
Learning Generalized Stochastic Petri Nets
From Event Data

Wil M.P. van der Aalst[0000−0002−0955−6940] and Sander J.J.
Leemans[0000−0002−5201−7125]

RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany
wvdaalst@pads.rwth-aachen.de,s.leemans@bpm.rwth-aachen.de

Abstract. Generalized Stochastic Petri Nets (GSPNs) are an established tool
for representing and analyzing concurrency, timing, synchronization, precedence,
and priority in processes. GSPNs emerged in the 1980s as the de facto stan-
dard for modeling stochastic processes using Petri nets, supported by tools such
as GreatSPN. However, traditional applications of this technology assume that
GSPNs are created manually. Given the widespread availability of event data in
information systems, this seems sub-optimal. This explains the uptake of process
mining, which starts from event data instead of manually created process mod-
els. There are dozens of techniques to discover basic (i.e., non-stochastic) Petri
nets given an event log. However, there is an increasing interest in not just dis-
covering control flow, but also learning the stochastic behavior based on event
data. Therefore, we take GSPNs as the target representation for process discov-
ery. Since there are numerous techniques to discover the control flow, we focus
on the extensions provided by GSPNs. These include priorities, blocking, proba-
bilities, and rates. In this paper, we sketch a concrete approach to discover proba-
bilities and rates from event data. This is done by translating to GSPNs to Markov
chains to which parameter synthesis is applied. Since priorities and blocking can
be added without limiting GSPN-based performance analysis, we advocate the
development of control-flow discovery techniques incorporating these features.
Having GSPNs learned from event data, we can support more forward-looking
forms of process mining.

Keywords: Petri nets · Process mining · Generalized Stochastic Petri Nets

1 Introduction

Initially, Petri nets could not be used to model time and probabilities. In the 1970s,
several researchers proposed ways of adding time to Petri nets [40,37]. Stochastic Petri
Nets (SPNs) were introduced in 1980s [22,38]. In SPNs, all transitions are assumed
to be atomic having exponentially distributed firing times using a so-called “race ex-
ecution” policy. With the aim of extending the expressiveness of SPNs, Generalized
Stochastic Petri Nets (GSPNs) were introduced in [36]. GSPNs have two types of tran-
sitions: exponentially distributed timed transitions (modeling durations) and immediate
transitions (i.e., transitions that fire immediately without any delay). This leads to the
concept of “vanishing” states and “tangible” states. By definition, the time spent in

2 W. van der Aalst and S. Leemans

vanishing states is zero (i.e., a transition fires immediately). Time progresses only in
tangible states waiting for a time transition to fire. Over time, GSPNs were extended
with known concepts such as inhibitor arcs and priorities [17,6,23]. GreatSPN is an
example of a tool that supports the modeling, validation, and performance evaluation
of GSPNs that has been around for almost four decades [9]. Next to simulation, Great-
SPN and other tools support the automatic translation of GSPNs to Continuous-Time
Markov Chains (CTMCs). These CTMCs can be used to give exact answers to questions
ranging from the utilization of resources to flow times and throughput.

Joost-Pieter Katoen has been (and still is) one of the leading researchers in formal
methods combining model checking, concurrency theory, and probabilistic reasoning
and programming. The first author vividly remembers his invited talk at Petri Nets
2012 and ACSD 2012 in Hamburg where he talked about “GSPNs Revisited: Sim-
ple Semantics and New Analysis Algorithms” [25,21]. Together with colleagues, he
provided alternative semantics for GSPNs addressing the well-known confusion prob-
lem in non-free-choice nets. Joost-Pieter Katoen also applied GSPN to fault trees and
Markov decision problems [24]. In recent work, he also exploits probabilistic model
checking and parameter synthesis techniques for parametric Markov chains to find the
right probabilities [43,19,39]. This is highly related to the topic of this paper.

Process mining is an “evidence-driven” approach to analyzing, visualizing, and im-
proving business processes based on event data readily available in modern information
systems [1,2]. Unlike classical approaches using GSPNs, the starting point is not the
modeled behavior, but the actual behavior recorded in the systems. The adoption of
process mining has been steadily growing across various industries as organizations
realize that there is often a mismatch between the actual process and the assumed or
desired process. It is trivial to construct a so-called Directly-Follows Graph (DFG) by
simply counting how often one activity is followed by another activity. The real chal-
lenge is to discover concurrency, long-term dependencies, and other advanced control-
flow constructs. During the last two decades, many process discovery approaches have
been developed doing precisely that [1,10,11,29,46]. Most of them discover models that
can be mapped onto Petri nets. There have been many attempts to extend the discov-
ered models with time and probabilities. Most approaches create a simulation model
[42,41]. Also, conformance-checking techniques have been adapted to include stochas-
tics [26,30], time [41], data [35,34] and history [31].

However, we are not aware of approaches to systematically discover GSPNs that can
be analyzed using Continuous-Time Markov Chains (CTMCs) and related techniques
instead of simulation. These are vital to allow for forward-looking forms of process
mining.

In this paper, we establish a link between GSPNs and probabilistic parameter syn-
thesis. We translate the problem of finding a GSPN from an event log into two main
problems: (1) discovering the control flow, including silent transitions, inhibitor arcs,
and priorities, and (2) learning probabilities and firing delays. Existing control-flow dis-
covery techniques partially solve the first problem. Mature techniques exist to discover
labeled Petri nets with silent transitions. However, inhibitor arcs and priorities are rarely
discovered. This paper addresses the second problem by translating GSPNs to Markov
chains, to which parameter synthesis is applied to find transition weights for immedi-

Learning Generalized Stochastic Petri Nets From Event Data 3

ate transitions and transition rates for timed transitions. Note that we picked GSPNs
as our target representation due to the availability of tools and techniques to conduct
performance analysis.

In the remainder, we first introduce preliminaries such as event data and Petri nets
(Section 2). Section 3 introduces Generalized Stochastic Petri Nets (GSPNs) tailored
towards process mining and making the connection to CTMCs. Section 4 introduces
a two-step approach where the first step discovers the process structure using existing
approaches, and the second step discovers weights and rates to determine the stochastic
and temporal behavior. Section 5 concludes the paper.

2 Event Data and Petri Nets

In this section, we introduce some preliminaries assuming that the reader has a basic
understanding of process mining and Petri nets. We refer to [1,2] for more extensive
introductions.

Events may have many attributes and refer to multiple objects of different types.
However, here we assume that each event refers to just a case, an activity, and has a
timestamp. These are the minimal requirements for process mining. By ordering the
events using the timestamp per case and considering only the activity label, we can
simplify this into a multiset of traces where each trace is simply a sequence of activities.

B(A) is the set of all multisets over some set A. For multiset B ∈ B(A), B(a)
denotes the number of times element a ∈ A appears in B. Some examples of multisets
over A = {x, y, z}: B1 = [], B2 = [x, x, y], B3 = [x, y, z], B4 = [x, x, y, x, y, z],
and B5 = [x3, y2, z]. Note that B4 = B5. The standard set operators can be extended
to multisets, e.g., x ∈ B2, B2 ⊎B3 = B4, B5 \B2 = B3, |B5| = 6, etc. Also, sets can
be interpreted as multisets.

Definition 1 (Event Log). Uact is the universe of activity names. An event log L ∈
B(Uact

∗) is a multiset of traces. A trace σ = ⟨a1, a2, . . . an⟩ ∈ Uact
∗ is a sequence of

activities. L(σ) is the number of times trace σ appears in event log L.

For example, L = [⟨a, b, c, e⟩5, ⟨a, c, b, e⟩5, ⟨a, b, c, d, c, b, e⟩2] is an event log de-
scribing 12 cases and 5× 4 + 5× 4 + 2× 7 = 54 events.

Definition 2 (Labeled Petri Net). A labeled Petri net with priorities and inhibitor arcs
is a tuple N = (P, T, F,H, pr , lb) with P the set of places, T the set of transitions,
P ∩T = ∅, F ⊆ (P ×T)∪ (T ×P) the flow relation, H ⊆ (P ×T) the inhibitor arcs,
pr ∈ T → N the priorities, and lb ∈ T ̸→ Uact a labeling function. We write lb(t) = τ
if t ∈ T \ dom(lb) (i.e., t is a silent transition that cannot be observed).

We refer to a labeled Petri net with priorities and inhibitor arcs as simply a Petri net.
Note that we do not use arc weights because, in our setting, a Petri net describes the
life-cycle of a single case. Technically, we can add arc weights without problems, but
it complicates explanations and is rarely used in the context of process mining, work-
flow/process modeling, and business process management. Figure 1 shows an example
of a Petri net.

4 W. van der Aalst and S. Leemans

AN = (N,Minit ,Mfinal)

Minit = [p0]

Mfinal = [p2]

N = (P, T, F,H, pr , lb)

P = {p0, p1, p2}
T = {t1, a2, a3, t4, b5}
F = {(p0, a3), (p0, t4), (a3, p1),

(t4, p1), (t1, p0), (p1, t1),

(a2, p0), (p1, a2), (p1, b5),

(b5, p2)}
H = ∅
pr = t1 → 1, a2 → 1, a3 → 1, t4 → 1, b5 → 1

lb = t1 → τ, a2 → a, a3 → a, t4 → τ, b5 → b

p0

a

a3

a

a2

p1

t1

t4

b

b5 p2

Fig. 1: A Petri net with a visual representation.

As usual, a marking M ∈ B(P) is represented as a multiset of places. The marking
describes the state of the Petri net. Transitions have input and output places described
by F ⊆ (P × T) ∪ (T × P). For any x ∈ P ∪ T , •x = {y | (y, x) ∈ F} denotes the
set of input nodes and x• = {y | (x, y) ∈ F} denotes the set of output nodes.

A transition t ∈ T is enabled in marking M of net N , denoted as (N,M)[t⟩ if and
only if

– •t ⊑ M , i.e., each of its input places •t contains at least one token,
– {p ∈ M | (p, t) ∈ H} = ∅, i.e., none of the inhibitor places •t is enabled,
– there is no other transition t′ that satisfies the two previous requirements and has a

higher priority, i.e., ∀t′∈T (•t′ ⊑ M ∧ {p ∈ M | (p, t′) ∈ H} = ∅) ⇒ pr(t′) ≤
pr(t).

The set of enabled transitions in marking M is en(N,M) = {t ∈ T | (N,M)[t⟩}.
An enabled transition t may fire, i.e., one token is removed from each of the input
places •t and one token is produced for each of the output places t•. Formally: M ′ =
(M \ •t) ⊎ t• is the marking resulting from firing enabled transition t in marking M
of Petri net N . (N,M)[t⟩(N,M ′) denotes that t is enabled in M and firing t results in
marking M ′.

Let σ = ⟨t1, t2, . . . , tn⟩ ∈ T ∗ be a sequence of transitions. (N,M)[σ⟩(N,M ′)
denotes that there is a set of markings M1,M2, . . . ,Mn+1 (n ≥ 0) such that M1 = M ,
Mn+1 = M ′, and (N,Mi)[ti⟩(N,Mi+1) for 1 ≤ i ≤ n. A marking M ′ is reachable
from M if there exists a firing sequence σ such that (N,M)[σ⟩(N,M ′). R(N,M) =
{M ′ ∈ B(P) | ∃σ∈T∗ (N,M)[σ⟩(N,M ′)} is the set of all reachable markings.

In process mining, we track cases or objects that have life-cycles with a clear start
and end. Therefore, we focus on accepting Petri nets with an initial state and a final
state.

Learning Generalized Stochastic Petri Nets From Event Data 5

Definition 3 (Accepting Petri Net). An accepting Petri net is a triplet AN = (N,
Minit ,Mfinal) where N = (P, T, F,H, pr , lb) is a Petri net, Minit ∈ B(P) is the
initial marking, and Mfinal ∈ B(P) is the final marking. UAN ⊆ UM is the set of
accepting Petri nets.

The behavior described by an accepting Petri net is the collection of all traces (i.e.,
firing sequences projected on the activity label). Therefore, we are interested in sound
nets where it is always possible to reach the final marking.

Definition 4 (Sound Accepting Petri Net). An accepting Petri net AN = (N,Minit ,
Mfinal) is sound if, from any reachable marking, it is possible to reach Mfinal and
Mfinal is a dead marking, i.e., ∀M∈R(N,Minit) Mfinal ∈ R(N,M) ∧ R(N,Mfinal) = ∅.

The behavior of a sound accepting Petri net can be represented as a marking graph,
also referred to as its reachability graph. Later we will add time and probabilities to the
marking graph.

Definition 5 (Marking Graph). Let AN = (N,Minit ,Mfinal) be a sound accepting
Petri net. The marking graph of AN is MG(AN) = (S,R,Minit ,Mfinal) with S =
R(N,Minit) the set of states, R = {(M, (t, a),M ′) ∈ S × T × (Uact ∪ {τ}) × S |
(N,M)[t⟩(N,M ′) ∧ lb(t) = a} the state transitions, Minit the initial state, and Mfinal

the final state.

Note that any sound accepting Petri net defines a marking graph and also a set of
possible traces. For any σ ∈ T ∗, we can apply the partial labeling function lb map-
ping the visible transitions (i.e., non-τ) onto the corresponding activity labels, i.e.,
lb(σ) ∈ Uact

∗. Hence, for any AN = (N,Minit ,Mfinal), trace(AN) = {lb(σ) |
∃σ(N,M)[σ⟩(N,M ′)} is the set of possible traces. Note that trace σ = ⟨a1, a2, . . . an⟩ ∈
trace(AN) if there a path from Minit to Mfinal in the marking graph considering only
the labels of visible transitions.

Process mining techniques focus on the relation between event data and process
models. Process discovery techniques aim to discover a process model (e.g., an accept-
ing Petri net as defined in Def. 3) from example behavior (e.g., an event log as defined
in Def. 1). The model should allow for as much of the observed behavior without under-
fitting the data (recall versus precision). Conformance checking takes as input a process
model and event data and compares both to identify commonalities and discrepancies.

Note that an accepting Petri net and the corresponding marking graph do not specify
probabilities and temporal behavior. GSPNs add these additional perspectives without
restricting the set of possible traces, i.e., the marking graph already describes the struc-
ture of the corresponding Continuous-Time Markov Chain (CTMC).

3 Generalized Stochastic Petri Nets

After introducing the basics of event data, Petri nets, and process mining, we focus on
Generalized Stochastic Petri Nets (GSPNs) that add time and probabilities. In a GSPN,
we split the set of transitions into the set of immediate transitions Ti and the set of
timed transitions Tt. The immediate transitions take no time and have priority over

6 W. van der Aalst and S. Leemans

time transitions. If multiple immediate transitions are enabled with the same maximal
priority, a weight function wt ∈ Ti → R+ is used to resolve the conflict. Let, Tmax

be the non-empty set of enabled immediate transitions having the highest priority in
marking M . The probability that t ∈ Tmax occurs in marking M is wt(t)∑

t′∈Tmax
wt(t′) .

Markings where there is at least one enabled immediate transition are called vanishing,
because the time spent in such states is zero. If only timed transitions are enabled in M ,
function rt ∈ Tt → R+ is used to resolve the choice. Such an M is called a tangible
marking because a non-zero time is spent in such states. Function rt assigns a transition
rate to each timed transition. In GSPNs, it is assumed that times are sampled from
a negative exponential distribution described by the transition rate. (Note that phase-
type distributions could be used as well, but here we stick to the basic variant.) Let
Ttimed be the non-empty set of enabled timed transitions in marking M (no immediate
transitions are enabled). The probability that t ∈ Ttimed occurs first in marking M is

rt(t)∑
t′∈Ttimed

rt(t′) .

The memoryless property of the negative exponential probability distribution allows
for different interpretations. For example, we can use the “race with age memory” in-
terpretation where time transitions compete for firing and the competition is won by the
transition that samples the shortest delay [17,6,23]. Recall that the probability density
function of an exponential distribution with rate λ is pdf (x) = λeλx (with x ≥ 0). The
mean value is 1

λ and the variance is 1
λ2 .

Definition 6 (Generalized Stochastic Petri Net). An accepting generalized stochastic
Petri net is a tuple GSPN = (AN , Ti, Tt,wt , rt) where AN = (N,Minit ,Mfinal) is
a sound accepting Petri net with N = (P, T, F,H, pr , lb), Ti is the set of immediate
transitions (for any t ∈ Ti: pr(t) > 0 and lb(t) = τ), Tt is the set of timed transitions
(for any t ∈ Tt: pr(t) = 0), wt ∈ Ti → R+ assigns a weight to each immediate
transitions, and rt ∈ Tt → R+ assigns a transition rate to each timed transition.

Note that immediate transitions have priority over timed transitions because all
timed transitions have a priority of zero and all immediate transitions have a non-zero
priority. Therefore, there are two types of markings: vanishing (only immediate transi-
tions are enabled) and tangible (only timed transitions are enabled). Note that the final
marking is neither vanishing nor tangible because no transition is enabled.

Note that we assume that only timed transitions can have a label, i.e., we assume
that immediate transitions are not logged in an event log and are only there for routing
purposes. Traces in the event log correspond to accepting traces of the GSPN. This was
the reason to focus on accepting Petri nets and abstract from arc weights. Note that most
GSPN examples used in traditional literature are cyclic and cannot be linked to traces
in event logs.

Interestingly, the addition of Ti, Tt, wt , and rt does not change the sets of accept-
ing traces and reachable markings. They are only added to describe the temporal and
stochastic behavior. Therefore, we can extend the marking graph with probabilities and
firing rates without having to change the structure.

Definition 7 (Annotated Marking Graph). Let GSPN = (AN , Ti, Tt,wt , rt) be an
accepting generalized stochastic Petri net with AN = (N,Minit ,Mfinal) and N =

Learning Generalized Stochastic Petri Nets From Event Data 7

(P, T, F,H, pr , lb). The annotated marking graph of GSPN is MG(GSPN) = (S,R,
Minit ,Mfinal , Sv, St, rate, prob) with

– MG(AN) = (S,R,Minit ,Mfinal) the marking graph of AN ,
– Sv = {M ∈ S | ∃t∈Ti (N,M)[t⟩} the set of vanishing states,
– St = {M ∈ S | ∃t∈Tt (N,M)[t⟩} the set of tangible states,1

– rate ∈ St → R+ indicating the time spent in each tangible state with rate(M) =∑
t∈en(N,M) rt(t) for M ∈ St,

– prob ∈ R → [0, 1] indicating transition probabilities such that for any r =

(M, (t, a),M ′) ∈ R: prob(r) = wt(t)∑
t′∈en(N,M) wt(t′) if M ∈ Sv and prob(r) =

rt(t)
rate(M) if M ∈ St.

The set of states is partitioned into Sv , St, and the final marking Mfinal . The time
spent in vanishing states is zero. The time spent in a tangible state M is 1

rate(M)

where rate(M) is the sum of the rates of the enabled time transitions. (Recall that
the minimum of a set of independent exponentially distributed random variables with
rates λ1, λ2, . . . , λk is the exponentially distributed random variable with rate λ =
λ1 + λ2 + . . . + λk.) Given a state M ∈ S, the probability of moving to M ′ via
r = (M, (t, a),M ′) is given by prob(r).

The removal of vanishing markings yields a Continuous-Time Markov Chain (CTMC)
that can be analyzed to answer a wide variety of performance questions (e.g., flow
times). This is quite standard, and therefore, we do not elaborate on this [17,6,23].

4 Discovering Generalized Stochastic Petri Nets

After introducing GSPNs from a process-mining viewpoint, we now show how GSPNs
can be discovered from event data.

4.1 Discovering Process Structure

Process-discovery techniques can be split into bottom-up approaches and top-down ap-
proaches. Bottom-up approaches like the Alpha algorithm [5], heuristic mining [45],
and region-based approaches [4,12,18,33,44] try to find local connections between dif-
ferent activities. Top-down approaches include the family of inductive mining tech-
niques [27,28,29] where recursively, the event log is split into smaller event logs using
operators such as sequence, parallel, choice, and loop.

It is impossible to give a complete overview of all approaches. For example, the
Split-Miner uses a combination of techniques [11]. See [10] for a survey.

Discovery techniques often use Petri nets as a target representation. Also, techniques
that use other representations, such as process trees and causal nets, can be trivially
mapped onto Petri nets. Therefore, we limit ourselves to the Petri-net representation.

In the first step, we discover a sound accepting Petri net as introduced in defini-
tions 3 and 4. Note that such a model does not specify time and probabilities, these are
discovered later. However, we allow for labeled transitions, inhibitor arcs, and priorities.

1 Note that Sv ∩ St = ∅, Mfinal ̸∈ Sv , Mfinal ̸∈ St, and S = Sv ∪ St ∪ {Mfinal}.

8 W. van der Aalst and S. Leemans

Classifying existing techniques using such Petri nets as a target notation, we identify
the following dimensions:

– Silent activities. Is it possible to have a transition without a visible label (also called
τ or invisible transitions)? For example, the Alpha algorithm requires all transitions
to have a visible unique label.

– Duplicate activities. Is it possible to have multiple transitions having the same la-
bel? For example, state-based region approaches may use label-splitting.

– Block-structuredness and other structural limitations. Are there limitations regard-
ing the Petri net structure? Many approaches produce only free-choice Petri net
structures or impose a hierarchical structure. For example, all inductive approaches
produce Petri nets that are block-structured and free choice.

– Soundness. Are models free of deadlocks and livelocks? Recall that there are dif-
ferent notions of soundness, e.g., relaxed soundness only requires that the final
marking is reachable. In this paper, we assume that the accepting Petri net is sound
as defined in Def. 4 (unless stated differently).

GSPNs allow for non-block-structured and non-free-choice models having both
silent and duplicate activities. We limit ourselves to sound GSPNs. Interestingly, GSPNs
allow for inhibitor arcs and priorities. These extensions significantly extend the expres-
sive power of Petri nets. For example, many of the workflow patterns or business rules
described in literature can only be expressed using inhibitor arcs or priorities. Inhibitor
arcs and priorities can be added without jeopardizing Markovian-based performance
analysis. Therefore, it is interesting to think of control-flow discovery techniques using
inhibitor arcs or priorities.

There exist synthesis techniques for Petri nets with inhibitor arcs [16] or even the
combination of reset and inhibitor arcs[20]. However, these do not start form event logs,
but from labeled transition systems that are assumed to isomorphic to the reachability
graph. Therefore, they cannot be used in any realistic process-mining setting. Through
this paper we would like to encourage the development of such techniques. The com-
plicating factor is that inhibitor arcs and priorities remove behavior and are therefore
only observable through the absence of behavior in the event log.

It is important to note that all visible transitions corresponding to activities recorded
in the event log correspond to timed transitions and can only happen in tangible mark-
ings. The time spent in a vanishing marking is zero. Therefore, it is natural to assume
that “real-world events” occur in tangible markings. This matches the earlier require-
ment for GSPNs that for any t ∈ Ti: pr(t) > 0 and lb(t) = τ and for any t ∈ Tt:
pr(t) = 0. Visible transitions need to be timed, but timed transitions do not need to be
visible.

When mapping a GSPN onto Markov chains, these extensions do not cause any
additional difficulty. Therefore, there are opportunities to enhance discovery techniques.
Inhibitor arcs and priorities only restrict behavior. Therefore, they can be used to make
discovered process models more precise. However, such extensions may also introduce
deadlocks or livelocks.

In the remainder, we assume that we have discovered a sound accepting labeled
Petri net with priorities and inhibitor arcs. Therefore, we just need to determine Ti, Tt,
wt , and rt to obtain a complete GSPN.

Learning Generalized Stochastic Petri Nets From Event Data 9

log L log L′

model

Markov
chain

parameterised
Markov chain

query

ϵ

GSPN
remove

non-fitting traces

synthesisparameter

Fig. 2: Overview of our approach to discover GSPNs from a log and a control-flow
model.

4.2 Discovering Weights and Rates

There are currently no techniques that can, given an event log L and a sound accepting
labeled Petri net with priorities and inhibitor arcs, obtain a complete GSPN. That is,
assume AN = (N,Minit ,Mfinal) and N = (P, T, F,H, pr , lb) to be fixed (control-
flow discovery). Now, what is left is to determine Ti, Tt, wt , and rt in GSPN =
(AN , Ti, Tt,wt , rt).

The problem of automatically adding probabilities and durations to a Petri net was
first addressed in [42], where so-called Colored Petri Nets (CPNs) are discovered.
Token-based replay was used to relate the event data to the control-flow model. In [41],
a similar approach was followed but using alignments (to relate event data and model)
and GSPNs as a target language. These classical approaches did not consider priorities
or inhibitor arcs and used heuristics to estimate parameters.

More recent work aims to optimize for well-defined stochastic log-quality mea-
sures [15,32,8], e.g., estimating weights [13,30] or focusing on block-structured mod-
els [14]. However, these approaches only consider probabilities and do not consider
time durations, priorities, or inhibitor arcs.

Other approaches do not consider concurrency, using sequential models such as
stochastic directed action graphs [7].

Therefore, there is no approach supporting the discovery of transition weights and
rates for arbitrary GSPNs using a well-defined quality measure. To this end, we trans-
late the problem of finding weights and rates of GSPN given its control-flow structure
to leverage a parameter synthesis technique by Joost-Pieter Katoen [19,39]. Figure 2
shows an overview, and here we provide the steps in detail:

1. AN defines a control-flow model that expresses a language of traces. The first step
is to filter the event log L by removing all traces that cannot be replayed on AN
(that is, that are not part of the language of AN). By definition, traces that do not
fit AN have a probability of 0. Let L′ be this filtered log.

2. Second, we consider that each trace σ in L′ has a potentially infinite set of paths in
AN that project to σ. For instance, consider the trace ⟨a, a, b⟩ and our Petri net in
Figure 1. The trace is in the language of the net, however there are infinitely many
paths that project to this trace, as the silent transitions t1 and t4 form a loop that
can be taken arbitrarily often.
To capture these potentially infinitely many paths, we create an absorbing Markov
chain (S, T ,P). The states of the chain represent the combination of a marking and
(a prefix of) a trace. The transitions in the Markov chain are transitions of the Petri

10 W. van der Aalst and S. Leemans

⟨⟩, p0 ⟨a⟩, p1
a3

⟨a, a⟩, p0
a2

⟨⟩, p1

t1 t4

⟨a⟩, p0

a2

t4 t1

⟨a, a⟩, p1

a3

t1 t4

⟨a, a, b⟩, p2

b5
⊥

Fig. 3: Absorbing Markov chain of trace ⟨a, a, b⟩ and the Petri net of Figure 1.

net. Figure 3 shows the structure of the absorbing Markov chain of our example.
Formally, the structure of the absorbing Markov chain is the combination of the
smallest sets of states S and transitions T such that:

– The initial state is the combination of the initial marking and the empty trace:

(⟨⟩,Minit) ∈ S (1)

– If in the net a silent transition is enabled, then that transition can be followed
in T and S:

(σ,M) ∈ S ∧ (N,M)[t⟩(N,M ′) ∧ lb(t) = τ

⇒ (σ,M)
t−→ (σ,M ′) ∈ T ∧ (σ,M ′) ∈ S (2)

– If in the net a labeled transition is enabled, and there is a trace in L′ that can
follow that transition’s label, then that transition can be followed in T and S:

(σ,M) ∈ S ∧ (N,M)[t⟩(N,M ′) ∧ σ · ⟨lb(t), . . .⟩ ∈ L′

⇒ (σ,M)
t−→ (σ · ⟨lb(t)⟩,M ′) ∈ T ∧ (σ · ⟨lb(t)⟩,M ′) ∈ S (3)

– As in a sound Petri net the final marking is a deadlock, every corresponding
state is an absorbing state:

(σ,Mfinal) ∈ S ⇒ (σ,Mfinal)
⊥−→ (σ,Mfinal) ∈ T (4)

Figure 3 shows an example of our example Petri net and log [⟨a, b⟩, ⟨a, a, b⟩].
Please note that through Equation (4), each trace of the log has a unique absorbing
state. We refer to this state as Sabsorb(σ).

3. Next, we assign the probabilities in the Markov chain in the function P , using
parameters for weights wt and preliminary rates rt ′.
For every immediate transition t such that (σ,M)

t−→ (σ′,M ′) ∈ T (added through
Equation (2)), we assign a probability that is relative to the weight of t compared
to the sum of the weights of the enabled transitions in M :

P((σ,M)
t−→ (σ′,M ′)) =

wt(t)∑
t′∈en(N,M) wt(t

′)
(5)

Learning Generalized Stochastic Petri Nets From Event Data 11

For every timed transition t such that (σ,M)
t−→ (σ′,M ′) ∈ T (added through

equations (2) and (3)), we assign a probability that is relative to the rate of its
transition compared to the sum of the rates of the enabled transitions in M :

P((σ,M)
t−→ (σ′,M ′)) =

rt ′(t)∑
t′∈en(N,M) rt

′(t′)
(6)

Every transition added through Equation (4) is assigned a probability of 1:

P((σ,Mfinal)
⊥−→ (σ,Mfinal)) = 1 (7)

By construction, for each state, the sum of probabilities on outgoing transitions is
1. As the Petri net is sound, it has no livelocks, and therefore the Markov chain is
absorbing.

4. Observe that we now have a parameterized absorbing Markov chain that represents
the traces of the log, the control-flow structure of the model, and the – parame-
terized – weights and rates of the transitions in the model. Next, we formulate a
probabilistic query stating that for a given small ϵ, we can assign weights such that
for each trace in the log, the absolute difference the probability of that trace in the
log and the probability of that trace in the model is at most ϵ. That is, for a given
small ϵ, whether there is an assignment to the weight and rate parameters wt(t) and
rt ′(t) such that for all traces σ, the probability that the Markov chain ends up in
Sabsorb(σ) is ϵ-close to the probability observed in the event log L′:

∀σ∈L′

∣∣∣∣P (Sabsorb(σ))−
|[σ | σ ∈ L′]|

|L′|

∣∣∣∣ ≤ ϵ (8)

5. We can answer this query for a given ϵ using parameter synthesis [19,39]. That is,
we look whether there is a region of weight and rate parameter assignments for
which the query returns true. Next, we perform a binary search to find the lowest ϵ
for which the query holds. Once we are happy with the reached precision, we can
pick an arbitrary point from the feasible region, which directly yields the weight
parameters wt for the silent transitions.

6. For the timed transitions, the feasible region provides only preliminary values,
which we refer to as rt ′. This stems from the fact that the rates of dependent transi-
tions can be scaled together by an arbitrary factor without changing the stochastic
behavior of the GSPN. As such, the rates of (Petri net) transitions can be scaled to
yield a different time perspective without changing the stochastic perspective. Two
(Petri net) transitions are dependent if they are both enabled in at least one state in
S [31]. Formally, a dependent set of transitions T ′ is a smallest set containing at
least one transition such that:

∀t∈T,t′∈T ′

(
(σ,M)

t′−→ (σ′,M ′)
)
∈ T ∧

(
(σ,M)

t−→ (σ′′,M ′′)
)
∈ T

⇒ t ∈ T ′ (9)

Dependence is a transitive property, and thus every transition is part of exactly one
such set. Our remaining problem is thus to scale the rates of each set of dependent

12 W. van der Aalst and S. Leemans

transitions by a factor, such that the rates best match the times observed in the event
log.
Let T ′ ⊆ T be a set of dependent (Petri net) transitions, such that there is no
dependent set T ′′ ⊃ T ′. Let M be the set of all markings in which any transition
of T ′ was enabled. By definition, no transitions outside of T ′ can be enabled in any
M ∈ M. Then, we can easily observe in the event log L′ how long the system
spent on average in each marking M ∈ M; let o(M) be this average.
Then, we aim to find a scaling factor xT ′ such that

let ∀M∈M
1

o(M)
· 1

xT ′
+ ϵM = rt ′

find xT ′

while minimizing
∑
t∈T ′

|ϵM | (10)

This is a linear problem, as |a| ≤ b can be written as a ≤ b ∧ −a ≤ b. Solving
this linear problem yields a value for xT ′ for every maximal independent set of
transitions T ′ ⊆ T . The preliminary rates rt ′ can then be scaled: for each t from
each such T ′, rt(t) = rt ′(t) · xT ′ .

5 Conclusion

Joost-Pieter Katoen is one of the most renowned scientists in formal methods, with
seminal contributions to model checking, concurrency theory, and probabilistic reason-
ing. He has worked on the analysis of Generalized Stochastic Petri Nets (GSPNs) and
parameter synthesis. Therefore, we related GSPNs and parameter synthesis to process
discovery based on event data. We introduced (GSPNs) from a process-mining perspec-
tive and presented a two-step approach to discover GSPNs from event data. We showed
that it is possible to optimize the transition weights and rates constrained by a fixed
control-flow structure discovered in the first phase. Obviously, the approach has several
limitations. The most important one is that time distributions are assumed to be nega-
tive exponential. Future work aims to implement and evaluate the approach. We would
also like to experiment with extensions of GSPN using phase-type distributions [6],
stochastic process trees using discrete time [3], and various approximations. Moreover,
we would like to explore new discovery techniques that allow for inhibitor arcs and
priorities. These extensions only limit the behavior of the process model and can there-
fore only be discovered through the absence of behavior in the event log. This provides
opportunities to discover more precise models while still leveraging the GSPN-based
performance analysis techniques.

References

1. W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer-Verlag, Berlin,
2016.

Learning Generalized Stochastic Petri Nets From Event Data 13

2. W.M.P. van der Aalst and J. Carmona, editors. Process Mining Handbook, volume 448 of
Lecture Notes in Business Information Processing. Springer-Verlag, Berlin, 2022.

3. W.M.P. van der Aalst, K.M. van Hee, and H.A. Reijers. Analysis of Discrete-time Stochastic
Petri Nets. Statistica Neerlandica, 54(2):237–255, 2000.

4. W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler, and C.W.
Günther. Process Mining: A Two-Step Approach to Balance Between Underfitting and Over-
fitting. Software and Systems Modeling, 9(1):87–111, 2010.

5. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering
Process Models from Event Logs. QUT Technical report, FIT-TR-2003-03, Queensland
University of Technology, Brisbane, 2003. (Accepted for publication in IEEE Transactions
on Knowledge and Data Engineering.).

6. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with
Generalized Stochastic Petri Nets. John Wiley and Sons, 1995.

7. H. Alkhammash, A.Polyvyanyy, and A. Moffat. Stochastic directly-follows process discov-
ery using grammatical inference. In CAiSE, volume 14663 of Lecture Notes in Computer
Science, pages 87–103. Springer, 2024.

8. H. Alkhammash, A. Polyvyanyy, A. Moffat, and L. García-Bañuelos. Entropic relevance: A
mechanism for measuring stochastic process models discovered from event data. Inf. Syst.,
107:101922, 2022.

9. E.G. Amparore, G. Balbo, M. Beccuti, S. Donatelli, and G. Franceschinis. 30 Years of
GreatSPN. In L. Fiondella and A. Puliafito, editors, Principles of Performance and Reliabil-
ity Modeling and Evaluation: Essays in Honor of Kishor Trivedi on his 70th Birthday, pages
27–254. Springer-Verlag, Berlin, 2016.

10. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F.M. Maggi, A. Marrella, M. Mecella, and
A. Soo. Automated Discovery of Process Models from Event Logs: Review and Benchmark.
IEEE Transactions on Knowledge and Data Engineering, 31(4):686–705, 2019.

11. A. Augusto, R. Conforti, M. Marlon, M. La Rosa, and A. Polyvyanyy. Split Miner: Auto-
mated Discovery of Accurate and Simple Business Process Models from Event Logs. Knowl-
edge Information Systems, 59(2):251–284, 2019.

12. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on Regions of
Languages. In G. Alonso, P. Dadam, and M. Rosemann, editors, International Conference
on Business Process Management (BPM 2007), volume 4714 of Lecture Notes in Computer
Science, pages 375–383. Springer-Verlag, Berlin, 2007.

13. A. Burke, S.J.J. Leemans, and M.T. Wynn. Stochastic process discovery by weight estima-
tion. In ICPM Workshops, volume 406 of Lecture Notes in Business Information Processing,
pages 260–272. Springer, 2020.

14. A. Burke, S.J.J. Leemans, and M.T. Wynn. Discovering stochastic process models by reduc-
tion and abstraction. In Petri Nets, volume 12734 of Lecture Notes in Computer Science,
pages 312–336. Springer, 2021.

15. A.T. Burke, S.J.J. Leemans, M.T. Wynn, W.M.P. van der Aalst, and A.H.M. ter Hofstede.
Stochastic Process Model-Log Quality Dimensions: An Experimental Study. In A. Burattin,
A. Polyvyanyy, and B. Weber, editors, International Conference on Process Mining (ICPM
2022), pages 80–87. IEEE, 2022.

16. N. Busi and G.M. Pinna. Synthesis of nets with inhibitor arcs. In A.W. Mazurkiewicz and
J. Winkowski, editors, CONCUR ’97: Concurrency Theory, 8th International Conference,
Warsaw, Poland, July 1-4, 1997, Proceedings, volume 1243 of Lecture Notes in Computer
Science, pages 151–165. Springer, 1997.

17. J. Campos, M.A. Marsan, G. Balbo, and G. Conte. Generalized Stochastic Petri Nets: A
Definition at the Net Level and Its Implications. IEEE Transactions on Software Engineering,
19(2):89–107, 1993.

14 W. van der Aalst and S. Leemans

18. J. Carmona, J. Cortadella, and M. Kishinevsky. A Region-Based Algorithm for Discovering
Petri Nets from Event Logs. In Business Process Management (BPM 2008), pages 358–373,
2008.

19. C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, J.P. Katoen, E. Ábrahám, and
H. Bruintjes. Parameter synthesis for probabilistic systems. In MBMV, pages 72–74. Albert-
Ludwigs-Universität Freiburg, 2016.

20. R.R. Devillers and R. Tredup. Synthesis of Inhibitor-Reset Petri Nets: Algorithmic and Com-
plexity Issues. In L. Bernardinello and L. Petrucci, editors, Application and Theory of Petri
Nets and Concurrency - 43rd International Conference, PETRI NETS 2022, Bergen, Norway,
June 19-24, 2022, Proceedings, volume 13288 of Lecture Notes in Computer Science, pages
213–235. Springer, 2022.

21. C. Eisentraut, H. Hermanns, J.P. Katoen, and L. Zhang. A Semantics for Every GSPN. In
J.M. Colom and J. Desel, editors, Application and Theory of Petri Nets and Concurrency -
34th International Conference (Petri Nets 2013), volume 7927 of Lecture Notes in Computer
Science, pages 90–109. Springer-Verlag, Berlin, 2013.

22. G. Florin and S. Natkin. Evaluation based upon Stochastic Petri Nets of the Maximum
Throughput of a Full Duplex Protocol. In C. Girault and W. Reisig, editors, Application and
theory of Petri nets: selected papers from the first and the second European workshop, vol-
ume 52 of Informatik Fachberichte, pages 280–288, Berlin, 1982. Springer-Verlag, Berlin.

23. P.J. Haas. Stochastic Petri Nets: Modelling, Stability, Simulation. Springer Series in Opera-
tions Research. Springer-Verlag, Berlin, 2002.

24. S. Junges, J.P. Katoen, M. Stoelinga, and M. Volk. One Net Fits All - A Unifying Semantics
of Dynamic Fault Trees Using GSPNs. In V. Khomenko and O.H. Roux, editors, Application
and Theory of Petri Nets and Concurrency (Petri Nets 2018), volume 10877 of Lecture Notes
in Computer Science, pages 272–293. Springer-Verlag, Berlin, 2018.

25. J.P. Katoen. GSPNs Revisited: Simple Semantics and New Analysis Algorithms. In J. Brandt
and K. Heljanko, editors, 12th International Conference on Application of Concurrency to
System Design (ACSD 2012), pages 6–11. IEEE Computer Society, 2012.

26. S.J.J. Leemans, W.M.P. van der Aalst, T. Brockhoff, and A. Polyvyanyy. Stochastic Process
Mining: Earth Movers’ Stochastic Conformance. Information Systems, 102:101724, 2021.

27. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering Block-structured Process
Models from Event Logs: A Constructive Approach. In J.M. Colom and J. Desel, editors,
Applications and Theory of Petri Nets 2013, volume 7927 of Lecture Notes in Computer
Science, pages 311–329. Springer-Verlag, Berlin, 2013.

28. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering Block-Structured Pro-
cess Models from Event Logs Containing Infrequent Behaviour. In N. Lohmann, M. Song,
and P. Wohed, editors, Business Process Management Workshops, International Workshop
on Business Process Intelligence (BPI 2013), volume 171 of Lecture Notes in Business In-
formation Processing, pages 66–78. Springer-Verlag, Berlin, 2014.

29. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Scalable Process Discovery and
Conformance Checking. Software and Systems Modeling, 17(2):599–631, 2018.

30. S.J.J. Leemans, T. Li, M. Montali, and A. Polyvyanyy. Stochastic process discovery: Can it
be done optimally? In CAiSE, volume 14663 of Lecture Notes in Computer Science, pages
36–52. Springer, 2024.

31. S.J.J. Leemans, L.L. Mannel, and N. Sidorova. Significant stochastic dependencies in pro-
cess models. Information Systems, 118:102223, 2023.

32. S.J.J. Leemans, A.F. Syring, and W.M.P. van der Aalst. Earth movers’ stochastic confor-
mance checking. In BPM Forum, volume 360 of Lecture Notes in Business Information
Processing, pages 127–143. Springer, 2019.

Learning Generalized Stochastic Petri Nets From Event Data 15

33. L. Mannel and W.M.P. van der Aalst. Finding Complex Process-Structures by Exploiting
the Token-Game. In S. Donatelli and S. Haar, editors, Applications and Theory of Petri Nets
2019, volume 11522 of Lecture Notes in Computer Science, pages 258–278. Springer-Verlag,
Berlin, 2019.

34. F. Mannhardt, S.J.J. Leemans, C.T. Schwanen, and M. de Leoni. Modelling data-aware
stochastic processes - discovery and conformance checking. In L. Gomes and R. Lorenz,
editors, Application and Theory of Petri Nets and Concurrency - 44th International Confer-
ence, PETRI NETS 2023, Lisbon, Portugal, June 25-30, 2023, Proceedings, volume 13929
of Lecture Notes in Computer Science, pages 77–98. Springer, 2023.

35. F. Mannhardt, M. de Leoni, H.A. Reijers, and W.M.P. van der Aalst. Balanced Multi-
Perspective Checking of Process Conformance. Computing, 98(4):407–437, 2016.

36. M. Ajmone Marsan, G. Balbo, and G. Conte. A Class of Generalised Stochastic Petri Nets
for the Performance Evaluation of Multiprocessor Systems. ACM Transactions on Computer
Systems, 2(2):93–122, May 1984.

37. P. Merlin and D.J. Faber. Recoverability of communication protocols. IEEE Transactions on
Communication, 24(9):1036–1043, Sept 1976.

38. M.K. Molloy. On the Integration of Delay and Throughput Measures in Distributed Process-
ing Models. PhD thesis, University of California, Los Angeles, 1981.

39. T. Quatmann, C. Dehnert, N. Jansen, S. Junges, and J.P. Katoen. Parameter synthesis for
markov models: Faster than ever. In ATVA, volume 9938 of Lecture Notes in Computer
Science, pages 50–67, 2016.

40. C. Ramchandani. Performance Evaluation of Asynchronous Concurrent Systems by Timed
Petri Nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, 1973.

41. A. Rogge-Solti, W.M.P. van der Aalst, and M. Weske. Discovering Stochastic Petri Nets with
Arbitrary Delay Distributions from Event Logs. In N. Lohmann, M. Song, and P. Wohed, edi-
tors, Business Process Management Workshops, International Workshop on Business Process
Intelligence (BPI 2013), volume 171 of Lecture Notes in Business Information Processing,
pages 15–27. Springer-Verlag, Berlin, 2014.

42. A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Simulation Models.
Information Systems, 34(3):305–327, 2009.

43. B. Salmani and J.P. Katoen. Automatically Finding the Right Probabilities in Bayesian Net-
works. Journal of Artificial Intelligence Research, 77:1637–1696, 2023.

44. M. Solé and J. Carmona. Process Mining from a Basis of State Regions. In J. Lilius and
W. Penczek, editors, Applications and Theory of Petri Nets 2010, volume 6128 of Lecture
Notes in Computer Science, pages 226–245. Springer-Verlag, Berlin, 2010.

45. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from Event-
Based Data using Little Thumb. Integrated Computer-Aided Engineering, 10(2):151–162,
2003.

46. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process Dis-
covery using Integer Linear Programming. Fundamenta Informaticae, 94:387–412, 2010.

	Learning Generalized Stochastic Petri Nets From Event Data

