
Applying Process Mining on Scientific
Workflows: a Case Study on High Performance

Computing Data⋆

Zahra Sadeghibogar[0000−0002−6340−9669], Alessandro Berti[0000−0002−3279−4795],
Marco Pegoraro[0000−0002−8997−7517], Wil M.P. van der

Aalst[0000−0002−0955−6940]

Chair of Process and Data Science, RWTH Aachen University, Aachen, Germany
{sadeghi, a.berti, pegoraro, wvdaalst}@pads.rwth-aachen.de

Abstract. Computer-based scientific experiments are becoming increas-
ingly data-intensive, necessitating the use of High-Performance Comput-
ing (HPC) clusters to handle large scientific workflows. These workflows
result in complex data and control flows within the system, making anal-
ysis challenging. This paper focuses on the extraction of case IDs from
SLURM-based HPC cluster logs, a crucial step for applying mainstream
process mining techniques. The core contribution is the development of
methods to correlate jobs in the system, whether their interdependencies
are explicitly specified or not. We present our log extraction and corre-
lation techniques, supported by experiments that validate our approach,
enabling comprehensive documentation of workflows and identification
of performance bottlenecks.

Keywords: High Performance Computing · SLURM · Scientific work-
flow · Process mining.

1 Introduction

A workflow is a description and automation of a process, in which data is pro-
cessed by different logical data processing activities according to a set of rules.
A scientific workflow is an ensemble of scientific experiments, described in terms
of scientific activities with data dependencies between them [2]. Scientific work-
flows allow scientists to model and express the entirety of data processing steps
and their dependencies. Fig. 1 shows an example of a scientific workflow depicted
as a flow chart, where each task is associated with a command.

Scientific workflows, characterized by their massive data processing needs, are
often automated and necessitate parallel processing on platforms such as cloud

⋆ The authors gratefully acknowledge the German Federal Ministry of Education and
Research (BMBF) and the Ministry of Education and Research of North-Rhine West-
phalia for supporting this work/project as part of the NHR funding. Also, we thank
the Alexander von Humboldt (AvH) Stiftung for supporting our research.



2 Zahra Sadeghibogar et al.

Fig. 1: Illustration of a Scientific Workflow: Starting with a single input file, the process involves
pre-processing, parallel job execution, and merging outputs into a single final file.

or HPC clusters [2,9]. In this context, process mining emerges as an invaluable
tool for workflow comprehension and detection of possible optimizations.

Over the past decades, there has been a growing interest in the field of process
mining [1]. Process mining aims to extract information about processes from
event logs, i.e., execution histories. This paper applies process mining to existing
scientific workflows with the following goals:

– Documentation of scientific workflows: reporting which commands are exe-
cuted and in which order. We pursue this goal by using process discovery
techniques, one of the main branches of process mining [1]. Process discov-
ery techniques assume that every record in the event log contains at least:
(i) a reference to the executed activity, (ii) a reference to the identifier that
associates an event with a particular execution of the process, and (iii) the
timestamp at which the event occurred.

– Detection of bottlenecks affecting the execution of scientific workflows: We
enrich the process model discovered in the previous step with the obtained
performance results.

While the techniques proposed in this paper can be applied to any workflow
system, we focus on the SLURM system to promote applicability. SLURM is a
common choice for workflow management in HPC clusters, governing the RWTH
HPC cluster1, one of the most widely used platforms in the field.

The issue in examining the logs obtained from a given workflow system is
the absence of a clearly defined case identifier that groups events associated with
the same execution. To apply process mining to these logs, it is necessary to
study the correlation between tasks that are running on the HPC cluster. Fig. 2
shows an overall view of our approach. The RWTH HPC cluster is observed
periodically, and an input log is generated. Based on how users execute their
jobs on SLURM [8], we propose two different approaches to assign case IDs to
events. Finally, we obtain an event log on which process mining techniques can
be applied.

1 https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/

https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/


Applying Process Mining on HPC Scientific Workflows 3

Fig. 2: An overall view of the proposed approach

The remainder of this paper is organized as follows. Sec. 2 reviews some
related works. Sec. 3 shows some technical notions on how the SLURM system
is implemented and which information is available to eventually form an event
log. Sec. 4 explains our approach to apply process mining techniques to the
scientific workflows running on SLURM-based HPC clusters. Sec. 5 introduces
some analyses of the event log extracted from the SLURM system of RWTH
Aachen University. Finally, Sec. 6 concludes the paper.

2 Related Work

Many studies have analyzed HPC behavior starting from data collected about
the running jobs. In [4], an extension of miniHPC is proposed, to enable job-level
monitoring to interpret anomalous behaviors such as load imbalance, CPU and
I/O anomalies, or memory leaks. A framework for monitoring, analyzing, and
predicting jobs running on PBS-based job scheduler HPCs is defined in [5]. The
monitoring module captures data about the topology of in-use nodes while a job
is running. This provides a deeper understanding of how the job is distributed
across the HPCs node network. In [3], a software stack for center-wide and job-
aware cluster monitoring to influence node performance is described.

Process mining techniques have been used to analyze scientific/business work-
flow logs. In [9], a technique to mine scientific workflows based on provenance
(i.e., the source of information involved in manipulating artifacts) is proposed.
In [7], Scientific Workflow Mining as a Service (SWMaaS) is presented to support
both intra-cloud and inter-cloud scientific workflow mining.

A limitation of [4,3,5] is that they examine the jobs regardless of their in-
terdependencies. Moreover, in [7], it is assumed that the data source already
contains all the necessary information to apply process mining, ignoring the sit-
uations in which no case notion is defined. This paper aims to introduce event
correlation methods applicable to event data extracted from scientific workflows.



4 Zahra Sadeghibogar et al.

3 Preliminaries

We will focus on analyzing event data from the popular SLURM platform for
HPC computing. Hence, in this section, we present some technical notions. To
interact with SLURM, we have a set of possible commands. The most essential
commands are listed here [8]:

– srun: runs a single job. We need to create a srun script, which can then be
submitted on SLURM for real-time execution.

– sbatch: submits one or more srun commands for later execution on SLURM.
– squeue: reports the states of the running jobs. This command helps us to

extract a log for process mining purposes.

3.1 Execution of a Single Job on SLURM

Any script runs on SLURM as a job. As mentioned above, the execution of
a job on SLURM could be easily done with srun and sbatch containing one
single srun command. Understanding the sequential stages a job undergoes for
execution, and the data that can be extracted for each job running in the SLURM
queue is valuable [8].

Typically, jobs pass through several states in the course of their execution.
There are a total of 24 possible states for a job, however, three states are most
common. In the PENDING (PD) state, the job awaits resource allocation; in
the RUNNING (R) state, it is currently allocated, and in the COMPLETING
(CG) state, the job is undergoing completion.

The SLURM scheduling queue contains all the information about running
jobs. To view this information we use the squeue command. The most important
features of the jobs that have been used in our study are listed in Table 1.
These features could be extracted with the squeue -o "%a %i %E %o %t %g"

command on the SLURM system. This command shows the list of jobs in the
SLURM scheduling queue along with their account, job ID, declared dependency,
executed command, status, and project ID information [8].

Table 1: Extracted features of running jobs on SLURM system [8].
Column title Description
ACCOUNT Account associated with the job.
JOBID An unique value as job identifier.

DEPENDENCY

Specify the dependencies of the job on other jobs. This job will not begin
execution until these dependent jobs are complete. In the case of a job that
cannot run due to job dependencies never being satisfied, the full original job
dependency specification will be reported. A value of NULL implies this job has
no dependencies.

COMMAND The command to be executed.

ST
Jobs typically pass through several states in the course of their execution. The
typical states are PENDING, RUNNING, SUSPENDED, COMPLETING,
and COMPLETED. ST is the compact state of the job.

GROUP Group name of the job. The project ID is reported as GROUP in SLURM.



Applying Process Mining on HPC Scientific Workflows 5

Fig. 3: Execution of a sequence of jobs without explicit interdependencies.

3.2 Execution of a Sequence of Jobs on SLURM

To explain how to run a series of jobs (sequence of scripts) on the SLURM
workflow system, we will go through an example. Consider a user who wants to
run four scripts on SLURM, pre-processing as the first one, then parallel-job1
and parallel-job2, which can be executed in parallel but must be executed after
the pre-processing script, because they need its output. Finally, the merge script
needs the output of the two parallel jobs for its execution. The user can run
this sequence of jobs on SLURM in two ways: either manually (without explicit
interdependencies) or automatically (with interdependencies).

Execution of a Sequence of Jobs without Explicit Interdependen-
cies: In this case, the user runs the jobs manually—without declaring the inter-
dependencies between jobs—and after submitting each job waits for its execution
to be completed; then, executes the next job (Fig. 3). In this case, each job is
executed as independent, and only the user knows that some of these jobs are
logically dependent on each other.

Execution of a Sequence of Jobs with Explicit Interdependencies:
In this scenario, the user uses the SLURM dependency management system and
submits all jobs at once with correct inter-dependencies on the SLURM system,
as shown in Fig. 4. Here, the user uses the sbatch command. This command is
used to submit a job script for later execution using the --dependency option.
The script typically contains one or more srun commands to launch parallel
tasks. In this case, the user does not need to wait for the outputs of a single job,
but can wait for the execution of all the tasks and retrieve the final results at
completion (Fig. 4).

Table 2 shows the output of the squeue command where the user has declared
explicit interdependencies between jobs. As one may see, the DEPENDENCY
column in the PENDING state has a non-empty value. Conversely, when users
manually initiate jobs, the DEPENDENCY column in the PENDING state
remains empty, denoted as (null) values.

4 Approach

The input of most process mining algorithms is an event log, which contains
at least a case, an activity, and a timestamp as attributes for each event. The
majority of algorithms presume that the event data is fully accessible and has a
clearly defined case notion.



6 Zahra Sadeghibogar et al.

Fig. 4: Execution of a sequence of jobs with explicit interdependencies.

However, we cannot assume that we know the complete historical log, be-
cause of privacy issues and the required administrative privileges on the target
workflow system. Instead, we aim to observe it for a limited amount of time as
described in Sec. 4.1. However, this poses technical challenges. For instance, the
observation interval may be too long, making it difficult to capture job informa-
tion during rapid status changes.

Moreover, since the SLURM log does not contain any explicit case notion,
in Sec. 4.2 we describe event correlation to assign a case to the different events
and allow for process mining analyses.

4.1 Register SLURM events

In order to extract an event log from the system, we perform the following
operations periodically (we refer to this as observing the system):

1. Connect to the access node of the SLURM system

2. Observe the status (e.g., PENDING, RUNNING, COMPLETING) of the
current jobs using the squeue SLURM command.

3. For each of the listed jobs (rows of the log file), one of the following situations
occurs:

– The JOBID is new: register an event related to the creation of the job.

– The JOBID already exists, but the status has changed: register an event
related to the status change.

– The JOBID already exists, and the status has not changed: do nothing.

All the features mentioned in Table 1 are recorded for each job. Our log (as
illustrated in the sample SLURM log in Table 2) includes a TIME column de-
noting the event observation time recorded by the script monitoring the SLURM
system, and the COMMAND values are derived from the executed file path by
extracting and using only the file name (the last part of the path).



Applying Process Mining on HPC Scientific Workflows 7

Table 2: Sample SLURM Log
ACCOUNT JOBID DEPENDENCY COMMAND STATE TIME GROUP
userA JID1 (null) pre-processing.sh PD 13:34:09 G1

userA JID2
afterok:JID1
(unfulfilled)

parallel-job1.sh PD 13:34:09 G1

userA JID3
afterok:JID1
(unfulfilled)

parallel-job2.sh PD 13:34:09 G1

userA JID4

afterok:JID2
(unfulfilled),
afterok:JID3
(unfulfilled)

merge.sh PD 13:34:09 G1

userA JID1 (null) pre-processing.sh R 13:35:00 G1
userA JID1 (null) pre-processing.sh CG 13:49:10 G1
userA JID2 (null) parallel-job1.sh R 13:52:09 G1
userB JID5 (null) Import input.sh PD 13:52:32 G2

userB JID6
afterok:JID5
(unfulfilled)

Main calculation.sh PD 13:52:33 G2

userB JID7
afterok:JID6
(unfulfilled)

Export output.sh PD 13:52:33 G2

userA JID3 (null) parallel-job2.sh R 13:54:13 G1
userA JID3 (null) parallel-job2.sh CG 14:12:10 G1
userB JID5 (null) Import input.sh R 14:12:12 G2
userA JID2 (null) parallel-job1.sh CG 14:38:10 G1
userB JID5 (null) Import input.sh R 14:39:32 G2
userA JID4 (null) merge.sh R 14:51:30 G1
userA JID4 (null) merge.sh CG 14:53:30 G1
userB JID6 (null) Main calculation.sh R 14:54:12 G2
userB JID6 (null) Main calculation.sh CG 14:58:32 G2
userB JID7 (null) Export output.sh R 14:59:10 G2
userB JID7 (null) Export output.sh CG 15:10:10 G2

4.2 Event Correlation

Let us now obtain case IDs from SLURM. We extract a case ID with different
techniques, depending on whether the jobs were executed with or without explicit
interdependencies.

Case ID Extraction with Explicit Interdependencies: We utilize this
technique when the user has specified the inter-dependencies among jobs. This
declaration allows the inclusion of the DEPENDENCY column in the extracted
log, indicating the jobs on which the current job depends. Note that the DE-
PENDENCY column for the job lists only the dependencies that have not been
completed yet. Thus, the DEPENDENCY list would be naturally empty for a
job that is in the RUNNING state.

To implement this method, a Directed Acyclic Graph (DAG) is generated for
each chain of connected jobs in PENDING state by utilizing the JOBID, and
DEPENDENCY columns. The vertices are job IDs and the edges show depen-
dent job IDs, and then a unique case ID will be assigned to all of the connected
job IDs as shown in Fig. 5b. In the table in Fig. 5, we observe that JID2 and
JID3 are dependent on JID1, and JID4 depends on both JID2 and JID3. Based
on these dependencies, we assign case ID JID4321, as indicated in the CASE
ID column of the table. Different cases will be assigned to different discovered
connected components. For instance, JID111098 is assigned to another execution
of the same chain of commands as JID4321.



8 Zahra Sadeghibogar et al.

ACC JID COMMAND DEP TIME ST CASE ID

1 userA JID1 pre-processing.sh (null) 13:35:00 PD JID4321

2 userA JID2 parallel-job1.sh
afterok:JID1

(unfulfilled)
13:52:09 PD JID4321

3 userA JID3 parallel-job2.sh
afterok:JID1

(unfulfilled)
13:52:11 PD JID4321

4 userA JID4 merge.sh

afterok:JID2

(unfulfilled),

afterok:JID3

(unfulfilled)

13:54:13 PD JID4321

5 userB JID5 Import input.sh (null) 14:12:12 PD JID765

6 userB JID6 Main calculation.sh
afterok:JID5

(unfulfilled)
14:51:30 PD JID765

7 userB JID7 Export output.sh
afterok:JID6

(unfulfilled)
14:54:12 PD JID765

8 userA JID8 pre-processing.sh (null) 14:56:15 PD JID111098

9 userA JID9 parallel-job2.sh
afterok:JID8

(unfulfilled)
14:59:10 PD JID111098

10 userA JID10 parallel-job1.sh
afterok:JID8

(unfulfilled)
15:10:10 PD JID111098

11 userA JID11 merge.sh

afterok:JID9

(unfulfilled),

afterok:JID10

(unfulfilled)

16:05:17 PD JID111098

(a) (b)

Fig. 5: Case ID extraction with explicit interdependencies by studying JOBID and DEPENDENCY.
ACC stands for ACCOUNT, DEP for DEPENDENCY, JID for JOBID, and ST for STATE. We use
these shorter forms to make the table more compact.

Case ID Extraction without Explicit Interdependencies: In this case,
we do not have explicitly defined job dependencies; therefore, we need to use the
attributes at the event level to determine correlations and dependencies between
the jobs. We use a combination of the following two attributes in order to define
the case identifier:

– The account executing the job: it is reported as ACCOUNT in SLURM.
– The group of the given job: the project ID is intended to group the jobs

belonging to the same project. The status should be empty or default if
the user does not call the command with the project ID. The project ID is
reported as GROUP in SLURM. So, whenever we execute the same scripts
several times, the project ID is reported as the same GROUP in SLURM.

We have a many-to-many relationship between accounts and groups. All the
jobs executed by an account under a given group are therefore related to the same
project. We can use ACCOUNT-GROUP as case ID; in this case, we are certain
that the jobs executed by the same user under the same project are all collected.
In this technique, we generate a unique case ID per each unique combination
of ACCOUNT and GROUP, as shown in Table shown in Fig 6a. The parallel
relationship between Parallel-job1 and Parallel-job2 has been discovered based
on their occurrence in rows 2, 4 and 8, 10, which show they can be executed in
any order.

In this method, we may consider only the account instead of considering
the combination of group and account, but the advantage of considering also
the group is that the control flow of different projects of the same account is
not combined. This technique also has limitations, considering loops where they
shouldn’t be, due to the inability to differentiate between consecutive executions
of the same command related to different experiments. As a result, the preci-



Applying Process Mining on HPC Scientific Workflows 9

ACC JID COMMAND ST TIME G CASE ID

1 userA JID1 pre-processing.sh R 13:35:00 G1 userA-G1

2 userA JID2 parallel-job1.sh R 13:52:09 G1 userA-G1

3 userC JID3 pre-processing.sh R 13:52:11 G1 userC-G1

4 userA JID4 parallel-job2.sh R 13:54:13 G1 userA-G1

5 userB JID5 Import input.sh R 14:12:12 G2 userB-G2

6 userA JID6 merge.sh R 14:51:30 G1 userA-G1

7 userB JID7 Main calculation.sh R 14:54:12 G2 userB-G2

8 userC JID8 parallel-job2.sh R 14:56:15 G1 userC-G1

9 userB JID9 Export output.sh R 14:59:10 G2 userB-G2

10 userC JID10 parallel-job1.sh R 15:10:10 G1 userC-G1

11 userC JID11 merge.sh R 16:05:17 G1 userC-G1

(a) (b)

Fig. 6: Case ID extraction without explicit interdependencies by studying ACCOUNT and GROUP.
ACC stands for ACCOUNT, JID for JOBID, ST for STATE and G for GROUP. We use these shorter
forms to make the table easier to read and understand.

Table 3: Some event log statistics extracted from the SLURM system. The system was observed in
a time interval from 2022-12-07 11:51:45 to 2022-12-09 10:49:07.

Number of events 81632
Number of unique submitted jobs 17997
Number of accounts 123
Percentage of accounts who submitted jobs with explicit interdependencies 0.06%
Percentage of jobs defined with explicit interdependencies 0.02%
Average number of allocated CPUs per job 13.71
Average amount of allocated RAM per job 5G

sion is significantly reduced, because many different behaviors and command
sequences are allowed by the resulting model.

5 Experiments

In our previous work, we developed SLURMminer, a tool specifically designed for
mining and analyzing process models from SLURM job logs [6]. The experiments
presented in this paper utilize SLURMminer. SLURMminer was applied to the
SLURM system at RWTH Aachen University multiple times, resulting in the
extraction of an event log2. Table 3 presents key statistics derived from the
event log.

Given the variety of research areas (including physics, chemistry, biology,
and computer science) and executed purpose-specific scripts, generating a com-
prehensive process model containing the behavior of all the accounts proved
impractical. Instead, we focused on individual account process models. These
process models show the scientific workflows executed by a single user/research
group. Moreover, the process model is annotated with performance informa-
tion on the arcs, allowing for the detection of paths with high execution time
(bottlenecks), and therefore fulfilling the second goal of finding root causes of
performance problems.

2 For more details on the RWTH HPC cluster, visit: https://help.itc.rwth-aachen.de/
service/rhr4fjjutttf/. A sample event log can be downloaded at: https://www.ocpm.
info/hpc log.csv.

https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/
https://www.ocpm.info/hpc_log.csv
https://www.ocpm.info/hpc_log.csv


10 Zahra Sadeghibogar et al.

(a)

(b)

Fig. 7: The discovered process models for the account jara0180 considering (a) explicit and (b)
implicit interdependencies.

To highlight different execution paradigms, we focus on two accounts:

– jara0180 : contains computations performed on a funded research project
(Molecular dynamics simulations of P2X receptors).

– thes1331 : contains scientific experiments performed for an MSc thesis.

The executions carried out by jara0180 take advantage of explicit interdepen-
dencies (since HPC expertise is involved). Therefore, for jara0180 we were able
to develop a meaningful process model, as depicted in Fig. 7a. In this figure,
we observe two distinct chains of commands. The first chain comprises com-
mands from jobscript 0000 to jobscript 0002 , while the second chain includes
the remaining commands related to two different projects and corresponding to
30 distinct cases in the event log. We could still obtain a model from the data
(contained in Fig. 7b) without considering these interdependencies (considering
the ACCOUNT and GROUP values lead to two distinct cases). However, this
model is less precise because it relies solely on the temporal order of command
execution, where every event belongs to the same case in the event log.

The executions performed by thes1331 are defined without explicit interde-
pendencies. The case extraction approach, relying on explicit interdependencies,
leads to the assignment of a unique case ID to each execution (seven distinct
cases). Consequently, the model depicted in Fig. 8a exhibits concurrency among
all the executed commands, rendering it highly imprecise. For thes1331, it is
more appropriate to focus on the models discovered without considering the ex-
plicit interdependencies (contained in Fig. 8b), which shows the temporal order
of execution of the commands.



Applying Process Mining on HPC Scientific Workflows 11

(a)

(b)

Fig. 8: The discovered models for the account thes1331 considering explicit (a) and implicit (b)
interdependencies.

The discovered models offer insights by visualizing control flow and execu-
tion frequency, aiding users in identifying bottlenecks for improvement. Table 3
shows that only a small fraction of HPC users submit jobs with explicit interde-
pendencies, crucial for identifying connected jobs. Without these dependencies,
resulting models may be imprecise, with events either belonging to different cases
or all belonging to the same case.

6 Conclusion

In this paper, we propose an approach to extract and analyze process mining
event logs of an HPC system (in particular, we focus on the SLURM system).
While this is not the first application of process mining to HPC systems, ex-
isting techniques assume the case notion to be well-defined in the data source.
This assumption is not satisfied by mainstream systems, and we propose two
different case notions (using and not using explicit interdependencies). More-
over, we propose the SLURMminer as a tool to connect to the HPC system,
extract an event log, and perform a process mining analysis. The analyses allow
us to document the execution of scientific workflows for different accounts or
research groups utilizing process models that are annotated with performance
information (allowing us to detect bottlenecks). Therefore, we address our initial
research question: How can process mining be applied to SLURM-based HPC
clusters to document workflows and identify execution bottlenecks?

Our event logs are extracted from information that is publicly available in
the SLURM system (including the command that is executed and the requested
environment, i.e., the number of CPUs, RAM, and disk space required). However,
we do not know the detailed content of the commands or have access to more
advanced profiling options. This would require collaboration with the specific
research groups operating in the HPC systems and availability to modify the



12 Zahra Sadeghibogar et al.

execution of scientific workflows to accommodate more detailed process mining
analyses.

Our process mining analyses rely on a single account or research group. Since
the naming schema of the commands is quite arbitrary, we could not identify
shared logical steps (e.g., pre-processing, training of ML model, testing of the
model) between different accounts; therefore, we could not produce a generic
process model. This is indeed a limitation that could not be tackled without
properly naming the commands executed on SLURM and without having in-
sights about the commands.

Overall, our approach succeeds in extracting an event log for process min-
ing purposes from the SLURM HPC system, and we can respond to our basic
analytical goals. However, given the arbitrary execution styles and naming con-
ventions, we could not produce more general analyses, which remain as a goal
for future work.

References

1. van der Aalst, W.M.P., Carmona, J. (eds.): Process Mining Handbook, Lecture
Notes in Business Information Processing, vol. 448. Springer (2022)

2. Deelman, E., Gannon, D., Shields, M.S., Taylor, I.J.: Workflows and e-science: An
overview of workflow system features and capabilities. Future Gener. Comput. Syst.
25(5), 528–540 (2009)

3. Dietrich, R., Winkler, F., Knüpfer, A., Nagel, W.E.: PIKA: center-wide and job-
aware cluster monitoring. In: IEEE International Conference on Cluster Computing,
CLUSTER 2020, Kobe, Japan, September 14-17, 2020. pp. 424–432. IEEE (2020)

4. Kunz, P.: HPC Job-Monitoring with SLURM, Prometheus, and Grafana (2022)
5. Pal, A., Malakar, P.: MAP: A visual analytics system for job monitoring and anal-

ysis. In: IEEE International Conference on Cluster Computing, CLUSTER 2020,
Kobe, Japan, September 14-17, 2020. pp. 442–448. IEEE (2020)

6. Sadeghibogar, Z., Berti, A., Pegoraro, M., van der Aalst, W.M.P.: Slurmminer:
A tool for SLURM system analysis with process mining. In: Demonstration &
Resources Forum at BPM 2023 co-located with 21st International Conference on
Business Process Management (BPM 2023), September 11th to 15th, 2023. CEUR
Workshop Proceedings, vol. 3469, pp. 97–101. CEUR-WS.org (2023)

7. Song, W., Chen, F., Jacobsen, H., Xia, X., Ye, C., Ma, X.: Scientific workflow mining
in clouds. IEEE Trans. Parallel Distributed Syst. 28(10), 2979–2992 (2017)

8. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Job Scheduling Strategies for Parallel Processing, 9th International
Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003, Revised Papers. Lecture
Notes in Computer Science, vol. 2862, pp. 44–60. Springer (2003)

9. Zeng, R., He, X., van der Aalst, W.M.P.: A method to mine workflows from prove-
nance for assisting scientific workflow composition. In: World Congress on Services,
SERVICES 2011, Washington, DC, USA, July 4-9, 2011. pp. 169–175. IEEE Com-
puter Society (2011)


	Applying Process Mining on Scientific Workflows: a Case Study on High Performance Computing Data

