi-
tion applied. To relate event data to transitions of a Petri net, we use alignments
where we consider the complete trace and net. In contrast to relating individual
subprocesses independently of each other, this guarantees a globally consistent
assignment without additional considerations (e.g., an event cannot be assigned
to di�erent transitions having the same label). Therefore, the measurements
proposed in Section 4.2 are mostly independent of the decomposition.

Process Comparison Using Petri Net Decomposition 9

p5

t5

b

t6

e

t7

f

t8

a1

t3p2

p3

a2

t4 p6

p7

c

t9t1

p4

d

t2

p1 p8

S1 S2

S3

S4

S5

S6

S7

S8

S9

(a) Petri net N3

p5

t5

b

t6

e

t7

f

t8

a1

t3p2

p3

a2

t4 p6

p7

c

t9t1

p4

d

t2

p1 p8

S1 S2

S3

S4

S5

S6

S7

S8

S9

(b) Decomposition of N3

Fig. 4: WF-net N3 = (P3, T3, F3, l) illustrating hierarchical PC. The edges in
the colored box in (a) depict the canonical fragments of the net. Sub�gure (b)
depicts a decomposition of N3.

Despite our approach being mostly agnostic to the decomposition applied,
structural subprocess properties can play a role when interpreting the results. In
particular, we distinguish subprocesses�so-called fragments [27]�where control
�ow enters and exits through a single node, respectively.

De�nition 10 (Single-entry, single-exit (SESE) Subprocess). Let N =
(P, T, F, l) be a WF-net and S ⊆ F be a set of edges such that NS is connected.
A vertex v ∈ PS ∪ TS is a boundary vertex of NS if it is the source or the
sink of N or if v is incident to edges e1 ∈ S and e2 /∈ S; otherwise v is an
internal vertex. The subprocess S is a SESE subprocess if there exists entry and
exit vertices vi, ve ∈ PS ∪ TS such that (i) vi (ve) are boundary vertices; (ii) no
incoming edge of vi is in S or all outgoing edges of vi are in S; (iii) no outgoing
edge of ve is in S or all incoming edges of ve are in S; (iv) there is no other
boundary vertex v ∈ (PS ∪ TS) \ {vi, ve}.
All subprocesses illustrated in Figure 3a are SESE subprocesses.

4.2 Measuring Di�erences

To compare event logs using the decomposition, we �rst relate the subprocesses
to the event data. We then de�ne various measurements that, for example, assess
di�erences in the control �ow or performance of subprocesses. Finally, we use
hypothesis tests to detect di�erences with respect to the measurements. We
illustrate the following concepts and a few interesting measurements on the WF-
net shown in Figure 4a. Figure 4b shows its decomposition.

Subprocess Executions In contrast to works that project the data onto the
subprocesses [2,20], we extract subprocess executions from alignments. Replay-
ing the alignment, we consider a subprocess being under execution as long as an

10 T. Brockho� et al.

associated place contains a token. Therefore, we require safe WF-nets to avoid
intermingled executions�that is, multiple, simultaneous executions of a subpro-
cess. If a place contains two tokens �created� by two events, it becomes unclear to
which event we should to relate the �consuming� event. To distinguish the con-
sumption and production of tokens, we introduce two helper functions. Given an
alignment γ and a subprocess S, we count the number of tokens contained in S
after the �rst k steps (inclusive) and the number of tokens contained before the
kth step produced tokens:

#al
S,γ(k) =

∣∣[p ∈ mal
γ (k) | p ∈ PS]

∣∣, (2)

#al,−
S,γ (k) =

∣∣∣∣∣
[
p ∈

(
mal

γ (k)−
{
[] if π2 (γk) =≫
π2 (γk)

•
else

)∣∣∣∣∣ p ∈ PS

]∣∣∣∣∣. (3)

Next, we de�ne the intervals during which a subprocess is under executions.

De�nition 11 (Subprocess Execution). Let SN = ((P, T, F, l),mI ,mF) be
a WF-sytem net, S ⊆ F be a set of edges, σ ∈ E∗ be a trace, and γ ∈ M∗

ALL be
an alignment of σ and SN. The partial execution intervals of S given γ are

Epart
SN,γ,S = {{i, . . . , j}|1 ≤ i ≤ j ≤ |γ| (Intervals)

∧ ∀i ≤ k < j
(
#al

S,γ(k) ≥ 1
)

(Token contained)

∧ ∃i ≤ k ≤ j
(
π2 (γk) ∈ TS

)
(Transition �red)

∧∀i < k < j
(
#al,−

S,γ (k) = 0 → π2 (γk) ∈ TS

)}
.(No short-circuiting loops)

(4)
The complete execution intervals of S given γ are the maximal partial execution
intervals

Eexec
SN,γ,S = {I1 ∈ Epart

SN,γ,S | ∀I2 ∈ Epart
SN,γ,S (I1 ⊆ I2 → I1 = I2)}. (5)

Equation (4) gives the conditions for a subprocess to be considered under execu-
tions. First, the subprocess must contain a token. Second, at least one transition
of the subprocess must �re as for place-bounded subprocesses a token can pass
without entering the subprocess. For example, consider p1 in Figure 4a and the
subprocesses S1 and S5. Despite both subprocesses contain p1, a trace can only
enter one. Third, there is no outside short-circuiting loop (i.e., a loop containing
a single transition that is not adjacent to the subprocess) that consumes the last
token and produces a new token in it. For example, consider the subprocess S3

in Figure 4a and the following alignment γ2:

#al,−
S3,γ2

(k) 0 0 1 0 0 0 0 0 1 0

#al
S3,γ2

(k) (1 1 1 1 1 {1) 1 1 1 0}

γ2 =
≫ a1 b a2 a2 ≫ a1 a2 b c
t1 t3 t6 t4 ≫ t5 t3 t4 t6 t9

. (6)

The token counts of S3, displayed on top of the alignment, show that t5 consumes
the last token before it produces a new token in S3. Yet, t5 is not contained in

Process Comparison Using Petri Net Decomposition 11

S3. Finally, Equation (5) de�nes a subprocess' executions as the longest intervals
during which the process is considered being under execution. In Equation (6),
the parentheses and braces indicate the resulting executions.

Subprocess Measurements Based on the subprocess executions, we can com-
pare processes with respect to various aspects on di�erent levels of granularity.

De�nition 12 (Trace Measurement). Let SN = ((P, T, F, l),mI ,mF) be a
WF-sytem net, S ⊆ F be a set of edges, σ ∈ E∗ be a trace, and γ ∈ M∗

ALL be an
alignment of σ and SN. The universe of perspectives is F . The subprocess trace
measurement with respect to a perspective p ∈ F is a function µp

SN,S : M
∗
ALL →

R ∪ {⊥} where ⊥ denotes the absence of a measurement.

In the following, we exemplify �ve measurements to illustrate how the de-
composition and subprocess executions facilitate the detection of process variant
di�erences. In particular, we consider the control �ow, performance, and con-
formance perspective. To this end, we assume the following context for the re-
mainder of this section: Let SN = (N,mI ,mF), N = (P, T, F, l) be a WF-sytem
net, H = (S, E), S ⊆ P(F) be a hierarchical decomposition of SN, S ∈ S be a
subprocess, σ ∈ E∗ be a trace, and γ ∈ M∗

ALL be an alignment of σ and SN.

Control �ow First, we can measure whether a subprocess was activated, and
how often it was executed:

µact
SN,S(γ) =

{
1 if

∣∣Eexec
SN,γ,S

∣∣ > 0

0 else
, µfreq

SN,S(γ) =
∣∣Eexec

SN,γ,S

∣∣. (7)

These measurements show di�erences with respect to the frequency of branching
decisions and the number of repetitions.

In addition, the hierarchical nature of the decomposition facilitates the anal-
ysis of conditional decisions. Consider the following two event logs (not showing
time for simplicity) that perfectly �t the Petri net N3:

L1 =
[
⟨a1, a2, b, c⟩60, ⟨d, e⟩14, ⟨d, f⟩26

]
, (8)

L2 =
[
⟨a1, a2, b, c⟩40, ⟨d, e⟩27, ⟨d, f⟩33

]
. (9)

In L2, the activities e and f occur more frequently. Accordingly, the control �ow
measurements in Equation (7) show that, in L2, executing S8 and S9 is more
likely. However, if we respect the initial choice, the likelihood of observing f given
that d was initially chosen is higher for L1 (65% vs 55%). We can incorporate this
into our frequency measurement by considering the parent subprocess S7. We
only consider whether S8 and S9 were activated if S7 was activated. Assuming
that S is not the root of H, let S̄ be the parent of S (i.e., (S̄, S) ∈ E). We de�ne
the conditional subprocess activation measurement

µc.act
SN,S|S̄(γ) =

{
µact
SN,S(γ) if µact

SN,S̄
(γ) = 1

⊥ else
. (10)

12 T. Brockho� et al.

Conformance Process executions do not always comply with the process model.
Thus, process variants might not only di�er in how frequently they activate
model elements but also in how they deviate from the prescribed control �ow. An
example is the occurrence of log moves measurement. For the subprocess S, we
consider log moves on activities that are among the labels of the transitions TS .
In particular, we count log moves that occur outside the subprocess' executions:

µcc
SN,S(γ) =

∣∣{i ∈ {1, . . . , |γ|} |γi ∈ MLM ∧ ∃t ∈ TS l(t) = πact
(
π1 (γi)

)
∧∀I ∈ Eexec

SN,γ,S i /∈ I
}∣∣ . (11)

Di�erences with respect to this measurement show that, in one process variant,
transitions of S are more likely to occur at unexpected positions. However, this
measurement also illustrates a major challenge dealing with log moves�namely,
duplicate transition labels. In case multiple transitions have the same label, we
count log moves multiple times.

Performance Performance di�erences between process variants are often of ma-
jor interest. Using our notion of process executions, one can de�ne various perfor-
mance measurements. In the following, we exemplify two complementary mea-
surements and discuss their limitations. Given a complete execution interval
I ∈ Eexec

SN,γ,S of the subprocess S, we �rst consider the time series

γ
sync_t

S,[I] = πtime
(
π1
(
πMSYNC∩(E×TS)

(
γ[I]

)))
(12)

of synchronously executed subprocess transitions in I. Next, we de�ne the syn-
chronous subprocess execution duration as the time di�erence between the �rst
and last synchronously executed transition that is adjacent to the subprocess:

µ
sync_t
SN,S (γ) =


⊥ if |γsync_t

S,[I] | = 0

for all I ∈ Eexec
SN,γ,S

avg

({
max(γ

sync_t

S,[I])

−min(γ
sync_t

S,[I])

∣∣∣∣∣ I ∈ Eexec
SN,γ,S

∧|γsync_t

S,[I] | > 0

})
else

(13)
While this measurement provides insight into di�erences in the duration during
which a subprocess was active, it does not account for delays prior or after the
execution. For example, consider the subprocess S3 in N3 and the alignment

γ3 = ≫
1

b
10

a1
11

a2
20

c
t1 t6 t3 t4 t9

, (14)

where the activity executions' timestamps are depicted on top of the activities.
Despite the �rst move marks S3, the �rst activity is executed at time step 10.
In contrast, µ

sync_t
N3,S3

(γ3) = 1 suggests a fast execution of S3. To compare initial
delays, we can consider the elapsed time since case start measurement

µ
elap_t
SN,S (γ,σ) = min

I∈Eexec
SN,γ,S

(
min(γ

sync_t

S,[I])
)
− πact(σ0) (15)

Process Comparison Using Petri Net Decomposition 13

that extracts the time until the very �rst synchronous execution of a subpro-
cess' transition. However, even if we consider both measurements, there are
four major limitations: (i) for loops, we only consider the �rst delayed start.
(ii) The elapsed time since case start measurement is monotonically increas-

ing (e.g., µ
elap_t

N3,(t4,p6)
(γ3) = µ

elap_t
N3,S3

(γ3) + (11 − 10)). Thus, the analyst needs to

consider that di�erences can propagate to later parts of the process. (iii) The
synchronous subprocess execution duration of subprocesses containing a single
transition is either zero or unde�ned. (iv) For non-SESE subprocesses, there
can be additional externally caused delays even after a subprocess' execution
started. Therefore, one generally needs to consider multiple performance mea-
surements depending on the performance aspect of interest and the subprocess
under consideration. For example, to address the third limitation, we might con-
sider the causal predecessors and successors of a transition in the run of the
Petri net. For S8, we would compute the time between �ring t2 and t7. Yet, for
the concurrent subprocesses S3 and S4, this means that their duration would
be determined by t1 and possibly t9 if we consider the transition that removes
the last token. In this case, we would get the same measurement value for both
subprocesses.

Hypothesis Testing Applying the presented trace measurements, we extract zero
(⊥) or one value per alignment. As we aim to compare subprocesses based on
their executions, we �rst discard the irrelevant measurements (i.e., measure-
ments having the value ⊥). For each subprocess and perspective, we thereby
obtain a population of real-valued measurements. To detect statistically signif-
icant di�erences between populations, we apply hypothesis testing under the
null hypothesis that there is no signi�cant di�erence. In doing so, we implicitly
assume that the measurements are independent of each other. In practice, this
assumption might not always hold (e.g., if a single resource handles multiple
cases simultaneously). Nevertheless, case independence is a common assumption
in the �eld of PC [10,8,25]. Moreover, we additionally assume that the measure-
ments are approximately normally distributed; yet the populations might have
di�erent means and variances. Based on these assumptions, we apply Welch's
t-test [29] with a p-value of 0.05 to test if two populations' mean values di�er.

Besides the signi�cance of a di�erence, the e�ect size assesses its strength. For
large populations, even small di�erences in their means can become statistically
signi�cant. Therefore, we employ Cohen's d [11] to quantify a di�erence's e�ect
size. Eventually, we determine the color of each subprocess in the decomposition
based on whether there is a signi�cant di�erence, whether the mean is larger for
the left or right process variant, and the Cohen's d value.

4.3 Strategies for Decomposition

While our notion of WF-net decomposition is very generic, it is usually desirable
that vertices in the hierarchy de�ne logically coherent and independent subpro-
cesses. In the literature, a structural characterization of such a subprocess is to

14 T. Brockho� et al.

SLT1

SLT2

p1 t1

p2

a1

t2

a2

t3

p4

p3

b

t4 p5

c

t5 p6

d1

t6

d2

t7

p7

p8

e

t8

f

t9

p9

p10

g

t10 p11

p12

p13

S0 S1

S5

S6

S7

(a) WF-net N2 with long-term dependencies

p6

d1

t6

d2

t7

p14 t11

p7

p8

(b) Modeling Concur-
rency

Fig. 5: Limitations of a SESE-based decomposition. The WF-net shown in (a)
extends the WF-net in Figure 3a by an additional long-term dependency (red).
The colored polygons depict the non-trivial SESE subprocesses that constitute
the RPST of this model. Using a SESE-based decomposition, we cannot analyze
the subprocesses betweeen t1 and t5 (i.e., S2 in Figure 3a) and p6 and t10 (for-
merly S3). The language preserving transformation depicted in (b) would allow
to further decompose S3 in N1.

require that it has a single entry and a single exit vertex [27]. Thereby, each
subprocess is self-contained interacting with the remaining net at its entry and
exit node. This characterization serves as a basis for the RPST of a WF-net [27].
The RPST is a decomposition comprising a maximal set of vertices satisfying
the following conditions: (i) each vertex is a fragment (i.e., a SESE subprocess);
(ii) each fragment is canonical�that is, there exists no overlapping fragment
(not necessarily contained in the RPST) that neither is a proper super- nor
subset; and (iii) each vertex is a child of its smallest superset. These conditions
imply that the edges of a net are the leaves of its RPST. Such an edge fragment
is also called trivial (i.e., a fragment of size one). For example, excluding trivial
fragments, Figure 3b shows the RPST of the WF-net in Figure 3a. For further
details on (computing) RPSTs, we refer the reader to [27,24].

The property of de�ning self-contained subprocesses makes the RPST a
promising decomposition technique for hierarchical PC. Therefore, in our im-
plementation, we leverage an adapted version of a WF-net's RPST. We propose
to adapt the RPST computation for the sake of PC because the strict SESE
requirement makes the decomposition sensitive. For example, consider the WF-
net N2 depicted in Figure 5a which extends N1 (Figure 3a) by two additional
places. The highlighted places p12 and p13 couple the choices between a1 and a2
and between d1 and d2. This signi�cantly changes the set of canonical fragments.
Compared to N1, the added places induce two additional canonical fragments
SLT1 and SLT2 but violate the SESE property of six of the original canonical
fragments. Thereby, the resulting RPST would neither allow us to explicitly an-
alyze the choice between a1 and a2 nor could we distinguish the two main blocks
of the work�ow (i.e., the process before and after c).

Process Comparison Using Petri Net Decomposition 15

WF-net Skeleton As shown in Figure 2, we propose an additional preprocessing
step of the WF-net to create more SESE subprocesses. The idea is to remove
places that connect structurally distant parts of the model preventing a more
�ne granular decomposition. As places constrain the behavior of the WF-net,
removing places instead of transitions yields a net describing a relaxed process.
In contrast, removing transitions can result in Petri nets without valid �ring
sequences. Thus, the RPST obtained by removing places describes a relaxed
baseline process that we consider the skeleton process of the original model.

In order to later compute its RPST, we need to ensure that the skeleton
process is a WF-net. Intuitively, this means that we can only remove constraints
(i.e., places) that do not break the work�ow. Accordingly, we can neither remove
the source nor the sink. Moreover, we might only remove a place if, in the
resulting net, each node is on a path between the source and the sink. For
example, in N2 (Figure 5a), the only candidates for removal are p4, p12, and p13.

While removing p12 and p13 results in the original net that has a �ne granular
decomposition, this is not the case for p4. After removing p4, no further place
can be removed resulting in a decomposition similar to the one before (SLT1 and
SLT2 would be extended up to p2). What distinguishes the places p12 and p13
from p4 is that latter place constraints the local order of activities. In each �ring
sequence of the net that contains t2, the number of steps in which p4 is marked
is less than for p12. Therefore, we propose to preferably remove places that are
marked for many steps.

De�nition 13 (Place Marking Interval). Let N = (P, T, F, l) be a safe
WF-net and T ∈ B(T ∗) be a multiset of valid �ring sequences of N . Given a
�ring sequence σ = ⟨t1, . . . , tn⟩ ∈ T, the token intervals of a place p ∈ P are

tiσ(p) = {(i, j) | 1 ≤ i < j ≤ n, p ∈ ti
•, p ∈ •tj ,∀k(i < k < j) → p /∈ •tk ∪ tk

•} .
(16)

The average number of steps a place p ∈ P is marked is

ttT(p) = avg([j − i | (i, j) ∈ +
σ∈T

tiσ(p)]) . (17)

This idea is inspired by an ILP Miner [31] variant that prefers adding places
to a net where the token is consumed quickly. The safeness of the WF-net is
crucial to uniquely match the transitions that produced and consumed a token.
In contrast to structural place removal conditions, De�nition 13 is not a�ected
by implicit places (i.e., places that do not a�ect the valid �ring sequences). For
the sake of e�ciency, in our implementation, we re-use the alignments of the
event logs to evaluate Equation (17) rather than sampling the net.

Finally, we propose the following decomposition strategy for hierarchical PC:
(i) sort the places according to De�nition 13 in descending order, (ii) iterate over
the sorted places removing places as long as the resulting net remains a WF-net
(i.e., remains connected), (iii) compute the RPST of the resulting WF-net skele-
ton, and (iv) add the edges of the removed places as subprocesses under the
root. Consider a set of �ring sequences for N2 (Figure 5a) such that p12 and p13

16 T. Brockho� et al.

are marked at least once. Depending on the position of t4 in the �ring sequence,
the places p12 and p13 are marked for two or three steps. Each time one of these
places is marked, the place p4 is marked for at least one step less. Therefore, one
can show that we have ttS(p4) < ttS(p12) or ttS(p4) < ttS(p13) (not necessarily
both). Removing any other place would violate the WF-net constraint. Thus, we
�rst remove p12 or p13 after which p4 cannot be removed anymore.

While there are various ways to combine the RPST and the places removed,
we simply add the associated sets of edges under the root. In contrast, one could
add them under the smallest subprocess that contains the place's adjacent tran-
sitions. Adding the edges under the root has the advantage that the remaining
tree is a proper RPST for the block skeleton. Assuming that the set of edges
removed is usually small, we expect this design decision to have a minor impact.

Our place removal approach might change the language of the WF-sytem net.
Fortunately, this does not a�ect the analysis since we compute the alignments
with respect to the original net. Besides, there are other language-preserving
transformations that might improve a net's SESE decomposability. Figure 5b
shows an example using a silent transition as a concurrency split. Since this
does not change the model in terms of its language, we currently leave this
to the modeler. Besides, approaches that transform other model notations into
Petri nets often natively use silent transitions to create SESE subprocesses.

5 Case Study

We implemented our approach as a ProM plugin, available in the ProM nightly
builds3, and evaluate it in a case study on the real-life Road Tra�c Fine Manage-
ment (RTFM) event log [19]. To the best of our knowledge, from the model-based
approaches discussed in Section 2, only Wynn et al. [30] provide the publicly
available implementation Pro�ler 3d . Therefore, we qualitatively compare the
results to Pro�ler 3d . Like existing works that consider this log [10,8,25], we
split it into low �ne cases�that is, the initial �ne is less than AC50�and high
�ne cases�that is, the �ne is larger or equal to AC50.

Based on the original log, we created a highly �tting BPMN model and
transformed it into the Petri net depicted in Figure 6a. On a high level, a �ne
is �rst created (CF) and then either paid (P) or sent (SF). In the latter case,
the o�ender may either pay it, or the case enters a subprocess concerned with
additional penalization (AP) or appealing (IDA2P). We duplicated the payment
transition (P) to precisely represent highly frequent variants where the �ne was
paid. Thereby, we can explicitly analyze the di�erent ways of paying a �ne. Fi-
nally, we add an implicit place (i.e., a place that does not constrain the behavior),
highlighted red in Figure 6a. It creates additional boundary nodes in the addi-
tional penalization subprocess. Thereby, no proper fragment can contain this
subprocess making it di�cult to decompose. Despite the place being implicit,
it is well-suited to investigate the time between inserting the �ne noti�cation
(IFN) and paying (P) or collecting (SCC) it.

3 https://promtools.org/prom-6-nightly-builds/

https://promtools.org/prom-6-nightly-builds/

Process Comparison Using Petri Net Decomposition 17

IFN

IDA2P NRA2O

SF

SCC

RRAfP
P

CF

P

P

P

AP

SA2P A2J

●

S1-(I)

S2-(II)-(X)

S3-(III)

S5-(V)-(XII)

S4-(IV)

S7-(VII)

S8-(XIII)

S6-(VI)

S0-(IX)
S9-(XIV)

S10-(VIII)
-(XV)

(a) Handmade Petri net for the RTFM event log

Detected
Non-skeleton
place

S1-(I)
S2-(II)

S3-(III)
S5-(V)S4-(IV)

S7-(VII)
S6-(VI)

S0

S10-(VIII)

(b) Decomposition of the Petri net in (a) enhanced by di�erences in a subprocess'
conditional activation likelihood

Fig. 6: Comparing low and high �ne cases in terms of di�erences in the control
�ow. Sub�gure (a) depicts a Petri net of the process. The decomposition depicted
in (b) shows the di�erences detected using the conditional subprocess activation
measurement. For signi�cant di�erences, the shade depicts the e�ect size, and
the color illustrates whether subprocesses are activated more likely for low (blue)
or high (red) �nes. Besides, we collapsed uninteresting subtrees (yellow outlines).
The red annotations relate the nodes in the decomposition of the Petri net and
to the descriptions in the text.

5.1 Results

Figure 6b shows the hierarchical decomposition of the Petri net in Figure 6a,
and Figure 7 depicts the output of Pro�ler 3d . Our proposed decomposition
strategy correctly identi�es the additionally introduced place as a non-skeleton
place. Next, we investigate control �ow di�erences. Since the Petri net in Fig-
ure 6a contains a considerable number of choices, we employ the conditional
subprocess activation measurement. Thereby, we can analyze subprocesses pro-
ceeding a choice irrespective of the choice's likelihood. Figure 6b shows that, for
low �nes, it is considerably more likely that we observe an immediate payment
(Diagnostic D(I)). Pro�ler 3d also detect this di�erence. In contrast, high �nes
are often �rst sent (SF) to the o�ender (D(II)). After a �ne was sent, an o�ender
might pay, or�an interesting, frequent option present in the event log�the case

18 T. Brockho� et al.

All traces where
transition is fired

Sojourn
Time

Compare
Bars

(I)

(VI)
(VII)

(XIV)

(XVI)

(X)

Fig. 7: Results obtained using Pro�ler 3d by Wynn et al. [30]. Due to limita-
tions of the tool, the transitions depict conditional �ring likelihoods. Given that
the transition �res, the bar shows the fraction of low (green) and high (�ne)
cases. Detecting decision likelihood di�erences therefore requires comparing this
fraction with the annotation of the transition labeled CF which is activated by
all cases. The colored arcs on the edges depict the median sojourn times be-
tween pairs of activities, where the height of an edge scales with the sojourn
time observed. The annotations refer to the di�erences described in the text. If
the conclusions drawn using our method and the depicted approach di�er, we
underline the annotation.

may end. While latter option is more probable for low �nes (D(III)), receiving
a payment after sending the �ne is more likely for high �nes (D(IV)). More-
over, for high �nes, the likelihood is higher that the case neither ends nor is
paid but enters an extended subprocess (D(V)). This subprocess includes three
concurrent strands of work. On the prefecture's site, the delayed payment leads
to a noti�cation (IFN) and an additional penalty (AP). Moreover, the prefec-
ture might receive an appeal (IDA2P). On the o�enders' side, they might decide
to start paying the �ne (possibly in multiple steps) even though an additional
penalty will already be added due to the delay. For this subprocess, we observe
two main di�erences. First, appeals are more likely for high �nes (D(VI)). Sec-
ond, given that an appeal was made, it is more probable to be successful for
high �ne cases (D(VII)). In particular, this di�erence might be quite interesting
for stakeholders. Consequently, for low �ne cases, it is slightly more likely that
one eventually observes a payment or credit collection (D(VIII)). From the pre-
ceding di�erences, D(VI) and D(VII) are most noticeable in Figure 7. For the
remaining di�erences, the fact that one needs to visually compare fractions of
cases makes them very di�cult to detect.

Performance Analyzing performance di�erences, we investigate the synchronous
subprocess execution duration as well as the elapsed time since case start . Fig-
ure 8 depicts the projection of measurement di�erences onto the decomposition.
First, high �ne cases tend to have a longer overall cycle time (D(IX)). The
average duration between a �ne's creation and its last observed activity is ap-
proximately a year, while it is 263 days for low �ne cases. Next, is noteworthy
that, on average, low �nes are sent 18 days earlier (D(X))�that is, 72 versus 90

Process Comparison Using Petri Net Decomposition 19

Avg.1:63d 6h
Avg.2:63d 15h

Avg.1:72d 12h
Avg.2:90d 18h

Avg.1:339d 9h
Avg.2:365d 5h

Avg.1:72d 12h
Avg.2:90d 18h

Avg.1:72d 12h
Avg.2:90d 18h

Avg.1:88d 8h
Avg.2:106d 20h

Avg.1:72d 12h
Avg.2:90d 18h

Avg.1:63d 6h
Avg.2:63d 15h

Avg.1:687d 12h
Avg.2:691d 5h

Avg.1:89d 10h
Avg.2:107d 6h

Avg.1:88d 9h
Avg.2:106d 20h

Avg.1:88d 9h
Avg.2:106d 20h

Avg.1:88d 7h
Avg.2:106d 19h

Avg.1:130d 13h
Avg.2:154d 6h

Avg.1:614d 16h
Avg.2:614d 22h

High Fines

Low Fines

S1

S3
S4

S6S7

S0-(IX)

S2-(X)

(XI)

S5-(XII)

S8-(XIII)

S9-(XIV)

S10-(XV)

Fig. 8: Hierarchical comparison of low (avg. 2) and high �ne (avg. 1) cases in
terms of performance. In this decomposition of the Petri net in Figure 6a, we
collapsed uninteresting subtrees (yellow outlines). For each subprocess (i.e., ver-
tex), we compare its synchronous subprocess execution duration. For selected
subprocesses (red dashed), we also depict the elapsed time since case start . The
annotations depict the corresponding subprocesses in Figure 6a as well as labels
for the diagnostics. We further enlarged important subprocesses (gray).

days. Since there is no di�erence regarding the elapsed time since case start for
CF, we would expect that Figure 7 shows a sojourn time di�erence for the edge
(CF, SF). Yet, this is not the case. Moreover, one can attribute all signi�cant
di�erences with respect to the elapsed time in the subtree rooted at S2 to D(X).
However, this requires an additional analysis of the average values. Due to the
hierarchical decomposition, we can also easily see that the di�erence in the aver-
age duration of the subprocess S2, entered by sending the �ne, is smaller than for
S0�that is, 33 days vs 98 days (D(XI)). This suggests that the time savings for
low �nes are due to immediate payments (S1). In fact, there is almost no di�er-
ence regarding the duration of the appealing and additional �ning subprocess S5

(D(XII)). Finally, the introduced non-skeleton place gives additional insight into
the time between inserting the noti�cation (IFN) and the �nal payment (P) or
credit collection (SCC). It shows that this duration does not di�er signi�cantly
(D(XIII)). However, low �ne cases that mark this place (i.e., cases that enter
S5) tend to be paid slightly earlier shown by a shorter elapsed time since case
start (D(XIV)). Nevertheless, the overall time until the last payment is made or
is collected forcefully, does not di�er signi�cantly (D(XV)). Finally, Pro�ler 3d
detects increased sojourn times between IDA2P and SA2P for high �nes. Similar
to D(XIV), it also indicates that after a �ne is inserted (IFN), the �nal payment
is made slightly earlier for low �nes (D(XVI)).

20 T. Brockho� et al.

5.2 Discussion

Our evaluation shows that the conditional subprocess activation measurement
is well-suited to compare process variants that considerably di�er in the likeli-
hoods of choices. In doing so, the hierarchical approach allows us to reason about
subprocesses on di�erent levels of granularity. For example, we not only observe
that appeals are more likely for high �ne cases (D(VI)), but also that these ap-
peals a slightly more successful (D(VII)). Combined with the ability to consider
duplicate labels, we could also compare the frequency of payments in di�erent
process contexts. Considering the performance, we identi�ed di�erences in the
execution duration of di�erent subprocesses. Moreover, we gained additional in-
sight by comparing subprocesses among the hierarchy (comp. D(X)). However,
this requires the analyst to reason on top of the output of the method. Besides,
one needs to consider and relate multiple performance metrics to paint the full
picture. Finally, the proposed reduction of the net to its skeleton process enabled
us to add an implicit place without negatively a�ecting the decomposition. This
place could then be used to investigate a speci�c aspect of the process.

Compared to Pro�ler 3d [30], our approach shows di�erences more clearly.
Moreover, the proposed method allows to reason about larger subprocesses and
automatically analyzes subprocesses on di�erent levels of granularity. While Pro-
�ler 3d also supports hierarchical Petri nets as input, it requires that the hier-
archy is speci�ed upfront.

6 Conclusion

In this paper, we leverage a shared Petri net to compare two event logs in a
hierarchical manner. To this end, we decompose the model into a hierarchy of
subprocesses. For each subprocess and case in the event logs, we then extract
intervals during which the subprocess is considered being under execution. Based
on these intervals, measurements that assess di�erent aspects of the process can
be de�ned. In this paper, we exemplify measurements that assess di�erences
in the control �ow, performance, and conformance. Furthermore, we propose a
decomposition strategy based on Re�ned Process Structure Trees. In doing so,
we introduce a new preprocessing step to improve the decomposability of the
net. The case study shows how the proposed method allows to reason on larger
subprocesses but also to drill down on interesting details.

For future work, we plan to investigate process-aware measurements that
do not consider each case in isolation. The guidance provided by a good model
might help to alleviate this limitation of existing process comparison approaches.
Moreover, we intend to make the approach more interactive by allowing the user
to assess performance metrics of �exibly de�ned sections during runtime.

Acknowledgments. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-

man Research Foundation) under Germany's Excellence Strategy-EXC-2023 Internet

of Production-390621612. We also thank the Alexander von Humboldt (AvH) Stiftung

for supporting our research.

Process Comparison Using Petri Net Decomposition 21

References

1. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process equiva-
lence: Comparing two process models based on observed behavior. In: Business Pro-
cess Management. pp. 129�144 (2006). https://doi.org/10.1007/11841760_10

2. van der Aalst, W.M.P.: Decomposing petri nets for process mining: A generic
approach. Distributed and Parallel Databases 31(4), 471�507 (2013). https://
doi.org/10.1007/s10619-013-7127-5

3. van der Aalst, W.M.P., Stahl, C.: Information Systems. In: Modeling Business
Processes: A Petri Net-Oriented Approach (2011). https://doi.org/10.7551/

mitpress/8811.003.0003

4. van der Aalst, W.M.P., Tacke Genannt Unterberg, D., Denisov, V., Fahland, D.:
Visualizing token �ows using interactive performance spectra. In: Application and
Theory of Petri Nets and Concurrency. pp. 369�380. Lecture Notes in Computer
Science (2020). https://doi.org/10.1007/978-3-030-51831-8_18

5. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards robust confor-
mance checking. In: Business Process Management Workshops. pp. 122�133 (2011).
https://doi.org/10.1007/978-3-642-20511-8_11

6. Andrews, K., Wohlfahrt, M., Wurzinger, G.: Visual graph comparison. In: 13th
International Conference Information Visualisation. pp. 62�67 (2009). https://
doi.org/10.1109/IV.2009.108

7. van Beest, N.R.T.P., Dumas, M., García-Bañuelos, L., La Rosa, M.: Log
delta analysis: Interpretable di�erencing of business process event logs. In:
Business Process Management. pp. 386�405 (2015). https://doi.org/10.1007/
978-3-319-23063-4_26

8. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: A visual approach to spot
statistically-signi�cant di�erences in event logs based on process metrics. In: Ad-
vanced Information Systems Engineering, Lecture Notes in Computer Science,
vol. 9694, pp. 151�166 (2016). https://doi.org/10.1007/978-3-319-39696-5_10

9. Bouvier, P., Garavel, H., Ponce-de León, H.: Automatic decomposition of petri
nets into automata networks � a synthetic account. In: Application and The-
ory of Petri Nets and Concurrency. pp. 3�23 (2020). https://doi.org/10.1007/
978-3-030-51831-8_1

10. Cecconi, A., Augusto, A., Di Ciccio, C.: Detection of statistically signi�-
cant di�erences between process variants through declarative rules. In: Busi-
ness Process Management Forum. pp. 73�91 (2021). https://doi.org/10.1007/
978-3-030-85440-9_5

11. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, chap. 2, pp.
20�27. 2 edn. (1988). https://doi.org/10.4324/9780203771587

12. Cordes, C., Vogelgesang, T., Appelrath, H.J.: A generic approach for calculating
and visualizing di�erences between process models in multidimensional process
mining. In: International Conference on Business Process Management. pp. 383�
394. Springer (2014). https://doi.org/10.1007/978-3-319-15895-2_32

13. Eshuis, R.: Translating safe petri nets to statecharts in a structure-preserving way.
In: FM 2009: Formal Methods. pp. 239�255 (2009). https://doi.org/10.1007/
978-3-642-05089-3_16

14. Ivanov, S.Y., Kalenkova, A.A., van der Aalst, W.M.P.: BPMNDi�Viz: A tool for
BPMN models comparison. BPM reports 1507 (2015)

15. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing
control regions in linear time. In: Proceedings of the ACM SIGPLAN 1994 confer-

https://doi.org/10.1007/11841760_10
https://doi.org/10.1007/11841760_10
https://doi.org/10.1007/s10619-013-7127-5
https://doi.org/10.1007/s10619-013-7127-5
https://doi.org/10.1007/s10619-013-7127-5
https://doi.org/10.1007/s10619-013-7127-5
https://doi.org/10.7551/mitpress/8811.003.0003
https://doi.org/10.7551/mitpress/8811.003.0003
https://doi.org/10.7551/mitpress/8811.003.0003
https://doi.org/10.7551/mitpress/8811.003.0003
https://doi.org/10.1007/978-3-030-51831-8_18
https://doi.org/10.1007/978-3-030-51831-8_18
https://doi.org/10.1007/978-3-642-20511-8_11
https://doi.org/10.1007/978-3-642-20511-8_11
https://doi.org/10.1109/IV.2009.108
https://doi.org/10.1109/IV.2009.108
https://doi.org/10.1109/IV.2009.108
https://doi.org/10.1109/IV.2009.108
https://doi.org/10.1007/978-3-319-23063-4_26
https://doi.org/10.1007/978-3-319-23063-4_26
https://doi.org/10.1007/978-3-319-23063-4_26
https://doi.org/10.1007/978-3-319-23063-4_26
https://doi.org/10.1007/978-3-319-39696-5_10
https://doi.org/10.1007/978-3-319-39696-5_10
https://doi.org/10.1007/978-3-030-51831-8_1
https://doi.org/10.1007/978-3-030-51831-8_1
https://doi.org/10.1007/978-3-030-51831-8_1
https://doi.org/10.1007/978-3-030-51831-8_1
https://doi.org/10.1007/978-3-030-85440-9_5
https://doi.org/10.1007/978-3-030-85440-9_5
https://doi.org/10.1007/978-3-030-85440-9_5
https://doi.org/10.1007/978-3-030-85440-9_5
https://doi.org/10.4324/9780203771587
https://doi.org/10.4324/9780203771587
https://doi.org/10.1007/978-3-319-15895-2_32
https://doi.org/10.1007/978-3-319-15895-2_32
https://doi.org/10.1007/978-3-642-05089-3_16
https://doi.org/10.1007/978-3-642-05089-3_16
https://doi.org/10.1007/978-3-642-05089-3_16
https://doi.org/10.1007/978-3-642-05089-3_16

22 T. Brockho� et al.

ence on Programming language design and implementation. pp. 171�185 (1994).
https://doi.org/10.1145/773473.178258

16. Karatkevich, A., Andrzejewski, G.: Hierarchical decomposition of petri nets for
digital microsystems design. In: 2006 International Conference - Modern Problems
of Radio Engineering, Telecommunications, and Computer Science. pp. 518�521
(2006). https://doi.org/10.1109/TCSET.2006.4404613

17. Kriglstein, S., Wallner, G., Rinderle-Ma, S.: A visualization approach for di�erence
analysis of process models and instance tra�c. In: Business Process Management,
pp. 219�226 (2013). https://doi.org/10.1007/978-3-642-40176-3_18

18. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process
model di�erences in the absence of a change log. In: Business Process Management,
Lecture Notes in Computer Science, vol. 5240, pp. 244�260 (2008). https://doi.
org/10.1007/978-3-540-85758-7_19

19. de Leoni, M., Mannhardt, F.: Road tra�c �ne management process (2015). https:
//doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

20. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Hierarchical conformance
checking of process models based on event logs. In: Application and Theory
of Petri Nets and Concurrency. pp. 291�310 (2013). https://doi.org/10.1007/
978-3-642-38697-8_16

21. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit de-
composed conformance checking. Information Systems 46, 102�122 (2014). https:
//doi.org/10.1016/j.is.2014.04.003

22. Nguyen, H., Dumas, M., La Rosa, M., ter Hofstede, A.H.M.: Multi-perspective
comparison of business process variants based on event logs. In: Conceptual Mod-
eling. pp. 449�459 (2018). https://doi.org/10.1007/978-3-030-00847-5_32

23. Pini, A., Brown, R., Wynn, M.T.: Process visualization techniques for multi-
perspective process comparisons. In: Asia-Paci�c Conference on Business Pro-
cess Management. pp. 183�197. Springer (2015). https://doi.org/10.1007/

978-3-319-19509-4_14
24. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simpli�ed computation and generaliza-

tion of the re�ned process structure tree. In: Web Services and Formal Methods.
pp. 25�41 (2011). https://doi.org/10.1007/978-3-642-19589-1_2

25. Taymouri, F., La Rosa, M., Carmona, J.: Business process variant analysis based on
mutual �ngerprints of event logs. In: Advanced Information Systems Engineering.
pp. 299�318 (2020). https://doi.org/10.1007/978-3-030-49435-3_19

26. Taymouri, F., Rosa, M.L., Dumas, M., Maggi, F.M.: Business process variant
analysis: Survey and classi�cation. Knowledge-Based Systems 211, 106557 (2021).
https://doi.org/10.1016/j.knosys.2020.106557

27. Vanhatalo, J., Völzer, H., Koehler, J.: The re�ned process structure tree. In:
Business Process Management. pp. 100�115 (2008). https://doi.org/10.1007/
978-3-540-85758-7_10

28. Vidgof, M., Djurica, D., Bala, S., Mendling, J.: Interactive log-delta analysis using
multi-range �ltering. Software and Systems Modeling 21, 847�868 (2022). https:
//doi.org/10.1007/s10270-021-00902-0

29. Welch, B.L.: The Generalization of `Student's' Problem when Several Di�erent
Population Variances are Involved. Biometrika 34(1-2), 28�35 (1947). https://
doi.org/10.1093/biomet/34.1-2.28

30. Wynn, M.T., Poppe, E., Xu, J., ter Hofstede, A.H.M., Brown, R., Pini, A., van der
Aalst, W.M.P.: Processpro�ler3d: A visualisation framework for log-based process
performance comparison. Decision Support Systems 100, 93�108 (2017). https:
//doi.org/10.1016/j.dss.2017.04.004

https://doi.org/10.1145/773473.178258
https://doi.org/10.1145/773473.178258
https://doi.org/10.1109/TCSET.2006.4404613
https://doi.org/10.1109/TCSET.2006.4404613
https://doi.org/10.1007/978-3-642-40176-3_18
https://doi.org/10.1007/978-3-642-40176-3_18
https://doi.org/10.1007/978-3-540-85758-7_19
https://doi.org/10.1007/978-3-540-85758-7_19
https://doi.org/10.1007/978-3-540-85758-7_19
https://doi.org/10.1007/978-3-540-85758-7_19
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.1007/978-3-642-38697-8_16
https://doi.org/10.1007/978-3-642-38697-8_16
https://doi.org/10.1007/978-3-642-38697-8_16
https://doi.org/10.1007/978-3-642-38697-8_16
https://doi.org/10.1016/j.is.2014.04.003
https://doi.org/10.1016/j.is.2014.04.003
https://doi.org/10.1016/j.is.2014.04.003
https://doi.org/10.1016/j.is.2014.04.003
https://doi.org/10.1007/978-3-030-00847-5_32
https://doi.org/10.1007/978-3-030-00847-5_32
https://doi.org/10.1007/978-3-319-19509-4_14
https://doi.org/10.1007/978-3-319-19509-4_14
https://doi.org/10.1007/978-3-319-19509-4_14
https://doi.org/10.1007/978-3-319-19509-4_14
https://doi.org/10.1007/978-3-642-19589-1_2
https://doi.org/10.1007/978-3-642-19589-1_2
https://doi.org/10.1007/978-3-030-49435-3_19
https://doi.org/10.1007/978-3-030-49435-3_19
https://doi.org/10.1016/j.knosys.2020.106557
https://doi.org/10.1016/j.knosys.2020.106557
https://doi.org/10.1007/978-3-540-85758-7_10
https://doi.org/10.1007/978-3-540-85758-7_10
https://doi.org/10.1007/978-3-540-85758-7_10
https://doi.org/10.1007/978-3-540-85758-7_10
https://doi.org/10.1007/s10270-021-00902-0
https://doi.org/10.1007/s10270-021-00902-0
https://doi.org/10.1007/s10270-021-00902-0
https://doi.org/10.1007/s10270-021-00902-0
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1016/j.dss.2017.04.004
https://doi.org/10.1016/j.dss.2017.04.004
https://doi.org/10.1016/j.dss.2017.04.004
https://doi.org/10.1016/j.dss.2017.04.004

Process Comparison Using Petri Net Decomposition 23

31. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Ilp-based process dis-
covery using hybrid regions. In: Algorithms & Theories for the Analysis of Event
Data. pp. 47�61. CEUR Workshop Proceedings (2015)

32. Zhong, C., He, W., Li, Z., Wu, N., Qu, T.: Deadlock analysis and control using
petri net decomposition techniques. Information Sciences 482, 440�456 (2019).
https://doi.org/10.1016/j.ins.2019.01.029

https://doi.org/10.1016/j.ins.2019.01.029
https://doi.org/10.1016/j.ins.2019.01.029

	Process Comparison Using Petri Net Decomposition

